Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

critical thinking design definition

Try for free

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved July 1, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • Tools and Resources
  • Customer Services
  • Original Language Spotlight
  • Alternative and Non-formal Education 
  • Cognition, Emotion, and Learning
  • Curriculum and Pedagogy
  • Education and Society
  • Education, Change, and Development
  • Education, Cultures, and Ethnicities
  • Education, Gender, and Sexualities
  • Education, Health, and Social Services
  • Educational Administration and Leadership
  • Educational History
  • Educational Politics and Policy
  • Educational Purposes and Ideals
  • Educational Systems
  • Educational Theories and Philosophies
  • Globalization, Economics, and Education
  • Languages and Literacies
  • Professional Learning and Development
  • Research and Assessment Methods
  • Technology and Education
  • Share This Facebook LinkedIn Twitter

Article contents

Critical thinking.

  • Derek Allen , Derek Allen University of Toronto
  • Sharon Bailin , Sharon Bailin Simon Fraser University
  • Mark Battersby Mark Battersby Capilano University
  •  and  James B. Freeman James B. Freeman Hunter College of the City University of New York, Emeritus
  • https://doi.org/10.1093/acrefore/9780190264093.013.1179
  • Published online: 27 October 2020

There are numerous definitions of critical thinking, but the core concept has been said to be careful, reasoned, goal-directed thinking. There are also many conceptualizations of critical thinking, which are generally more detailed than brief definitions, and there are different views about what the goal(s) of critical thinking instruction should be. Whether critical thinking is a good thing is a matter of debate. Approaches to teaching critical thinking vary, partly according to whether they focus on general principles of critical thinking or on subject-matter content or on a combination of both. A meta-analysis research report published in 2015 concluded that, subject to certain qualifications, a variety of critical thinking skills and dispositions can develop in students through instruction at all educational levels. Critical thinking instruction has been influenced by research in cognitive psychology that has suggested strategies for countering factors (e.g., biases) that the research has found to produce irrational beliefs. Methods of assessing critical thinking ability include teacher-designed tests and standardized tests. A research report published in 2014 on assessing critical thinking in higher education describes challenges involved in designing standardized critical thinking tests and proposes a framework for a “next-generation” assessment. The challenges include achieving a balance between the assessment's real-world relevance and its psychometric quality, and designing an assessment useful for instructional purposes and for comparisons of programs and institutions. The proposed framework is based partly on a review of existing frameworks of critical thinking in higher education. It has two analytical dimensions and two synthetic dimensions, and a dimension on understanding causation and explanation. Surveys show that employers value employees with strong critical thinking ability; this fact has significant implications for students, teachers, and administrators at all levels of education.

  • critical thinking
  • definitions
  • conceptualizations
  • justifications

You do not currently have access to this article

Please login to access the full content.

Access to the full content requires a subscription

Printed from Oxford Research Encyclopedias, Education. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 01 July 2024

  • Cookie Policy
  • Privacy Policy
  • Legal Notice
  • Accessibility
  • [81.177.182.159]
  • 81.177.182.159

Character limit 500 /500

Advertisement

Advertisement

Mapping the Relationship Between Critical Thinking and Design Thinking

  • Published: 02 February 2021
  • Volume 13 , pages 406–429, ( 2022 )

Cite this article

critical thinking design definition

  • Jonathan D. Ericson   ORCID: orcid.org/0000-0001-9076-0596 1  

2571 Accesses

15 Citations

2 Altmetric

Explore all metrics

Critical thinking has been a longstanding goal of education, while design thinking has gradually emerged as a popular method for supporting entrepreneurship, innovation, and problem solving in modern business. While some scholars have posited that design thinking may support critical thinking, empirical research examining the relationship between these two modes of thinking is lacking because their shared conceptual structure has not been articulated in detail and because they have remained siloed in practice. This essay maps eleven essential components of critical thinking to a variety of methods drawn from three popular design thinking frameworks. The mapping reveals that these seemingly unrelated modes of thinking share common features but also differ in important respects. A detailed comparison of the two modes of thinking suggests that design thinking methods have the potential to support and augment traditional critical thinking practices, and that design thinking frameworks could be modified to more explicitly incorporate critical thinking. The article concludes with a discussion of implications for the knowledge economy, and a research agenda for researchers, educators, and practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

critical thinking design definition

When Does a Researcher Choose a Quantitative, Qualitative, or Mixed Research Approach?

The theory contribution of case study research designs.

critical thinking design definition

Social Constructivism—Jerome Bruner

Aranda, M. L., Lie, R., & Guzey, S. (2019). Productive thinking in middle school science students’ design conversations in a design-based engineering challenge. International Journal of Technology and Design Education , (January). https://doi.org/10.1007/s10798-019-09498-5 .

Association for Computing Machinery. (2018). ACM Code of Ethics and Professional Conduct . Retrieved from https://www.acm.org/code-of-ethics .

Bailin, S. (1987). Critical and creative thinking. Informal Logic, 9 (1), 23–30.

Article   Google Scholar  

Bailin, S. (1988). Achieving extraordinary ends: An essay on creativity . Dordrecht: Kluwer.

Book   Google Scholar  

Banfield, R., Lombardo, C. T., & Wax, T. (2015). Design sprint: A practical guidebook for building great digital products . Sebastopol, CA: O’Reilly Media Inc.

Google Scholar  

Benson, J., & Dresdow, S. (2014). Design thinking: A fresh approach for transformative assessment practice. Journal of Management Education, 38 (3), 436–461. https://doi.org/10.1177/1052562913507571 .

Bloom, B.S. (Ed.), Engelhart, M.D., Furst, E.J., Hill, W.H., & Krathwohl, D.R. (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook 1: Cognitive domain. New York: David McKay.

Wilner, S., & Micheli, P. (2015). Reconciling the tension between consistency and relevance: design thinking as a mechanism for brand ambidexterity. Journal of the Academy of Marketing Science, 43 (5), 589–609.

Bonwell, C., & Eison, J. (1991). Active Learning: Creating excitement in the classroom (ASHEERIC Higher Education Report No. 1) . Washington, DC: George Washington University.

Brown, A. (2015). Developing career adaptability and innovative capabilities through learning and working in Norway and the United Kingdom. Journal of the Knowledge Economy, 6 (2), 402–419. https://doi.org/10.1007/s13132-014-0215-6 .

Brown, J. S., Collins, A., Duguid, P., & Seely, J. (2007). Situated cognition and the culture of learning. Educational Researcher, 18 (1), 32–42. https://doi.org/10.3102/0013189X018001032 .

Brown, T. (2021). Design thinking. Accessed 4 January 2021. http://www.ideou.com/pages/design-thinking

Callaway, M. R., & Esser, J. K. (1984). Groupthink: Effects of cohesiveness and problemsolving on group decision making. Social Behavior and Personality, 12, 157–164.

Carayannis, E. G., & Rakhmatullin, R. (2014). The quadruple/quintuple innovation helixes and smart specialisation strategies for sustainable and inclusive growth in Europe and beyond. Journal of the Knowledge Economy, 5 (2), 212–239. https://doi.org/10.1007/s13132-014-0185-8 .

Churchman, C. W. (1967). Guest editorial: Wicked problems. Management Science, 14 (4), B141–B214.

Colzato, L. S., Szapora, A., Lippelt, D., & Hommel, B. (2017). Prior meditation practice modulates performance and strategy use in convergent- and divergent-thinking problems. Mindfulness, 8 (1), 10–16. https://doi.org/10.1007/s12671-014-0352-9 .

Cropley, A. (2006). In praise of convergent thinking. Creativity Research Journal, 18 (3), 391–404. https://doi.org/10.1207/s15326934crj1803_13 .

Cross, N, Dorst, K. & Roozenburg, N. (Ed.). (1992). Research in design thinking . Delft: Delft University Press.

Cross, N. (1993). A history of design methodology. In M. J. de Vries, N. Cross, & D. Grant (Eds.), Design methodology and relationships with science (pp. 15–27). https://doi.org/10.1007/978-94-015-8220-9_2 .

Crossan, M. M. (1998). Improvisation in action. Organization Science, 9 (5), 593–599. https://doi.org/10.1287/orsc.9.5.593 .

Davies, M. (2015). A model of critical thinking in higher education. https://doi.org/10.1007/978-3-319-12835-1_2 .

Davis, C. M. (1990). What is empathy, and can empathy be taught. Physical Therapy, 70 (11), 707–711. https://doi.org/10.2519/jospt.2011.3225 .

Dewey, J. (1910). How we think . Boston, MA: D.C. Health.

Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the educative process . Lexington, MA: D.C. Health.

Dorst, K. (2011). The core of “design thinking” and its application. Design Studies, 32 (6), 521–532. https://doi.org/10.1016/j.destud.2011.07.006 .

Dym, C., Agogino, A., Erics, O., Frey, D., & Leifer, L. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94 (1), 103–120.

Ennis, R. H. (1962). A concept of critical thinking. Harvard Educational Review, 32 (1), 81–111.

Ennis, R. H. (1987a). A taxonomy of critical thinking dispositions and abilities. In Teaching Thinking Skills: Theory and practice . New York, NY: W. H. Freeman.

Ennis, R. H. (1987b). Critical thinking and the curriculum. Slomianko: In M. Heiman & J.(Eds.), Thinking skills instruction: Concepts and techniques. Building Students’ Thinking Skills Series. (pp. 40–48). National Education Association. https://doi.org/10.1177/019263658807250830 .

Ennis, R. H. (1991). Critical thinking: a streamlined conception. Teaching Philosophy, 14 (1), 5–24. https://doi.org/10.5840/teachphil19911412 .

Eyler, J., & Giles, D. (1999). Where’s the learning in service-learning . San Francisco: Jossey-Bass.

Facione, P. A. (1990). Critical thinking : A statement of expert consensus for purposes of educational assessment and instruction executive summary “ The Delphi Report. American Philosophical Association Delphi Research Report . https://doi.org/10.1016/j.tsc.2009.07.002 .

Fisher, A., & Scriven, M. (1997). Critical thinking: Its definition and assessment . Norwich: Centre for Research in Critical Thinking, University of East Anglia.

Gibbons, S. (2018). Empathy Mapping: The first step in design thinking. Retrieved from https://www.nngroup.com/articles/empathy-mapping/ .

Glaser, E. M. (1941). An experiment in the development of critical thinking . New York: Columbia University Teacher’s College.

Gokhale, A. A. (1995). Collaborative learning enhances critical thinking. Journal of Technology Education , 7 (1), 22–30. https://doi.org/10.21061/jte.v7i1.a.2 .

Halonen, J. S. (1995). Demystifying critical thinking. Teaching of Psychology, 22 (1), 75–81. https://doi.org/10.1207/s15328023top2201_23 .

Halpern, D. F. (1998). Teaching critical thinking for transfer across domains. American Psychologist, 53 (4), 449–455. https://doi.org/10.1037//0003-066X.53.4.449 .

Haupt, G. (2015). Learning from experts: fostering extended thinking in the early phases of the design process. International Journal of Technology and Design Education, 25 (4), 483–520. https://doi.org/10.1007/s10798-014-9295-7 .

Harley, A. (2018). UX Expert Reviews. https://www.nngroup.com/articles/ux-expert-reviews/

Haupt, G. (2018). Hierarchical thinking: a cognitive tool for guiding coherent decision making in design problem solving. International Journal of Technology and Design Education, 28 (1), 207–237. https://doi.org/10.1007/s10798-016-9381-0 .

Hitchcock, D. (2018). Critical thinking. In E. Zalta (Ed.), Stanford Encyclopedia of Philosophy (Fall 2018). Retrieved from https://plato.stanford.edu/archives/fall2018/entries/critical-thinking/ .

Hogland-Smith. (2017). Critical thinking skills are now in top demand in sales, business. Chicago Tribune . Retrieved from https://www.chicagotribune.com/suburbs/post-tribune/opinion/ct-ptb-hoagland-smith-problem-st-0723-20170723-story.html .

Hu, Y., Du, X., Bryan-Kinns, N., & Guo, Y. (2018). Identifying divergent design thinking through the observable behavior of service design novices. International Journal of Technology and Design Education, 1, 13. https://doi.org/10.1007/s10798-018-9479-7 .

Hutchins, E. (1996). Cognition in the Wild . Cambridge, MA: MIT Press.

Hutchins, E. (2010). Cognitive ecology. Topics in Cognitive . Science, 2 (4), 705–715. https://doi.org/10.1111/j.1756-8765.2010.01089.x .

IDEO. (2015). The field guide to human-centered design (1st ed.). Canada: IDEO.org / DesignKit.

ITEA (2007). Standards for technological literacy: Content for the study of technology. (2007). In Phi Delta Kappan (3rd ed.). International Technology Education Association (ITEA). https://doi.org/10.1177/003172170108200707 .

Janis, I. L. (1971). Groupthink. Psychology Today, 5 (6), 43–46.

Janis, I. (1982). Groupthink: Psychological studies of policy decisions and fiascoes (2nd ed.). Boston, MA: Houghton-Mifflin.

Janis, I. L. (2008). Groupthink. IEEE Engineering Management Review, 36 (1), 36.

Johansson-Sköldberg, U., & Woodilla, J. (2013). Design thinking: past, present and possible futures. Creativity and Innovation Management, 22 (2), 121–146. https://doi.org/10.1111/caim.12023 .

Joyce, A., & Paquin, R. L. (2016). The triple layered business model canvas: A tool to design more sustainable business models. Journal of Cleaner Production , 135 (November 2017), 1474–1486. https://doi.org/10.1016/j.jclepro.2016.06.067 .

Kelley, T. R., & Sung, E. (2017). Sketching by design: Teaching sketching to young learners. International Journal of Technology and Design Education, 27 (3), 363–386. https://doi.org/10.1007/s10798-016-9354-3 .

Kolb, A. Y., & Kolb, D. A. (2016). Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy of Management Learning & Education, 4 (2), 193–212. https://doi.org/10.5465/AMLE.2005.17268566 .

Kolko, J. (2018). The Divisiveness of Design Thinking. Interactions, 25 (3), 28–34. https://doi.org/10.1145/3194313 .

Krathwohl, D. R. (2002). A Revision of Bloom’s Taxonomy: An overview. Theory Into Practice, 41(4), 212–218. https://www.jstor.org/stable/1477405

Kuiper, R. (2002). Enhancing metacognition through the reflective use of self-regulated learning strategies. Journal of Continuing Education in Nursing, 33 (2), 78–87. https://doi.org/10.3928/0022-0124-20020301-11 .

Lancione, M., & Clegg, S. R. (2015). The lightness of management learning. Management Learning, 46 (3), 280–298. https://doi.org/10.1177/1350507614526533 .

Levin, J. S. (2018, May). Sharpen your critical thinking skills with these 14 leadership practices. Forbes . Retrieved from https://www.forbes.com/sites/forbescoachescouncil/2018/05/31/sharpen-your-critical-thinking-skills-with-these-14-leadership-practices/ .

Lloyd, P. (2013). Embedded creativity: Teaching design thinking via distance education. International Journal of Technology and Design Education, 23 (3), 749–765. https://doi.org/10.1007/s10798-012-9214-8 .

Luchs, M. (2016). A brief introduction to design thinking. In M. Luchs, K. Swan & A. Griffin (eds.), Design thinking: new product development essentials from the PDMA (pp. 1–12). Hoboken: (NJ): Wiley.

Lukovics, M., Udvari, B., Nádas, N., & Fisher, E. (2019). Raising awareness of researchers-in-the-making toward responsible research and innovation. Journal of the Knowledge Economy, 10 (4), 1558–1577. https://doi.org/10.1007/s13132-019-00624-1 .

LUMA. (2012). Innovating for People: Handbook of Human-Centered Design Methods (1st ed.). Pittsburg, PA: LUMA Institute LLC.

Mason, T. H., Pollard, C. R., Chimalakonda, D., Guerrero, A. M., Kerr-Smith, C., Milheiras, S. A., & Bunnefeld, N. (2018). Wicked conflict: Using wicked problem thinking for holistic management of conservation conflict. Conservation letters, 11 (6), e12460.

McPeck (1981/2017). Critical thinking and education . New York: Routledge.

Montini, L. (2014, October). The trouble with hiring for “critical thinking” skills. Inc. Retrieved from https://www.inc.com/laura-montini/are-you-sure-you-want-to-hire-a-critical-thinker.html .

Moshavi, D. (2001). “Yes and...”: Introducing improvisational theatre techniques to the management classroom. Journal of Management Education , 25 (4), 437–449.

Nodder, C. (2013). Evil by design: Interaction design to lead us into temptation. https://doi.org/10.1073/pnas.0703993104 .

Norris, P. E., O’Rourke, M., Mayer, A. S., & Halvorsen, K. E. (2016). Managing the wicked problem of transdisciplinary team formation in socioecological systems. Landscape and Urban Planning, 154, 115–122. https://doi.org/10.1016/j.landurbplan.2016.01.008 .

Osterwalder, A., & Pigneur, Y. (2010). Business model generation: A handbook for visionaries, game changers, and challengers. In Booksgooglecom (Vol. 30). Hoboken, NJ: John Wiley & Sons, Inc.

Owen, R., Macnaghten, P., & Stilgoe, J. (2012). Responsible research and innovation: from science in society to science for society, with society. Science and Public Policy, 39 (6), 751–760.

Park, W. W. (1990). A review of research on groupthink. Journal of Behavioral Decision Making, 3, 229–245.

Pithers, R. T., & Soden, R. (2000). Critical thinking in education: A review. Educational Research, 42 (3), 237–249. https://doi.org/10.1080/001318800440579 .

Price, R. (2016). March) . Business Insider: Microsoft is deleting its AI chatbot’s incredibly racist tweets.

Prince, M. (2004). Does active learning work ? A review of the research. Journal of Engineering Education, 93 (3), 223–231.

Quitadamo, I. J., Brahler, C. J., & Crouch, G. J. (2009). Peer-led team learning: A prospective method for increasing critical thinking in undergraduate science courses. Science Educator, 18 (1), 29–39.

Razzouk, R., & Shute, V. (2012). What is design thinking and why is it important? Review of Educational Research, 82 (3), 330–348.

Reed, L. (2018, January). Building critical thinking skills to solve problems at work. Business.Com . Retrieved from https://www.business.com/articles/building-critical-thinking-skills-at-work/ .

van Reine, P. P. (2017). The culture of design thinking for innovation. Journal of Innovation Management, 5 (2), 56–80.

Rittel, H. W., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4 (2), 155–169.

Rosenberger, C. (2000). Beyond empathy: Developing critical consciousness through service learning. In Integrating service learning and multicultural education in colleges and universities (pp. 23–43). https://doi.org/10.4324/9781410606051-9 .

Rowe (1987). Design thinking . Cambridge, MA: MIT Press.

Runco, M. A. (1991). Divergent thinking (creativity research) . Norwood, NJ: Ablex Publishing Corporation.

Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24 (1), 66–75. https://doi.org/10.1080/10400419.2012.652929 .

Scheer, A., Noweski, C., & Meinel, C. (2012). Transforming constructivist learning into action: Design thinking in education. Design and Technology Education: An International Journal, 17 (3), 8–19.

Schleicher, D., Jones, P., & Kachur, O. (2010). Bodystorming as embodied designing. Interactions, 17 (6), 47. https://doi.org/10.1145/1865245.1865256 .

Scriven, M., & Paul, R. (1987). Critical thinking. 8th Annual International Conference on Critical Thinking and Education Reform [Web page]. Retrieved from http://www.criticalthinking.org/pages/defining-critical-thinking/766

Spiro, H. M. (1992). What is empathy and can it be taught? Annals of Internal Medicine, 116 (10), 843–846. https://doi.org/10.7326/0003-4819-116-10-843 .

Somerson, R. (2013). The art of Critical Making: An introduction. In E. Somerson, M. Hermano, & J. Maeda (Eds.), The Art of Critical Making: Rhode Island School of Design on Creative Practice (pp. 19–31). John Wiley & Sons, Inc.

Stempfle, J., & Badke-Schaub, P. (2002). Thinking in design teams - An analysis of team communication. Design Studies, 23 (5), 473–496. https://doi.org/10.1016/S0142-694X(02)00004-2 .

Suchman, L. (1987). Plans and situated actions . Cambridge, UK: Cambridge University Press.

Sun, J., Chen, Q., Zhang, Q., Li, Y., Li, H., Wei, D., & Qiu, J. (2016). Training your brain to be more creative: Brain functional and structural changes induced by divergent thinking training. Human Brain Mapping, 37 (10), 3375–3387. https://doi.org/10.1002/hbm.23246 .

Totten, S., Sills, T., Digby, A., & Russ, P. (1991). Cooperative learning: A guide to research . New York, NY: Garland.

Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind . Cambridge, MA: The MIT Press.

Waddock, S. (2013). The wicked problems of global sustainability need wicked (good) leaders and wicked (good) collaborative solutions. Journal of Management for Global Sustainability , 1 (1), 91–111. https://doi.org/10.13185/JM2013.01106 .

Wells, A. (2013). The importance of design thinking for technological literacy: A phenomenological perspective. International Journal of Technology and Design Education, 23 (3), 623–636. https://doi.org/10.1007/s10798-012-9207-7 .

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9 (4), 625–636. https://doi.org/10.3758/BF03196322 .

Yildirim, B., & Özkahraman, Ş. (2011). Critical thinking in nursing process and education. International Journal of Humanities and Social Science, 1 (13), 257–262.

Zidulka, A., & Mitchell, I. K. (2018). Creativity or cooptation? thinking beyond instrumentalism when teaching design thinking. Journal of Management Education, 42 (6), 749–760. https://doi.org/10.1177/1052562918799797 .

Download references

Author information

Authors and affiliations.

Information Design & Corporate Communication, Bentley University, 175 Forest Street, Waltham, MA, 02452, USA

Jonathan D. Ericson

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Jonathan D. Ericson .

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Design Thinking: Challenges and Opportunities

Rights and permissions

Reprints and permissions

About this article

Ericson, J.D. Mapping the Relationship Between Critical Thinking and Design Thinking. J Knowl Econ 13 , 406–429 (2022). https://doi.org/10.1007/s13132-021-00733-w

Download citation

Received : 20 July 2020

Accepted : 19 January 2021

Published : 02 February 2021

Issue Date : March 2022

DOI : https://doi.org/10.1007/s13132-021-00733-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Critical thinking
  • Design thinking
  • Entrepreneurship
  • Knowledge economy
  • Find a journal
  • Publish with us
  • Track your research

Bookmark this page

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

Our Concept and Definition of Critical Thinking








Identify its purpose, and question at issue, as well as its information, inferences(s), assumptions, implications, main concept(s), and point of view.


Check it for clarity, accuracy, precision, relevance, depth, breadth, significance, logic, and fairness.






attempts to reason at the highest level of quality in a fair-minded way. People who think critically consistently attempt to live rationally, reasonably, empathically. They are keenly aware of the inherently flawed nature of human thinking when left unchecked. They strive to diminish the power of their egocentric and sociocentric tendencies. They use the intellectual tools that critical thinking offers – concepts and principles that enable them to analyze, assess, and improve thinking. They work diligently to develop the intellectual virtues of intellectual integrity, intellectual humility, intellectual civility, intellectual empathy, intellectual sense of justice and confidence in reason. 
~ Linda Elder, September 2007

University of Louisville

  • Programs & Services
  • Delphi Center

Ideas to Action (i2a)

  • What is Critical Thinking?

The ability to think critically calls for a higher-order thinking than simply the ability to recall information.

Definitions of critical thinking, its elements, and its associated activities fill the educational literature of the past forty years. Critical thinking has been described as an ability to question; to acknowledge and test previously held assumptions; to recognize ambiguity; to examine, interpret, evaluate, reason, and reflect; to make informed judgments and decisions; and to clarify, articulate, and justify positions (Hullfish & Smith, 1961; Ennis, 1962; Ruggiero, 1975; Scriven, 1976; Hallet, 1984; Kitchener, 1986; Pascarella & Terenzini, 1991; Mines et al., 1990; Halpern, 1996; Paul & Elder, 2001; Petress, 2004; Holyoak & Morrison, 2005; among others).

After a careful review of the mountainous body of literature defining critical thinking and its elements, UofL has chosen to adopt the language of Michael Scriven and Richard Paul (2003) as a comprehensive, concise operating definition:

Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action.

Paul and Scriven go on to suggest that critical thinking is based on: "universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness. It entails the examination of those structures or elements of thought implicit in all reasoning: purpose, problem, or question-at-issue, assumptions, concepts, empirical grounding; reasoning leading to conclusions, implication and consequences, objections from alternative viewpoints, and frame of reference. Critical thinking - in being responsive to variable subject matter, issues, and purposes - is incorporated in a family of interwoven modes of thinking, among them: scientific thinking, mathematical thinking, historical thinking, anthropological thinking, economic thinking, moral thinking, and philosophical thinking."

This conceptualization of critical thinking has been refined and developed further by Richard Paul and Linder Elder into the Paul-Elder framework of critical thinking. Currently, this approach is one of the most widely published and cited frameworks in the critical thinking literature. According to the Paul-Elder framework, critical thinking is the:

  • Analysis of thinking by focusing on the parts or structures of thinking ("the Elements of Thought")
  • Evaluation of thinking by focusing on the quality ("the Universal Intellectual Standards")
  • Improvement of thinking by using what you have learned ("the Intellectual Traits")

Selection of a Critical Thinking Framework

The University of Louisville chose the Paul-Elder model of Critical Thinking as the approach to guide our efforts in developing and enhancing our critical thinking curriculum. The Paul-Elder framework was selected based on criteria adapted from the characteristics of a good model of critical thinking developed at Surry Community College. The Paul-Elder critical thinking framework is comprehensive, uses discipline-neutral terminology, is applicable to all disciplines, defines specific cognitive skills including metacognition, and offers high quality resources.

Why the selection of a single critical thinking framework?

The use of a single critical thinking framework is an important aspect of institution-wide critical thinking initiatives (Paul and Nosich, 1993; Paul, 2004). According to this view, critical thinking instruction should not be relegated to one or two disciplines or departments with discipline specific language and conceptualizations. Rather, critical thinking instruction should be explicitly infused in all courses so that critical thinking skills can be developed and reinforced in student learning across the curriculum. The use of a common approach with a common language allows for a central organizer and for the development of critical thinking skill sets in all courses.

  • SACS & QEP
  • Planning and Implementation
  • Why Focus on Critical Thinking?
  • Paul-Elder Critical Thinking Framework
  • Culminating Undergraduate Experience
  • Community Engagement
  • Frequently Asked Questions
  • What is i2a?

Copyright © 2012 - University of Louisville , Delphi Center

Critical Thinking Definition, Skills, and Examples

  • Homework Help
  • Private School
  • College Admissions
  • College Life
  • Graduate School
  • Business School
  • Distance Learning

critical thinking design definition

  • Indiana University, Bloomington
  • State University of New York at Oneonta

Critical thinking refers to the ability to analyze information objectively and make a reasoned judgment. It involves the evaluation of sources, such as data, facts, observable phenomena, and research findings.

Good critical thinkers can draw reasonable conclusions from a set of information, and discriminate between useful and less useful details to solve problems or make decisions. These skills are especially helpful at school and in the workplace, where employers prioritize the ability to think critically. Find out why and see how you can demonstrate that you have this ability.

Examples of Critical Thinking

The circumstances that demand critical thinking vary from industry to industry. Some examples include:

  • A triage nurse analyzes the cases at hand and decides the order by which the patients should be treated.
  • A plumber evaluates the materials that would best suit a particular job.
  • An attorney reviews the evidence and devises a strategy to win a case or to decide whether to settle out of court.
  • A manager analyzes customer feedback forms and uses this information to develop a customer service training session for employees.

Why Do Employers Value Critical Thinking Skills?

Employers want job candidates who can evaluate a situation using logical thought and offer the best solution.

Someone with critical thinking skills can be trusted to make decisions independently, and will not need constant handholding.

Hiring a critical thinker means that micromanaging won't be required. Critical thinking abilities are among the most sought-after skills in almost every industry and workplace. You can demonstrate critical thinking by using related keywords in your resume and cover letter and during your interview.

How to Demonstrate Critical Thinking in a Job Search

If critical thinking is a key phrase in the job listings you are applying for, be sure to emphasize your critical thinking skills throughout your job search.

Add Keywords to Your Resume

You can use critical thinking keywords (analytical, problem solving, creativity, etc.) in your resume. When describing your work history, include top critical thinking skills that accurately describe you. You can also include them in your resume summary, if you have one.

For example, your summary might read, “Marketing Associate with five years of experience in project management. Skilled in conducting thorough market research and competitor analysis to assess market trends and client needs, and to develop appropriate acquisition tactics.”

Mention Skills in Your Cover Letter

Include these critical thinking skills in your cover letter. In the body of your letter, mention one or two of these skills, and give specific examples of times when you have demonstrated them at work. Think about times when you had to analyze or evaluate materials to solve a problem.

Show the Interviewer Your Skills

You can use these skill words in an interview. Discuss a time when you were faced with a particular problem or challenge at work and explain how you applied critical thinking to solve it.

Some interviewers will give you a hypothetical scenario or problem, and ask you to use critical thinking skills to solve it. In this case, explain your thought process thoroughly to the interviewer. He or she is typically more focused on how you arrive at your solution rather than the solution itself. The interviewer wants to see you analyze and evaluate (key parts of critical thinking) the given scenario or problem.

Of course, each job will require different skills and experiences, so make sure you read the job description carefully and focus on the skills listed by the employer.

Top Critical Thinking Skills

Keep these in-demand skills in mind as you refine your critical thinking practice —whether for work or school.

Part of critical thinking is the ability to carefully examine something, whether it is a problem, a set of data, or a text. People with analytical skills can examine information, understand what it means, and properly explain to others the implications of that information.

  • Asking Thoughtful Questions
  • Data Analysis
  • Interpretation
  • Questioning Evidence
  • Recognizing Patterns

Communication

Often, you will need to share your conclusions with your employers or with a group of classmates or colleagues. You need to be able to communicate with others to share your ideas effectively. You might also need to engage in critical thinking in a group. In this case, you will need to work with others and communicate effectively to figure out solutions to complex problems.

  • Active Listening
  • Collaboration
  • Explanation
  • Interpersonal
  • Presentation
  • Verbal Communication
  • Written Communication

Critical thinking often involves creativity and innovation. You might need to spot patterns in the information you are looking at or come up with a solution that no one else has thought of before. All of this involves a creative eye that can take a different approach from all other approaches.

  • Flexibility
  • Conceptualization
  • Imagination
  • Drawing Connections
  • Synthesizing

Open-Mindedness

To think critically, you need to be able to put aside any assumptions or judgments and merely analyze the information you receive. You need to be objective, evaluating ideas without bias.

  • Objectivity
  • Observation

Problem-Solving

Problem-solving is another critical thinking skill that involves analyzing a problem, generating and implementing a solution, and assessing the success of the plan. Employers don’t simply want employees who can think about information critically. They also need to be able to come up with practical solutions.

  • Attention to Detail
  • Clarification
  • Decision Making
  • Groundedness
  • Identifying Patterns

More Critical Thinking Skills

  • Inductive Reasoning
  • Deductive Reasoning
  • Noticing Outliers
  • Adaptability
  • Emotional Intelligence
  • Brainstorming
  • Optimization
  • Restructuring
  • Integration
  • Strategic Planning
  • Project Management
  • Ongoing Improvement
  • Causal Relationships
  • Case Analysis
  • Diagnostics
  • SWOT Analysis
  • Business Intelligence
  • Quantitative Data Management
  • Qualitative Data Management
  • Risk Management
  • Scientific Method
  • Consumer Behavior

Key Takeaways

  • Demonstrate you have critical thinking skills by adding relevant keywords to your resume.
  • Mention pertinent critical thinking skills in your cover letter, too, and include an example of a time when you demonstrated them at work.
  • Finally, highlight critical thinking skills during your interview. For instance, you might discuss a time when you were faced with a challenge at work and explain how you applied critical thinking skills to solve it.

University of Louisville. " What is Critical Thinking ."

American Management Association. " AMA Critical Skills Survey: Workers Need Higher Level Skills to Succeed in the 21st Century ."

  • Questions for Each Level of Bloom's Taxonomy
  • Critical Thinking in Reading and Composition
  • Bloom's Taxonomy in the Classroom
  • How To Become an Effective Problem Solver
  • 2020-21 Common Application Essay Option 4—Solving a Problem
  • Introduction to Critical Thinking
  • Creativity & Creative Thinking
  • Higher-Order Thinking Skills (HOTS) in Education
  • 6 Skills Students Need to Succeed in Social Studies Classes
  • College Interview Tips: "Tell Me About a Challenge You Overcame"
  • Types of Medical School Interviews and What to Expect
  • The Horse Problem: A Math Challenge
  • What to Do When the Technology Fails in Class
  • What Are Your Strengths and Weaknesses? Interview Tips for Teachers
  • A Guide to Business Letters Types
  • Landing Your First Teaching Job
  • Get in touch
  • Enterprise & IT
  • Banking & Financial Services
  • News media & Entertainment
  • Healthcare & Lifesciences
  • Networks and Smart Devices
  • Education & EdTech
  • Service Design
  • UI UX Design
  • Data Visualization & Design
  • User & Design Research
  • In the News
  • Our Network
  • Voice Experiences
  • Golden grid

Critical Thinking

  • Enterprise UX
  • 20 Product performance metrics
  • Types of Dashboards
  • Interconnectivity and iOT
  • Healthcare and Lifesciences
  • Airtel XStream
  • Case studies

Data Design

  • UCD vs. Design Thinking

User & Design Research

Critical thinking is a method of analyzing ideas, concepts or data collected to evaluate the situation from different perspectives and arrive at an unbiased optimum solution. A critical thinker can anticipate the consequences of certain actions in advance. A researcher with the competency to critically think can reflect, think independently, stay objective, problem solve to deduce a solution. Therefore, critical thinking requires self-actuated discipline and correction to get one step closer to the solution iteratively.

Quick details: Critical Thinking

Structure: Unstructured

Preparation: Information needed to analyze

Deliverables: Inferences, Insights

More about Critical Thinking

Most research methods require experienced or trained researchers to define the design specifications for a project. The researcher employs different methods to collect data, analyze it and arrive at the solution that addresses user needs and expectations. One of the most important competencies that a researcher must have in order to arrive at an optimum solution is the ability to critically think and analyze.

Critical Thinking can also help identify gaps in reasoning and assumptions. Although, design researchers are expected to have this competency independently, critical thinking promotes group ideation and task execution as well. Though, it shouldn’t be seen as an opportunity to criticize someone else’s ideas or work.  In that sense, the objective of critical thinking is to strengthen a theory, process, product or service and not to find unnecessary faults to ensure that the ideas or processes collapse. A mature critical thinker can define project goals, define timelines, set expectations, manage expectations, handle conflicts and work collaboratively with a team to accomplish the project goals. It is more and more evident that critical thinking, even though not given its due importance in organizations, is a critical competency that cannot be undermined.

Critical Thinking vs. Design Thinking

It is also important to discuss the difference between Design Thinking and Critical Thinking. Design Thinking is a process that involves stages of observation/interaction, empathy, problem formulation, solution deduction, testing, alteration and reiteration. Here, Critical Thinking is a part of every stage of the Design Thinking process. Essentially, effective Design Thinking cannot take place in the absence of critical or creative thinking. There is also a common misconception that critical and creative thinking are distinct from each other. 

However, critical thinking requires some form as well as level of creativity. Critical and creative thinking go hand-in-hand and cannot be separated or distinguished using any formal criteria.

Advantages of Critical Thinking

1. design thinking.

Critical thinking is an important component that comes into play at every stage of the design thinking process .

2. Creative Problem Solving

Critical Thinking is not just rational and based on a set of logical rules. There is plenty of room for solid creativity to play a significant role in the critical thinking process .

3. Reflection

Critical thinking promotes independent and reflective thinking in the researcher to question and evaluate the solutions they have devised and reiterate for an optimum solution .

4. Objectivity

Effective use of this method ensures objectivity and therefore doesn’t leave much scope for biases .

5. Applications

Critical thinking is a competency and method that is applicable in all projects irrespective of the type of solution expected .

Disadvantages of Critical Thinking

1. researcher can introduce unnecessary complexity.

Too much thinking can also be detrimental to a project. Some researchers can complicate an otherwise simple project by overthinking critical and pose questions when not required .

2. Expensive researcher

A mature Critical thinking researcher can be very expensive for a low budget project. However, Critical thinking is not a competency that is extremely difficult to master .

Think Design's recommendation

It is difficult to separate reasoning from thinking and hence, this is the best context to introduce the three reasoning types: Deductive, Inductive and Abductive.

Deductive reasoning

Deductive reasoning starts with the assertion of a general rule and ends up in a guaranteed specific conclusion.

Inductive reasoning

Inductive reasoning begins with observations that are specific and ends up with a conclusion that is likely but not certain.

Abductive reasoning

Abductive reasoning starts with an incomplete set of observations and ends up with a most likely explanation.

It is believed that Design, in general is an activity that can complement abductive reasoning; that it is not very essential in the process of Design to come up with deductive or inductive reasoning. However, we wouldn’t want to generalize this at this moment but would suggest that proceeding with abductive reasoning saves a lot of time and effort if that is the objective.

Critical Thinking, when coupled with the types of reasoning above, can generate magical results. It is therefore advised to employ Critical thinking in situations where we may need abductive reasoning skills… There are chances we over-complicate things if we indulge in Critical thinking when we have clear conclusions or clear observations (Deductive and Inductive).

Was this Page helpful?

Related methods.

  • Audio/ Video Analysis
  • Document Research
  • Heatmap Analysis
  • Social Network Mapping
  • Time Lapse Video
  • Trend Analysis
  • Usage Analytics

UI UX DESIGN

Service design.

We use cookies to ensure that we give you the best experience on our website. If you continue we'll assume that you accept this. Learn more

Recent Tweets

Sign up for our newsletter.

Subscribe to our newsletter to stay updated with the latest insights in UX, CX, Data and Research.

Get in Touch

Thank you for subscribing.

You will be receive all future issues of our newsletter.

Thank you for Downloading.

One moment….

While the report downloads, could you tell us…

Encyclopedia Britannica

  • Games & Quizzes
  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • What was education like in ancient Athens?
  • How does social class affect education attainment?
  • When did education become compulsory?
  • What are alternative forms of education?
  • Do school vouchers offer students access to better education?

Aristotle (384-322 BC), Ancient Greek philosopher and scientist. One of the most influential philosophers in the history of Western thought, Aristotle established the foundations for the modern scientific method of enquiry. Statue

critical thinking

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Stanford Encyclopedia of Philosophy - Critical Thinking
  • Internet Encyclopedia of Philosophy - Critical Thinking
  • Monash University - Student Academic Success - What is critical thinking?
  • Oklahoma State University Pressbooks - Critical Thinking - Introduction to Critical Thinking
  • University of Louisville - Critical Thinking

critical thinking , in educational theory, mode of cognition using deliberative reasoning and impartial scrutiny of information to arrive at a possible solution to a problem. From the perspective of educators, critical thinking encompasses both a set of logical skills that can be taught and a disposition toward reflective open inquiry that can be cultivated . The term critical thinking was coined by American philosopher and educator John Dewey in the book How We Think (1910) and was adopted by the progressive education movement as a core instructional goal that offered a dynamic modern alternative to traditional educational methods such as rote memorization.

Critical thinking is characterized by a broad set of related skills usually including the abilities to

Socrates

  • break down a problem into its constituent parts to reveal its underlying logic and assumptions
  • recognize and account for one’s own biases in judgment and experience
  • collect and assess relevant evidence from either personal observations and experimentation or by gathering external information
  • adjust and reevaluate one’s own thinking in response to what one has learned
  • form a reasoned assessment in order to propose a solution to a problem or a more accurate understanding of the topic at hand

Theorists have noted that such skills are only valuable insofar as a person is inclined to use them. Consequently, they emphasize that certain habits of mind are necessary components of critical thinking. This disposition may include curiosity, open-mindedness, self-awareness, empathy , and persistence.

Although there is a generally accepted set of qualities that are associated with critical thinking, scholarly writing about the term has highlighted disagreements over its exact definition and whether and how it differs from related concepts such as problem solving . In addition, some theorists have insisted that critical thinking be regarded and valued as a process and not as a goal-oriented skill set to be used to solve problems. Critical-thinking theory has also been accused of reflecting patriarchal assumptions about knowledge and ways of knowing that are inherently biased against women.

Dewey, who also used the term reflective thinking , connected critical thinking to a tradition of rational inquiry associated with modern science. From the turn of the 20th century, he and others working in the overlapping fields of psychology , philosophy , and educational theory sought to rigorously apply the scientific method to understand and define the process of thinking. They conceived critical thinking to be related to the scientific method but more open, flexible, and self-correcting; instead of a recipe or a series of steps, critical thinking would be a wider set of skills, patterns, and strategies that allow someone to reason through an intellectual topic, constantly reassessing assumptions and potential explanations in order to arrive at a sound judgment and understanding.

In the progressive education movement in the United States , critical thinking was seen as a crucial component of raising citizens in a democratic society. Instead of imparting a particular series of lessons or teaching only canonical subject matter, theorists thought that teachers should train students in how to think. As critical thinkers, such students would be equipped to be productive and engaged citizens who could cooperate and rationally overcome differences inherent in a pluralistic society.

Beginning in the 1970s and ’80s, critical thinking as a key outcome of school and university curriculum leapt to the forefront of U.S. education policy. In an atmosphere of renewed Cold War competition and amid reports of declining U.S. test scores, there were growing fears that the quality of education in the United States was falling and that students were unprepared. In response, a concerted effort was made to systematically define curriculum goals and implement standardized testing regimens , and critical-thinking skills were frequently included as a crucially important outcome of a successful education. A notable event in this movement was the release of the 1980 report of the Rockefeller Commission on the Humanities that called for the U.S. Department of Education to include critical thinking on its list of “basic skills.” Three years later the California State University system implemented a policy that required every undergraduate student to complete a course in critical thinking.

Critical thinking continued to be put forward as a central goal of education in the early 21st century. Its ubiquity in the language of education policy and in such guidelines as the Common Core State Standards in the United States generated some criticism that the concept itself was both overused and ill-defined. In addition, an argument was made by teachers, theorists, and others that educators were not being adequately trained to teach critical thinking.

Smart. Open. Grounded. Inventive. Read our Ideas Made to Matter.

Which program is right for you?

MIT Sloan Campus life

Through intellectual rigor and experiential learning, this full-time, two-year MBA program develops leaders who make a difference in the world.

A rigorous, hands-on program that prepares adaptive problem solvers for premier finance careers.

A 12-month program focused on applying the tools of modern data science, optimization and machine learning to solve real-world business problems.

Earn your MBA and SM in engineering with this transformative two-year program.

Combine an international MBA with a deep dive into management science. A special opportunity for partner and affiliate schools only.

A doctoral program that produces outstanding scholars who are leading in their fields of research.

Bring a business perspective to your technical and quantitative expertise with a bachelor’s degree in management, business analytics, or finance.

A joint program for mid-career professionals that integrates engineering and systems thinking. Earn your master’s degree in engineering and management.

An interdisciplinary program that combines engineering, management, and design, leading to a master’s degree in engineering and management.

Executive Programs

A full-time MBA program for mid-career leaders eager to dedicate one year of discovery for a lifetime of impact.

This 20-month MBA program equips experienced executives to enhance their impact on their organizations and the world.

Non-degree programs for senior executives and high-potential managers.

A non-degree, customizable program for mid-career professionals.

Gensler exec: ‘Amplify your impact as you advance your career’

How can we preserve human ability in the age of machines?

Want to invest wisely? Check your prior beliefs at the door

Credit: Mimi Phan

Ideas Made to Matter

Design thinking, explained

Rebecca Linke

Sep 14, 2017

What is design thinking?

Design thinking is an innovative problem-solving process rooted in a set of skills.The approach has been around for decades, but it only started gaining traction outside of the design community after the 2008 Harvard Business Review article [subscription required] titled “Design Thinking” by Tim Brown, CEO and president of design company IDEO.

Since then, the design thinking process has been applied to developing new products and services, and to a whole range of problems, from creating a business model for selling solar panels in Africa to the operation of Airbnb .

At a high level, the steps involved in the design thinking process are simple: first, fully understand the problem; second, explore a wide range of possible solutions; third, iterate extensively through prototyping and testing; and finally, implement through the customary deployment mechanisms. 

The skills associated with these steps help people apply creativity to effectively solve real-world problems better than they otherwise would. They can be readily learned, but take effort. For instance, when trying to understand a problem, setting aside your own preconceptions is vital, but it’s hard.

Creative brainstorming is necessary for developing possible solutions, but many people don’t do it particularly well. And throughout the process it is critical to engage in modeling, analysis, prototyping, and testing, and to really learn from these many iterations.

Once you master the skills central to the design thinking approach, they can be applied to solve problems in daily life and any industry.

Here’s what you need to know to get started.

Infographic of the design thinking process

Understand the problem 

The first step in design thinking is to understand the problem you are trying to solve before searching for solutions. Sometimes, the problem you need to address is not the one you originally set out to tackle.

“Most people don’t make much of an effort to explore the problem space before exploring the solution space,” said MIT Sloan professor Steve Eppinger. The mistake they make is to try and empathize, connecting the stated problem only to their own experiences. This falsely leads to the belief that you completely understand the situation. But the actual problem is always broader, more nuanced, or different than people originally assume.

Take the example of a meal delivery service in Holstebro, Denmark. When a team first began looking at the problem of poor nutrition and malnourishment among the elderly in the city, many of whom received meals from the service, it thought that simply updating the menu options would be a sufficient solution. But after closer observation, the team realized the scope of the problem was much larger , and that they would need to redesign the entire experience, not only for those receiving the meals, but for those preparing the meals as well. While the company changed almost everything about itself, including rebranding as The Good Kitchen, the most important change the company made when rethinking its business model was shifting how employees viewed themselves and their work. That, in turn, helped them create better meals (which were also drastically changed), yielding happier, better nourished customers.

Involve users

Imagine you are designing a new walker for rehabilitation patients and the elderly, but you have never used one. Could you fully understand what customers need? Certainly not, if you haven’t extensively observed and spoken with real customers. There is a reason that design thinking is often referred to as human-centered design.

“You have to immerse yourself in the problem,” Eppinger said.

How do you start to understand how to build a better walker? When a team from MIT’s Integrated Design and Management program together with the design firm Altitude took on that task, they met with walker users to interview them, observe them, and understand their experiences.  

“We center the design process on human beings by understanding their needs at the beginning, and then include them throughout the development and testing process,” Eppinger said.

Central to the design thinking process is prototyping and testing (more on that later) which allows designers to try, to fail, and to learn what works. Testing also involves customers, and that continued involvement provides essential user feedback on potential designs and use cases. If the MIT-Altitude team studying walkers had ended user involvement after its initial interviews, it would likely have ended up with a walker that didn’t work very well for customers. 

It is also important to interview and understand other stakeholders, like people selling the product, or those who are supporting the users throughout the product life cycle.

The second phase of design thinking is developing solutions to the problem (which you now fully understand). This begins with what most people know as brainstorming.

Hold nothing back during brainstorming sessions — except criticism. Infeasible ideas can generate useful solutions, but you’d never get there if you shoot down every impractical idea from the start.

“One of the key principles of brainstorming is to suspend judgment,” Eppinger said. “When we're exploring the solution space, we first broaden the search and generate lots of possibilities, including the wild and crazy ideas. Of course, the only way we're going to build on the wild and crazy ideas is if we consider them in the first place.”

That doesn’t mean you never judge the ideas, Eppinger said. That part comes later, in downselection. “But if we want 100 ideas to choose from, we can’t be very critical.”

In the case of The Good Kitchen, the kitchen employees were given new uniforms. Why? Uniforms don’t directly affect the competence of the cooks or the taste of the food.

But during interviews conducted with kitchen employees, designers realized that morale was low, in part because employees were bored preparing the same dishes over and over again, in part because they felt that others had a poor perception of them. The new, chef-style uniforms gave the cooks a greater sense of pride. It was only part of the solution, but if the idea had been rejected outright, or perhaps not even suggested, the company would have missed an important aspect of the solution.

Prototype and test. Repeat.

You’ve defined the problem. You’ve spoken to customers. You’ve brainstormed, come up with all sorts of ideas, and worked with your team to boil those ideas down to the ones you think may actually solve the problem you’ve defined.

“We don’t develop a good solution just by thinking about a list of ideas, bullet points and rough sketches,” Eppinger said. “We explore potential solutions through modeling and prototyping. We design, we build, we test, and repeat — this design iteration process is absolutely critical to effective design thinking.”

Repeating this loop of prototyping, testing, and gathering user feedback is crucial for making sure the design is right — that is, it works for customers, you can build it, and you can support it.

“After several iterations, we might get something that works, we validate it with real customers, and we often find that what we thought was a great solution is actually only just OK. But then we can make it a lot better through even just a few more iterations,” Eppinger said.

Implementation

The goal of all the steps that come before this is to have the best possible solution before you move into implementing the design. Your team will spend most of its time, its money, and its energy on this stage.

“Implementation involves detailed design, training, tooling, and ramping up. It is a huge amount of effort, so get it right before you expend that effort,” said Eppinger.

Design thinking isn’t just for “things.” If you are only applying the approach to physical products, you aren’t getting the most out of it. Design thinking can be applied to any problem that needs a creative solution. When Eppinger ran into a primary school educator who told him design thinking was big in his school, Eppinger thought he meant that they were teaching students the tenets of design thinking.

“It turns out they meant they were using design thinking in running their operations and improving the school programs. It’s being applied everywhere these days,” Eppinger said.

In another example from the education field, Peruvian entrepreneur Carlos Rodriguez-Pastor hired design consulting firm IDEO to redesign every aspect of the learning experience in a network of schools in Peru. The ultimate goal? To elevate Peru’s middle class.

As you’d expect, many large corporations have also adopted design thinking. IBM has adopted it at a company-wide level, training many of its nearly 400,000 employees in design thinking principles .

What can design thinking do for your business?

The impact of all the buzz around design thinking today is that people are realizing that “anybody who has a challenge that needs creative problem solving could benefit from this approach,” Eppinger said. That means that managers can use it, not only to design a new product or service, “but anytime they’ve got a challenge, a problem to solve.”

Applying design thinking techniques to business problems can help executives across industries rethink their product offerings, grow their markets, offer greater value to customers, or innovate and stay relevant. “I don’t know industries that can’t use design thinking,” said Eppinger.

Ready to go deeper?

Read “ The Designful Company ” by Marty Neumeier, a book that focuses on how businesses can benefit from design thinking, and “ Product Design and Development ,” co-authored by Eppinger, to better understand the detailed methods.

Register for an MIT Sloan Executive Education course:

Systematic Innovation of Products, Processes, and Services , a five-day course taught by Eppinger and other MIT professors.

  • Leadership by Design: Innovation Process and Culture , a two-day course taught by MIT Integrated Design and Management director Matthew Kressy.
  • Managing Complex Technical Projects , a two-day course taught by Eppinger.
  • Apply for M astering Design Thinking , a 3-month online certificate course taught by Eppinger and MIT Sloan senior lecturers Renée Richardson Gosline and David Robertson.

Steve Eppinger is a professor of management science and innovation at MIT Sloan. He holds the General Motors Leaders for Global Operations Chair and has a PhD from MIT in engineering. He is the faculty co-director of MIT's System Design and Management program and Integrated Design and Management program, both master’s degrees joint between the MIT Sloan and Engineering schools. His research focuses on product development and technical project management, and has been applied to improving complex engineering processes in many industries.

Read next: 10 agile ideas worth sharing

Related Articles

A robot hand holds a brush on top of a collage of illustrated motor vehicles

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Critical Thinking and Decision-Making  - What is Critical Thinking?

Critical thinking and decision-making  -, what is critical thinking, critical thinking and decision-making what is critical thinking.

GCFLearnFree Logo

Critical Thinking and Decision-Making: What is Critical Thinking?

Lesson 1: what is critical thinking, what is critical thinking.

Critical thinking is a term that gets thrown around a lot. You've probably heard it used often throughout the years whether it was in school, at work, or in everyday conversation. But when you stop to think about it, what exactly is critical thinking and how do you do it ?

Watch the video below to learn more about critical thinking.

Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions . It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better.

illustration of the terms logic, reasoning, and creativity

This may sound like a pretty broad definition, and that's because critical thinking is a broad skill that can be applied to so many different situations. You can use it to prepare for a job interview, manage your time better, make decisions about purchasing things, and so much more.

The process

illustration of "thoughts" inside a human brain, with several being connected and "analyzed"

As humans, we are constantly thinking . It's something we can't turn off. But not all of it is critical thinking. No one thinks critically 100% of the time... that would be pretty exhausting! Instead, it's an intentional process , something that we consciously use when we're presented with difficult problems or important decisions.

Improving your critical thinking

illustration of the questions "What do I currently know?" and "How do I know this?"

In order to become a better critical thinker, it's important to ask questions when you're presented with a problem or decision, before jumping to any conclusions. You can start with simple ones like What do I currently know? and How do I know this? These can help to give you a better idea of what you're working with and, in some cases, simplify more complex issues.  

Real-world applications

illustration of a hand holding a smartphone displaying an article that reads, "Study: Cats are better than dogs"

Let's take a look at how we can use critical thinking to evaluate online information . Say a friend of yours posts a news article on social media and you're drawn to its headline. If you were to use your everyday automatic thinking, you might accept it as fact and move on. But if you were thinking critically, you would first analyze the available information and ask some questions :

  • What's the source of this article?
  • Is the headline potentially misleading?
  • What are my friend's general beliefs?
  • Do their beliefs inform why they might have shared this?

illustration of "Super Cat Blog" and "According to survery of cat owners" being highlighted from an article on a smartphone

After analyzing all of this information, you can draw a conclusion about whether or not you think the article is trustworthy.

Critical thinking has a wide range of real-world applications . It can help you to make better decisions, become more hireable, and generally better understand the world around you.

illustration of a lightbulb, a briefcase, and the world

/en/problem-solving-and-decision-making/why-is-it-so-hard-to-make-decisions/content/

Created by the Great Schools Partnership , the GLOSSARY OF EDUCATION REFORM is a comprehensive online resource that describes widely used school-improvement terms, concepts, and strategies for journalists, parents, and community members. | Learn more »

Share

Critical Thinking

Critical thinking is a term used by educators to describe forms of learning, thought, and analysis that go beyond the memorization and recall of information and facts. In common usage, critical thinking is an umbrella term that may be applied to many different forms of learning acquisition or to a wide variety of thought processes. In its most basic expression, critical thinking occurs when students are analyzing, evaluating, interpreting, or synthesizing information and applying creative thought to form an argument, solve a problem, or reach a conclusion.

Critical thinking entails many kinds of intellectual skills, including the following representative examples:

  • Developing well-reasoned, persuasive arguments and evaluating and responding to counterarguments
  • Examining concepts or situations from multiple perspectives, including different cultural perspectives
  • Questioning evidence and assumptions to reach novel conclusions
  • Devising imaginative ways to solve problems, especially unfamiliar or complex problems
  • Formulating and articulating thoughtful, penetrating questions
  • Identifying themes or patterns and making abstract connections across subjects

Critical thinking is a central concept in educational reforms that call for schools to place a greater emphasis on skills that are used in all subject areas and that students can apply in all educational, career, and civic settings throughout their lives. It’s also a central concept in reforms that question how teachers have traditionally taught and what students should be learning—notably, the 21st century skills movement, which broadly calls on schools to create academic programs and learning experiences that equip students with the most essential and in-demand knowledge, skills, and dispositions they will need to be successful in higher-education programs and modern workplaces. As higher education and job requirements become competitive, complex, and technical, proponents argue, students will need skills such as critical thinking to successfully navigate the modern world, excel in challenging careers, and process increasingly complex information.

Critical thinking also intersects with debates about assessment and how schools should measure learning acquisition. For example, multiple-choice testing formats have been common in standardized testing for decades, yet the heavy use of such testing formats emphasizes—and may reinforce the importance of—factual retention and recall over other skills. If schools largely test and award grades for factual recall, teachers will therefore stress memorization and recall in their teaching, possibly at the expense of skills such as critical thinking that are vitally important for students to possess but far more challenging to measure accurately.

Creative Commons License

Alphabetical Search

  • To save this word, you'll need to log in. Log In

critical thinking

Definition of critical thinking

Examples of critical thinking in a sentence.

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'critical thinking.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

1815, in the meaning defined at sense 1

Dictionary Entries Near critical thinking

critical temperature

critical value

Cite this Entry

“Critical thinking.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/critical%20thinking. Accessed 1 Jul. 2024.

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Plural and possessive names: a guide, commonly misspelled words, how to use em dashes (—), en dashes (–) , and hyphens (-), absent letters that are heard anyway, how to use accents and diacritical marks, popular in wordplay, it's a scorcher words for the summer heat, flower etymologies for your spring garden, 12 star wars words, 'swash', 'praya', and 12 more beachy words, 8 words for lesser-known musical instruments, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

  • Reviews / Why join our community?
  • For companies
  • Frequently asked questions

Design Thinking (DT)

What is design thinking (dt).

Design thinking is a non-linear, iterative process that teams use to understand users, challenge assumptions, redefine problems and create innovative solutions to prototype and test. It is most useful to tackle ill-defined or unknown problems and involves five phases: Empathize, Define, Ideate, Prototype and Test.

  • Transcript loading…

Why Is Design Thinking so Important?

“Design thinking is a human-centered approach to innovation that draws from the designer's toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success.”

— Tim Brown, CEO of IDEO

Design thinking fosters innovation . Companies must innovate to survive and remain competitive in a rapidly changing environment. In design thinking, cross-functional teams work together to understand user needs and create solutions that address those needs. Moreover, the design thinking process helps unearth creative solutions.

Design teams use design thinking to tackle ill-defined/unknown problems (aka wicked problems ). Alan Dix, Professor of Human-Computer Interaction, explains what wicked problems are in this video.

Wicked problems demand teams to think outside the box, take action immediately, and constantly iterate—all hallmarks of design thinking.

Don Norman, a pioneer of user experience design, explains why the designer’s way of thinking is so powerful when it comes to such complex problems.

Design thinking offers practical methods and tools that major companies like Google, Apple and Airbnb use to drive innovation. From architecture and engineering to technology and services, companies across industries have embraced the methodology to drive innovation and address complex problems. 

The End Goal of Design Thinking: Be Desirable, Feasible and Viable

Three Lenses of Design Thinking.

The design thinking process aims to satisfy three criteria: desirability (what do people desire?), feasibility (is it technically possible to build the solution?) and viability (can the company profit from the solution?). Teams begin with desirability and then bring in the other two lenses.

© Interaction Design Foundation, CC BY-SA 4.0

Desirability: Meet People’s Needs

The design thinking process starts by looking at the needs, dreams and behaviors of people—the end users. The team listens with empathy to understand what people want, not what the organization thinks they want or need. The team then thinks about solutions to satisfy these needs from the end user’s point of view.

Feasibility: Be Technologically Possible

Once the team identifies one or more solutions, they determine whether the organization can implement them. In theory, any solution is feasible if the organization has infinite resources and time to develop the solution. However, given the team’s current (or future resources), the team evaluates if the solution is worth pursuing. The team may iterate on the solution to make it more feasible or plan to increase its resources (say, hire more people or acquire specialized machinery).

At the beginning of the design thinking process, teams should not get too caught up in the technical implementation. If teams begin with technical constraints, they might restrict innovation.

Viability: Generate Profits

A desirable and technically feasible product isn’t enough. The organization must be able to generate revenues and profits from the solution. The viability lens is essential not only for commercial organizations but also for non-profits. 

Traditionally, companies begin with feasibility or viability and then try to find a problem to fit the solution and push it to the market. Design thinking reverses this process and advocates that teams begin with desirability and bring in the other two lenses later.

The Five Stages of Design Thinking

Stanford University’s Hasso Plattner Institute of Design, commonly known as the d.school, is renowned for its pioneering approach to design thinking. Their design process has five phases: Empathize, Define, Ideate, Prototype, and Test. These stages are not always sequential. Teams often run them in parallel, out of order, and repeat them as needed.

Stage 1: Empathize —Research Users' Needs

The team aims to understand the problem, typically through user research. Empathy is crucial to design thinking because it allows designers to set aside your assumptions about the world and gain insight into users and their needs.

Stage 2: Define—State Users' Needs and Problems

Once the team accumulates the information, they analyze the observations and synthesize them to define the core problems. These definitions are called problem statements . The team may create personas to help keep efforts human-centered.

Stage 3: Ideate—Challenge Assumptions and Create Ideas

With the foundation ready, teams gear up to “think outside the box.” They brainstorm alternative ways to view the problem and identify innovative solutions to the problem statement.

Stage 4: Prototype—Start to Create Solutions

This is an experimental phase. The aim is to identify the best possible solution for each problem. The team produces inexpensive, scaled-down versions of the product (or specific features found within the product) to investigate the ideas. This may be as simple as paper prototypes .

Stage 5: Test—Try the Solutions Out

The team tests these prototypes with real users to evaluate if they solve the problem. The test might throw up new insights, based on which the team might refine the prototype or even go back to the Define stage to revisit the problem.

These stages are different modes that contribute to the entire design project rather than sequential steps. The goal is to gain a deep understanding of the users and their ideal solution/product.

Design Thinking: A Non-Linear Process

Design Thinking Frameworks

There is no single definition or process for design thinking. The five-stage design thinking methodology described above is just one of several frameworks.

Hasso-Platner Institute Panorama

Ludwig Wilhelm Wall, CC BY-SA 3.0 , via Wikimedia Commons

Innovation doesn’t follow a linear path or have a clear-cut formula. Global design leaders and consultants have interpreted the abstract design process in different ways and have proposed other frameworks of design thinking.

Head, Heart and Hand by the American Institution of Graphic Arts (AIGA)

The Head, Heart, and Hand approach by AIGA (American Institute of Graphic Arts) is a holistic perspective on design. It integrates the intellectual, emotional, and practical aspects of the creative process.

critical thinking design definition

More than a process, the Head, Heart and Hand framework outlines the different roles that designers must perform to create great results.

© American Institute of Graphic Arts, Fair Use

“ Head ” symbolizes the intellectual component. The team focuses on strategic thinking, problem-solving and the cognitive aspects of design. It involves research and analytical thinking to ensure that design decisions are purposeful.

“ Heart ” represents the emotional dimension. It emphasizes empathy, passion, and human-centeredness. This aspect is crucial in understanding the users’ needs, desires, and experiences to ensure that designs resonate on a deeper, more personal level.

“ Hand ” signifies the practical execution of ideas, the craftsmanship, and the skills necessary to turn concepts into tangible solutions. This includes the mastery of tools, techniques, and materials, as well as the ability to implement and execute design ideas effectively.

Inspire, Ideate, Implement by IDEO

IDEO is a leading design consultancy and has developed its own version of the design thinking framework.

The 3 core activities of deisgn thinking, by IDEO.

IDEO’s design thinking process is a cyclical three-step process that involves Inspiration, Ideation and Implementation.

© IDEO, Public License

In the “ Inspire ” phase, the team focuses on understanding users’ needs, behaviors, and motivations. The team empathizes with people through observation and user interviews to gather deep insights.

In the “ Ideate ” phase, the team synthesizes the insights gained to brainstorm a wide array of creative solutions. This stage encourages divergent thinking, where teams focus on quantity and variety of ideas over immediate practicality. The goal is to explore as many possibilities as possible without constraints.

In the “ Implement ” phase, the team brings these ideas to life through prototypes. The team tests, iterates and refines these ideas based on user feedback. This stage is crucial for translating abstract concepts into tangible, viable products, services, or experiences.

The methodology emphasizes collaboration and a multidisciplinary approach throughout each phase to ensure solutions are innovative and deeply rooted in real human needs and contexts.

The Double Diamond by the Design Council

In the book Designing Social Systems in a Changing World , Béla Heinrich Bánáthy, Professor at San Jose State University and UC Berkeley, created a “divergence-convergence model” diagram. The British Design Council interpreted this diagram to create the Double Diamond design process model.

Design Council's Double Diamond

As the name suggests, the double diamond model consists of two diamonds—one for the problem space and the other for the solution space. The model uses diamonds to represent the alternating diverging and converging activities.

© Design Council, CC BY 4.0

In the diverging “ Discover ” phase, designers gather insights and empathize with users’ needs. The team then converges in the “ Define ” phase to identify the problem.

The second, solution-related diamond, begins with “ Develop ,” where the team brainstorms ideas. The final stage is “ Deliver ,” where the team tests the concepts and implements the most viable solution.

This model balances expansive thinking with focused execution to ensure that design solutions are both creative and practical. It underscores the importance of understanding the problem thoroughly and carefully crafting the solution, making it a staple in many design and innovation processes.

critical thinking design definition

With the widespread adoption of the double diamond framework, Design Council’s simple visual evolved.

In this expanded and annotated version, the framework emphasizes four design principles:

Be people-centered.

Communicate (visually and inclusively).

Collaborate and co-create.

Iterate, iterate, iterate!

The updated version also highlights the importance of leadership (to create an environment that allows innovation) and engagement (to connect with different stakeholders and involve them in the design process).

Common Elements of Design Thinking Frameworks

On the surface, design thinking frameworks look very different—they use alternative names and have different numbers of steps. However, at a fundamental level, they share several common traits.

critical thinking design definition

Start with empathy . Focus on the people to come up with solutions that work best for individuals, business, and society.

Reframe the problem or challenge at hand . Don’t rush into a solution. Explore the problem space and look at the issue through multiple perspectives to gain a more holistic, nuanced understanding.

Initially, employ a divergent style of thinking (analyze) . In the problem space, gather as many insights as possible. In the solution space, encourage team members to generate and explore as many solutions as possible in an open, judgment-free ideation space.

Later, employ a convergent style of thinking (synthesize) . In the problem space, synthesize all data points to define the problem. In the solution space, whittle down all the ideas—isolate, combine and refine potential solutions to create more mature ideas.

Create and test prototypes . Solutions that make it through the previous stages get tested further to remove potential issues.

Iterate . As the team progresses through the various stages, they revisit different stages and may redefine the challenge based on new insights.

Five stages in the design thinking process.

Design thinking is a non-linear process. For example, teams may jump from the test stage to the define stage if the tests reveal insights that redefine the problem. Or, a prototype might spark a new idea, prompting the team to step back into the ideate stage. Tests may also create new ideas for projects or reveal insights about users.

Design Thinking Mindsets: More than a Process

critical thinking design definition

A mindset is a characteristic mental attitude that determines how one interprets and responds to situations . Design thinking mindsets are how individuals think , feel and express themselves during design thinking activities. It includes people’s expectations and orientations during a design project.

Without the right mindset, it can be very challenging to change how we work and think.

The key mindsets that ensure a team can successfully implement design thinking are.

Be empathetic: Empathy is the ability to place yourself, your thinking and feelings in another person’s shoes. Design thinking begins from a deep understanding of the needs and motivations of people—the parents, neighbors, children, colleagues, and strangers who make up a community. 

Be collaborative: No one person is responsible for the outcome when you work in a team. Several great minds are always stronger than just one. Design thinking benefits from the views of multiple perspectives and lets others’ creativity bolster your own.

Be optimistic: Be confident about achieving favorable outcomes. Design thinking is the fundamental belief that we can all create change—no matter how big a problem, how little time, or how small a budget. Designing can be a powerful process no matter what constraints exist around you.

Embrace ambiguity: Get comfortable with ambiguous and complex situations. If you expect perfection, it is difficult to take risks, which limits your ability to create radical change. Design thinking is all about experimenting and learning by doing. It gives you the confidence to believe that new, better things are possible and that you can help make them a reality. 

Be curious: Be open to different ideas. Recognize that you are not the user.

Reframe: Challenge and reframe assumptions associated with a given situation or problem. Don’t take problems at face value. Humans are primed to look for patterns. The unfortunate side effect of these patterns is that we form (often false and sometimes dangerous) stereotypes and assumptions. Design thinking aims to help you break through any preconceived notions and biases and reframe challenges.

Embrace diversity: Work with and engage people with different cultural backgrounds, experiences, and ways of thinking and working. Everyone brings a unique perspective to the team. When you include diverse voices in a team, you learn from each other’s experiences, further helping you break through your assumptions.

Make tangible: When you make ideas tangible, it is faster and easier for everyone on the team to be on the same page. For example, sketching an idea or enacting a scenario is far more convenient and easy to interpret than an elaborate presentation or document.

Take action: Run experiments and learn from them.

Design Thinking vs Agile Methodology

Teams often use design thinking and agile methodologies in project management, product development, and software development. These methodologies have distinct approaches but share some common principles.

Similarities between Design Thinking and Agile

Iterative process.

Both methodologies emphasize iterative development. In design thinking, teams may jump from one phase to another, not necessarily in a set cyclical or linear order. For example, on testing a prototype, teams may discover something new about their users and realize that they must redefine the problem. Agile teams iterate through development sprints.

User-Centered

The agile and design thinking methodologies focus on the end user. All design thinking activities—from empathizing to prototyping and testing—keep the end users front and center. Agile teams continually integrate user feedback into development cycles.

Collaboration and Teamwork

Both methodologies rely heavily on collaboration among cross-functional teams and encourage diverse perspectives and expertise.

Flexibility and Adaptability

With its focus on user research, prototyping and testing, design thinking ensures teams remain in touch with users and get continuous feedback. Similarly, agile teams monitor user feedback and refine the product in a reasonably quick time.

critical thinking design definition

In this video, Laura Klein, author of Build Better Products , describes a typical challenge designers face on agile teams. She encourages designers to get comfortable with the idea of a design not being perfect. Notice the many parallels between Laura’s advice for designers on agile teams and the mindsets of design thinking.

Differences between Design Thinking and Agile

While design thinking and agile teams share principles like iteration, user focus, and collaboration, they are neither interchangeable nor mutually exclusive. A team can apply both methodologies without any conflict.

From a user experience design perspective, design thinking applies to the more abstract elements of strategy and scope. At the same time, agile is more relevant to the more concrete elements of UX: structure, skeleton and surface. For quick reference, here’s an overview of the five elements of user experience.

Design thinking is more about exploring and defining the right problem and solution, whereas agile is about efficiently executing and delivering a product.

Here are the key differences between design thinking and agile.

Design Thinking

It primarily originates in design and borrows from multiple disciplines, including psychology, systems thinking, and business strategy.

It primarily originates from software development and borrows from disciplines such as manufacturing and project management.

Primary Focus

Problem-solving and innovative solutions.

Efficient product delivery.

Phase of Application

Usually, toward the beginning of a project. Aims to define the problem and test and pick a solution.

Usually, after teams have a clear solution. Aims to deliver that solution and continuously iterate on the live product.

Structure and Documentation

Fluid process, less formal and relatively lesser documentation.

Structured and formal process with extensive documentation.

End product

An idea or solution, usually with a prototype, may not be tangible.

Tangible, working product (usually software) shipped to end users.

Design Sprint: A Condensed Version of Design Thinking

A design sprint is a 5-day intensive workshop where cross-functional teams aim to develop innovative solutions.

The design sprint is a very structured version of design thinking that fits into the timeline of a sprint (a sprint is a short timeframe in which agile teams work to produce deliverables). Developed by Google Ventures, the design sprint seeks to fast-track innovation.

In this video, user researcher Ditte Hvas Mortensen explains the design sprint in detail.

Learn More about Design Thinking

Design consultancy IDEO’s designkit is an excellent repository of design thinking tools and case studies.

To keep up with recent developments in design thinking, read IDEO CEO Tim Brown’s blog .

Enroll in our course Design Thinking: The Ultimate Guide —an excellent guide to get you started on your design thinking projects.

Questions related to Design Thinking

You don’t need any certification to practice design thinking. However, learning about the nuances of the methodology can help you:

Pick the appropriate methods and tailor the process to suit the unique needs of your project.

Avoid common pitfalls when you apply the methods.

Better lead a team and facilitate workshops.

Increase the chances of coming up with innovative solutions.

IxDF has a comprehensive course to help you gain the most from the methodology: Design Thinking: The Ultimate Guide .

Anyone can apply design thinking to solve problems. Despite what the name suggests, non-designers can use the methodology in non-design-related scenarios. The methodology helps you think about problems from the end user’s perspective. Some areas where you can apply this process:

Develop new products with greater chances of success.

Address community-related issues (such as education, healthcare and environment) to improve society and living standards.

Innovate/enhance existing products to gain an advantage over the competition.

Achieve greater efficiencies in operations and reduce costs.

Use the Design Thinking: The Ultimate Guide course to apply design thinking to your context today.

A framework is the basic structure underlying a system, concept, or text. There are several design thinking frameworks with slight differences. However, all the frameworks share some traits. Each framework: 

Begins with empathy.

Reframes the problem or challenge at hand.

Initially employs divergent styles of thinking to generate ideas.

Later, it employs convergent styles of thinking to narrow down the best ideas,

Creates and tests prototypes.

Iterates based on the tests.

Some of the design thinking frameworks are:

5-stage design process by d.school

7-step early traditional design process by Herbert Simon

The 5-Stage DeepDive™ by IDEO

The “Double Diamond” Design Process Model by the Design Council

Collective Action Toolkit (CAT) by Frog Design

The LUMA System of Innovation by LUMA Institute

For details about each of these frameworks, see 10 Insightful Design Thinking Frameworks: A Quick Overview .

IDEO’s 3-Stage Design Thinking Process consists of inspiration, ideation and implementation:

Inspire : The problem or opportunity inspires and motivates the search for a solution.

Ideate : A process of synthesis distills insights which can lead to solutions or opportunities for change.

Implement : The best ideas are turned into a concrete, fully conceived action plan.

IDEO is a leader in applying design thinking and has developed many frameworks. Find out more in 10 Insightful Design Thinking Frameworks: A Quick Overview .

critical thinking design definition

Design Council's Double Diamond diagram depicts the divergent and convergent stages of the design process.

Béla H. Bánáthy, founder of the White Stag Leadership Development Program, created the “divergence-convergence” model in 1996. In the mid-2000s, the British Design Council made this famous as the Double Diamond model.

The Double Diamond diagram graphically represents a design thinking process. It highlights the divergent and convergent styles of thinking in the design process. It has four distinct phases:

Discover: Initial idea or inspiration based on user needs.

Define: Interpret user needs and align them with business objectives.

Develop: Develop, iterate and test design-led solutions.

Deliver: Finalize and launch the end product into the market.

Double Diamond is one of several design thinking frameworks. Find out more in 10 Insightful Design Thinking Frameworks: A Quick Overview .

There are several design thinking methods that you can choose from, depending on what stage of the process you’re in. Here are a few common design thinking methods:

User Interviews: to understand user needs, pain points, attitudes and behaviors.

5 Whys Method: to dig deeper into problems to diagnose the root cause.

User Observations: to understand how users behave in real life (as opposed to what they say they do).

Affinity Diagramming: to organize research findings.

Empathy Mapping: to empathize with users based on research insights.

Journey Mapping: to visualize a user’s experience as they solve a problem.

6 Thinking Hats: to encourage a group to think about a problem or solution from multiple perspectives.

Brainstorming: to generate ideas.

Prototyping: to make abstract ideas more tangible and test them.

Dot Voting: to select ideas.

Start applying these methods to your work today with the Design Thinking template bundle .

Design Thinking

For most of the design thinking process, you will need basic office stationery:

Pen and paper

Sticky notes

Whiteboard and markers

Print-outs of templates and canvases as needed (such as empathy maps, journey maps, feedback capture grid etc.) You can also draw these out manually.

Prototyping materials such as UI stencils, string, clay, Lego bricks, sticky tapes, scissors and glue.

A space to work in.

You can conduct design thinking workshops remotely by:

Using collaborative software to simulate the whiteboard and sticky notes.

Using digital templates instead of printed canvases.

Download print-ready templates you can share with your team to practice design thinking today.

Design thinking is a problem-solving methodology that helps teams better identify, understand, and solve business and customer problems.

When businesses prioritize and empathize with customers, they can create solutions catering to their needs. Happier customers are more likely to be loyal and organically advocate for the product.

Design thinking helps businesses develop innovative solutions that give them a competitive advantage.

Gain a competitive advantage in your business with Design Thinking: The Ultimate Guide .

Design Thinking Process Timeline

The evolution of Design Thinking can be summarised in 8 key events from the 1960s to 2004.

© Interaction Design Foundation, CC BY-SA 4.0.

Herbert Simon’s 1969 book, "The Sciences of the Artificial," has one of the earliest references to design thinking. David Kelley, founder of the design consultancy IDEO, coined the term “design thinking” and helped make it popular.

For a more comprehensive discussion on the origins of design thinking, see The History of Design Thinking .

Some organizations that have employed design thinking successfully are:

Airbnb: Airbnb used design thinking to create a platform for people to rent out their homes to travelers. The company focused on the needs of both hosts and guests . The result was a user-friendly platform to help people find and book accommodations.

PillPack: PillPack is a prescription home-delivery system. The company focused on the needs of people who take multiple medications and created a system that organizes pills by date and time. Amazon bought PillPack in 2018 for $1 billion .

Google Creative Lab: Google Creative Lab collaborated with IDEO to discover how kids physically play and learn. The team used design thinking to create Project Bloks . The project helps children develop foundational problem-solving skills "through coding experiences that are playful, tactile and collaborative.”

See more examples of design thinking and learn practical methods in Design Thinking: The Ultimate Guide .

Innovation essentially means a new idea. Design thinking is a problem-solving methodology that helps teams develop new ideas. In other words, design thinking can lead to innovation.

Human-Centered Design is a newer term for User-Centered Design

“Human-centred design is an approach to interactive systems development that aims to make systems usable and useful by focusing on the users, their needs and requirements, and by applying human factors/ergonomics, and usability knowledge and techniques. This approach enhances effectiveness and efficiency, improves human well-being, user satisfaction, accessibility and sustainability; and counteracts possible adverse effects of use on human health, safety and performance.”

— ISO 9241-210:2019(en), ISO (the International Organization for Standardization)  

User experience expert Don Norman describes human-centered design (HCD) as a more evolved form of user-centered design (UCD). The word "users" removes their importance and treats them more like objects than people. By replacing “user” with “human,” designers can empathize better with the people for whom they are designing. Don Norman takes HCD a step further and prefers the term People-Centered Design.

Design thinking has a broader scope and takes HCD beyond the design discipline to drive innovation.

People sometimes use design thinking and human-centered design to mean the same thing. However, they are not the same. HCD is a formal discipline with a specific process used only by designers and usability engineers to design products. Design thinking borrows the design methods and applies them to problems in general.

Design Sprint condenses design thinking into a 1-week structured workshop

Google Ventures condensed the design thinking framework into a time-constrained 5-day workshop format called the Design Sprint. The sprint follows one step per day of the week:

Monday: Unpack

Tuesday: Sketch

Wednesday: Decide

Thursday: Prototype

Friday: Test

Learn more about the design sprint in Make Your UX Design Process Agile Using Google’s Methodology .

Systems Thinking is a distinct discipline with a broader approach to problem-solving

“Systems thinking is a way of exploring and developing effective action by looking at connected wholes rather than separate parts.”

— Introduction to Systems thinking, Report of GSE and GORS seminar, Civil Service Live

Both HCD and Systems Thinking are formal disciplines. Designers and usability engineers primarily use HCD. Systems thinking has applications in various fields, such as medical, environmental, political, economic, human resources, and educational systems.

HCD has a much narrower focus and aims to create and improve products. Systems thinking looks at the larger picture and aims to change entire systems.

Don Norman encourages designers to incorporate systems thinking in their work. Instead of looking at people and problems in isolation, designers must look at them from a systems point of view.

In summary, UCD and HCD refer to the same field, with the latter being a preferred phrase.

Design thinking is a broader framework that borrows methods from human-centered design to approach problems beyond the design discipline. It encourages people with different backgrounds and expertise to work together and apply the designer’s way of thinking to generate innovative solutions to problems.

Systems thinking is another approach to problem-solving that looks at the big picture instead of specific problems in isolation.

The design sprint is Google Ventures’ version of the design thinking process, structured to fit the design process in 1 week.

There are multiple design thinking frameworks, each with a different number of steps and phase names. One of the most popular frameworks is the Stanford d.School 5-stage process.

Design Thinking: A Non-Linear process. Empathy helps define problem, Prototype sparks a new idea, tests reveal insights that redefine the problem, tests create new ideas for project, learn about users (empathize) through testing.

Design thinking is an iterative and non-linear process. It contains five phases: 1. Empathize, 2. Define, 3. Ideate, 4. Prototype and 5. Test. It is important to note the five stages of design thinking are not always sequential. They do not have to follow a specific order, and they can often occur in parallel or be repeated iteratively. The stages should be understood as different modes which contribute to the entire design project, rather than sequential steps.

For more details, see The 5 Stages in the Design Thinking Process .

IDEO is a leading design consultancy and has developed its own version of the design thinking framework and adds the dimension of implementation in the process.

critical thinking design definition

IDEO’s framework uses slightly different terms than d.school’s design thinking process and adds an extra dimension of implementation. The steps in the DeepDive™ Methodology are: Understand, Observe, Visualize, Evaluate and Implement.

IDEO’s DeepDive™ Methodology includes the following steps:

Understand: Conduct research and identify what the client needs and the market landscape

Observe: Similar to the Empathize step, teams observe people in live scenarios and conduct user research to identify their needs and pain points.

Visualize: In this step, the team visualizes new concepts. Similar to the Ideate phase, teams focus on creative, out-of-the-box and novel ideas.

Evaluate: The team prototypes ideas and evaluates them. After refining the prototypes, the team picks the most suitable one.

Implement: The team then sets about to develop the new concept for commercial use.

IDEO’s DeepDive™ is one of several design thinking frameworks. Find out more in 10 Insightful Design Thinking Frameworks: A Quick Overview .

Answer a Short Quiz to Earn a Gift

What are the stages in the design thinking process?

  • Brainstorm, Prototype, Design, Launch, Test
  • Define, Ideate, Research, Design, Test
  • Empathize, Define, Ideate, Prototype, Test

Why is empathy critical in the design thinking process?

  • It allows designers to understand and address the real needs of users.
  • It helps designers maintain control over the creative process.
  • It makes sure the solution is inexpensive and easy to create.

What is the primary purpose of the prototyping phase in design thinking?

  • To explore potential solutions and how they might work in real-world situations
  • To finalize the product design for mass production
  • To sell the idea to stakeholders with a high-fidelity (hi-fi) demonstration

What is a "wicked problem" in design thinking?

  • Problems that are complex, ill-defined and have no single correct answer.
  • Problems that are straightforward and have a clear, single solution.
  • Problems that are tricky, but can be solved quickly with conventional methods.

Why is the iterative process important in design thinking?

  • It allows design teams to use up all available resources.
  • It allows for the improvement of solutions based on user feedback and testing.
  • It makes sure the solution remains unchanged throughout development.

Better luck next time!

Do you want to improve your UX / UI Design skills? Join us now

Congratulations! You did amazing

You earned your gift with a perfect score! Let us send it to you.

Check Your Inbox

We’ve emailed your gift to [email protected] .

Literature on Design Thinking (DT)

Here’s the entire UX literature on Design Thinking (DT) by the Interaction Design Foundation, collated in one place:

Learn more about Design Thinking (DT)

Take a deep dive into Design Thinking (DT) with our course Design Thinking: The Ultimate Guide .

Some of the world’s leading brands, such as Apple, Google, Samsung, and General Electric, have rapidly adopted the design thinking approach, and design thinking is being taught at leading universities around the world, including Stanford d.school, Harvard, and MIT. What is design thinking, and why is it so popular and effective?

Design Thinking is not exclusive to designers —all great innovators in literature, art, music, science, engineering and business have practiced it. So, why call it Design Thinking? Well, that’s because design work processes help us systematically extract, teach, learn and apply human-centered techniques to solve problems in a creative and innovative way—in our designs, businesses, countries and lives. And that’s what makes it so special.

The overall goal of this design thinking course is to help you design better products, services, processes, strategies, spaces, architecture, and experiences. Design thinking helps you and your team develop practical and innovative solutions for your problems. It is a human-focused , prototype-driven , innovative design process . Through this course, you will develop a solid understanding of the fundamental phases and methods in design thinking, and you will learn how to implement your newfound knowledge in your professional work life. We will give you lots of examples; we will go into case studies, videos, and other useful material, all of which will help you dive further into design thinking. In fact, this course also includes exclusive video content that we've produced in partnership with design leaders like Alan Dix, William Hudson and Frank Spillers!

This course contains a series of practical exercises that build on one another to create a complete design thinking project. The exercises are optional, but you’ll get invaluable hands-on experience with the methods you encounter in this course if you complete them, because they will teach you to take your first steps as a design thinking practitioner. What’s equally important is you can use your work as a case study for your portfolio to showcase your abilities to future employers! A portfolio is essential if you want to step into or move ahead in a career in the world of human-centered design.

Design thinking methods and strategies belong at every level of the design process . However, design thinking is not an exclusive property of designers—all great innovators in literature, art, music, science, engineering, and business have practiced it. What’s special about design thinking is that designers and designers’ work processes can help us systematically extract, teach, learn, and apply these human-centered techniques in solving problems in a creative and innovative way—in our designs, in our businesses, in our countries, and in our lives.

That means that design thinking is not only for designers but also for creative employees , freelancers , and business leaders . It’s for anyone who seeks to infuse an approach to innovation that is powerful, effective and broadly accessible, one that can be integrated into every level of an organization, product, or service so as to drive new alternatives for businesses and society.

You earn a verifiable and industry-trusted Course Certificate once you complete the course. You can highlight them on your resume, CV, LinkedIn profile or your website .

All open-source articles on Design Thinking (DT)

What is design thinking and why is it so popular.

critical thinking design definition

  • 1.6k shares

Personas – A Simple Introduction

critical thinking design definition

  • 1.5k shares

Stage 2 in the Design Thinking Process: Define the Problem and Interpret the Results

critical thinking design definition

  • 1.3k shares

What is Ideation – and How to Prepare for Ideation Sessions

critical thinking design definition

  • 1.2k shares

Affinity Diagrams: How to Cluster Your Ideas and Reveal Insights

critical thinking design definition

  • 2 years ago

Stage 4 in the Design Thinking Process: Prototype

critical thinking design definition

  • 3 years ago

Stage 3 in the Design Thinking Process: Ideate

critical thinking design definition

  • 4 years ago

Stage 1 in the Design Thinking Process: Empathise with Your Users

critical thinking design definition

Empathy Map – Why and How to Use It

critical thinking design definition

What Is Empathy and Why Is It So Important in Design Thinking?

critical thinking design definition

10 Insightful Design Thinking Frameworks: A Quick Overview

critical thinking design definition

Define and Frame Your Design Challenge by Creating Your Point Of View and Ask “How Might We”

critical thinking design definition

Design Thinking: Get Started with Prototyping

critical thinking design definition

  • 1.1k shares

5 Common Low-Fidelity Prototypes and Their Best Practices

critical thinking design definition

Design Thinking: New Innovative Thinking for New Problems

critical thinking design definition

The History of Design Thinking

critical thinking design definition

Test Your Prototypes: How to Gather Feedback and Maximize Learning

critical thinking design definition

The Ultimate Guide to Understanding UX Roles and Which One You Should Go For

critical thinking design definition

Stage 5 in the Design Thinking Process: Test

critical thinking design definition

What Are Wicked Problems and How Might We Solve Them?

critical thinking design definition

Open Access—Link to us!

We believe in Open Access and the  democratization of knowledge . Unfortunately, world-class educational materials such as this page are normally hidden behind paywalls or in expensive textbooks.

If you want this to change , cite this page , link to us, or join us to help us democratize design knowledge !

Privacy Settings

Our digital services use necessary tracking technologies, including third-party cookies, for security, functionality, and to uphold user rights. Optional cookies offer enhanced features, and analytics.

Experience the full potential of our site that remembers your preferences and supports secure sign-in.

Governs the storage of data necessary for maintaining website security, user authentication, and fraud prevention mechanisms.

Enhanced Functionality

Saves your settings and preferences, like your location, for a more personalized experience.

Referral Program

We use cookies to enable our referral program, giving you and your friends discounts.

Error Reporting

We share user ID with Bugsnag and NewRelic to help us track errors and fix issues.

Optimize your experience by allowing us to monitor site usage. You’ll enjoy a smoother, more personalized journey without compromising your privacy.

Analytics Storage

Collects anonymous data on how you navigate and interact, helping us make informed improvements.

Differentiates real visitors from automated bots, ensuring accurate usage data and improving your website experience.

Lets us tailor your digital ads to match your interests, making them more relevant and useful to you.

Advertising Storage

Stores information for better-targeted advertising, enhancing your online ad experience.

Personalization Storage

Permits storing data to personalize content and ads across Google services based on user behavior, enhancing overall user experience.

Advertising Personalization

Allows for content and ad personalization across Google services based on user behavior. This consent enhances user experiences.

Enables personalizing ads based on user data and interactions, allowing for more relevant advertising experiences across Google services.

Receive more relevant advertisements by sharing your interests and behavior with our trusted advertising partners.

Enables better ad targeting and measurement on Meta platforms, making ads you see more relevant.

Allows for improved ad effectiveness and measurement through Meta’s Conversions API, ensuring privacy-compliant data sharing.

LinkedIn Insights

Tracks conversions, retargeting, and web analytics for LinkedIn ad campaigns, enhancing ad relevance and performance.

LinkedIn CAPI

Enhances LinkedIn advertising through server-side event tracking, offering more accurate measurement and personalization.

Google Ads Tag

Tracks ad performance and user engagement, helping deliver ads that are most useful to you.

Share Knowledge, Get Respect!

or copy link

Cite according to academic standards

Simply copy and paste the text below into your bibliographic reference list, onto your blog, or anywhere else. You can also just hyperlink to this page.

New to UX Design? We’re Giving You a Free ebook!

The Basics of User Experience Design

Download our free ebook The Basics of User Experience Design to learn about core concepts of UX design.

In 9 chapters, we’ll cover: conducting user interviews, design thinking, interaction design, mobile UX design, usability, UX research, and many more!

Critical Thinking for Engineers

Engineers are specialists in technical information. As the complexities of problems increase, there has been an increasing need for engineers to apply critical thinking in the context of problem solving. This article demonstrates the value and use of developing abstract thought in engineering, especially for students

Introduction

In school, the most widely used, or at least the most reputable method for solving problems is “Critical Thinking.” From understanding the works of a long dead philosopher to solving differential equations, “Critical Thinking” is like some sort of intellectual panacea. Although everyone can agree that “Critical Thinking” is usually a good thing, it is difficult to explain exactly what it is and even more difficult to teach it.

For most engineers, problem solving is essentially their profession. Critical thinking and abstract thought, then, are invaluable tools, which complement an engineer’s technical expertise. In this paper, our first goal is to define what exactly critical thinking is. From there, we will discuss examples, which highlight the importance of abstract thought as well efforts to teach this in the classroom. Finally, we will look at how this can be applied to our Senior Project and perhaps future work in general.

To begin, we will look at two definitions of critical thinking. In her 2002 article, Jessop argues that critical thinking is comprised of three major skills: analysis, synthesis, and evaluation. She goes on to quote a statement by Scriven (n.d.) to define the term more explicitly:

Critical Thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action.(as quoted in Jessop, 2002, p. 141)

Analysis is breaking down the problem into parts and finding the relationships between them. Synthesis is thinking about other ways to solve the problem either by incorporating new information or combining the parts in a different way. Finally, evaluation is making a judgment about the results using the evidence at hand.

According to Scriven (n.d.), then, critical thinking is the combined process of analysis, synthesis, and evaluation. Since we are trying to use critical thinking as “a guide to belief and action,” synthesis, or the generation of new ideas or solutions, is a necessary component. However, creating these new solutions is difficult, if not impossible, without understanding the problem, which leads to analysis. The process of critical thinking, though, does not stop at synthesis. Out of the results from the synthesis stage, some may be better than others. Moreover, it is possible that none of the results actually solve the problem. Because of this, it is necessary to evaluate the results in order to find the best answer. To better understand this definition, we will apply this to an example.

Let’s assume we want an egg for breakfast. For analysis , the parts of this process might be putting butter in a pan, breaking the egg, and then cooking it. For synthesis , there are many different ways to prepare eggs. For example, we could whisk the egg to make scrambled eggs, or maybe we want hard boiled eggs instead. Finally, we need to evaluate our result. There are many different criteria for this, such as which one takes the least amount of time, which is the most delicious, which is the healthiest, etc. In order to apply critical thinking to this problem, the goals are to understand the problem, find possible solutions, and evaluate the result.

For comparison, we now look at another definition of critical thinking. Qiao (2009) writes, “When one used the methods and principles of scientific thinking in everyday life, then he was practicing critical thinking. So scientific and critical thinking are the same thing…” The first thing that comes to mind when thinking about “scientific thinking” is the scientific method, so at first, this comparison seems a little odd. For reference, the steps of the scientific method are presented as follows (Wikipedia, n.d.):

  • Define a question
  • Gather information and resources (observe)
  • Form an explanatory hypothesis
  • Test the hypothesis by performing an experiment and collecting data in a reproducible manner
  • Analyze the data
  • Interpret the data and draw conclusions that serve as a starting point for new hypothesis
  • Publish results
  • Retest (frequently done by other scientists)

In the steps above, we see some similarities with the earlier definition of critical thinking. Earlier, we stated that critical thinking was composed of analysis, synthesis, and evaluation. While engineers typically begin with problems instead of questions, the gathering of information and resources is definitely a part of analysis. In both cases, understanding the problem or question is a priority. In critical thinking, the next step would be synthesis. A scientist may be trying to answer a question by forming a hypothesis, but the need to imagine different possibilities and find an answer that fits is the same in engineering. Lastly, steps 4-6 could be considered one way to evaluate the results from synthesis. While a scientist may test his or her hypothesis with experiments, an engineer may run simulations or create prototypes. The point in either case, though, is to make sure is to ensure the ideas from earlier actually work.

Although we defined critical thinking from an engineer’s perspective, it should not be surprising that we can apply it loosely in other disciplines such as science. After all, the capacity for critical thinking is not limited to or only useful for engineers alone. Writers, philosophers, mathematicians, and many other disciplines make use of critical thinking as well. Even if the process is slightly different for each, at the very least, analysis, synthesis, and evaluation lie at the heart of critical thinking.

As a technical example of critical thinking, let us examine a problem a Tufts University student encountered while doing research over the summer. This student was writing the image processing code for a robot, which had a camera mounted on it.

The code to retrieve the video and display it was already written, so the student only had to focus on the image processing part. As a simple test, the student wrote a piece of code to find the number of black pixels in a video frame. The code was easy to test since all the pixels could be made black by covering up the camera. The problem occurred when the student’s code tried to count all the pixels when the camera was covered up. In this case, all the pixels should be black, but the student recorded only a fraction of that number.

So how did the student use critical thinking to solve the problem? First, he took into account all of the available information and tried to find possible sources of the problem. The input was a video frame with an apparent size of 480 x 640 pixels, which matched the output displayed. Repeating the test for black pixels consistently returned the same fraction. When the student modified his code to check for pixels of any colors, the result found the expected number of pixels, so at first the problem appeared to be related to detecting the black pixels. The student, however, had tested that part of the code thoroughly, and was fairly confident that it was not the source of the problem.

Continuing on with his analysis, the student decided to directly save the video frame and display it. Upon seeing the result, the student at once saw the problem and found a solution. While the given video frame had room for 480 x 640 pixels, the actual image was stored in the upper left hand corner as a 240 x 320 image. Thus, the student’s code was correct, as he originally surmised, and it was actually returning the correct number. The code to display the video, it turns out, expected this input, and resized the image to the 480 x 640 video feed that the student originally saw.

From there, the rest of the problem was straightforward. For synthesis, the student decided to use the upper left corner of the given images and ignore the rest of the pixels. The result was more efficient than the original code, since it only had to process a 240 x 320 image and it ignored the pixels that were skewing the results. This example demonstrates the importance of analysis in critical thinking. Without an understanding of the problem, it is unlikely that the student would have found a solution by starting with the synthesis step. In this case, the solution and the tests to make sure it worked were relatively simple, so the synthesis and evaluation steps were not as important. Nevertheless, applying all of these steps in tandem allowed the problem to be successfully solved.

Engineering Curriculum

For the most part, critical thinking has typically been something reserved for the liberal arts, especially English and Philosophy. Even on standardized tests like the SATs, there is a critical reading section. However, as we discussed earlier, critical thinking is not limited to the liberal arts; it is also an integral part of the sciences and engineering.

Recently, the Accreditation Board for Engineering and Technology (ABET) has been pushing for more emphasis on communication skills and understanding the global context of today’s problems in the engineering curriculum. Previously, and even now, the ABET accreditation process acknowledged schools that trained students not only to be able to apply their technical knowledge, but also lead and work well in teams. ABET believes that their new objectives can be achieved through the inclusion of more writing and critical thinking in the engineering classroom (Gunnink & Bernhardt, 2002).

Although most people agree that critical thinking should be a focus in school, there are a variety of proposed methods, but no single class or solution stands out. Even though we have been treating critical thinking as an individual effort, a few papers have suggested the use of group discussions and forums in order to encourage critical thinking (Radzi et al., 2009; Jacob et al, 2009). After defining critical thinking in her article, Jessop (2002) suggests a course based on Brainstorming and Critical Reading. For the brainstorming section, students are given a problem, and then, over the course of a few weeks, students must engineer a solution. For the critical reading section, students are given a number of journal articles to read and evaluate. Naturally, the brainstorming half is mainly concerned with the synthesis aspect of critical thinking while the critical reading half focuses on the analysis aspect (Jessop, 2002). The hope, of course, is that by practicing these steps, the students will become better at critical thinking in the future.

As mentioned earlier, Qiao (2009) was writing on critical thinking in schools in China. Qiao goes on to state, “The nature of authority has two forms: textbook authority and teacher authority. Laws and rules in textbook are golden and precious, beyond any manner of doubt. Science teacher is the prolocutor of truth.” (2009, p. 115). In order to promote critical thinking and a sense of skepticism, Qiao suggests a History, Philosophy, and Science (HPS) Education approach. In addition to the usual Science that students learn about, Qiao (2009) believes it is valuable to learn about both the History and Philosophy behind these advancements. While Jessop’s (2002) strategy is purely from an engineer’s perspective, Qiao’s approach relies on the idea that critical thinking is not restricted to engineers. Instead, the capacity for critical thought is developed through studies in history and philosophy.

Despite the differences in each method, the goal is the same. In order to tackle increasingly difficult problems, engineers will require more than just technical knowledge. To this end, there is a need for teachers and experts, whose job is to train these engineers, to bring critical thinking into the classroom.

Application to Senior Project

In this paper, we have attempted to answer questions like, “What is critical thinking?” and “Why is it important?” As we stated before, critical thinking can be thought of as similar to the scientific method, but its main points are the problem definition and understanding, the search for solutions, evaluation, and iteration. Since critical thinking is a powerful tool in problem solving, we have seen recent efforts to include it in the engineering curriculum. The final question we want to answer is, “How does this apply to our senior project?

The answer to this lost question is relatively simple. Each of our senior projects , if properly scoped and planned, should aim to solve a problem. In light of this, we should strive to solve these problems intelligently, which is to say, using critical thinking. This means fully researching and understanding the problem, creating new solutions and finding old ones, and evaluating the result. When our result is a failure, we go back, look for other solutions, and try again until we have solved the problem. So we can see that critical thinking is an important, if not essential, part of our senior project.

Cited References

  • Gunnink, B., & Bernhardt, K. L. S. (2002). Writing, critical thinking, and engineering curricula. In Frontiers in Education , 2002. FIE 2002. 32nd Annual (Vol. 2, pp. F3H–2–F3H–7 vol.2). Presented at the Frontiers in Education, 2002. FIE 2002. 32nd Annual. DOI: 10.1109/FIE.2002.1158211
  • Jacob, S. M., Lee, B., & Lueckenhausen, G. R. (2009). Measuring Critical Thinking Skills in Engineering Mathematics using online forums. In 2009 International Conference on Engineering Education (ICEED) (pp. 225–229). Presented at the 2009 International Conference on Engineering Education (ICEED). DOI: 10.1109/ICEED.2009.5490577
  • Jessop, J. L. P. (2002). Expanding our students’ brainpower: idea generation and critical thinking skills. IEEE Antennas and Propagation Magazine , 44(6), 140–144. DOI: 10.1109/MAP.2002.1167273
  • Qiao, C. (2009). Science Education and Fostering of Critical Thinking in China. In Second International Conference on Education Technology and Training , 2009. ETT ’09 (pp. 114–117). Presented at the Second International Conference on Education Technology and Training, 2009. ETT ’09. DOI: 10.1109/ETT.2009.25
  • Radzi, N. M., Abu, M. S., & Mohamad, S. (2009). Math-oriented critical thinking skills in engineering. In 2009 International Conference on Engineering Education (ICEED), (pp. 212–218). Presented at the 2009 International Conference on Engineering Education (ICEED). DOI: 10.1109/ICEED.2009.5490579
  • Scientific Method. (n.d.). In Wikipedia. Retrieved December 18, 2012, from http://en.wikipedia.org/wiki/Scientific_method
  • Scriven, M. & Paul, R. (n.d.) “Defining Critical Thinking.” National Council for Excellence in Critical Thinking Instruction. Retrieved from http:/lwww.criticalthinking.orgiuniversitylunivclasslDe~ning.html

Additional Resource

  • Accreditation Board for Engineering and Technology (ABET). (n.d.) Retrieved from http://www.abet.org/
  • Articles > 1. Design Process > Critical Thinking for Engineers

Search the Handbook:

Handbook overview.

  • Introduction and Acknowledgements
  • Senior Capstone Projects Summary for the 2022-23 Academic Year
  • Senior Capstone Projects Summary for the 2021-22 Academic Year
  • Senior Capstone Projects Summary for the 2020-21 Academic Year
  • Senior Capstone Projects Summary for the 2019-20 Academic Year
  • Senior Capstone Projects Summary for the 2018-19 Academic Year
  • Senior Capstone Projects Summary for the 2017-18 Academic Year
  • Senior Capstone Projects Summary for the 2016-17 Academic Year
  • Senior Capstone Projects Summary for the 2015-16 Academic Year
  • Senior Capstone Projects Summary for the 2014-15 Academic Year
  • Senior Capstone Projects Summary for the 2013-14 Academic Year
  • Senior Capstone Projects Summary for the 2012-13 Academic Year
  • 1. Design Process
  • 2. Management
  • 3. Technologies
  • 4. Communications And Life Skills
  • 5. Tech Notes
  • Electrical and Computer Engineering Design Handbook

PlatformPro by PageLines

Disclaimer | Non-Discrimination | Privacy | Terms for Creating and Maintaining Sites

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

critical thinking design definition

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

What Is Design Thinking & Why Is It Important?

Business team using the design thinking process

  • 18 Jan 2022

In an age when innovation is key to business success and growth, you’ve likely come across the term “design thinking.” Perhaps you’ve heard it mentioned by a senior leader as something that needs to be utilized more, or maybe you’ve seen it on a prospective employee's resume.

While design thinking is an ideology based on designers’ workflows for mapping out stages of design, its purpose is to provide all professionals with a standardized innovation process to develop creative solutions to problems—design-related or not.

Why is design thinking needed? Innovation is defined as a product, process, service, or business model featuring two critical characteristics: novel and useful. Yet, there’s no use in creating something new and novel if people won’t use it. Design thinking offers innovation the upgrade it needs to inspire meaningful and impactful solutions.

But what is design thinking, and how does it benefit working professionals?

What Is Design Thinking?

Design thinking is a mindset and approach to problem-solving and innovation anchored around human-centered design . While it can be traced back centuries—and perhaps even longer—it gained traction in the modern business world after Tim Brown, CEO and president of design company IDEO, published an article about it in the Harvard Business Review .

Design thinking is different from other innovation and ideation processes in that it’s solution-based and user-centric rather than problem-based. This means it focuses on the solution to a problem instead of the problem itself.

For example, if a team is struggling with transitioning to remote work, the design thinking methodology encourages them to consider how to increase employee engagement rather than focus on the problem (decreasing productivity).

Design Thinking and Innovation | Uncover creative solutions to your business problems | Learn More

The essence of design thinking is human-centric and user-specific. It’s about the person behind the problem and solution, and requires asking questions such as “Who will be using this product?” and “How will this solution impact the user?”

The first, and arguably most important, step of design thinking is building empathy with users. By understanding the person affected by a problem, you can find a more impactful solution. On top of empathy, design thinking is centered on observing product interaction, drawing conclusions based on research, and ensuring the user remains the focus of the final implementation.

The Four Phases of Innovation

So, what does design thinking entail? There are many models of design thinking that range from three to seven steps.

In the online course Design Thinking and Innovation , Harvard Business School Dean Srikant Datar leverages a four-phase innovation framework. The phases venture from concrete to abstract thinking and back again as the process loops, reverses, and repeats. This is an important balance because abstract thinking increases the likelihood that an idea will be novel. It’s essential, however, to anchor abstract ideas in concrete thinking to ensure the solution is valid and useful.

Here are the four phases for effective innovation and, by extension, design thinking.

four phases of the design thinking process

The first phase is about narrowing down the focus of the design thinking process. It involves identifying the problem statement to come up with the best outcome. This is done through observation and taking the time to determine the problem and the roadblocks that prevented a solution in the past.

Various tools and frameworks are available—and often needed—to make concrete observations about users and facts gathered through research. Regardless of which tools are implemented, the key is to observe without assumptions or biased expectations.

Once findings from your observations are collected, the next step is to shape insights by framing those observations. This is where you can venture into the abstract by reframing the problem in the form of a statement or question.

Once the problem statement or question has been solidified—not finalized—the next step is ideation. You can use a tool such as systematic inventive thinking (SIT) in this stage, which is useful for creating an innovative process that can be replicated in the future.

The goal is to ultimately overcome cognitive fixedness and devise new and innovative ideas that solve the problems you identified. Continue to actively avoid assumptions and keep the user at the forefront of your mind during ideation sessions.

The third phase involves developing concepts by critiquing a range of possible solutions. This includes multiple rounds of prototyping, testing, and experimenting to answer critical questions about a concept’s viability.

Remember: This step isn’t about perfection, but rather, experimenting with different ideas and seeing which parts work and which don’t.

4. Implement

The fourth and final phase, implementation, is when the entire process comes together. As an extension of the develop phase, implementation starts with testing, reflecting on results, reiterating, and testing again. This may require going back to a prior phase to iterate and refine until you find a successful solution. Such an approach is recommended because design thinking is often a nonlinear, iterative process.

In this phase, don’t forget to share results with stakeholders and reflect on the innovation management strategies implemented during the design thinking process. Learning from experience is an innovation process and design thinking project all its own.

Check out the video about the design thinking process below, and subscribe to our YouTube channel for more explainer content!

Why Design Thinking Skills Matter

The main value of design thinking is that it offers a defined process for innovation. While trial and error is a good way to test and experiment what works and what doesn’t, it’s often time-consuming, expensive, and ultimately ineffective. On the other hand, following the concrete steps of design thinking is an efficient way to develop new, innovative solutions.

On top of a clear, defined process that enables strategic innovation, design thinking can have immensely positive outcomes for your career—in terms of both advancement and salary.

Graph showing jobs requiring design thinking skills

As of December 2021, the most common occupations requiring design thinking skills were:

  • Marketing managers
  • Industrial engineers
  • Graphic designers
  • Software developers
  • General and operations managers
  • Management analysts
  • Personal service managers
  • Architectural and engineering managers
  • Computer and information systems managers

In addition, jobs that require design thinking statistically have higher salaries. Take a marketing manager position, for example. The median annual salary is $107,900. Marketing manager job postings that require design thinking skills, however, have a median annual salary of $133,900—a 24 percent increase.

Median salaries for marketing managers with and without design thinking skills

Overall, businesses are looking for talent with design thinking skills. As of November 2021, there were 29,648 job postings in the United States advertising design thinking as a necessary skill—a 153 percent increase from November 2020, and a 637 percent increase from November 2017.

As businesses continue to recognize the need for design thinking and innovation, they’ll likely create more demand for employees with those skills.

Learning Design Thinking

Design thinking is an extension of innovation that allows you to design solutions for end users with a single problem statement in mind. It not only imparts valuable skills but can help advance your career.

It’s also a collaborative endeavor that can only be mastered through practice with peers. As Datar says in the introduction to Design Thinking and Innovation : “Just as with learning how to swim, the best way to practice is to jump in and try.”

If you want to learn design thinking, take an active role in your education. Start polls, problem-solving exercises, and debates with peers to get a taste of the process. It’s also important to seek out diverse viewpoints to prepare yourself for the business world.

In addition, if you’re considering adding design thinking to your skill set, think about your goals and why you want to learn about it. What else might you need to be successful?

You might consider developing your communication, innovation, leadership, research, and management skills, as those are often listed alongside design thinking in job postings and professional profiles.

Graph showing common skills required alongside design thinking across industries

You may also notice skills like agile methodology, user experience, and prototyping in job postings, along with non-design skills, such as product management, strategic planning, and new product development.

Graph showing hard skills required alongside design thinking across industries

Is Design Thinking Right for You?

There are many ways to approach problem-solving and innovation. Design thinking is just one of them. While it’s beneficial to learn how others have approached problems and evaluate if you have the same tools at your disposal, it can be more important to chart your own course to deliver what users and customers truly need.

You can also pursue an online course or workshop that dives deeper into design thinking methodology. This can be a practical path if you want to improve your design thinking skills or require a more collaborative environment.

Are you ready to develop your design thinking skills? Explore our online course Design Thinking and Innovation to discover how to leverage fundamental design thinking principles and innovative problem-solving tools to address business challenges.

critical thinking design definition

About the Author

What Critical Thinking Is—And 7 Ways to Improve Yours

Getty Images

Making a hire. Debugging a website glitch. Deciding how to tell your boss they have a stain on their shirt.

All of these tasks, and more, require critical thinking skills. And whether you think you have them or not, they’re critical (see what we did there?) for your career—here’s why.

What is critical thinking and why is it so important?

Critical thinking “requires us to give a second thought to our own interpretations” as we’re making a decision or trying to understand a given situation, Constance Dierickx , a clinical psychologist and decision-making coach for CEOs and executives, told The Muse.

There are three steps to critical thinking, according to Lily Drabkin, a graduate student specializing in organizational psychology who facilitates a class called “Developing Critical Thinkers” at Columbia University:

  • Becoming aware of our assumptions : This is the process of tuning into what we’re believing or thinking, otherwise known as metacognition.
  • Researching our assumptions: This is the process of checking our assumptions using a wide range of sources. “Generally, it can be helpful to involve other people who can help us see ourselves in our actions from unfamiliar perspectives,” Drabkin said.
  • Testing our analysis: This step involves putting our research into action to see if it’s accurate, as well as being open to our initial assumptions being wrong and ready to change our perspective.

Critical thinking is beneficial for building relationships, starting or pivoting your career, or even just doing your everyday job. It’s also a highly-sought-after skill in job seekers. “You want someone who has good critical thinking skills because they're not going to be an attention sponge,” Muse career coach Yolanda Owens said. “They're going to be able to figure things out and…be more resourceful.”

Here are two other ways it’s helpful to be good at critical thinking:

Critical thinking leads to better decision-making

Owens pointed out that good critical thinkers always seek to understand the “why.” “When they can do that, they're better problem solvers,” she said. “It really helps people analyze situations and viewpoints.”

Critical thinking can also prevent you from having knee-jerk reactions that backfire in the long run, Dierickx said. “Decisions based on critical thinking are more likely to be ones that we feel confident about,” Drabkin added.

Critical thinking makes you look smart

Dierickx said when we use critical thinking, we have more proof to back up our statements or decisions, making it easier to influence and earn the respect of others.

“You build up a reputation as somebody who's a reliable thinker,” Dierickx said. “It makes you stand out because in most organizations, a lot of people say the same things.”

7 ways to improve your critical thinking skills

The following habits are worth incorporating into your daily routine—that is, if you want to impress your colleagues and avoid falling into a spiral of poor choices.

1. Ask questions

Good critical thinkers, Owens said, aren’t afraid to ask others when they’re unsure about something. This allows them to have as much information in front of them as possible before making a decision. It also ensures they’re never so confident in their assumptions that they ignore better options.

2. Practice reflection

Dierickx advised baking time for reflection into your day, particularly after an emotional situation is resolved or a big project is completed. Consider:

  • What was the context?
  • What was I thinking and feeling in the moment?
  • What were other people thinking and feeling in the moment?
  • What could I have done differently knowing what I know now?

It can be helpful, too, to loop in someone you trust or admire for feedback on how you handled it and what they would have done differently.

3. Be open to change

Owens and Dierickx agreed that people who are open minded have more success when it comes to critical thinking. “My biggest pet peeve is when people say, ‘Well, we've always done it that way.’ Don't become that person,” Owens said. “There's always an alternate way to do something, and understanding that your way is not always the only way or the right way to do something.”

Dierickx advised being “willing to let go of what you believed was true yesterday in the face of new evidence.”

“We need to be certain and uncertain,” she added. “You can't be so certain that you never question. That's not critical thinking. That's blind ignorance.”

4. Build a diverse network

You’ll never learn to think critically if you’re only faced with perspectives that mimic your own. So make the effort to surround yourself with people of different backgrounds, expertise, interests, and viewpoints and actively seek out their advice, feedback, and ideas on a regular basis.

“Learning from peers is one of the most important ways that adults learn something, which is great actually for critical thinking, because critical thinking skills are often learned in conversation,” Drabkin said.

“Even if there might be somebody whose views you disagree with, it's still helpful to hear them out,” she added.

5. Get good at active listening

When you’ve developed a diverse network of friends, colleagues, and mentors, it’s important that you’re really engaged with what they’re saying to you so you can leverage those insights for your own critical thinking.

Here’s our guide to becoming an active listener , or someone who listens with intent and strategy (and most definitely doesn’t scroll on their phone while chatting with others).

6. Read and study widely

Just as it’s important to interact with different types of people to get better at critical thinking, Dierickx said, it’s also important to take in new information outside your profession or area of expertise.

She suggested setting aside time in your schedule to read scholarly articles or books on topics you’re not as familiar with or even ideas you disagree with.

Similarly, she said, it can be helpful to take on new hobbies or study up on activities that are unfamiliar.

7. Take on stretch assignments

Critical thinking can come into play when you put yourself outside your comfort zone, and there’s no better way to do that than to tackle something new and different in your job.

That isn’t to say that you should raise your hand to lead an important project without understanding what it requires or flagging to your boss where your knowledge gaps are. But you should be open to being the dumbest person in the room or having your skill set and confidence questioned by other people and new ideas.

How to show off your critical thinking skills in the job search

Employers value critical thinkers because they’re often autonomous, innovative, and enjoyable to work with, so it’s key to incorporate examples of your critical thinking in action at several points in your job search process.

In a resume or cover letter

Job search wisdom states your resume bullets and cover letter should focus on your accomplishments instead of your duties. Owens added this is a great way to imply you’re a good critical thinker on paper.

She suggested including not just ways that you moved the needle or added value but “how you made those types of decisions, or what it was that influenced you to do things the way that you've done them.”

In a job interview

Critical thinking skills are frequently assessed by employers through behavioral questions , skills tests, and case studies. Owens said when approaching any job assessment, think out loud—“not just necessarily telling them your answer, but helping them understand how you got to the answer.”

And don’t be afraid to ask follow-up questions before providing a response. “Ask for some context as to why they're asking you that question so you can understand the type of example you need to give them in order to frame your answers,” Owens said. “And that's all part of critical thinking—knowing what questions to ask or knowing that you have to ask a question in order to be able to come up with a solution.”

Drabkin noted that part of critical thinking is seeing beyond what’s in front of you. In an interview, this could mean looking for and pointing out gaps in a job or team where you could be a unique asset. “Finding that and demonstrating that will show your interviewer and show the company that you have these critical thinking skills because you're able to analyze the role in a way that maybe they haven't,” she said.

critical thinking design definition

SEP logo

  • Table of Contents
  • New in this Archive
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment. Political and business leaders endorse its importance.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o'clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68-69; 1933: 91-92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot's position, it must appear to project far out in front of the boat. Morevoer, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69-70; 1933: 92-93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond line from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009), others on the resulting judgment (Facione 1990a), and still others on the subsequent emotive response (Siegel 1988).

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in frequency in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the frequency of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Critical thinking dispositions can usefully be divided into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started) (Facione 1990a: 25). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), and Black (2012).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work.

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? Abrami et al. (2015) found that in the experimental and quasi-experimental studies that they analyzed dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), and Bailin et al. (1999b).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Casserly, Megan, 2012, “The 10 Skills That Will Get You Hired in 2013”, Forbes , Dec. 10, 2012. Available at https://www.forbes.com/sites/meghancasserly/2012/12/10/the-10-skills-that-will-get-you-a-job-in-2013/#79e7ff4e633d ; accessed 2017 11 06.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; accessed 2017 09 26.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; accessed 2018 04 09.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; accessed 2018 04 14.
  • Dumke, Glenn S., 1980, Chancellor’s Executive Order 338 , Long Beach, CA: California State University, Chancellor’s Office. Available at https://www.calstate.edu/eo/EO-338.pdf ; accessed 2017 11 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”. Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; accessed 2017 12 02.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://drive.google.com/file/d/0BzUoP_pmwy1gdEpCR05PeW9qUzA/view ; accessed 2017 12 01.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • Obama, Barack, 2014, State of the Union Address , January 28, 2014. [ Obama 2014 available online ]
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Information available at http://www.ocr.org.uk/qualifications/as-a-level-gce-critical-thinking-h052-h452/ ; accessed 2017 10 12.
  • OECD [Organization for Economic Cooperation and Development] Centre for Educational Research and Innovation, 2018, Fostering and Assessing Students’ Creative and Critical Thinking Skills in Higher Education , Paris: OECD. Available at http://www.oecd.org/education/ceri/Fostering-and-assessing-students-creative-and-critical-thinking-skills-in-higher-education.pdf ; accessed 2018 04 22.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; accessed 2017 11 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; accessed 2017 11 29.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2011, Curriculum for the Compulsory School, Preschool Class and the Recreation Centre , Stockholm: Ordförrådet AB. Available at http://malmo.se/download/18.29c3b78a132728ecb52800034181/pdf2687.pdf ; accessed 2017 11 16.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up this entry topic at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Center for Teaching Thinking (CTT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach (criticalTHINKING.net)
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2018 by David Hitchcock < hitchckd @ mcmaster . ca >

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

Stanford Center for the Study of Language and Information

The Stanford Encyclopedia of Philosophy is copyright © 2016 by The Metaphysics Research Lab , Center for the Study of Language and Information (CSLI), Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

June 27, 2024

The Importance of Design Thinking in Education: Sparking Creativity in Children

Group of three kids sitting at a table building a project

The Creativity Crisis

Every generation has fond memories of how much better it was when they were kids. Just 40 short years ago, children didn’t come home from playing until the street lights came on. They drank from the water hose, and an advertisement at 10:00 pm reminded parents to make sure their children were home. Kids played make-believe with friends in the sandbox, built forts, and creatively figured out how to not be bored, all while trying not to get into too much trouble.

Today’s youth are very different. Raised in a world of on-demand video, cell phones, and non-stop digital entertainment, kids have little opportunity to be bored. Without boredom, creativity is diminished. However, in today’s rapidly evolving world, creativity is no longer just a desirable skill; it is essential. Many educators and parents are increasingly concerned that children are not developing their creative potential either in school or during play. This deficiency can be attributed to an overly structured educational system and the pervasive influence of instant gratification culture. 

Recent research indicates a worrying decline in children’s creativity. A study by Kyung Hee Kim found that while IQ scores have been rising, creativity scores have been decreasing since the 1990s. This phenomenon, known as the “creativity crisis,” can be partly attributed to the structured nature of modern education systems, which often prioritize standardized testing over creative exploration.

Children today spend less time in unstructured play, which is crucial for developing creativity. Instead, they are often engaged with digital devices that provide constant stimulation and limit opportunities for imaginative thinking. To address this issue, integrating design thinking into education can be a powerful solution.

Group of three kids smiling and making forts with couch cushions

Understanding Design Thinking

Design thinking is a problem-solving approach that involves empathizing with users, defining problems, ideating, prototyping, and testing. This process, originally developed for the design and business sectors, has been increasingly recognized for its potential in education. Encouraging students to think like designers fosters creativity, critical thinking, and collaboration.

How Design Thinking Can Help with the Creativity Crisis

  • Fostering Empathy and Understanding: The first stage in design thinking is empathy. Children learn to understand the needs and perspectives of others, which enhances their emotional intelligence and creativity. By empathizing with end-users, they can develop more innovative and relative solutions to problems.
  • Encouraging Problem Definition and Exploration: Design thinking teaches children to define problems clearly. This process involves exploring various aspects of a problem and asking critical questions. The define stage helps children develop a deeper understanding of issues and encourages them to think critically.
  • Promoting Ideation and Brainstorming: In the ideation stage, children are encouraged to brainstorm multiple solutions without the fear of failure . This stage is vital for creativity as it allows children to explore a wide range of ideas and approaches without fear of criticism or reproach.
  • Hands-On Prototyping and Experimentation: The prototyping stage involves creating tangible representations of ideas. This hands-on approach helps children learn by doing, which is essential for developing creative problem-solving skills. Experimentation and iteration are key components, teaching children that failure is part of the learning process.
  • Iterative Testing and Feedback: Testing is the final stage in design thinking. This stage involves testing prototypes and gathering feedback from multiple stakeholders and potential end users. This iterative process helps children refine their ideas and learn from their mistakes, fostering resilience and adaptability.

Students prototyping with a variety of materials on the left side and other students prototyping online on the right

Evidence of Effectiveness

Several studies highlight the benefits of design thinking in education. For instance, a 2010 study by Carroll et al. found that incorporating design thinking into the curriculum improved students’ engagement, collaboration, and problem-solving skills. Another study, this one by Henriksen et al ., demonstrated that design thinking projects enhanced students’ creative confidence and ability to innovate.

Additionally, research by Rauth et al. showed that students who participated in design thinking workshops exhibited greater creativity and critical thinking abilities compared to those who did not participate. These findings underscore the potential of design thinking to reinvigorate creativity in children.

Practical Implementation

To effectively integrate design thinking into education, schools and educators can:

  • Encourage Interdisciplinary Projects: Design thinking works best when applied to real-world problems that require knowledge from various disciplines. Interdisciplinary projects help students see the connections between different subjects and develop a more holistic understanding of issues.
  • Provide Time for Unstructured Play: Allowing children time for unstructured play is crucial for fostering creativity. Schools can create maker spaces or innovation labs where students can experiment with materials and ideas without the confines of a traditional classroom setting.
  • Train Teachers in Design Thinking: Educators need to be trained in design thinking principles and practices. Professional development programs can equip teachers with the skills and knowledge to effectively implement design thinking in their classrooms. Design thinking is not just for STEM or elective courses. It can be integrated into lessons in core content areas, and is a great tool for encouraging students to develop relevant and meaningful connections to content beyond test preparation.
  • Incorporate Technology Mindfully: While technology can be a powerful tool for learning, it should be used with educated intentionality to enhance creativity. Educators should look for digital tools that support design thinking, such as 3D modeling software or collaborative platforms.

Creating a Culture of Creativity, Together

In a world where creative problem-solving is increasingly important, design thinking offers a valuable approach to reinvigorating children’s creative potential. By fostering empathy, critical thinking, and hands-on experimentation, design thinking can help address the creativity crisis in education. It encourages children to explore, innovate, and develop the skills needed to thrive in the 21st century. As educators and parents, it is our responsibility to provide opportunities for children to unleash their creativity and become the problem-solvers of tomorrow.

Learn more about design thinking with our training and development resources . 

Also, read our previous blog on free STEM resources , including design thinking lessons.

And if you would like to learn more about resources and programs to integrate design thinking into your school, classroom or homeschool group, please contact us at [email protected] .

Kim Reynolds

Recent updates.

critical thinking design definition

Cultivating Entrepreneurial Skills Through Music in K-12 Classrooms

May 29, 2024

When students collaborate to create a piece of music and perform it for an audience, they are practicing the exact skills of innovation and creativity that we value in entrepreneurship.

critical thinking design definition

Igniting Indigenous Talent: A Story of Tech, Innovation and Entrepreneurial Spirit

November 01, 2023

As we celebrate National Native American Heritage Month, we honor the diverse cultures and important contributions of Indigenous peoples. This month is a chance to understand how having people from

critical thinking design definition

The Benefits of Making Data-Driven Decisions in Business

September 28, 2023

Data collection is the foundation of nearly everything we interact with—what we watch, where we travel, our interests, hobbies, demographics and even our behavior. It’s everywhere. While discussions surrounding data

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

IMAGES

  1. Critical Thinking Definition, Skills, and Examples

    critical thinking design definition

  2. 6 Examples of Critical Thinking Skills

    critical thinking design definition

  3. 6 Steps for Effective Critical Thinking

    critical thinking design definition

  4. 7 Methods to Develop Creative Thinking Skills for Students

    critical thinking design definition

  5. Critical Thinking Skills

    critical thinking design definition

  6. What is critical thinking?

    critical thinking design definition

VIDEO

  1. DESIGN THINKING, CRITICAL THINKING AND INNOVATIVE SOLUTION DESIGN

  2. What is Critical Thinking?

  3. Impactful Learning Experiences

  4. Design thinking, critical thinking, and innovative solution design (ACTIVITY BY SIC )

  5. Applied Problem Solving

  6. Educator Enrichment Programme

COMMENTS

  1. What is critical thinking?

    Critical thinking is a kind of thinking in which you question, analyse, interpret , evaluate and make a judgement about what you read, hear, say, or write. The term critical comes from the Greek word kritikos meaning "able to judge or discern". Good critical thinking is about making reliable judgements based on reliable information.

  2. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking ...

  3. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind; thus, a critical thinker is a person who practices the ...

  4. Critical Design

    Critical Design is speculative, conceptual, provocative, and can be darkly satirical. It does not always lead to usable products, but it does produce long-term thinking, a nuanced view of consumers as complex, contradictory individuals, and alternative solutions suggesting that change is always possible, even inevitable.

  5. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  6. Critical Thinking

    Critical thinking instruction has been influenced by research in cognitive psychology that has suggested strategies for countering factors (e.g., biases) that the research has found to produce irrational beliefs. Methods of assessing critical thinking ability include teacher-designed tests and standardized tests.

  7. Mapping the Relationship Between Critical Thinking and Design Thinking

    The analysis presented in the present article is most closely aligned with action-oriented definition of critical thinking (e.g., Halonen, 1995: "the propensity and skills to engage in activity with reflective skepticism focused on deciding what to believe or do"), and with Brown's definition of design thinking ("a human-centered ...

  8. Our Conception of Critical Thinking

    A Definition. Critical thinking is that mode of thinking — about any subject, content, or problem — in which the thinker improves the quality of his or her thinking by skillfully analyzing, assessing, and reconstructing it. Critical thinking is self-directed, self-disciplined, self-monitored, and self-corrective thinking.

  9. What is Critical Thinking?

    Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. Paul and Scriven go on to suggest that ...

  10. Critical Thinking Definition, Skills, and Examples

    Critical thinking refers to the ability to analyze information objectively and make a reasoned judgment. It involves the evaluation of sources, such as data, facts, observable phenomena, and research findings. Good critical thinkers can draw reasonable conclusions from a set of information, and discriminate between useful and less useful ...

  11. Critical Thinking

    1. Design Thinking. Critical thinking is an important component that comes into play at every stage of the design thinking process. 2. Creative Problem Solving. Critical Thinking is not just rational and based on a set of logical rules. There is plenty of room for solid creativity to play a significant role in the critical thinking process. 3.

  12. Critical thinking

    Critical thinking is characterized by a broad set of related skills usually including the abilities to. break down a problem into its constituent parts to reveal its underlying logic and assumptions. recognize and account for one's own biases in judgment and experience.

  13. Design thinking, explained

    Since then, the design thinking process has been applied to developing new products and services, and to a whole range of problems, from creating a business model for selling solar panels in Africa to the operation of Airbnb.. At a high level, the steps involved in the design thinking process are simple: first, fully understand the problem; second, explore a wide range of possible solutions ...

  14. Critical Thinking and Decision-Making

    Definition. Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions. It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better. This may sound like a pretty broad definition, and that's because critical ...

  15. Critical Thinking Definition

    Critical thinking is a term used by educators to describe forms of learning, thought, and analysis that go beyond the memorization and recall of information and facts. In common usage, critical thinking is an umbrella term that may be applied to many different forms of learning acquisition or to a wide variety of thought processes. In its most ...

  16. What Are Critical Thinking Skills and Why Are They Important?

    According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills. Very helpful in promoting creativity. Important for self-reflection.

  17. Critical thinking Definition & Meaning

    The meaning of CRITICAL THINKING is the act or practice of thinking critically (as by applying reason and questioning assumptions) in order to solve problems, evaluate information, discern biases, etc.. How to use critical thinking in a sentence.

  18. What is Design Thinking?

    Design thinking is a non-linear, iterative process that teams use to understand users, challenge assumptions, redefine problems and create innovative solutions to prototype and test. It is most useful to tackle ill-defined or unknown problems and involves five phases: Empathize, Define, Ideate, Prototype and Test.

  19. Critical Thinking for Engineers

    Critical thinking and abstract thought, then, are invaluable tools, which complement an engineer's technical expertise. In this paper, our first goal is to define what exactly critical thinking is. From there, we will discuss examples, which highlight the importance of abstract thought as well efforts to teach this in the classroom.

  20. Critical design

    Definition. A critical design object challenges an audience's preconceptions, provoking new ways of thinking about the object, its use, and the surrounding culture. Its adverse is affirmative design: design that reinforces the status quo. For a project to succeed in critical design, the viewer must be mentally engaged and willing to think ...

  21. What Is Design Thinking & Why Is It Important?

    The first, and arguably most important, step of design thinking is building empathy with users. By understanding the person affected by a problem, you can find a more impactful solution. On top of empathy, design thinking is centered on observing product interaction, drawing conclusions based on research, and ensuring the user remains the focus ...

  22. Critical Thinking Definition, Skills, and Examples to Know…

    Critical thinking is beneficial for building relationships, starting or pivoting your career, or even just doing your everyday job. It's also a highly-sought-after skill in job seekers. "You want someone who has good critical thinking skills because they're not going to be an attention sponge," Muse career coach Yolanda Owens said ...

  23. Critical Thinking

    Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking. ... ---, 1984, The Design of a Critical Thinking Test on Appraising Observations, St. John's, NL: Institute for ...

  24. The Importance of Design Thinking in Education: Sparking Creativity in

    Encouraging Problem Definition and Exploration: Design thinking teaches children to define problems clearly. This process involves exploring various aspects of a problem and asking critical questions. ... By fostering empathy, critical thinking, and hands-on experimentation, design thinking can help address the creativity crisis in education ...

  25. Systems Thinking vs. Design Thinking

    Design thinking is a user-centric way of solving problems with user experience. It is considered out-of-the-box thinking as it involves collaboration from all stakeholders involved in the ...