• Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

hypothesis with suitable example

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

helpful professor logo

13 Different Types of Hypothesis

13 Different Types of Hypothesis

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

hypothesis definition and example, explained below

There are 13 different types of hypothesis. These include simple, complex, null, alternative, composite, directional, non-directional, logical, empirical, statistical, associative, exact, and inexact.

A hypothesis can be categorized into one or more of these types. However, some are mutually exclusive and opposites. Simple and complex hypotheses are mutually exclusive, as are direction and non-direction, and null and alternative hypotheses.

Below I explain each hypothesis in simple terms for absolute beginners. These definitions may be too simple for some, but they’re designed to be clear introductions to the terms to help people wrap their heads around the concepts early on in their education about research methods .

Types of Hypothesis

Before you Proceed: Dependent vs Independent Variables

A research study and its hypotheses generally examine the relationships between independent and dependent variables – so you need to know these two concepts:

  • The independent variable is the variable that is causing a change.
  • The dependent variable is the variable the is affected by the change. This is the variable being tested.

Read my full article on dependent vs independent variables for more examples.

Example: Eating carrots (independent variable) improves eyesight (dependent variable).

1. Simple Hypothesis

A simple hypothesis is a hypothesis that predicts a correlation between two test variables: an independent and a dependent variable.

This is the easiest and most straightforward type of hypothesis. You simply need to state an expected correlation between the dependant variable and the independent variable.

You do not need to predict causation (see: directional hypothesis). All you would need to do is prove that the two variables are linked.

Simple Hypothesis Examples

QuestionSimple Hypothesis
Do people over 50 like Coca-Cola more than people under 50?On average, people over 50 like Coca-Cola more than people under 50.
According to national registries of car accident data, are Canadians better drivers than Americans?Canadians are better drivers than Americans.
Are carpenters more liberal than plumbers?Carpenters are more liberal than plumbers.
Do guitarists live longer than pianists?Guitarists do live longer than pianists.
Do dogs eat more in summer than winter?Dogs do eat more in summer than winter.

2. Complex Hypothesis

A complex hypothesis is a hypothesis that contains multiple variables, making the hypothesis more specific but also harder to prove.

You can have multiple independent and dependant variables in this hypothesis.

Complex Hypothesis Example

QuestionComplex Hypothesis
Do (1) age and (2) weight affect chances of getting (3) diabetes and (4) heart disease?(1) Age and (2) weight increase your chances of getting (3) diabetes and (4) heart disease.

In the above example, we have multiple independent and dependent variables:

  • Independent variables: Age and weight.
  • Dependent variables: diabetes and heart disease.

Because there are multiple variables, this study is a lot more complex than a simple hypothesis. It quickly gets much more difficult to prove these hypotheses. This is why undergraduate and first-time researchers are usually encouraged to use simple hypotheses.

3. Null Hypothesis

A null hypothesis will predict that there will be no significant relationship between the two test variables.

For example, you can say that “The study will show that there is no correlation between marriage and happiness.”

A good way to think about a null hypothesis is to think of it in the same way as “innocent until proven guilty”[1]. Unless you can come up with evidence otherwise, your null hypothesis will stand.

A null hypothesis may also highlight that a correlation will be inconclusive . This means that you can predict that the study will not be able to confirm your results one way or the other. For example, you can say “It is predicted that the study will be unable to confirm a correlation between the two variables due to foreseeable interference by a third variable .”

Beware that an inconclusive null hypothesis may be questioned by your teacher. Why would you conduct a test that you predict will not provide a clear result? Perhaps you should take a closer look at your methodology and re-examine it. Nevertheless, inconclusive null hypotheses can sometimes have merit.

Null Hypothesis Examples

QuestionNull Hypothesis (H )
Do people over 50 like Coca-Cola more than people under 50?Age has no effect on preference for Coca-Cola.
Are Canadians better drivers than Americans?Nationality has no effect on driving ability.
Are carpenters more liberal than plumbers?There is no statistically significant difference in political views between carpenters and plumbers.
Do guitarists live longer than pianists?There is no statistically significant difference in life expectancy between guitarists and pianists.
Do dogs eat more in summer than winter?Time of year has no effect on dogs’ appetites.

4. Alternative Hypothesis

An alternative hypothesis is a hypothesis that is anything other than the null hypothesis. It will disprove the null hypothesis.

We use the symbol H A or H 1 to denote an alternative hypothesis.

The null and alternative hypotheses are usually used together. We will say the null hypothesis is the case where a relationship between two variables is non-existent. The alternative hypothesis is the case where there is a relationship between those two variables.

The following statement is always true: H 0 ≠ H A .

Let’s take the example of the hypothesis: “Does eating oatmeal before an exam impact test scores?”

We can have two hypotheses here:

  • Null hypothesis (H 0 ): “Eating oatmeal before an exam does not impact test scores.”
  • Alternative hypothesis (H A ): “Eating oatmeal before an exam does impact test scores.”

For the alternative hypothesis to be true, all we have to do is disprove the null hypothesis for the alternative hypothesis to be true. We do not need an exact prediction of how much oatmeal will impact the test scores or even if the impact is positive or negative. So long as the null hypothesis is proven to be false, then the alternative hypothesis is proven to be true.

5. Composite Hypothesis

A composite hypothesis is a hypothesis that does not predict the exact parameters, distribution, or range of the dependent variable.

Often, we would predict an exact outcome. For example: “23 year old men are on average 189cm tall.” Here, we are giving an exact parameter. So, the hypothesis is not composite.

But, often, we cannot exactly hypothesize something. We assume that something will happen, but we’re not exactly sure what. In these cases, we might say: “23 year old men are not on average 189cm tall.”

We haven’t set a distribution range or exact parameters of the average height of 23 year old men. So, we’ve introduced a composite hypothesis as opposed to an exact hypothesis.

Generally, an alternative hypothesis (discussed above) is composite because it is defined as anything except the null hypothesis. This ‘anything except’ does not define parameters or distribution, and therefore it’s an example of a composite hypothesis.

6. Directional Hypothesis

A directional hypothesis makes a prediction about the positivity or negativity of the effect of an intervention prior to the test being conducted.

Instead of being agnostic about whether the effect will be positive or negative, it nominates the effect’s directionality.

We often call this a one-tailed hypothesis (in contrast to a two-tailed or non-directional hypothesis) because, looking at a distribution graph, we’re hypothesizing that the results will lean toward one particular tail on the graph – either the positive or negative.

Directional Hypothesis Examples

QuestionDirectional Hypothesis
Does adding a 10c charge to plastic bags at grocery stores lead to changes in uptake of reusable bags?Adding a 10c charge to plastic bags in grocery stores will lead to an in uptake of reusable bags.
Does a Universal Basic Income influence retail worker wages?Universal Basic Income retail worker wages.
Does rainy weather impact the amount of moderate to high intensity exercise people do per week in the city of Vancouver?Rainy weather the amount of moderate to high intensity exercise people do per week in the city of Vancouver.
Does introducing fluoride to the water system in the city of Austin impact number of dental visits per capita per year?Introducing fluoride to the water system in the city of Austin the number of dental visits per capita per year?
Does giving children chocolate rewards during study time for positive answers impact standardized test scores?Giving children chocolate rewards during study time for positive answers standardized test scores.

7. Non-Directional Hypothesis

A non-directional hypothesis does not specify the predicted direction (e.g. positivity or negativity) of the effect of the independent variable on the dependent variable.

These hypotheses predict an effect, but stop short of saying what that effect will be.

A non-directional hypothesis is similar to composite and alternative hypotheses. All three types of hypothesis tend to make predictions without defining a direction. In a composite hypothesis, a specific prediction is not made (although a general direction may be indicated, so the overlap is not complete). For an alternative hypothesis, you often predict that the even will be anything but the null hypothesis, which means it could be more or less than H 0 (or in other words, non-directional).

Let’s turn the above directional hypotheses into non-directional hypotheses.

Non-Directional Hypothesis Examples

QuestionNon-Directional Hypothesis
Does adding a 10c charge to plastic bags at grocery stores lead to changes in uptake of reusable bags?Adding a 10c charge to plastic bags in grocery stores will lead to a in uptake of reusable bags.
Does a Universal Basic Income influence retail worker wages?Universal Basic Income retail worker wages.
Does rainy weather impact the amount of moderate to high intensity exercise people do per week in the city of Vancouver?Rainy weather the amount of moderate to high intensity exercise people do per week in the city of Vancouver.
Does introducing fluoride to the water system in the city of Austin impact number of dental visits per capita per year?Introducing fluoride to the water system in the city of Austin the number of dental visits per capita per year?
Does giving children chocolate rewards during study time for positive answers impact standardized test scores?Giving children chocolate rewards during study time for positive answers standardized test scores.

8. Logical Hypothesis

A logical hypothesis is a hypothesis that cannot be tested, but has some logical basis underpinning our assumptions.

These are most commonly used in philosophy because philosophical questions are often untestable and therefore we must rely on our logic to formulate logical theories.

Usually, we would want to turn a logical hypothesis into an empirical one through testing if we got the chance. Unfortunately, we don’t always have this opportunity because the test is too complex, expensive, or simply unrealistic.

Here are some examples:

  • Before the 1980s, it was hypothesized that the Titanic came to its resting place at 41° N and 49° W, based on the time the ship sank and the ship’s presumed path across the Atlantic Ocean. However, due to the depth of the ocean, it was impossible to test. Thus, the hypothesis was simply a logical hypothesis.
  • Dinosaurs closely related to Aligators probably had green scales because Aligators have green scales. However, as they are all extinct, we can only rely on logic and not empirical data.

9. Empirical Hypothesis

An empirical hypothesis is the opposite of a logical hypothesis. It is a hypothesis that is currently being tested using scientific analysis. We can also call this a ‘working hypothesis’.

We can to separate research into two types: theoretical and empirical. Theoretical research relies on logic and thought experiments. Empirical research relies on tests that can be verified by observation and measurement.

So, an empirical hypothesis is a hypothesis that can and will be tested.

  • Raising the wage of restaurant servers increases staff retention.
  • Adding 1 lb of corn per day to cows’ diets decreases their lifespan.
  • Mushrooms grow faster at 22 degrees Celsius than 27 degrees Celsius.

Each of the above hypotheses can be tested, making them empirical rather than just logical (aka theoretical).

10. Statistical Hypothesis

A statistical hypothesis utilizes representative statistical models to draw conclusions about broader populations.

It requires the use of datasets or carefully selected representative samples so that statistical inference can be drawn across a larger dataset.

This type of research is necessary when it is impossible to assess every single possible case. Imagine, for example, if you wanted to determine if men are taller than women. You would be unable to measure the height of every man and woman on the planet. But, by conducting sufficient random samples, you would be able to predict with high probability that the results of your study would remain stable across the whole population.

You would be right in guessing that almost all quantitative research studies conducted in academic settings today involve statistical hypotheses.

Statistical Hypothesis Examples

  • Human Sex Ratio. The most famous statistical hypothesis example is that of John Arbuthnot’s sex at birth case study in 1710. Arbuthnot used birth data to determine with high statistical probability that there are more male births than female births. He called this divine providence, and to this day, his findings remain true: more men are born than women.
  • Lady Testing Tea. A 1935 study by Ronald Fisher involved testing a woman who believed she could tell whether milk was added before or after water to a cup of tea. Fisher gave her 4 cups in which one randomly had milk placed before the tea. He repeated the test 8 times. The lady was correct each time. Fisher found that she had a 1 in 70 chance of getting all 8 test correct, which is a statistically significant result.

11. Associative Hypothesis

An associative hypothesis predicts that two variables are linked but does not explore whether one variable directly impacts upon the other variable.

We commonly refer to this as “ correlation does not mean causation ”. Just because there are a lot of sick people in a hospital, it doesn’t mean that the hospital made the people sick. There is something going on there that’s causing the issue (sick people are flocking to the hospital).

So, in an associative hypothesis, you note correlation between an independent and dependent variable but do not make a prediction about how the two interact. You stop short of saying one thing causes another thing.

Associative Hypothesis Examples

  • Sick people in hospital. You could conduct a study hypothesizing that hospitals have more sick people in them than other institutions in society. However, you don’t hypothesize that the hospitals caused the sickness.
  • Lice make you healthy. In the Middle Ages, it was observed that sick people didn’t tend to have lice in their hair. The inaccurate conclusion was that lice was not only a sign of health, but that they made people healthy. In reality, there was an association here, but not causation. The fact was that lice were sensitive to body temperature and fled bodies that had fevers.

12. Causal Hypothesis

A causal hypothesis predicts that two variables are not only associated, but that changes in one variable will cause changes in another.

A causal hypothesis is harder to prove than an associative hypothesis because the cause needs to be definitively proven. This will often require repeating tests in controlled environments with the researchers making manipulations to the independent variable, or the use of control groups and placebo effects .

If we were to take the above example of lice in the hair of sick people, researchers would have to put lice in sick people’s hair and see if it made those people healthier. Researchers would likely observe that the lice would flee the hair, but the sickness would remain, leading to a finding of association but not causation.

Causal Hypothesis Examples

QuestionCausation HypothesisCorrelation Hypothesis
Does marriage cause baldness among men?Marriage causes stress which leads to hair loss.Marriage occurs at an age when men naturally start balding.
What is the relationship between recreational drugs and psychosis?Recreational drugs cause psychosis.People with psychosis take drugs to self-medicate.
Do ice cream sales lead to increase drownings?Ice cream sales cause increased drownings.Ice cream sales peak during summer, when more people are swimming and therefore more drownings are occurring.

13. Exact vs. Inexact Hypothesis

For brevity’s sake, I have paired these two hypotheses into the one point. The reality is that we’ve already seen both of these types of hypotheses at play already.

An exact hypothesis (also known as a point hypothesis) specifies a specific prediction whereas an inexact hypothesis assumes a range of possible values without giving an exact outcome. As Helwig [2] argues:

“An “exact” hypothesis specifies the exact value(s) of the parameter(s) of interest, whereas an “inexact” hypothesis specifies a range of possible values for the parameter(s) of interest.”

Generally, a null hypothesis is an exact hypothesis whereas alternative, composite, directional, and non-directional hypotheses are all inexact.

See Next: 15 Hypothesis Examples

This is introductory information that is basic and indeed quite simplified for absolute beginners. It’s worth doing further independent research to get deeper knowledge of research methods and how to conduct an effective research study. And if you’re in education studies, don’t miss out on my list of the best education studies dissertation ideas .

[1] https://jnnp.bmj.com/content/91/6/571.abstract

[2] http://users.stat.umn.edu/~helwig/notes/SignificanceTesting.pdf

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples

2 thoughts on “13 Different Types of Hypothesis”

' src=

Wow! This introductionary materials are very helpful. I teach the begginers in research for the first time in my career. The given tips and materials are very helpful. Chris, thank you so much! Excellent materials!

' src=

You’re more than welcome! If you want a pdf version of this article to provide for your students to use as a weekly reading on in-class discussion prompt for seminars, just drop me an email in the Contact form and I’ll get one sent out to you.

When I’ve taught this seminar, I’ve put my students into groups, cut these definitions into strips, and handed them out to the groups. Then I get them to try to come up with hypotheses that fit into each ‘type’. You can either just rotate hypothesis types so they get a chance at creating a hypothesis of each type, or get them to “teach” their hypothesis type and examples to the class at the end of the seminar.

Cheers, Chris

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Background of The Study

Background of The Study – Examples and Writing...

Research Project

Research Project – Definition, Writing Guide and...

Research Approach

Research Approach – Types Methods and Examples

Theoretical Framework

Theoretical Framework – Types, Examples and...

Critical Analysis

Critical Analysis – Types, Examples and Writing...

Thesis Outline

Thesis Outline – Example, Template and Writing...

  • Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • Why students love us
  • Rebels Blog
  • Why we are different
  • All Products
  • Coming Soon

What Makes a Good Hypothesis? Essential Criteria and Examples

A well-formulated hypothesis is a cornerstone of scientific research, providing direction and focus for investigations. It serves as a bridge between theory and experiment, guiding researchers in their quest to explore, test, and validate scientific phenomena. In this article, we will delve into what makes a good hypothesis by examining its essential criteria and providing illustrative examples.

Key Takeaways

  • A good hypothesis should be clear and precise, avoiding vague language and ambiguity.
  • It must be testable and falsifiable, meaning it can be supported or refuted through experimentation.
  • Grounding in existing knowledge is crucial; a hypothesis should be based on prior research or established theories.
  • Formulating a hypothesis involves identifying variables and constructing if-then statements to define cause-and-effect relationships.
  • Common pitfalls in hypothesis development include vagueness, double-barreled hypotheses, and lack of relevance to research objectives.

Defining a Hypothesis in Research

A hypothesis is a foundational element in scientific research, serving as a proposed explanation for a phenomenon that can be tested through experimentation and observation. It is a precise, testable statement predicting the outcome of a study, typically involving a relationship between an independent variable (what the researcher changes) and a dependent variable (what the researcher measures).

Essential Characteristics of a Good Hypothesis

A well-crafted hypothesis is fundamental to any research endeavor. It serves as a guiding framework for your study, ensuring that your research is focused and meaningful. Here are the essential characteristics that define a good hypothesis:

Formulating a Testable Hypothesis

Creating a testable hypothesis is a crucial step in the research process. A well-formulated hypothesis should be specific and measurable , allowing for clear and definitive testing. This section will guide you through the essential steps to ensure your hypothesis is both testable and meaningful.

Common Pitfalls to Avoid in Hypothesis Development

Avoiding vagueness.

One of the most frequent mistakes in hypothesis development is formulating vague or ambiguous hypotheses . A well-defined hypothesis should be clear and specific , leaving no room for multiple interpretations. For instance, instead of saying, "There is a relationship between study habits and academic performance," specify the type of study habits and the metrics for academic performance.

Steering Clear of Double-Barreled Hypotheses

A double-barreled hypothesis combines two or more variables in a single statement, making it difficult to test each variable independently. For example, "Increased exercise and a balanced diet improve mental health" is problematic because it conflates two distinct variables. Instead, separate the hypotheses: "Increased exercise improves mental health" and "A balanced diet improves mental health."

Ensuring Relevance to Research Objectives

Your hypothesis must align with your research objectives. Irrelevant hypotheses can lead to wasted resources and time. Ensure that your hypothesis directly addresses the core question of your research. For example, if your research focuses on the impact of social media on teenage self-esteem , a hypothesis about social media's effect on adult self-esteem would be misaligned.

By avoiding these common pitfalls, you can develop a robust and testable hypothesis that will significantly enhance the validity of your research.

Examples of Effective Hypotheses

Hypotheses in social sciences.

In social sciences, hypotheses often explore relationships between variables such as behavior, attitudes, and social structures. For instance, a hypothesis might state, "Individuals who participate in community service are more likely to report higher levels of life satisfaction." This hypothesis is clear and specific , making it testable through surveys or observational studies.

Hypotheses in Natural Sciences

Natural sciences frequently involve hypotheses that predict natural phenomena or biological processes. An example could be, "Plants exposed to classical music will grow taller than those that are not." This hypothesis is grounded in existing knowledge about the effects of sound on plant growth and can be tested through controlled experiments.

Hypotheses in Applied Research

Applied research often aims to solve practical problems, leading to hypotheses like, "Implementing a four-day workweek will increase employee productivity." This hypothesis is relevant to organizational studies and can be tested by comparing productivity metrics before and after the implementation of the new work schedule.

Evaluating and Refining Hypotheses

Peer review and feedback.

Engaging in peer review is crucial for refining your hypothesis. Soliciting feedback from colleagues or mentors can provide new perspectives and identify potential weaknesses. This collaborative approach ensures that your hypothesis is robust and well-grounded in targeted research .

Iterative Refinement

Hypothesis development is an iterative process. After initial feedback, you should revisit and revise your hypothesis. This may involve adjusting variables, rephrasing for clarity, or incorporating new data. The goal is to enhance the testability and precision of your hypothesis.

Aligning with Research Design

Your hypothesis must align with your overall research design. Ensure that it is compatible with your methodology, data collection techniques, and analysis plan. This alignment is essential for the hypothesis to be effectively tested and validated within the context of your study.

Evaluating and refining hypotheses is a crucial step in any research process. It allows you to test your assumptions and improve the accuracy of your findings. If you're struggling with this phase, our step-by-step Thesis Action Plan can guide you through it with ease. Visit our website to learn more and claim your special offer now!

In conclusion, crafting a good hypothesis is a fundamental step in the scientific method and essential for conducting meaningful research. A well-formulated hypothesis should be clear, concise, and testable, providing a predictive statement that can be empirically evaluated. By ensuring that your hypothesis is grounded in existing literature and theory, you enhance its validity and relevance. The examples and criteria discussed in this article serve as a guide to help researchers develop robust hypotheses that can withstand rigorous testing and contribute valuable insights to their respective fields. Ultimately, a strong hypothesis not only guides the direction of your research but also lays the foundation for scientific discovery and advancement.

Frequently Asked Questions

What is a hypothesis in research.

A hypothesis is a testable prediction about the relationship between two or more variables. It serves as a foundation for scientific inquiry, guiding the research process and helping to formulate experiments.

What are the essential characteristics of a good hypothesis?

A good hypothesis should be clear and precise, testable and falsifiable, and grounded in existing knowledge. It should also include an if-then statement that defines the relationship between variables.

How do you formulate a testable hypothesis?

To formulate a testable hypothesis, identify the variables involved, construct an if-then statement, and ensure that the hypothesis is measurable. This process helps in designing experiments that can validate or refute the hypothesis.

What are common pitfalls to avoid when developing a hypothesis?

Common pitfalls include vagueness, double-barreled hypotheses (addressing more than one issue at a time), and lack of relevance to the research objectives. Avoiding these pitfalls ensures that the hypothesis is clear and focused.

Can you provide examples of effective hypotheses?

Effective hypotheses can be found in various fields. For example, in social sciences: 'If social media usage increases, then levels of anxiety among teenagers will increase.' In natural sciences: 'If the temperature of water increases, then the solubility of salt will increase.'

How can hypotheses be evaluated and refined?

Hypotheses can be evaluated and refined through peer review and feedback, iterative refinement, and alignment with the overall research design. This process helps in improving the clarity and testability of the hypothesis.

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Discovering Statistics Using SAS: A Comprehensive Review

Discovering Statistics Using SAS: A Comprehensive Review

Trending Topics for Your Thesis: What's Hot in 2024

Trending Topics for Your Thesis: What's Hot in 2024

How to Deal with a Total Lack of Motivation, Stress, and Anxiety When Finishing Your Master's Thesis

How to Deal with a Total Lack of Motivation, Stress, and Anxiety When Finishing Your Master's Thesis

Confident student with laptop and colorful books

Mastering the First Step: How to Start Your Thesis with Confidence

Thesis Action Plan

Thesis Action Plan

Research Proposal Compass

  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

Writing Beginner

How to Write a Hypothesis [31 Tips + Examples]

Writing hypotheses can seem tricky, but it’s essential for a solid scientific inquiry.

Here is a quick summary of how to write a hypothesis:

Write a hypothesis by clearly defining your research question, identifying independent and dependent variables, formulating a measurable prediction, and ensuring it can be tested through experimentation. Include an “if…then” statement for clarity.

I’ve crafted dozens in my research, from basic biology experiments to business marketing strategies.

Let me walk you through how to write a solid hypothesis, step by step.

Writing a Hypothesis: The Basics

Notebook and scientific diagrams glow amidst dramatic lighting -- How to Write a Hypothesis

Table of Contents

A hypothesis is a statement predicting the relationship between variables based on observations and existing knowledge. To craft a good hypothesis:

  • Identify variables – Determine the independent and dependent variables involved.
  • Predict relationships – Predict the interaction between these variables.
  • Test the statement – Ensure the hypothesis is testable and falsifiable.

A solid hypothesis guides your research and sets the foundation for your experiment.

31 Tips for Writing a Hypothesis

There are at least 31 tips to write a good hypothesis.

Keep reading to learn every tip plus three examples to make sure that you can instantly apply it to your writing.

Tip 1: Start with a Clear Research Question

A clear research question ensures your hypothesis is targeted.

  • Identify the broad topic you’re curious about, then refine it to a specific question.
  • Use guiding questions like “What impact does variable X have on variable Y?”
  • How does fertilizer affect plant growth?
  • Does social media influence mental health in teens?
  • Can personalized ads increase customer engagement?

Tip 2: Do Background Research

Research helps you understand current knowledge and any existing gaps.

  • Review scholarly articles, reputable websites, and textbooks.
  • Focus on understanding the relationships between variables in existing research.
  • Academic journals like ScienceDirect or JSTOR.
  • Google Scholar.
  • Reputable news articles.

Tip 3: Identify Independent and Dependent Variables

The independent variable is what you change or control. The dependent variable is what you measure.

  • Clearly define these variables to make your hypothesis precise.
  • Think of different factors that could be influencing your dependent variable.
  • Type of fertilizer (independent) and plant growth (dependent).
  • Amount of screen time (independent) and anxiety levels (dependent).
  • Marketing strategies (independent) and customer engagement (dependent).

Tip 4: Make Your Hypothesis Testable

A hypothesis must be measurable and falsifiable.

  • Ensure your hypothesis can be supported or refuted through data collection.
  • Include numerical variables or qualitative changes to ensure measurability.
  • “Increasing screen time will increase anxiety levels in teenagers.”
  • “Using fertilizer X will yield higher crop productivity.”
  • “A/B testing marketing strategies will show higher engagement with personalized ads.”

Tip 5: Be Specific and Concise

Keep your hypothesis straightforward and to the point.

  • Avoid vague terms that could mislead or cause confusion.
  • Clearly outline what you’re measuring and how the variables interact.
  • “Replacing chemical fertilizers with organic ones will result in slower plant growth.”
  • “A social media break will decrease anxiety in high school students.”
  • “Ads targeting user preferences will boost click-through rates by 10%.”

Tip 6: Choose Simple Language

Use simple, understandable language to ensure clarity.

  • Avoid jargon and overly complex terms that could confuse readers.
  • Make the hypothesis comprehensible to non-experts in the field.
  • “Organic fertilizer will reduce plant growth.”
  • “High schoolers will feel less anxious after a social media detox.”
  • “Targeted ads will increase customer engagement.”

Tip 7: Formulate a Null Hypothesis

A null hypothesis assumes no relationship between variables.

  • Create a counterpoint to your main hypothesis, asserting that there is no effect.
  • This allows you to compare results directly and identify statistical significance.
  • “Fertilizer type will not affect plant growth.”
  • “Social media use will not influence anxiety.”
  • “Targeted ads will not affect customer engagement.”

Tip 8: State Alternative Hypotheses

Provide alternative hypotheses to explore other plausible relationships.

  • They offer a contingency plan if your primary hypothesis is not supported.
  • These should still align with your research question and measurable variables.
  • “Fertilizer X will only affect plant growth if used in specific soil types.”
  • “Social media might impact anxiety only in certain age groups.”
  • “Customer engagement might only improve with highly personalized ads.”

Tip 9: Use “If…Then” Statements

“If…then” statements simplify the cause-and-effect structure.

  • The “if” clause identifies the independent variable, while “then” identifies the dependent.
  • It makes your hypothesis easier to understand and directly testable.
  • “If plants receive organic fertilizer, then their growth rate will slow.”
  • “If teens stop using social media, then their anxiety will decrease.”
  • “If ads are personalized, then click-through rates will increase.”

Tip 10: Avoid Assumptions

Don’t assume the audience understands your variables or relationships.

  • Clearly define terms and relationships to avoid misinterpretation.
  • Provide background context where necessary for clarity.
  • Define “anxiety” as a feeling of worry or unease.
  • Specify “plant growth” as the height and health of plants.
  • Describe “personalized ads” as ads matching user preferences.

Tip 11: Review Existing Literature

Previous research offers insights into forming a hypothesis.

  • Conduct a thorough literature review to identify trends and gaps.
  • Use these studies to refine and build upon your hypothesis.
  • Studies showing a link between screen time and anxiety.
  • Research on organic versus chemical fertilizers.
  • Customer behavior analysis in different marketing channels.

Tip 12: Consider Multiple Variables

Hypotheses with multiple variables can offer deeper insights.

  • Explore combinations of independent and dependent variables to see their relationships.
  • Plan experiments accordingly to distinguish separate effects.
  • Studying fertilizer type and soil composition effects on plant growth.
  • Testing social media use frequency and content type on anxiety.
  • Analyzing marketing strategies combined with product preferences.

Tip 13: Review Ethical Considerations

Ethics are essential for trustworthy research.

  • Avoid hypotheses that could cause harm to participants or the environment.
  • Seek approval from relevant ethical boards or committees.
  • Avoiding experiments causing undue stress to teenagers.
  • Preventing chemical contamination when testing fertilizers.
  • Respecting privacy with personalized ads.

Tip 14: Test with Pilot Studies

Small-scale pilot studies test feasibility and refine hypotheses.

  • Use them to identify potential issues and adjust before full-scale research.
  • Ensure pilot tests align with ethical standards.
  • Testing different fertilizer types on small plant samples.
  • Trying brief social media breaks with a small group of teens.
  • Conducting A/B tests on ad personalization with a subset of customers.

Tip 15: Build Hypotheses on Existing Theories

Existing theories provide strong foundations.

  • Use established frameworks to develop or refine your hypothesis.
  • Testing theoretical predictions can yield meaningful data.
  • Applying agricultural theories on soil and crop management.
  • Using psychology theories on screen addiction and mental health.
  • Referencing marketing theories like consumer behavior analysis.

Tip 16: Address Real-World Problems

Solve real-world problems through practical hypotheses.

  • Make sure your research question has relevant, impactful applications.
  • Focus on everyday challenges where actionable insights can help.
  • Testing new eco-friendly farming methods.
  • Reducing anxiety by improving digital wellbeing.
  • Improving marketing ROI with personalized strategies.

Tip 17: Aim for Clear, Measurable Outcomes

The results should be easy to measure and interpret.

  • Quantify your dependent variable or use defined qualitative measures.
  • Avoid overly broad or ambiguous outcomes.
  • Measuring plant growth as a percentage change in height.
  • Quantifying anxiety levels through standard surveys.
  • Tracking click-through rates as a percentage of total views.

Tip 18: Stay Open to Unexpected Results

Not all hypotheses yield expected results.

  • Be open to learning new insights, even if they contradict your prediction.
  • Unexpected findings often reveal unique, significant knowledge.
  • Unexpected fertilizer types boosting growth differently than anticipated.
  • Screen time affecting anxiety differently across various age groups.
  • Targeted ads backfiring with specific customer segments.

Tip 19: Keep Hypotheses Relevant

Ensure your hypothesis aligns with the purpose of your research.

  • Avoid straying from the original question or focusing on tangential issues.
  • Stick to the research scope to ensure accurate and meaningful data.
  • Focus on a specific type of fertilizer for plant growth.
  • Restrict studies to relevant age groups for anxiety research.
  • Keep marketing hypotheses within the same target customer segment.

Tip 20: Collaborate with Peers

Collaboration strengthens hypothesis development.

  • Work with colleagues or mentors for valuable feedback.
  • Peer review helps identify flaws or assumptions in your hypothesis.
  • Reviewing hypothesis clarity with a lab partner.
  • Sharing research plans with a mentor to refine focus.
  • Engaging in academic peer-review groups.

Tip 21: Re-evaluate Hypotheses Periodically

Revising hypotheses ensures relevance.

  • Update based on new literature, data, or technological advances.
  • A dynamic approach keeps your research current.
  • Refining fertilizer studies with recent organic farming research.
  • Adjusting social media hypotheses for new platforms like TikTok.
  • Modifying marketing hypotheses based on changing customer preferences.

Tip 22: Develop Compelling Visuals

Illustrating hypotheses can help communicate relationships effectively.

  • Use diagrams or flowcharts to show how variables interact visually.
  • Infographics make it easier for others to grasp your research concept.
  • A flowchart showing fertilizer effects on different plant growth stages.
  • Diagrams illustrating social media use and its psychological impact.
  • Infographics depicting how various marketing strategies boost engagement.

Tip 23: Refine Your Data Collection Plan

A solid data collection plan is vital for a testable hypothesis.

  • Determine the best ways to measure your dependent variable.
  • Ensure your data collection tools are reliable and accurate.
  • Using a ruler and image analysis software to measure plant height.
  • Designing standardized surveys to assess anxiety levels consistently.
  • Setting up click-through tracking with analytics software.

Tip 24: Focus on Logical Progression

Ensure your hypothesis logically follows your research question.

  • The relationship between variables should naturally flow from your observations.
  • Avoid logical leaps that might confuse your reasoning.
  • Predicting plant growth after observing effects of different fertilizers.
  • Linking anxiety to social media use based on screen time studies.
  • Connecting ad personalization with customer behavior data.

Tip 25: Test Against Diverse Samples

Testing across diverse samples ensures broader applicability.

  • Avoid drawing conclusions from overly narrow sample groups.
  • Try to include different demographics or subgroups in your testing.
  • Testing fertilizer effects on multiple plant species.
  • Including different age groups in anxiety research.
  • Experimenting with personalized ads across varied customer segments.

Tip 26: Use Control Groups

Control groups provide a baseline for comparison.

  • Compare your test group with a control group under unchanged conditions.
  • This allows you to isolate the effect of your independent variable.
  • Comparing plant growth with organic versus no fertilizer.
  • Testing anxiety levels with and without social media breaks.
  • Comparing personalized ads with general marketing content.

Tip 27: Consider Practical Constraints

Work within realistic constraints for your resources and timeline.

  • Assess the feasibility of testing your hypothesis.
  • Modify the hypothesis if the required testing is unmanageable.
  • Reducing fertilizer types to a manageable number for testing.
  • Shortening social media detox periods to realistic durations.
  • Targeting only specific marketing strategies to optimize testing.

Tip 28: Recognize Bias Risks

Biases can skew hypothesis formation.

  • Acknowledge your assumptions and how they may affect your research.
  • Minimize biases by clearly defining and measuring variables.
  • Avoiding assumptions that organic fertilizer is inherently better.
  • Ensuring survey questions don’t lead to specific anxiety outcomes.
  • Testing marketing strategies objectively without favoring any method.

Tip 29: Prepare for Peer Review

Peer review ensures your hypothesis holds up to scrutiny.

  • Provide a clear rationale for why your hypothesis is sound.
  • Address potential criticisms to strengthen your research.
  • Showing your plant growth study builds on existing fertilizer research.
  • Demonstrating social media anxiety links through data and literature.
  • Supporting your marketing hypotheses with solid behavioral data.

Tip 30: Create a Research Proposal

A proposal outlines your hypothesis, methodology, and significance.

  • It ensures your hypothesis is clear and your methods are well-thought-out.
  • Proposals also help secure funding or institutional approval.
  • A proposal for fertilizer studies linking plant growth and soil health.
  • Research plans connecting social media habits to anxiety measures.
  • Marketing proposals tying customer behavior to personalized advertising.

Tip 31: Document Your Findings

Recording findings helps validate or challenge your hypothesis.

  • Document the methodology, data, and conclusions clearly.
  • This allows others to verify, replicate, or expand on your work.
  • Recording fertilizer effects on plant height in different soil types.
  • Survey results linking social media use with anxiety levels.
  • Click-through data proving personalized ads’ impact on engagement.

Check out this really good video about how to write a hypothesis:

Hypothesis Examples for Different Situations

Let’s look at some examples of how to write a hypothesis in different circumstances.

  • Marketing Analysis : “If personalized ads are shown to our target demographic, then click-through rates will increase by at least 10%.”
  • Process Improvement : “If automated workflows replace manual data entry, then task completion times will decrease by 20%.”
  • Product Development : “If adding a chatbot feature to our app increases customer support efficiency, then user satisfaction will improve by 15%.”
  • Biology Experiment : “If students grow plants with different fertilizers, then the organic fertilizer will result in slower growth compared to the chemical fertilizer.”
  • Psychology Research : “If high school students take a break from social media, then their levels of anxiety will decrease.”
  • Environmental Study : “If a controlled forest area is exposed to a certain pollutant, then the local plant species will show signs of damage within two weeks.”

Professional Contacts

  • Medical Research : “If a novel treatment method is applied to patients with chronic illness, then their recovery rate will increase significantly compared to standard treatment.”
  • Technology Research : “If machine learning algorithms analyze big data sets, then the accuracy of predictive models will surpass traditional data analysis.”
  • Engineering Project : “If new composite materials replace standard components in bridge construction, then the resulting structure will be more durable.”

Super Personal

  • Gardening Experiment : “If different types of compost are used in home gardens, then plants receiving homemade compost will yield the most produce.”
  • Fitness Routine : “If consistent strength training is combined with a high-protein diet, then muscle mass will increase more than with diet alone.”
  • Cooking Techniques : “If searing is added before baking, then the resulting roast will retain more moisture.”

Final Thoughts: How to Write a Hypothesis

Crafting hypotheses is both a science and an art. It’s about channeling curiosity into testable questions that propel meaningful discovery.

Each well-thought-out hypothesis is a stepping stone that could lead to the breakthrough you’ve been seeking.

Stay curious and let your research journey unfold.

Read This Next:

  • How to Write a Topic Sentence (30+ Tips & Examples)
  • How to Describe a Graph in Writing [+ 22 Examples]
  • How to Write an Address (21+ Examples)
  • How to Write an Email (Ultimate Guide + 60 Examples)
  • How to Write a Recommendation Letter (Examples & Templates)

Researchmate.net logo

7 Types of Research Hypothesis: Examples, Significance and Step-By-Step Guide

Introduction.

In any research study, a research hypothesis plays a crucial role in guiding the investigation and providing a clear direction for the research. It is an essential component of a thesis as it helps to frame the research question and determine the methodology to be used.

Research hypotheses are important in guiding the direction of a study, providing a basis for data collection and analysis, and helping to validate the research findings.

This article will provide a detailed analysis of research hypotheses in a thesis, highlighting their significance and qualities. It will also explore different types of research hypotheses and provide illustrative examples. Additionally, a step-by-step guide to developing research hypotheses and methods for testing and validating them will be discussed. By the end of this article, readers will have a comprehensive understanding of research hypotheses and their role in a thesis.

Understanding Research Hypotheses in a Thesis

A research hypothesis is a statement of expectation or prediction that will be tested by research. In a thesis, a research hypothesis is formulated to address the research question or problem statement . It serves as a tentative answer or explanation to the research question. The research hypothesis guides the direction of the study and helps in determining the research design and methodology.

The research hypothesis is typically based on existing theories, previous research findings, or observations. It is formulated after a thorough review of the literature and understanding of the research area. A well-defined research hypothesis provides a clear focus for the study and helps in generating testable predictions. By testing the research hypothesis, researchers aim to gather evidence to support or reject the hypothesis. This process contributes to the advancement of knowledge in the field and helps in drawing meaningful conclusions.

Significance of Research Hypotheses in a Thesis

One of the key significance of research hypotheses is that they help in organizing and structuring the research study. By formulating a hypothesis, the researcher defines the specific research question and identifies the variables that will be investigated. This helps in narrowing down the scope of the study and ensures that the research is focused and targeted.

Moreover, research hypotheses provide a framework for data collection and analysis. They guide the researcher in selecting appropriate research methods , tools, and techniques to gather relevant data. The hypotheses also help in determining the statistical tests and analysis techniques that will be used to analyze the collected data.

Another significance of research hypotheses is that they contribute to the advancement of knowledge in a particular field. By formulating hypotheses and conducting research to test them, researchers are able to generate new insights, theories, and explanations. This contributes to the existing body of knowledge and helps in expanding the understanding of a specific phenomenon or topic.

Furthermore, research hypotheses are important for establishing the validity and reliability of the research findings. By formulating clear and testable hypotheses, researchers can ensure that their study is based on sound scientific principles. The hypotheses provide a basis for evaluating the accuracy and generalizability of the research results.

In addition, research hypotheses are essential for making informed decisions and recommendations based on the research findings. They help in drawing conclusions and making predictions about the relationship between variables. This information can be used to inform policy decisions, develop interventions, or guide future research in the field.

Qualities of an Effective Research Hypothesis in a Thesis

An effective research hypothesis in a thesis possesses several key qualities that contribute to its strength and validity. These qualities are essential for ensuring that the hypothesis can be tested and validated through empirical research. The following are some of the qualities that make a research hypothesis effective:

1. Specificity: A good research hypothesis is specific and clearly defines the variables and the relationship between them. It provides a clear direction for the research and allows for precise testing of the hypothesis.

2. Testability: An effective hypothesis in research is testable, meaning that it can be empirically examined and either supported or refuted through data analysis. It should be possible to design experiments or collect data that can provide evidence for or against the hypothesis.

3. Clarity: A research hypothesis should be written in clear and concise language. It should avoid ambiguity and ensure that the intended meaning is easily understood by the readers. Clear language helps in communicating the hypothesis effectively and facilitates its evaluation.

4. Falsifiability: A strong research hypothesis is falsifiable, which means that it is possible to prove it wrong. It should be formulated in a way that allows for the possibility of obtaining evidence that contradicts the hypothesis. This is important for the scientific process as it encourages critical thinking and the exploration of alternative explanations.

5. Relevance: An effective research hypothesis is relevant to the research question and the overall objectives of the study. It should address a significant gap in knowledge or contribute to the existing body of literature. A relevant hypothesis adds value to the research and increases its significance.

6. Novelty: A good research hypothesis is original and innovative. It should propose a new idea or approach that has not been extensively explored before. Novelty in the hypothesis increases the potential for new discoveries and contributes to the advancement of knowledge in the field.

7. Coherence: An effective research hypothesis should be coherent and consistent with existing theories, concepts, and empirical evidence. It should align with the current understanding of the topic and build upon previous research. Coherence ensures that the hypothesis is grounded in a solid foundation and enhances its credibility.

8. Measurability: A research hypothesis should be measurable, meaning that it can be quantitatively or qualitatively assessed. It should be possible to collect data or evidence that can be used to evaluate the hypothesis. Measurability allows for objective testing and increases the reliability of the research findings.

By incorporating these qualities into the formulation of a research hypothesis, researchers can enhance the validity and reliability of their study.

Different Types of Research Hypotheses in a Thesis

In a thesis, there are several different types of research hypotheses that can be used to test the relationship between variables. These hypotheses provide a framework for the research and guide the direction of the study. Understanding the different types of research hypotheses is essential for conducting a comprehensive and effective thesis.

Null Hypothesis

The null hypothesis is a statement that suggests there is no significant relationship between the variables being studied. It assumes that any observed differences or relationships are due to chance or random variation. The null hypothesis is denoted as H0 and is often used as a starting point for hypothesis testing.

Alternative Hypothesis

The alternative hypothesis, also known as the research hypothesis, is a statement that suggests there is a significant relationship between the variables being studied. It contradicts the null hypothesis and proposes that the observed differences or relationships are not due to chance.

Directional Hypothesis

A directional hypothesis is a specific type of alternative hypothesis that predicts the direction of the relationship between variables. It states that there is a positive or negative relationship between the variables, indicating the direction of the effect.

Non-Directional Hypothesis

In contrast to a directional hypothesis, a non-directional hypothesis does not predict the direction of the relationship between variables. It simply states that there is a relationship between the variables without specifying the direction of the effect.

Statistical Hypothesis

A statistical hypothesis is a hypothesis that is formulated based on statistical analysis. It involves using statistical tests to determine the likelihood of the observed data occurring under the null hypothesis.

Associative Hypothesis

An associative hypothesis suggests that there is a relationship between variables, but it does not imply causation. It indicates that changes in one variable are associated with changes in another variable.

Causal Hypothesis

A causal hypothesis proposes a cause-and-effect relationship between variables. It suggests that changes in one variable directly cause changes in another variable.

These different types of research hypotheses provide researchers with various options to explore and test the relationships between variables in a thesis. The choice of hypothesis depends on the research question, the nature of the variables, and the available data.

Illustrative Examples of Research Hypotheses in a Thesis

To better understand research hypotheses in a thesis, let’s explore some illustrative examples. These examples will demonstrate how hypotheses are formulated and tested in different research studies.

Example 1: Hypothesis for a study on the effects of exercise on weight loss:

Null Hypothesis (H0): There is no significant difference in weight loss between individuals who engage in regular exercise and those who do not.

Alternative Hypothesis (H1): Individuals who engage in regular exercise will experience greater weight loss compared to those who do not exercise.

Example 2: Hypothesis for a study on the impact of social media on self-esteem:

Null Hypothesis (H0): There is no significant relationship between social media usage and self-esteem levels.

Alternative Hypothesis (H1): Increased social media usage is associated with lower self-esteem levels.

Example 3: Hypothesis for a study on the effectiveness of a new teaching method in improving student performance:

Null Hypothesis (H0): There is no significant difference in student performance between the traditional teaching method and the new teaching method.

Alternative Hypothesis (H1): The new teaching method leads to improved student performance compared to the traditional teaching method.

These examples highlight the structure of research hypotheses, where the null hypothesis represents no effect or relationship, while the alternative hypothesis suggests the presence of an effect or relationship. It is important to note that these hypotheses are testable and can be analyzed using appropriate statistical methods.

Step-by-Step Guide to Developing Research Hypotheses in a Thesis

Developing a research hypothesis is a crucial step in the process of conducting a thesis. In this section, we will provide a step-by-step guide to developing research hypotheses in a thesis.

Step 1: Identify the Research Topic

The first step in developing a research hypothesis is to clearly identify the research topic. This involves understanding the research problem and determining the specific area of study.

Step 2: Conduct Preliminary Research

Once the research topic is identified, it is important to conduct preliminary research to gather relevant information. This helps in understanding the existing knowledge and identifying any gaps or areas that need further investigation.

Step 3: Formulate the Research Question

Based on the preliminary research, formulate a clear and concise research question. The research question should be specific and focused, addressing the research problem identified in step 1.

Step 4: Define the Variables

Identify the variables that will be studied in the research. Variables are the factors or concepts that are being measured or manipulated in the study. It is important to clearly define the variables to ensure the research hypothesis is specific and testable.

Step 5: Predict the Relationship and Outcome

The research hypothesis should propose a link between the variables and predict the expected outcome. It should clearly state the expected relationship between the variables and the anticipated result.

Step 6: Ensure Clarity and Conciseness

A good research hypothesis should be simple and concise, avoiding wordiness. It should be clear and free from ambiguity or assumptions about the readers’ knowledge. The hypothesis should also be observable and measurable.

Step 7: Validate the Hypothesis

Before finalizing the research hypothesis, it is important to validate it. This can be done through further research, literature review , or consultation with experts in the field. Validating the hypothesis ensures its relevance and novelty.

By following these step-by-step guidelines, researchers can develop effective research hypotheses for their theses. A well-developed hypothesis provides a solid foundation for the research and helps in generating meaningful results.

Methods for Testing and Validating Research Hypotheses in a Thesis

Hypothesis testing is a formal procedure for investigating our ideas about the world. It allows you to statistically test your predictions. The usual process is to make a hypothesis, create an experiment to test it, run the experiment, draw a conclusion, and then allow other researchers to replicate the study to validate the findings. There are several methods for testing and validating research hypotheses in a thesis.

Experimental Research

One common method is experimental research, where researchers manipulate variables and measure their effects on the dependent variable.

Observational Research

Another method is observational research, where researchers observe and record data without manipulating variables. This method is often used when it is not feasible or ethical to conduct experiments.

Survey Research

Survey research is another method that involves collecting data from a sample of individuals using questionnaires or interviews . This method is useful for studying attitudes, opinions, and behaviors.

Conducting Meta-analysis

In addition to these methods, researchers can also use existing data or conduct meta-analyses to test and validate research hypotheses. Existing data can be obtained from sources such as government databases, previous studies, or publicly available datasets. Meta-analysis involves combining the results of multiple studies to determine the overall effect size and to test the generalizability of findings across different populations and contexts. Once the data is collected, researchers can use statistical analysis techniques to analyze the data and test the research hypotheses. Common statistical tests include t-tests, analysis of variance (ANOVA), regression analysis, and chi-square tests.

The choice of statistical test depends on the research design, the type of data collected, and the specific research hypotheses being tested. It is important to note that testing and validating research hypotheses is an iterative process. Researchers may need to refine their hypotheses, modify their research design, or collect additional data based on the initial findings. By using rigorous methods for testing and validating research hypotheses, researchers can ensure the reliability and validity of their findings, contributing to the advancement of knowledge in their field.

In conclusion, research hypotheses are essential components of a thesis that guide the research process and contribute to the advancement of knowledge in a particular field. By formulating clear and testable hypotheses, researchers can make meaningful contributions to their field and address important research questions. It is important for researchers to carefully develop and validate their hypotheses to ensure the credibility and reliability of their findings.

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Related articles

Research Questions

How to Formulate Research Questions in a Research Proposal? Discover The No. 1 Easiest Template Here!

Chatgpt-Best-Literature-Review-Generator

7 Easy Step-By-Step Guide of Using ChatGPT: The Best Literature Review Generator for Time-Saving Academic Research

Writing-Engaging-Introduction-in-Research-Papers

Writing Engaging Introduction in Research Papers : 7 Tips and Tricks!

Comparative-Frameworks-

Understanding Comparative Frameworks: Their Importance, Components, Examples and 8 Best Practices

artificial-intelligence-in-thesis-writing-for-phd-students

Revolutionizing Effective Thesis Writing for PhD Students Using Artificial Intelligence!

Interviews-as-One-of-Qualitative-Research-Instruments

3 Types of Interviews in Qualitative Research: An Essential Research Instrument and Handy Tips to Conduct Them

highlight abstracts

Highlight Abstracts: An Ultimate Guide For Researchers!

Critical abstracts

Crafting Critical Abstracts: 11 Expert Strategies for Summarizing Research

  • Translators
  • Graphic Designers

Solve

Please enter the email address you used for your account. Your sign in information will be sent to your email address after it has been verified.

100 Hypothesis Examples Across Various Academic Fields

David Costello

A hypothesis is a statement or proposition that is made for the purpose of testing through empirical research. It represents an educated guess or prediction that can be tested through observation and experimentation. A hypothesis is often formulated using a logical construct of "if-then" statements, allowing researchers to set up experiments to determine its validity. It serves as the foundation of a scientific inquiry, providing a clear focus and direction for the study. In essence, a hypothesis is a provisional answer to a research question , which is then subjected to rigorous testing to determine its accuracy.

In this blog post, we'll explore 100 different hypothesis examples, showing you how these simple statements set the stage for discovery in various academic fields. From the mysteries of chemical reactions to the complexities of human behavior, hypotheses are used to kickstart research in numerous disciplines. Whether you're new to the world of academia or just curious about how ideas are tested, these examples will offer insight into the fundamental role hypotheses play in learning and exploration.

  • If a plant is given more sunlight, then it will grow faster.
  • If an animal's environment is altered, then its behavior will change.
  • If a cell is exposed to a toxin, then its function will be impaired.
  • If a species is introduced to a new ecosystem, then it may become invasive.
  • If an antibiotic is applied to a bacterial culture, then growth will be inhibited.
  • If a gene is mutated, then the corresponding protein may become nonfunctional.
  • If a pond's water temperature rises, then the algae population will increase.
  • If a bird species' habitat is destroyed, then its population will decrease.
  • If a mammal is given a high-fat diet, then its cholesterol levels will rise.
  • If human stem cells are treated with specific factors, then they will differentiate into targeted cell types.
  • If the concentration of a reactant is increased, then the rate of reaction will increase.
  • If a metal is placed in a solution of a salt of a less reactive metal, then a displacement reaction will occur.
  • If a solution's pH is lowered, then the concentration of hydrogen ions will increase.
  • If a gas is cooled at constant pressure, then its volume will decrease according to Charles's law.
  • If an endothermic reaction is heated, then the equilibrium position will shift to favor the products.
  • If an enzyme is added to a reaction, then the reaction rate will increase due to the lower activation energy.
  • If the pressure on a gas is increased at constant temperature, then the volume will decrease according to Boyle's law.
  • If a non-polar molecule is added to water, then it will not dissolve due to water's polarity.
  • If a piece of litmus paper is placed in a basic solution, then the color of the paper will turn blue.
  • If an electric current is passed through a salt solution, then the solution will undergo electrolysis and break down into its components.

Computer science

  • If a new algorithm is applied to a sorting problem, then the computational complexity will decrease.
  • If multi-factor authentication is implemented, then the security of a system will increase.
  • If a machine learning model is trained with more diverse data, then its predictive accuracy will improve.
  • If the bandwidth of a network is increased, then the data transmission rate will be faster.
  • If a user interface is redesigned following usability guidelines, then user satisfaction and efficiency will increase.
  • If a specific optimization technique is applied to a database query, then the retrieval time will be reduced.
  • If a new cooling system is used in a data center, then energy consumption will decrease.
  • If parallel processing is implemented in a computational task, then the processing time will be reduced.
  • If a software development team adopts Agile methodologies, then the project delivery time will be shortened.
  • If a more advanced error correction code is used in data transmission, then the error rate will decrease.
  • If the interest rate is lowered, then consumer spending will increase.
  • If the minimum wage is raised, then unemployment may increase among low-skilled workers.
  • If government spending is increased, then the Gross Domestic Product (GDP) may grow.
  • If taxes on luxury goods are raised, then consumption of those goods may decrease.
  • If a country's currency is devalued, then its exports will become more competitive.
  • If inflation is high, then the central bank may increase interest rates to control it.
  • If consumer confidence is high, then spending in the economy will likely increase.
  • If barriers to entry in a market are reduced, then competition will likely increase.
  • If a firm engages in monopolistic practices, then consumer welfare may decrease.
  • If unemployment benefits are extended, then the unemployment rate may be temporarily affected.
  • If class sizes are reduced, then individual student performance may improve.
  • If teachers receive ongoing professional development, then teaching quality will increase.
  • If schools implement a comprehensive literacy program, then reading levels among students will rise.
  • If parents are actively involved in their children's education, then students' academic achievement may increase.
  • If schools provide more access to extracurricular activities, then student engagement and retention may improve.
  • If educational technology is integrated into the classroom, then learning outcomes may enhance.
  • If a school adopts a zero-tolerance policy on bullying, then the incidence of bullying will decrease.
  • If schools provide nutritious meals, then student concentration and performance may improve.
  • If a curriculum is designed to include diverse cultural perspectives, then student understanding of different cultures will increase.
  • If schools implement individualized learning plans, then students with special needs will achieve better educational outcomes.

Environmental science

  • If deforestation rates continue to rise, then biodiversity in the area will decrease.
  • If carbon dioxide emissions are reduced, then the rate of global warming may decrease.
  • If a water body is polluted with nutrients, then algal blooms may occur, leading to eutrophication.
  • If renewable energy sources are used more extensively, then dependency on fossil fuels will decrease.
  • If urban areas implement green spaces, then the urban heat island effect may be reduced.
  • If protective measures are not implemented, then endangered species may become extinct.
  • If waste recycling practices are increased, then landfill usage and waste pollution may decrease.
  • If air quality regulations are enforced, then respiratory health issues in the population may decrease.
  • If soil erosion control measures are not implemented, then agricultural land fertility may decrease.
  • If ocean temperatures continue to rise, then coral reefs may experience more frequent bleaching events.
  • If a new chemotherapy drug is administered to cancer patients, then tumor size will decrease more effectively.
  • If a specific exercise regimen is followed by osteoarthritis patients, then joint mobility will improve.
  • If a population is exposed to higher levels of air pollution, then respiratory diseases such as asthma will increase.
  • If a novel surgical technique is utilized in cardiac surgery, then patient recovery times will be shortened.
  • If a targeted screening program is implemented for a specific genetic disorder, then early detection and intervention rates will increase.
  • If a community's water supply is fortified with fluoride, then dental cavity rates in children will decrease.
  • If an improved vaccination schedule is followed in a pediatric population, then the incidence of preventable childhood diseases will decline.
  • If nutritional supplements are provided to malnourished individuals, then general health and immune function will improve.
  • If stricter infection control protocols are implemented in hospitals, then the rate of hospital-acquired infections will decrease.
  • If organ transplant recipients are given a new immunosuppressant drug, then organ rejection rates will decrease.
  • If a person is exposed to violent media, then their aggression levels may increase.
  • If a child is given positive reinforcement, then desired behaviors will be more likely to be repeated.
  • If an individual suffers from anxiety, then their performance on tasks under pressure may decrease.
  • If a patient is treated with cognitive-behavioral therapy, then symptoms of depression may reduce.
  • If a person lacks sleep, then their cognitive functions and decision-making abilities will decline.
  • If an individual's self-esteem is increased, then their overall life satisfaction may improve.
  • If a person is exposed to a traumatic event, then they may develop symptoms of PTSD.
  • If social support is provided to an individual, then their ability to cope with stress will improve.
  • If a group works collaboratively, then they may exhibit improved problem-solving abilities.
  • If an individual is given autonomy in their work, then their job satisfaction and motivation will increase.
  • If the velocity of an object is increased, then the kinetic energy will also increase.
  • If the temperature of a gas is increased at constant pressure, then the volume will increase.
  • If the mass of an object is doubled, then the gravitational force it exerts will also double.
  • If the frequency of a wave is increased, then the energy it carries will increase.
  • If a magnet's distance from a metal object is decreased, then the magnetic force will increase.
  • If the angle of incidence equals the angle of reflection, then the law of reflection holds true.
  • If the resistance in an electrical circuit is increased, then the current will decrease.
  • If the force applied to a spring is doubled, then the extension of the spring will also double.
  • If a mirror is concave, then it will focus parallel rays to a point.
  • If a body is in uniform circular motion, then the net force toward the center is providing the centripetal acceleration.
  • If educational opportunities are equally distributed in a society, then social mobility will increase.
  • If community policing strategies are implemented, then trust between law enforcement and the community may improve.
  • If social media usage increases among teenagers, then face-to-face social interaction may decrease.
  • If gender wage gap policies are enforced, then disparities in earnings between men and women will decrease.
  • If a society emphasizes individualistic values, then community engagement and collective responsibility may decline.
  • If affordable housing initiatives are implemented in urban areas, then homelessness rates may decrease.
  • If a minority group is represented in media, then stereotypes and prejudices toward that group may decrease.
  • If a culture promotes work-life balance, then overall life satisfaction among its citizens may increase.
  • If increased funding is provided to community centers in underserved neighborhoods, then social cohesion and community engagement may improve.
  • If legislation is passed to protect the rights of LGBTQ+ individuals, then discrimination and stigma may decrease in society.

In the exploration of various academic disciplines, hypotheses play a crucial role as foundational statements that guide research and inquiry. From understanding complex biological processes to navigating the nuances of human behavior in sociology, hypotheses serve as testable predictions that shape the direction of scientific investigation. The examples provided across the fields of medicine, computer science, sociology, and education illustrate the diverse applications and importance of hypotheses in shaping our understanding of the world. Whether improving medical treatments, enhancing technological systems, fostering social equality, or elevating educational practices, hypotheses remain central to scientific progress and societal advancement. By formulating clear and measurable hypotheses, researchers can continue to unravel complex phenomena, contribute to their fields, and ultimately enrich human knowledge and well-being.

Header image by Qunica .

help for assessment

  • Customer Reviews
  • Extended Essays
  • IB Internal Assessment
  • Theory of Knowledge
  • Literature Review
  • Dissertations
  • Essay Writing
  • Research Writing
  • Assignment Help
  • Capstone Projects
  • College Application
  • Online Class

15 Examples of Hypothesis to Inform Your Research Project

Author Image

by  Antony W

August 5, 2024

examples of hypothesis

What first comes to your mind when someone mentions the word hypothesis? For many students, terms such as prediction, dependent variables, and independent variables come to mind.

Primarily, a hypothesis is a statement derived from a research question, subject to debate, and can be proven or disapproved based on scientific research methods such as objective   observations, lab experiments, and statistical analysis.

A hypothesis predicts an outcome based on evidence, knowledge, or theories and it forms the initial point of an investigation.

You already know how to write a hypothesis .

You also know about hypothesis vs research question .

If you haven’t looked at the two in detail, we suggest that you look at the two posts for more insights.

In this lesson, we’ll look at some examples of hypothesis to help you understand how you can formulate your own.

Let’s get started.

Can You Prove a Hypothesis?

can you prove hypothesis

Credit: CrazyEgg

Since a hypothesis is an assumption of an expected result from a scientific experiment, you can’t prove it to be correct.

You can only reject or support it depending on the results that you get from the experiment.

It’s important to avoid references that try to prove a theory with 100% certainty when formulating a hypothesis because there may exist solid evidence that refutes the theory.

What’s the Purpose of a Hypothesis?

purpose of hypothesis

Credit: PublicHealthNotes

A hypothesis describes a research study in correct terms and provides a basis that you can use to evaluate and prove the validity or invalidity of a specific research.

Because hypothesis helps to analyze the scientific validity of research methodologies, researchers can assume an almost accurate probability of the progress of failure of a research.

Moreover, it’s only by formulating a hypothesis that a researcher can easily establish a relationship between a theory and a research question.

Example of Hypothesis

examples of hypothesis

Credit: Study.com

To make things easier for you, we’ll give you examples for each type of hypothesis. So whether you’re struggling to formulate a concrete hypothesis or you need some ideas to add to your checklist, this guide is for you.

1. Simple Hypothesis

The hypothesis predicts the outcome between an independent (cause) and a dependent variable (effect).

  • Getting 6 to 8 hours of sleep can improve a student’s alertness in class
  • Excessive consumption of alcohol can cause liver disease
  • Smoking cigarette can cause lung cancer
  • Drinking a lot of sugary beverages can cause obesity

2. Complex Hypothesis

A complex hypothesis gives a relationship between two or more independent and dependent variables.

  • Obese persons who continue to eat oily foods are likely to accumulate high cholesterol and develop heart complications
  • Individuals who live in cities and smoke have a higher chance of developing respiratory disease and suffer from cancer
  • Overweight adults who want to live long are more likely to lose weight

3. Directional Hypothesis

This kind of a hypothesis gives a researcher or student the direction he or she should follow to determine the relationship between a dependent and an independent variable.

  • Boys perform better than girls in school
  • The prediction that health decreases as stress decreases

4. Non-directional Hypothesis

It’s the opposite of a directional hypothesis, which means it doesn’t show the nature of the relationship between dependent and independent variables.

  • The likelihood that there will be a difference between the performance of boys and girls

5. Associative and Causal Hypothesis

An associative and causal hypothesis uses statistical information to analyze a sample population from a specific area.

  • 13% of the US population are poor
  • The current rate of divorce in the US stands at the rate of 80% because of irreconcilable differences
  • Nearly 40% of the Savannah population lives past the age of 60

6. Null Hypothesis

A null hypothesis exists where there’s no relationship between two variable. A researcher can also formulate a null hypothesis if they don’t have the information to state a scientific hypothesis.

  • There is no significant change in an individual’s work habit if they get more than 6 hours of sleep
  • There’s no significant change in health status if you drink root beer
  • Age doesn’t have an effect on someone’s ability to write Math assignments

7. Alternative Hypothesis

Researchers use an alternative hypothesis (H1) to try to disprove the null hypothesis (H0). In other words, they try to come up with a reasonable alternative that they can use in the place of th null hypothesis.

  • Your health can increase if you drink green tea instead of root beer
  • Your work habits can improve if you get six hours of sleep instead of nine
  • You can improve the growth of plant if you use water rich in vitamins instead of distilled water

Null Hypothesis vs Alternative Hypothesis

The table below shows the difference between a null hypothesis and an alternate hypothesis.

8.  Logical Hypothesis

A logical hypothesis is a proposed assumption or explanation with limited evidence.

  • Creatures that live in the bottom of an ocean use aerobic respiration instead of anaerobic respiration
  • Cactus experience successful growth rates than tulips on planet Mars

9. Empirical Hypothesis

By putting a theory to the test, and changing around independent variable, and using observations and experiments, a researcher comes up with an empirical hypothesis also known as a working hypothesis. An empirical hypothesis ceases to be just an idea, assumption or notion.

  • A woman to takes vitamin E grows her hair faster than a woman who takes vitamin K

Note that until you’re able to test a theory for an extended period, the evidence for any claim can only remain logical.

About the author 

Antony W is a professional writer and coach at Help for Assessment. He spends countless hours every day researching and writing great content filled with expert advice on how to write engaging essays, research papers, and assignments.

Tutorial Playlist

Statistics tutorial, everything you need to know about the probability density function in statistics, the best guide to understand central limit theorem, an in-depth guide to measures of central tendency : mean, median and mode, the ultimate guide to understand conditional probability.

A Comprehensive Look at Percentile in Statistics

The Best Guide to Understand Bayes Theorem

Everything you need to know about the normal distribution, an in-depth explanation of cumulative distribution function, chi-square test, what is hypothesis testing in statistics types and examples, understanding the fundamentals of arithmetic and geometric progression, the definitive guide to understand spearman’s rank correlation, mean squared error: overview, examples, concepts and more, all you need to know about the empirical rule in statistics, the complete guide to skewness and kurtosis, a holistic look at bernoulli distribution.

All You Need to Know About Bias in Statistics

A Complete Guide to Get a Grasp of Time Series Analysis

The Key Differences Between Z-Test Vs. T-Test

The Complete Guide to Understand Pearson's Correlation

A complete guide on the types of statistical studies, everything you need to know about poisson distribution, your best guide to understand correlation vs. regression, the most comprehensive guide for beginners on what is correlation, hypothesis testing in statistics - types | examples.

Lesson 10 of 24 By Avijeet Biswal

What Is Hypothesis Testing in Statistics? Types and Examples

Table of Contents

In today’s data-driven world, decisions are based on data all the time. Hypothesis plays a crucial role in that process, whether it may be making business decisions, in the health sector, academia, or in quality improvement. Without hypothesis & hypothesis tests, you risk drawing the wrong conclusions and making bad decisions. In this tutorial, you will look at Hypothesis Testing in Statistics.

The Ultimate Ticket to Top Data Science Job Roles

The Ultimate Ticket to Top Data Science Job Roles

What Is Hypothesis Testing in Statistics?

Hypothesis Testing is a type of statistical analysis in which you put your assumptions about a population parameter to the test. It is used to estimate the relationship between 2 statistical variables.

Let's discuss few examples of statistical hypothesis from real-life - 

  • A teacher assumes that 60% of his college's students come from lower-middle-class families.
  • A doctor believes that 3D (Diet, Dose, and Discipline) is 90% effective for diabetic patients.

Now that you know about hypothesis testing, look at the two types of hypothesis testing in statistics.

Hypothesis Testing Formula

Z = ( x̅ – μ0 ) / (σ /√n)

  • Here, x̅ is the sample mean,
  • μ0 is the population mean,
  • σ is the standard deviation,
  • n is the sample size.

How Hypothesis Testing Works?

An analyst performs hypothesis testing on a statistical sample to present evidence of the plausibility of the null hypothesis. Measurements and analyses are conducted on a random sample of the population to test a theory. Analysts use a random population sample to test two hypotheses: the null and alternative hypotheses.

The null hypothesis is typically an equality hypothesis between population parameters; for example, a null hypothesis may claim that the population means return equals zero. The alternate hypothesis is essentially the inverse of the null hypothesis (e.g., the population means the return is not equal to zero). As a result, they are mutually exclusive, and only one can be correct. One of the two possibilities, however, will always be correct.

Your Dream Career is Just Around The Corner!

Your Dream Career is Just Around The Corner!

Null Hypothesis and Alternative Hypothesis

The Null Hypothesis is the assumption that the event will not occur. A null hypothesis has no bearing on the study's outcome unless it is rejected.

H0 is the symbol for it, and it is pronounced H-naught.

The Alternate Hypothesis is the logical opposite of the null hypothesis. The acceptance of the alternative hypothesis follows the rejection of the null hypothesis. H1 is the symbol for it.

Let's understand this with an example.

A sanitizer manufacturer claims that its product kills 95 percent of germs on average. 

To put this company's claim to the test, create a null and alternate hypothesis.

H0 (Null Hypothesis): Average = 95%.

Alternative Hypothesis (H1): The average is less than 95%.

Another straightforward example to understand this concept is determining whether or not a coin is fair and balanced. The null hypothesis states that the probability of a show of heads is equal to the likelihood of a show of tails. In contrast, the alternate theory states that the probability of a show of heads and tails would be very different.

Become a Data Scientist with Hands-on Training!

Become a Data Scientist with Hands-on Training!

Hypothesis Testing Calculation With Examples

Let's consider a hypothesis test for the average height of women in the United States. Suppose our null hypothesis is that the average height is 5'4". We gather a sample of 100 women and determine that their average height is 5'5". The standard deviation of population is 2.

To calculate the z-score, we would use the following formula:

z = ( x̅ – μ0 ) / (σ /√n)

z = (5'5" - 5'4") / (2" / √100)

z = 0.5 / (0.045)

We will reject the null hypothesis as the z-score of 11.11 is very large and conclude that there is evidence to suggest that the average height of women in the US is greater than 5'4".

Steps in Hypothesis Testing

Hypothesis testing is a statistical method to determine if there is enough evidence in a sample of data to infer that a certain condition is true for the entire population. Here’s a breakdown of the typical steps involved in hypothesis testing:

Formulate Hypotheses

  • Null Hypothesis (H0): This hypothesis states that there is no effect or difference, and it is the hypothesis you attempt to reject with your test.
  • Alternative Hypothesis (H1 or Ha): This hypothesis is what you might believe to be true or hope to prove true. It is usually considered the opposite of the null hypothesis.

Choose the Significance Level (α)

The significance level, often denoted by alpha (α), is the probability of rejecting the null hypothesis when it is true. Common choices for α are 0.05 (5%), 0.01 (1%), and 0.10 (10%).

Select the Appropriate Test

Choose a statistical test based on the type of data and the hypothesis. Common tests include t-tests, chi-square tests, ANOVA, and regression analysis. The selection depends on data type, distribution, sample size, and whether the hypothesis is one-tailed or two-tailed.

Collect Data

Gather the data that will be analyzed in the test. This data should be representative of the population to infer conclusions accurately.

Calculate the Test Statistic

Based on the collected data and the chosen test, calculate a test statistic that reflects how much the observed data deviates from the null hypothesis.

Determine the p-value

The p-value is the probability of observing test results at least as extreme as the results observed, assuming the null hypothesis is correct. It helps determine the strength of the evidence against the null hypothesis.

Make a Decision

Compare the p-value to the chosen significance level:

  • If the p-value ≤ α: Reject the null hypothesis, suggesting sufficient evidence in the data supports the alternative hypothesis.
  • If the p-value > α: Do not reject the null hypothesis, suggesting insufficient evidence to support the alternative hypothesis.

Report the Results

Present the findings from the hypothesis test, including the test statistic, p-value, and the conclusion about the hypotheses.

Perform Post-hoc Analysis (if necessary)

Depending on the results and the study design, further analysis may be needed to explore the data more deeply or to address multiple comparisons if several hypotheses were tested simultaneously.

Types of Hypothesis Testing

To determine whether a discovery or relationship is statistically significant, hypothesis testing uses a z-test. It usually checks to see if two means are the same (the null hypothesis). Only when the population standard deviation is known and the sample size is 30 data points or more, can a z-test be applied.

A statistical test called a t-test is employed to compare the means of two groups. To determine whether two groups differ or if a procedure or treatment affects the population of interest, it is frequently used in hypothesis testing.

Chi-Square 

You utilize a Chi-square test for hypothesis testing concerning whether your data is as predicted. To determine if the expected and observed results are well-fitted, the Chi-square test analyzes the differences between categorical variables from a random sample. The test's fundamental premise is that the observed values in your data should be compared to the predicted values that would be present if the null hypothesis were true.

Hypothesis Testing and Confidence Intervals

Both confidence intervals and hypothesis tests are inferential techniques that depend on approximating the sample distribution. Data from a sample is used to estimate a population parameter using confidence intervals. Data from a sample is used in hypothesis testing to examine a given hypothesis. We must have a postulated parameter to conduct hypothesis testing.

Bootstrap distributions and randomization distributions are created using comparable simulation techniques. The observed sample statistic is the focal point of a bootstrap distribution, whereas the null hypothesis value is the focal point of a randomization distribution.

A variety of feasible population parameter estimates are included in confidence ranges. In this lesson, we created just two-tailed confidence intervals. There is a direct connection between these two-tail confidence intervals and these two-tail hypothesis tests. The results of a two-tailed hypothesis test and two-tailed confidence intervals typically provide the same results. In other words, a hypothesis test at the 0.05 level will virtually always fail to reject the null hypothesis if the 95% confidence interval contains the predicted value. A hypothesis test at the 0.05 level will nearly certainly reject the null hypothesis if the 95% confidence interval does not include the hypothesized parameter.

Become a Data Scientist through hands-on learning with hackathons, masterclasses, webinars, and Ask-Me-Anything! Start learning now!

Simple and Composite Hypothesis Testing

Depending on the population distribution, you can classify the statistical hypothesis into two types.

Simple Hypothesis: A simple hypothesis specifies an exact value for the parameter.

Composite Hypothesis: A composite hypothesis specifies a range of values.

A company is claiming that their average sales for this quarter are 1000 units. This is an example of a simple hypothesis.

Suppose the company claims that the sales are in the range of 900 to 1000 units. Then this is a case of a composite hypothesis.

One-Tailed and Two-Tailed Hypothesis Testing

The One-Tailed test, also called a directional test, considers a critical region of data that would result in the null hypothesis being rejected if the test sample falls into it, inevitably meaning the acceptance of the alternate hypothesis.

In a one-tailed test, the critical distribution area is one-sided, meaning the test sample is either greater or lesser than a specific value.

In two tails, the test sample is checked to be greater or less than a range of values in a Two-Tailed test, implying that the critical distribution area is two-sided.

If the sample falls within this range, the alternate hypothesis will be accepted, and the null hypothesis will be rejected.

Become a Data Scientist With Real-World Experience

Become a Data Scientist With Real-World Experience

Right Tailed Hypothesis Testing

If the larger than (>) sign appears in your hypothesis statement, you are using a right-tailed test, also known as an upper test. Or, to put it another way, the disparity is to the right. For instance, you can contrast the battery life before and after a change in production. Your hypothesis statements can be the following if you want to know if the battery life is longer than the original (let's say 90 hours):

  • The null hypothesis is (H0 <= 90) or less change.
  • A possibility is that battery life has risen (H1) > 90.

The crucial point in this situation is that the alternate hypothesis (H1), not the null hypothesis, decides whether you get a right-tailed test.

Left Tailed Hypothesis Testing

Alternative hypotheses that assert the true value of a parameter is lower than the null hypothesis are tested with a left-tailed test; they are indicated by the asterisk "<".

Suppose H0: mean = 50 and H1: mean not equal to 50

According to the H1, the mean can be greater than or less than 50. This is an example of a Two-tailed test.

In a similar manner, if H0: mean >=50, then H1: mean <50

Here the mean is less than 50. It is called a One-tailed test.

Type 1 and Type 2 Error

A hypothesis test can result in two types of errors.

Type 1 Error: A Type-I error occurs when sample results reject the null hypothesis despite being true.

Type 2 Error: A Type-II error occurs when the null hypothesis is not rejected when it is false, unlike a Type-I error.

Suppose a teacher evaluates the examination paper to decide whether a student passes or fails.

H0: Student has passed

H1: Student has failed

Type I error will be the teacher failing the student [rejects H0] although the student scored the passing marks [H0 was true]. 

Type II error will be the case where the teacher passes the student [do not reject H0] although the student did not score the passing marks [H1 is true].

Our Data Scientist Master's Program covers core topics such as R, Python, Machine Learning, Tableau, Hadoop, and Spark. Get started on your journey today!

Limitations of Hypothesis Testing

Hypothesis testing has some limitations that researchers should be aware of:

  • It cannot prove or establish the truth: Hypothesis testing provides evidence to support or reject a hypothesis, but it cannot confirm the absolute truth of the research question.
  • Results are sample-specific: Hypothesis testing is based on analyzing a sample from a population, and the conclusions drawn are specific to that particular sample.
  • Possible errors: During hypothesis testing, there is a chance of committing type I error (rejecting a true null hypothesis) or type II error (failing to reject a false null hypothesis).
  • Assumptions and requirements: Different tests have specific assumptions and requirements that must be met to accurately interpret results.

Learn All The Tricks Of The BI Trade

Learn All The Tricks Of The BI Trade

After reading this tutorial, you would have a much better understanding of hypothesis testing, one of the most important concepts in the field of Data Science . The majority of hypotheses are based on speculation about observed behavior, natural phenomena, or established theories.

If you are interested in statistics of data science and skills needed for such a career, you ought to explore the Post Graduate Program in Data Science.

If you have any questions regarding this ‘Hypothesis Testing In Statistics’ tutorial, do share them in the comment section. Our subject matter expert will respond to your queries. Happy learning!

1. What is hypothesis testing in statistics with example?

Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population. It involves formulating two competing hypotheses, the null hypothesis (H0) and the alternative hypothesis (Ha), and then collecting data to assess the evidence. An example: testing if a new drug improves patient recovery (Ha) compared to the standard treatment (H0) based on collected patient data.

2. What is H0 and H1 in statistics?

In statistics, H0​ and H1​ represent the null and alternative hypotheses. The null hypothesis, H0​, is the default assumption that no effect or difference exists between groups or conditions. The alternative hypothesis, H1​, is the competing claim suggesting an effect or a difference. Statistical tests determine whether to reject the null hypothesis in favor of the alternative hypothesis based on the data.

3. What is a simple hypothesis with an example?

A simple hypothesis is a specific statement predicting a single relationship between two variables. It posits a direct and uncomplicated outcome. For example, a simple hypothesis might state, "Increased sunlight exposure increases the growth rate of sunflowers." Here, the hypothesis suggests a direct relationship between the amount of sunlight (independent variable) and the growth rate of sunflowers (dependent variable), with no additional variables considered.

4. What are the 3 major types of hypothesis?

The three major types of hypotheses are:

  • Null Hypothesis (H0): Represents the default assumption, stating that there is no significant effect or relationship in the data.
  • Alternative Hypothesis (Ha): Contradicts the null hypothesis and proposes a specific effect or relationship that researchers want to investigate.
  • Nondirectional Hypothesis: An alternative hypothesis that doesn't specify the direction of the effect, leaving it open for both positive and negative possibilities.

Find our PL-300 Microsoft Power BI Certification Training Online Classroom training classes in top cities:

NameDatePlace
21 Sep -6 Oct 2024,
Weekend batch
Your City
12 Oct -27 Oct 2024,
Weekend batch
Your City
26 Oct -10 Nov 2024,
Weekend batch
Your City

About the Author

Avijeet Biswal

Avijeet is a Senior Research Analyst at Simplilearn. Passionate about Data Analytics, Machine Learning, and Deep Learning, Avijeet is also interested in politics, cricket, and football.

Recommended Resources

The Key Differences Between Z-Test Vs. T-Test

Free eBook: Top Programming Languages For A Data Scientist

Normality Test in Minitab: Minitab with Statistics

Normality Test in Minitab: Minitab with Statistics

A Comprehensive Look at Percentile in Statistics

Machine Learning Career Guide: A Playbook to Becoming a Machine Learning Engineer

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.
  • Scientific Methods

What is Hypothesis?

We have heard of many hypotheses which have led to great inventions in science. Assumptions that are made on the basis of some evidence are known as hypotheses. In this article, let us learn in detail about the hypothesis and the type of hypothesis with examples.

hypothesis with suitable example

A hypothesis is an assumption that is made based on some evidence. This is the initial point of any investigation that translates the research questions into predictions. It includes components like variables, population and the relation between the variables. A research hypothesis is a hypothesis that is used to test the relationship between two or more variables.

Characteristics of Hypothesis

Following are the characteristics of the hypothesis:

  • The hypothesis should be clear and precise to consider it to be reliable.
  • If the hypothesis is a relational hypothesis, then it should be stating the relationship between variables.
  • The hypothesis must be specific and should have scope for conducting more tests.
  • The way of explanation of the hypothesis must be very simple and it should also be understood that the simplicity of the hypothesis is not related to its significance.

Sources of Hypothesis

Following are the sources of hypothesis:

  • The resemblance between the phenomenon.
  • Observations from past studies, present-day experiences and from the competitors.
  • Scientific theories.
  • General patterns that influence the thinking process of people.

Types of Hypothesis

There are six forms of hypothesis and they are:

  • Simple hypothesis
  • Complex hypothesis
  • Directional hypothesis
  • Non-directional hypothesis
  • Null hypothesis
  • Associative and casual hypothesis

Simple Hypothesis

It shows a relationship between one dependent variable and a single independent variable. For example – If you eat more vegetables, you will lose weight faster. Here, eating more vegetables is an independent variable, while losing weight is the dependent variable.

Complex Hypothesis

It shows the relationship between two or more dependent variables and two or more independent variables. Eating more vegetables and fruits leads to weight loss, glowing skin, and reduces the risk of many diseases such as heart disease.

Directional Hypothesis

It shows how a researcher is intellectual and committed to a particular outcome. The relationship between the variables can also predict its nature. For example- children aged four years eating proper food over a five-year period are having higher IQ levels than children not having a proper meal. This shows the effect and direction of the effect.

Non-directional Hypothesis

It is used when there is no theory involved. It is a statement that a relationship exists between two variables, without predicting the exact nature (direction) of the relationship.

Null Hypothesis

It provides a statement which is contrary to the hypothesis. It’s a negative statement, and there is no relationship between independent and dependent variables. The symbol is denoted by “H O ”.

Associative and Causal Hypothesis

Associative hypothesis occurs when there is a change in one variable resulting in a change in the other variable. Whereas, the causal hypothesis proposes a cause and effect interaction between two or more variables.

Examples of Hypothesis

Following are the examples of hypotheses based on their types:

  • Consumption of sugary drinks every day leads to obesity is an example of a simple hypothesis.
  • All lilies have the same number of petals is an example of a null hypothesis.
  • If a person gets 7 hours of sleep, then he will feel less fatigue than if he sleeps less. It is an example of a directional hypothesis.

Functions of Hypothesis

Following are the functions performed by the hypothesis:

  • Hypothesis helps in making an observation and experiments possible.
  • It becomes the start point for the investigation.
  • Hypothesis helps in verifying the observations.
  • It helps in directing the inquiries in the right direction.

How will Hypothesis help in the Scientific Method?

Researchers use hypotheses to put down their thoughts directing how the experiment would take place. Following are the steps that are involved in the scientific method:

  • Formation of question
  • Doing background research
  • Creation of hypothesis
  • Designing an experiment
  • Collection of data
  • Result analysis
  • Summarizing the experiment
  • Communicating the results

Frequently Asked Questions – FAQs

What is hypothesis.

A hypothesis is an assumption made based on some evidence.

Give an example of simple hypothesis?

What are the types of hypothesis.

Types of hypothesis are:

  • Associative and Casual hypothesis

State true or false: Hypothesis is the initial point of any investigation that translates the research questions into a prediction.

Define complex hypothesis..

A complex hypothesis shows the relationship between two or more dependent variables and two or more independent variables.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Physics related queries and study materials

Your result is as below

Request OTP on Voice Call

PHYSICS Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

hypothesis with suitable example

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • 10 Research Question Examples to Guide Your Research Project

10 Research Question Examples to Guide your Research Project

Published on October 30, 2022 by Shona McCombes . Revised on October 19, 2023.

The research question is one of the most important parts of your research paper , thesis or dissertation . It’s important to spend some time assessing and refining your question before you get started.

The exact form of your question will depend on a few things, such as the length of your project, the type of research you’re conducting, the topic , and the research problem . However, all research questions should be focused, specific, and relevant to a timely social or scholarly issue.

Once you’ve read our guide on how to write a research question , you can use these examples to craft your own.

Research question Explanation
The first question is not enough. The second question is more , using .
Starting with “why” often means that your question is not enough: there are too many possible answers. By targeting just one aspect of the problem, the second question offers a clear path for research.
The first question is too broad and subjective: there’s no clear criteria for what counts as “better.” The second question is much more . It uses clearly defined terms and narrows its focus to a specific population.
It is generally not for academic research to answer broad normative questions. The second question is more specific, aiming to gain an understanding of possible solutions in order to make informed recommendations.
The first question is too simple: it can be answered with a simple yes or no. The second question is , requiring in-depth investigation and the development of an original argument.
The first question is too broad and not very . The second question identifies an underexplored aspect of the topic that requires investigation of various  to answer.
The first question is not enough: it tries to address two different (the quality of sexual health services and LGBT support services). Even though the two issues are related, it’s not clear how the research will bring them together. The second integrates the two problems into one focused, specific question.
The first question is too simple, asking for a straightforward fact that can be easily found online. The second is a more question that requires and detailed discussion to answer.
? dealt with the theme of racism through casting, staging, and allusion to contemporary events? The first question is not  — it would be very difficult to contribute anything new. The second question takes a specific angle to make an original argument, and has more relevance to current social concerns and debates.
The first question asks for a ready-made solution, and is not . The second question is a clearer comparative question, but note that it may not be practically . For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

Note that the design of your research question can depend on what method you are pursuing. Here are a few options for qualitative, quantitative, and statistical research questions.

Type of research Example question
Qualitative research question
Quantitative research question
Statistical research question

Other interesting articles

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, October 19). 10 Research Question Examples to Guide your Research Project. Scribbr. Retrieved September 3, 2024, from https://www.scribbr.com/research-process/research-question-examples/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, writing strong research questions | criteria & examples, how to choose a dissertation topic | 8 steps to follow, evaluating sources | methods & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Hypothesis Testing

Hypothesis testing is a tool for making statistical inferences about the population data. It is an analysis tool that tests assumptions and determines how likely something is within a given standard of accuracy. Hypothesis testing provides a way to verify whether the results of an experiment are valid.

A null hypothesis and an alternative hypothesis are set up before performing the hypothesis testing. This helps to arrive at a conclusion regarding the sample obtained from the population. In this article, we will learn more about hypothesis testing, its types, steps to perform the testing, and associated examples.

1.
2.
3.
4.
5.
6.
7.
8.

What is Hypothesis Testing in Statistics?

Hypothesis testing uses sample data from the population to draw useful conclusions regarding the population probability distribution . It tests an assumption made about the data using different types of hypothesis testing methodologies. The hypothesis testing results in either rejecting or not rejecting the null hypothesis.

Hypothesis Testing Definition

Hypothesis testing can be defined as a statistical tool that is used to identify if the results of an experiment are meaningful or not. It involves setting up a null hypothesis and an alternative hypothesis. These two hypotheses will always be mutually exclusive. This means that if the null hypothesis is true then the alternative hypothesis is false and vice versa. An example of hypothesis testing is setting up a test to check if a new medicine works on a disease in a more efficient manner.

Null Hypothesis

The null hypothesis is a concise mathematical statement that is used to indicate that there is no difference between two possibilities. In other words, there is no difference between certain characteristics of data. This hypothesis assumes that the outcomes of an experiment are based on chance alone. It is denoted as \(H_{0}\). Hypothesis testing is used to conclude if the null hypothesis can be rejected or not. Suppose an experiment is conducted to check if girls are shorter than boys at the age of 5. The null hypothesis will say that they are the same height.

Alternative Hypothesis

The alternative hypothesis is an alternative to the null hypothesis. It is used to show that the observations of an experiment are due to some real effect. It indicates that there is a statistical significance between two possible outcomes and can be denoted as \(H_{1}\) or \(H_{a}\). For the above-mentioned example, the alternative hypothesis would be that girls are shorter than boys at the age of 5.

Hypothesis Testing P Value

In hypothesis testing, the p value is used to indicate whether the results obtained after conducting a test are statistically significant or not. It also indicates the probability of making an error in rejecting or not rejecting the null hypothesis.This value is always a number between 0 and 1. The p value is compared to an alpha level, \(\alpha\) or significance level. The alpha level can be defined as the acceptable risk of incorrectly rejecting the null hypothesis. The alpha level is usually chosen between 1% to 5%.

Hypothesis Testing Critical region

All sets of values that lead to rejecting the null hypothesis lie in the critical region. Furthermore, the value that separates the critical region from the non-critical region is known as the critical value.

Hypothesis Testing Formula

Depending upon the type of data available and the size, different types of hypothesis testing are used to determine whether the null hypothesis can be rejected or not. The hypothesis testing formula for some important test statistics are given below:

  • z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\). \(\overline{x}\) is the sample mean, \(\mu\) is the population mean, \(\sigma\) is the population standard deviation and n is the size of the sample.
  • t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\). s is the sample standard deviation.
  • \(\chi ^{2} = \sum \frac{(O_{i}-E_{i})^{2}}{E_{i}}\). \(O_{i}\) is the observed value and \(E_{i}\) is the expected value.

We will learn more about these test statistics in the upcoming section.

Types of Hypothesis Testing

Selecting the correct test for performing hypothesis testing can be confusing. These tests are used to determine a test statistic on the basis of which the null hypothesis can either be rejected or not rejected. Some of the important tests used for hypothesis testing are given below.

Hypothesis Testing Z Test

A z test is a way of hypothesis testing that is used for a large sample size (n ≥ 30). It is used to determine whether there is a difference between the population mean and the sample mean when the population standard deviation is known. It can also be used to compare the mean of two samples. It is used to compute the z test statistic. The formulas are given as follows:

  • One sample: z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).
  • Two samples: z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

Hypothesis Testing t Test

The t test is another method of hypothesis testing that is used for a small sample size (n < 30). It is also used to compare the sample mean and population mean. However, the population standard deviation is not known. Instead, the sample standard deviation is known. The mean of two samples can also be compared using the t test.

  • One sample: t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\).
  • Two samples: t = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}\).

Hypothesis Testing Chi Square

The Chi square test is a hypothesis testing method that is used to check whether the variables in a population are independent or not. It is used when the test statistic is chi-squared distributed.

One Tailed Hypothesis Testing

One tailed hypothesis testing is done when the rejection region is only in one direction. It can also be known as directional hypothesis testing because the effects can be tested in one direction only. This type of testing is further classified into the right tailed test and left tailed test.

Right Tailed Hypothesis Testing

The right tail test is also known as the upper tail test. This test is used to check whether the population parameter is greater than some value. The null and alternative hypotheses for this test are given as follows:

\(H_{0}\): The population parameter is ≤ some value

\(H_{1}\): The population parameter is > some value.

If the test statistic has a greater value than the critical value then the null hypothesis is rejected

Right Tail Hypothesis Testing

Left Tailed Hypothesis Testing

The left tail test is also known as the lower tail test. It is used to check whether the population parameter is less than some value. The hypotheses for this hypothesis testing can be written as follows:

\(H_{0}\): The population parameter is ≥ some value

\(H_{1}\): The population parameter is < some value.

The null hypothesis is rejected if the test statistic has a value lesser than the critical value.

Left Tail Hypothesis Testing

Two Tailed Hypothesis Testing

In this hypothesis testing method, the critical region lies on both sides of the sampling distribution. It is also known as a non - directional hypothesis testing method. The two-tailed test is used when it needs to be determined if the population parameter is assumed to be different than some value. The hypotheses can be set up as follows:

\(H_{0}\): the population parameter = some value

\(H_{1}\): the population parameter ≠ some value

The null hypothesis is rejected if the test statistic has a value that is not equal to the critical value.

Two Tail Hypothesis Testing

Hypothesis Testing Steps

Hypothesis testing can be easily performed in five simple steps. The most important step is to correctly set up the hypotheses and identify the right method for hypothesis testing. The basic steps to perform hypothesis testing are as follows:

  • Step 1: Set up the null hypothesis by correctly identifying whether it is the left-tailed, right-tailed, or two-tailed hypothesis testing.
  • Step 2: Set up the alternative hypothesis.
  • Step 3: Choose the correct significance level, \(\alpha\), and find the critical value.
  • Step 4: Calculate the correct test statistic (z, t or \(\chi\)) and p-value.
  • Step 5: Compare the test statistic with the critical value or compare the p-value with \(\alpha\) to arrive at a conclusion. In other words, decide if the null hypothesis is to be rejected or not.

Hypothesis Testing Example

The best way to solve a problem on hypothesis testing is by applying the 5 steps mentioned in the previous section. Suppose a researcher claims that the mean average weight of men is greater than 100kgs with a standard deviation of 15kgs. 30 men are chosen with an average weight of 112.5 Kgs. Using hypothesis testing, check if there is enough evidence to support the researcher's claim. The confidence interval is given as 95%.

Step 1: This is an example of a right-tailed test. Set up the null hypothesis as \(H_{0}\): \(\mu\) = 100.

Step 2: The alternative hypothesis is given by \(H_{1}\): \(\mu\) > 100.

Step 3: As this is a one-tailed test, \(\alpha\) = 100% - 95% = 5%. This can be used to determine the critical value.

1 - \(\alpha\) = 1 - 0.05 = 0.95

0.95 gives the required area under the curve. Now using a normal distribution table, the area 0.95 is at z = 1.645. A similar process can be followed for a t-test. The only additional requirement is to calculate the degrees of freedom given by n - 1.

Step 4: Calculate the z test statistic. This is because the sample size is 30. Furthermore, the sample and population means are known along with the standard deviation.

z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).

\(\mu\) = 100, \(\overline{x}\) = 112.5, n = 30, \(\sigma\) = 15

z = \(\frac{112.5-100}{\frac{15}{\sqrt{30}}}\) = 4.56

Step 5: Conclusion. As 4.56 > 1.645 thus, the null hypothesis can be rejected.

Hypothesis Testing and Confidence Intervals

Confidence intervals form an important part of hypothesis testing. This is because the alpha level can be determined from a given confidence interval. Suppose a confidence interval is given as 95%. Subtract the confidence interval from 100%. This gives 100 - 95 = 5% or 0.05. This is the alpha value of a one-tailed hypothesis testing. To obtain the alpha value for a two-tailed hypothesis testing, divide this value by 2. This gives 0.05 / 2 = 0.025.

Related Articles:

  • Probability and Statistics
  • Data Handling

Important Notes on Hypothesis Testing

  • Hypothesis testing is a technique that is used to verify whether the results of an experiment are statistically significant.
  • It involves the setting up of a null hypothesis and an alternate hypothesis.
  • There are three types of tests that can be conducted under hypothesis testing - z test, t test, and chi square test.
  • Hypothesis testing can be classified as right tail, left tail, and two tail tests.

Examples on Hypothesis Testing

  • Example 1: The average weight of a dumbbell in a gym is 90lbs. However, a physical trainer believes that the average weight might be higher. A random sample of 5 dumbbells with an average weight of 110lbs and a standard deviation of 18lbs. Using hypothesis testing check if the physical trainer's claim can be supported for a 95% confidence level. Solution: As the sample size is lesser than 30, the t-test is used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) > 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 5, s = 18. \(\alpha\) = 0.05 Using the t-distribution table, the critical value is 2.132 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = 2.484 As 2.484 > 2.132, the null hypothesis is rejected. Answer: The average weight of the dumbbells may be greater than 90lbs
  • Example 2: The average score on a test is 80 with a standard deviation of 10. With a new teaching curriculum introduced it is believed that this score will change. On random testing, the score of 38 students, the mean was found to be 88. With a 0.05 significance level, is there any evidence to support this claim? Solution: This is an example of two-tail hypothesis testing. The z test will be used. \(H_{0}\): \(\mu\) = 80, \(H_{1}\): \(\mu\) ≠ 80 \(\overline{x}\) = 88, \(\mu\) = 80, n = 36, \(\sigma\) = 10. \(\alpha\) = 0.05 / 2 = 0.025 The critical value using the normal distribution table is 1.96 z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) z = \(\frac{88-80}{\frac{10}{\sqrt{36}}}\) = 4.8 As 4.8 > 1.96, the null hypothesis is rejected. Answer: There is a difference in the scores after the new curriculum was introduced.
  • Example 3: The average score of a class is 90. However, a teacher believes that the average score might be lower. The scores of 6 students were randomly measured. The mean was 82 with a standard deviation of 18. With a 0.05 significance level use hypothesis testing to check if this claim is true. Solution: The t test will be used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) < 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 6, s = 18 The critical value from the t table is -2.015 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = \(\frac{82-90}{\frac{18}{\sqrt{6}}}\) t = -1.088 As -1.088 > -2.015, we fail to reject the null hypothesis. Answer: There is not enough evidence to support the claim.

go to slide go to slide go to slide

hypothesis with suitable example

Book a Free Trial Class

FAQs on Hypothesis Testing

What is hypothesis testing.

Hypothesis testing in statistics is a tool that is used to make inferences about the population data. It is also used to check if the results of an experiment are valid.

What is the z Test in Hypothesis Testing?

The z test in hypothesis testing is used to find the z test statistic for normally distributed data . The z test is used when the standard deviation of the population is known and the sample size is greater than or equal to 30.

What is the t Test in Hypothesis Testing?

The t test in hypothesis testing is used when the data follows a student t distribution . It is used when the sample size is less than 30 and standard deviation of the population is not known.

What is the formula for z test in Hypothesis Testing?

The formula for a one sample z test in hypothesis testing is z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) and for two samples is z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

What is the p Value in Hypothesis Testing?

The p value helps to determine if the test results are statistically significant or not. In hypothesis testing, the null hypothesis can either be rejected or not rejected based on the comparison between the p value and the alpha level.

What is One Tail Hypothesis Testing?

When the rejection region is only on one side of the distribution curve then it is known as one tail hypothesis testing. The right tail test and the left tail test are two types of directional hypothesis testing.

What is the Alpha Level in Two Tail Hypothesis Testing?

To get the alpha level in a two tail hypothesis testing divide \(\alpha\) by 2. This is done as there are two rejection regions in the curve.

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

  • Data Science
  • Data Analysis
  • Data Visualization
  • Machine Learning
  • Deep Learning
  • Computer Vision
  • Artificial Intelligence
  • AI ML DS Interview Series
  • AI ML DS Projects series
  • Data Engineering
  • Web Scrapping

Understanding Hypothesis Testing

Hypothesis testing involves formulating assumptions about population parameters based on sample statistics and rigorously evaluating these assumptions against empirical evidence. This article sheds light on the significance of hypothesis testing and the critical steps involved in the process.

What is Hypothesis Testing?

A hypothesis is an assumption or idea, specifically a statistical claim about an unknown population parameter. For example, a judge assumes a person is innocent and verifies this by reviewing evidence and hearing testimony before reaching a verdict.

Hypothesis testing is a statistical method that is used to make a statistical decision using experimental data. Hypothesis testing is basically an assumption that we make about a population parameter. It evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data. 

To test the validity of the claim or assumption about the population parameter:

  • A sample is drawn from the population and analyzed.
  • The results of the analysis are used to decide whether the claim is true or not.
Example: You say an average height in the class is 30 or a boy is taller than a girl. All of these is an assumption that we are assuming, and we need some statistical way to prove these. We need some mathematical conclusion whatever we are assuming is true.

Defining Hypotheses

  • Null hypothesis (H 0 ): In statistics, the null hypothesis is a general statement or default position that there is no relationship between two measured cases or no relationship among groups. In other words, it is a basic assumption or made based on the problem knowledge. Example : A company’s mean production is 50 units/per da H 0 : [Tex]\mu [/Tex] = 50.
  • Alternative hypothesis (H 1 ): The alternative hypothesis is the hypothesis used in hypothesis testing that is contrary to the null hypothesis.  Example: A company’s production is not equal to 50 units/per day i.e. H 1 : [Tex]\mu [/Tex] [Tex]\ne [/Tex] 50.

Key Terms of Hypothesis Testing

  • Level of significance : It refers to the degree of significance in which we accept or reject the null hypothesis. 100% accuracy is not possible for accepting a hypothesis, so we, therefore, select a level of significance that is usually 5%. This is normally denoted with  [Tex]\alpha[/Tex] and generally, it is 0.05 or 5%, which means your output should be 95% confident to give a similar kind of result in each sample.
  • P-value: The P value , or calculated probability, is the probability of finding the observed/extreme results when the null hypothesis(H0) of a study-given problem is true. If your P-value is less than the chosen significance level then you reject the null hypothesis i.e. accept that your sample claims to support the alternative hypothesis.
  • Test Statistic: The test statistic is a numerical value calculated from sample data during a hypothesis test, used to determine whether to reject the null hypothesis. It is compared to a critical value or p-value to make decisions about the statistical significance of the observed results.
  • Critical value : The critical value in statistics is a threshold or cutoff point used to determine whether to reject the null hypothesis in a hypothesis test.
  • Degrees of freedom: Degrees of freedom are associated with the variability or freedom one has in estimating a parameter. The degrees of freedom are related to the sample size and determine the shape.

Why do we use Hypothesis Testing?

Hypothesis testing is an important procedure in statistics. Hypothesis testing evaluates two mutually exclusive population statements to determine which statement is most supported by sample data. When we say that the findings are statistically significant, thanks to hypothesis testing. 

One-Tailed and Two-Tailed Test

One tailed test focuses on one direction, either greater than or less than a specified value. We use a one-tailed test when there is a clear directional expectation based on prior knowledge or theory. The critical region is located on only one side of the distribution curve. If the sample falls into this critical region, the null hypothesis is rejected in favor of the alternative hypothesis.

One-Tailed Test

There are two types of one-tailed test:

  • Left-Tailed (Left-Sided) Test: The alternative hypothesis asserts that the true parameter value is less than the null hypothesis. Example: H 0 ​: [Tex]\mu \geq 50 [/Tex] and H 1 : [Tex]\mu < 50 [/Tex]
  • Right-Tailed (Right-Sided) Test : The alternative hypothesis asserts that the true parameter value is greater than the null hypothesis. Example: H 0 : [Tex]\mu \leq50 [/Tex] and H 1 : [Tex]\mu > 50 [/Tex]

Two-Tailed Test

A two-tailed test considers both directions, greater than and less than a specified value.We use a two-tailed test when there is no specific directional expectation, and want to detect any significant difference.

Example: H 0 : [Tex]\mu = [/Tex] 50 and H 1 : [Tex]\mu \neq 50 [/Tex]

To delve deeper into differences into both types of test: Refer to link

What are Type 1 and Type 2 errors in Hypothesis Testing?

In hypothesis testing, Type I and Type II errors are two possible errors that researchers can make when drawing conclusions about a population based on a sample of data. These errors are associated with the decisions made regarding the null hypothesis and the alternative hypothesis.

  • Type I error: When we reject the null hypothesis, although that hypothesis was true. Type I error is denoted by alpha( [Tex]\alpha [/Tex] ).
  • Type II errors : When we accept the null hypothesis, but it is false. Type II errors are denoted by beta( [Tex]\beta [/Tex] ).


Null Hypothesis is True

Null Hypothesis is False

Null Hypothesis is True (Accept)

Correct Decision

Type II Error (False Negative)

Alternative Hypothesis is True (Reject)

Type I Error (False Positive)

Correct Decision

How does Hypothesis Testing work?

Step 1: define null and alternative hypothesis.

State the null hypothesis ( [Tex]H_0 [/Tex] ), representing no effect, and the alternative hypothesis ( [Tex]H_1 [/Tex] ​), suggesting an effect or difference.

We first identify the problem about which we want to make an assumption keeping in mind that our assumption should be contradictory to one another, assuming Normally distributed data.

Step 2 – Choose significance level

Select a significance level ( [Tex]\alpha [/Tex] ), typically 0.05, to determine the threshold for rejecting the null hypothesis. It provides validity to our hypothesis test, ensuring that we have sufficient data to back up our claims. Usually, we determine our significance level beforehand of the test. The p-value is the criterion used to calculate our significance value.

Step 3 – Collect and Analyze data.

Gather relevant data through observation or experimentation. Analyze the data using appropriate statistical methods to obtain a test statistic.

Step 4-Calculate Test Statistic

The data for the tests are evaluated in this step we look for various scores based on the characteristics of data. The choice of the test statistic depends on the type of hypothesis test being conducted.

There are various hypothesis tests, each appropriate for various goal to calculate our test. This could be a Z-test , Chi-square , T-test , and so on.

  • Z-test : If population means and standard deviations are known. Z-statistic is commonly used.
  • t-test : If population standard deviations are unknown. and sample size is small than t-test statistic is more appropriate.
  • Chi-square test : Chi-square test is used for categorical data or for testing independence in contingency tables
  • F-test : F-test is often used in analysis of variance (ANOVA) to compare variances or test the equality of means across multiple groups.

We have a smaller dataset, So, T-test is more appropriate to test our hypothesis.

T-statistic is a measure of the difference between the means of two groups relative to the variability within each group. It is calculated as the difference between the sample means divided by the standard error of the difference. It is also known as the t-value or t-score.

Step 5 – Comparing Test Statistic:

In this stage, we decide where we should accept the null hypothesis or reject the null hypothesis. There are two ways to decide where we should accept or reject the null hypothesis.

Method A: Using Crtical values

Comparing the test statistic and tabulated critical value we have,

  • If Test Statistic>Critical Value: Reject the null hypothesis.
  • If Test Statistic≤Critical Value: Fail to reject the null hypothesis.

Note: Critical values are predetermined threshold values that are used to make a decision in hypothesis testing. To determine critical values for hypothesis testing, we typically refer to a statistical distribution table , such as the normal distribution or t-distribution tables based on.

Method B: Using P-values

We can also come to an conclusion using the p-value,

  • If the p-value is less than or equal to the significance level i.e. ( [Tex]p\leq\alpha [/Tex] ), you reject the null hypothesis. This indicates that the observed results are unlikely to have occurred by chance alone, providing evidence in favor of the alternative hypothesis.
  • If the p-value is greater than the significance level i.e. ( [Tex]p\geq \alpha[/Tex] ), you fail to reject the null hypothesis. This suggests that the observed results are consistent with what would be expected under the null hypothesis.

Note : The p-value is the probability of obtaining a test statistic as extreme as, or more extreme than, the one observed in the sample, assuming the null hypothesis is true. To determine p-value for hypothesis testing, we typically refer to a statistical distribution table , such as the normal distribution or t-distribution tables based on.

Step 7- Interpret the Results

At last, we can conclude our experiment using method A or B.

Calculating test statistic

To validate our hypothesis about a population parameter we use statistical functions . We use the z-score, p-value, and level of significance(alpha) to make evidence for our hypothesis for normally distributed data .

1. Z-statistics:

When population means and standard deviations are known.

[Tex]z = \frac{\bar{x} – \mu}{\frac{\sigma}{\sqrt{n}}}[/Tex]

  • [Tex]\bar{x} [/Tex] is the sample mean,
  • μ represents the population mean, 
  • σ is the standard deviation
  • and n is the size of the sample.

2. T-Statistics

T test is used when n<30,

t-statistic calculation is given by:

[Tex]t=\frac{x̄-μ}{s/\sqrt{n}} [/Tex]

  • t = t-score,
  • x̄ = sample mean
  • μ = population mean,
  • s = standard deviation of the sample,
  • n = sample size

3. Chi-Square Test

Chi-Square Test for Independence categorical Data (Non-normally distributed) using:

[Tex]\chi^2 = \sum \frac{(O_{ij} – E_{ij})^2}{E_{ij}}[/Tex]

  • [Tex]O_{ij}[/Tex] is the observed frequency in cell [Tex]{ij} [/Tex]
  • i,j are the rows and columns index respectively.
  • [Tex]E_{ij}[/Tex] is the expected frequency in cell [Tex]{ij}[/Tex] , calculated as : [Tex]\frac{{\text{{Row total}} \times \text{{Column total}}}}{{\text{{Total observations}}}}[/Tex]

Real life Examples of Hypothesis Testing

Let’s examine hypothesis testing using two real life situations,

Case A: D oes a New Drug Affect Blood Pressure?

Imagine a pharmaceutical company has developed a new drug that they believe can effectively lower blood pressure in patients with hypertension. Before bringing the drug to market, they need to conduct a study to assess its impact on blood pressure.

  • Before Treatment: 120, 122, 118, 130, 125, 128, 115, 121, 123, 119
  • After Treatment: 115, 120, 112, 128, 122, 125, 110, 117, 119, 114

Step 1 : Define the Hypothesis

  • Null Hypothesis : (H 0 )The new drug has no effect on blood pressure.
  • Alternate Hypothesis : (H 1 )The new drug has an effect on blood pressure.

Step 2: Define the Significance level

Let’s consider the Significance level at 0.05, indicating rejection of the null hypothesis.

If the evidence suggests less than a 5% chance of observing the results due to random variation.

Step 3 : Compute the test statistic

Using paired T-test analyze the data to obtain a test statistic and a p-value.

The test statistic (e.g., T-statistic) is calculated based on the differences between blood pressure measurements before and after treatment.

t = m/(s/√n)

  • m  = mean of the difference i.e X after, X before
  • s  = standard deviation of the difference (d) i.e d i ​= X after, i ​− X before,
  • n  = sample size,

then, m= -3.9, s= 1.8 and n= 10

we, calculate the , T-statistic = -9 based on the formula for paired t test

Step 4: Find the p-value

The calculated t-statistic is -9 and degrees of freedom df = 9, you can find the p-value using statistical software or a t-distribution table.

thus, p-value = 8.538051223166285e-06

Step 5: Result

  • If the p-value is less than or equal to 0.05, the researchers reject the null hypothesis.
  • If the p-value is greater than 0.05, they fail to reject the null hypothesis.

Conclusion: Since the p-value (8.538051223166285e-06) is less than the significance level (0.05), the researchers reject the null hypothesis. There is statistically significant evidence that the average blood pressure before and after treatment with the new drug is different.

Python Implementation of Case A

Let’s create hypothesis testing with python, where we are testing whether a new drug affects blood pressure. For this example, we will use a paired T-test. We’ll use the scipy.stats library for the T-test.

Scipy is a mathematical library in Python that is mostly used for mathematical equations and computations.

We will implement our first real life problem via python,

import numpy as np from scipy import stats # Data before_treatment = np . array ([ 120 , 122 , 118 , 130 , 125 , 128 , 115 , 121 , 123 , 119 ]) after_treatment = np . array ([ 115 , 120 , 112 , 128 , 122 , 125 , 110 , 117 , 119 , 114 ]) # Step 1: Null and Alternate Hypotheses # Null Hypothesis: The new drug has no effect on blood pressure. # Alternate Hypothesis: The new drug has an effect on blood pressure. null_hypothesis = "The new drug has no effect on blood pressure." alternate_hypothesis = "The new drug has an effect on blood pressure." # Step 2: Significance Level alpha = 0.05 # Step 3: Paired T-test t_statistic , p_value = stats . ttest_rel ( after_treatment , before_treatment ) # Step 4: Calculate T-statistic manually m = np . mean ( after_treatment - before_treatment ) s = np . std ( after_treatment - before_treatment , ddof = 1 ) # using ddof=1 for sample standard deviation n = len ( before_treatment ) t_statistic_manual = m / ( s / np . sqrt ( n )) # Step 5: Decision if p_value <= alpha : decision = "Reject" else : decision = "Fail to reject" # Conclusion if decision == "Reject" : conclusion = "There is statistically significant evidence that the average blood pressure before and after treatment with the new drug is different." else : conclusion = "There is insufficient evidence to claim a significant difference in average blood pressure before and after treatment with the new drug." # Display results print ( "T-statistic (from scipy):" , t_statistic ) print ( "P-value (from scipy):" , p_value ) print ( "T-statistic (calculated manually):" , t_statistic_manual ) print ( f "Decision: { decision } the null hypothesis at alpha= { alpha } ." ) print ( "Conclusion:" , conclusion )

T-statistic (from scipy): -9.0 P-value (from scipy): 8.538051223166285e-06 T-statistic (calculated manually): -9.0 Decision: Reject the null hypothesis at alpha=0.05. Conclusion: There is statistically significant evidence that the average blood pressure before and after treatment with the new drug is different.

In the above example, given the T-statistic of approximately -9 and an extremely small p-value, the results indicate a strong case to reject the null hypothesis at a significance level of 0.05. 

  • The results suggest that the new drug, treatment, or intervention has a significant effect on lowering blood pressure.
  • The negative T-statistic indicates that the mean blood pressure after treatment is significantly lower than the assumed population mean before treatment.

Case B : Cholesterol level in a population

Data: A sample of 25 individuals is taken, and their cholesterol levels are measured.

Cholesterol Levels (mg/dL): 205, 198, 210, 190, 215, 205, 200, 192, 198, 205, 198, 202, 208, 200, 205, 198, 205, 210, 192, 205, 198, 205, 210, 192, 205.

Populations Mean = 200

Population Standard Deviation (σ): 5 mg/dL(given for this problem)

Step 1: Define the Hypothesis

  • Null Hypothesis (H 0 ): The average cholesterol level in a population is 200 mg/dL.
  • Alternate Hypothesis (H 1 ): The average cholesterol level in a population is different from 200 mg/dL.

As the direction of deviation is not given , we assume a two-tailed test, and based on a normal distribution table, the critical values for a significance level of 0.05 (two-tailed) can be calculated through the z-table and are approximately -1.96 and 1.96.

The test statistic is calculated by using the z formula Z = [Tex](203.8 – 200) / (5 \div \sqrt{25}) [/Tex] ​ and we get accordingly , Z =2.039999999999992.

Step 4: Result

Since the absolute value of the test statistic (2.04) is greater than the critical value (1.96), we reject the null hypothesis. And conclude that, there is statistically significant evidence that the average cholesterol level in the population is different from 200 mg/dL

Python Implementation of Case B

import scipy.stats as stats import math import numpy as np # Given data sample_data = np . array ( [ 205 , 198 , 210 , 190 , 215 , 205 , 200 , 192 , 198 , 205 , 198 , 202 , 208 , 200 , 205 , 198 , 205 , 210 , 192 , 205 , 198 , 205 , 210 , 192 , 205 ]) population_std_dev = 5 population_mean = 200 sample_size = len ( sample_data ) # Step 1: Define the Hypotheses # Null Hypothesis (H0): The average cholesterol level in a population is 200 mg/dL. # Alternate Hypothesis (H1): The average cholesterol level in a population is different from 200 mg/dL. # Step 2: Define the Significance Level alpha = 0.05 # Two-tailed test # Critical values for a significance level of 0.05 (two-tailed) critical_value_left = stats . norm . ppf ( alpha / 2 ) critical_value_right = - critical_value_left # Step 3: Compute the test statistic sample_mean = sample_data . mean () z_score = ( sample_mean - population_mean ) / \ ( population_std_dev / math . sqrt ( sample_size )) # Step 4: Result # Check if the absolute value of the test statistic is greater than the critical values if abs ( z_score ) > max ( abs ( critical_value_left ), abs ( critical_value_right )): print ( "Reject the null hypothesis." ) print ( "There is statistically significant evidence that the average cholesterol level in the population is different from 200 mg/dL." ) else : print ( "Fail to reject the null hypothesis." ) print ( "There is not enough evidence to conclude that the average cholesterol level in the population is different from 200 mg/dL." )

Reject the null hypothesis. There is statistically significant evidence that the average cholesterol level in the population is different from 200 mg/dL.

Limitations of Hypothesis Testing

  • Although a useful technique, hypothesis testing does not offer a comprehensive grasp of the topic being studied. Without fully reflecting the intricacy or whole context of the phenomena, it concentrates on certain hypotheses and statistical significance.
  • The accuracy of hypothesis testing results is contingent on the quality of available data and the appropriateness of statistical methods used. Inaccurate data or poorly formulated hypotheses can lead to incorrect conclusions.
  • Relying solely on hypothesis testing may cause analysts to overlook significant patterns or relationships in the data that are not captured by the specific hypotheses being tested. This limitation underscores the importance of complimenting hypothesis testing with other analytical approaches.

Hypothesis testing stands as a cornerstone in statistical analysis, enabling data scientists to navigate uncertainties and draw credible inferences from sample data. By systematically defining null and alternative hypotheses, choosing significance levels, and leveraging statistical tests, researchers can assess the validity of their assumptions. The article also elucidates the critical distinction between Type I and Type II errors, providing a comprehensive understanding of the nuanced decision-making process inherent in hypothesis testing. The real-life example of testing a new drug’s effect on blood pressure using a paired T-test showcases the practical application of these principles, underscoring the importance of statistical rigor in data-driven decision-making.

Frequently Asked Questions (FAQs)

1. what are the 3 types of hypothesis test.

There are three types of hypothesis tests: right-tailed, left-tailed, and two-tailed. Right-tailed tests assess if a parameter is greater, left-tailed if lesser. Two-tailed tests check for non-directional differences, greater or lesser.

2.What are the 4 components of hypothesis testing?

Null Hypothesis ( [Tex]H_o [/Tex] ): No effect or difference exists. Alternative Hypothesis ( [Tex]H_1 [/Tex] ): An effect or difference exists. Significance Level ( [Tex]\alpha [/Tex] ): Risk of rejecting null hypothesis when it’s true (Type I error). Test Statistic: Numerical value representing observed evidence against null hypothesis.

3.What is hypothesis testing in ML?

Statistical method to evaluate the performance and validity of machine learning models. Tests specific hypotheses about model behavior, like whether features influence predictions or if a model generalizes well to unseen data.

4.What is the difference between Pytest and hypothesis in Python?

Pytest purposes general testing framework for Python code while Hypothesis is a Property-based testing framework for Python, focusing on generating test cases based on specified properties of the code.

Please Login to comment...

Similar reads.

  • data-science
  • Top Android Apps for 2024
  • Top Cell Phone Signal Boosters in 2024
  • Best Travel Apps (Paid & Free) in 2024
  • The Best Smart Home Devices for 2024
  • 15 Most Important Aptitude Topics For Placements [2024]

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

remotesensing-logo

Article Menu

hypothesis with suitable example

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Identifying habitat productivity thresholds to assess the effects of drought on a specialist folivore.

hypothesis with suitable example

1. Introduction

2. materials and methods, 2.1. study area, 2.2. study species, 2.3. ndvi of koala observations compared to landscapes, 2.3.1. ndvi at locations of koala observations, 2.3.2. vegetation group assignment for observations, 2.3.3. comparing koala observation ndvi with mean ndvi for each vegetation group, 2.4. ndvi thresholds for suitable vegetation, 2.4.1. landscape ndvi in drought and non-drought periods, 2.4.2. vegetation group assignment for landscapes, 2.4.3. applying koala ndvi thresholds across the landscape, 2.5. proximity of suitable vegetation to water, 3.1. ndvi of koala observations compared to landscapes, 3.2. ndvi thresholds for suitable vegetation, 3.3. proximity of suitable vegetation to water, 4. discussion, 4.1. ndvi of koala observations compared to landscapes, 4.2. ndvi thresholds for suitable vegetation, 4.3. proximity of suitable vegetation to water, 4.4. further applications in other systems and in management, author contributions, data availability statement, conflicts of interest.

Click here to enlarge figure

  • Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change ; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pe, C., Berger, S., Caud, N., Goldfarb, M.I., Gomis, M., Huang, K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NJ, USA, 2021. [ Google Scholar ] [ CrossRef ]
  • IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change ; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 14 February 2024).
  • Wagner, B.; Baker, P.J.; Stewart, S.B.; Lumsden, L.F.; Nelson, J.L.; Cripps, J.K.; Durkin, L.K.; Scroggie, M.P.; Nitschke, C.R. Climate change drives habitat contraction of a nocturnal arboreal marsupial at its physiological limits. Ecosphere 2020 , 11 , 18401–18421. [ Google Scholar ] [ CrossRef ]
  • Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002 , 416 , 389–395. [ Google Scholar ] [ CrossRef ]
  • Dublin, H.T.; Ogutu, J.O. Population regulation of African buffalo in the Mara–Serengeti ecosystem. Wildl. Res. 2015 , 42 , 382–393. [ Google Scholar ] [ CrossRef ]
  • Gedir, J.V.; Cain, J.W., III; Harris, G.; Turnbull, T.T. Effects of climate change on long-term population growth of pronghorn in an arid environment. Ecosphere 2015 , 6 , 1–20. [ Google Scholar ] [ CrossRef ]
  • Birnie-Gauvin, K.; Peiman, K.S.; Raubenheimer, D.; Cooke, S.J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. 2017 , 5 , cox030. [ Google Scholar ] [ CrossRef ]
  • Fuller, A.; Mitchell, D.; Maloney, S.K.; Hetem, R.S. Towards a mechanistic understanding of the responses of large terrestrial mammals to heat and aridity associated with climate change. Clim. Chang. Responses 2016 , 3 , 10. [ Google Scholar ] [ CrossRef ]
  • Smith, A.G.; McAlpine, C.A.; Rhodes, J.R.; Lunney, D.; Seabrook, L.; Baxter, G. Out on a limb: Habitat use of a specialist folivore, the koala, at the edge of its range in a modified semi-arid landscape. Landsc. Ecol. 2013 , 28 , 415–426. [ Google Scholar ] [ CrossRef ]
  • Crowther, M.S.; Lunney, D.; Lemon, J.; Stalenberg, E.; Wheeler, R.; Madani, G.; Ross, K.A.; Ellis, M. Climate-mediated habitat selection in an arboreal folivore. Ecography 2014 , 37 , 336–343. [ Google Scholar ] [ CrossRef ]
  • Davies, N.; Gramotnev, G.; Seabrook, L.; McAlpine, C.; Baxter, G.; Lunney, D.; Bradley, A. Climate-driven changes in diet composition and physiological stress in an arboreal folivore at the semi-arid edge of its distribution. Biol. Conserv. 2014 , 172 , 80–88. [ Google Scholar ] [ CrossRef ]
  • Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jedrzejewska, B.; Lima, M.; Kausrud, K. The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011 , 46 , 15–27. [ Google Scholar ] [ CrossRef ]
  • Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecol. Appl. 1995 , 5 , 28–41. [ Google Scholar ] [ CrossRef ]
  • Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010 , 23 , 618–633. [ Google Scholar ] [ CrossRef ]
  • Verdon-Kidd, D.C.; Scanlon, B.R.; Ren, T.; Fernando, D.N. A comparative study of historical droughts over Texas, USA and Murray-Darling Basin, Australia: Factors influencing initialization and cessation. Glob. Planet. Chang. 2017 , 149 , 123–138. [ Google Scholar ] [ CrossRef ]
  • Mysterud, A.; Yoccoz, N.G.; Langvatn, R.; Pettorelli, N.; Stenseth, N.C. Hierarchical path analysis of deer responses to direct and indirect effects of climate in northern forest. Philos. Trans. R. Soc. B Biol. Sci. 2008 , 363 , 2357–2366. [ Google Scholar ] [ CrossRef ]
  • Seabrook, L.; McAlpine, C.; Baxter, G.; Rhodes, J.; Bradley, A.; Lunney, D. Drought-driven change in wildlife distribution and numbers: A case study of koalas in south west Queensland. Wildl. Res. 2011 , 38 , 509–524. [ Google Scholar ] [ CrossRef ]
  • Lovari, S.; Franceschi, S.; Chiatante, G.; Fattorini, L.; Fattorini, N.; Ferretti, F. Climatic changes and the fate of mountain herbivores. Clim. Chang. 2020 , 162 , 2319–2337. [ Google Scholar ] [ CrossRef ]
  • Parida, M.; Hoffmann, A.A.; Hill, M.P. Climate change expected to drive habitat loss for two key herbivore species in an alpine environment. J. Biogeogr. 2015 , 42 , 1210–1221. [ Google Scholar ] [ CrossRef ]
  • Trewin, B. The Australian Climate Observations Reference Network—Surface Air Temperature ACORN. J. Appl. Met. Climatol. 2016 , 48 , 2160–2168. [ Google Scholar ]
  • BOM. Mean Monthly and Mean Annual Maximum, Minimum and Mean Temperature Data (Base Climatological Data Sets) ; Bureau of Meteorology: Melbourne, Australia, 2020. [ Google Scholar ]
  • Youngentob, K.N.; Marsh, K.J.; Skewes, J. A Review of Koala Habitat Assessment Criteria and Methods, Canberra. 2021. Available online: https://www.agriculture.gov.au/sites/default/files/documents/review-koala-habitat-assessment-criteria-and-methods-2021.pdf (accessed on 12 March 2024).
  • Predavec, M.; Lunney, D.; Shannon, I.; Lemon, J.; Sonawane, I.; Crowther, M. Using repeat citizen science surveys of koalas to assess their population trend in the north-west of New South Wales: Scale matters. Aust. Mammal. 2017 , 40 , 47–57. [ Google Scholar ] [ CrossRef ]
  • Lunney, D.; Predavec, M.; Sonawane, I.; Kavanagh, R.; Barrott-Brown, G.; Phillips, S.; Callaghan, J.; Mitchell, D.; Parnaby, H.; Paull, D.C.; et al. The remaining koalas (Phascolarctos cinereus) of the Pilliga forests, north-west New South Wales: Refugial persistence or a population on the road to extinction? Pac. Conserv. Biol. 2017 , 23 , 277–294. [ Google Scholar ] [ CrossRef ]
  • DAWE. Conservation Advice for Phascolarctos cinereus (Koala) combined populations of Queensland, New South Wales and the Australian Capital Territory, Canberra ; The Australian Department of Agriculture, Water and the Environment (DAWE): Canberra, Australia, 2022. [ Google Scholar ]
  • Beale, P.K.; Marsh, K.J.; Foley, W.J.; Moore, B.D. A hot lunch for herbivores: Physiological effects of elevated temperatures on mammalian feeding ecology. Biol. Rev. 2018 , 93 , 674–692. [ Google Scholar ] [ CrossRef ]
  • Adam, D.; Johnston, S.D.; Beard, L.; Nicolson, V.; Gaughan, J.B.; Lisle, A.T.; FitzGibbon, S.; Barth, B.J.; Gillett, A.; Grigg, G.; et al. Body temperature of free-ranging koalas (Phascolarctos cinereus) in south-east Queensland. Int. J. Biometeorol. 2020 , 64 , 1305–1318. [ Google Scholar ] [ CrossRef ]
  • Youngentob, K.N.; Lindenmayer, D.B.; Marsh, K.J.; Krockenberger, A.K.; Foley, W.J. Food intake: An overlooked driver of climate change casualties? Trends Ecol. Evol. 2021 , 36 , 676–678. [ Google Scholar ] [ CrossRef ]
  • Reside, A.E.; Beher, J.; Cosgrove, A.J.; Evans, M.C.; Seabrook, L.; Silcock, J.L.; Wenger, A.S.; Maron, M. Ecological consequences of land clearing and policy reform in Queensland. Pac. Conserv. Biol. 2017 , 23 , 219–230. [ Google Scholar ] [ CrossRef ]
  • Taylor, M.F.J. Destruction of Koala Habitat Increased after Listing as Vulnerable in 2012 ; WWF-Australia Technical Briefing; WWF-Australia: Canberra, Australia, 2020. [ Google Scholar ]
  • Gordon, G.; Brown, A.S.; Pulsford, T. A koala ( Phascolarctos cinereus Goldfuss) population crash during drought and heatwave conditions in south-western Queensland. Aust. J. Ecol. 1988 , 13 , 451–461. [ Google Scholar ] [ CrossRef ]
  • DOEE, Department of Environment and Energy. Species Profile and Threats Database (SPRAT). 2015. Available online: https://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl (accessed on 7 October 2021).
  • Department of Environment, Land, Water and Planning. Victorian Biodiversity Atlas. 2021. Available online: https://vba.biodiversity.vic.gov.au/ (accessed on 7 October 2021).
  • Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979 , 8 , 127–150. [ Google Scholar ] [ CrossRef ]
  • Asrar, G.; Fuchs, M.; Kanemasu, E.T.; Hatfield, J.L. Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat. Agron. J. 1984 , 76 , 300–306. [ Google Scholar ] [ CrossRef ]
  • Sebastiani, A.; Salvati, R.; Manes, F. Comparing leaf area index estimates in a Mediterranean forest using field measurements, Landsat 8, and Sentinel-2 data. Ecol. Process. 2023 , 12 , 28. [ Google Scholar ] [ CrossRef ]
  • Krause, C.; Dunn, B.; Bishop-Taylor, R.; Adams, C.; Burton, C.; Alger, M.; Chua, S.; Phillips, C.; Newey, C.; Kouzoubov, K.; et al. Digital Earth Australia Notebooks and Tools Repository. Geoscience Australia. 2021. Available online: https://knowledge.dea.ga.gov.au/notebooks/ (accessed on 7 October 2021).
  • Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote. Sens. Environ. 2015 , 159 , 269–277. [ Google Scholar ] [ CrossRef ]
  • Hoyer, S.; Hamman, J. xarray: N-D labeled Arrays and Datasets in Python. J. Open Res. Softw. 2017 , 5 , 10. [ Google Scholar ] [ CrossRef ]
  • Jordahl, K.; Van Den Bossche, J.; Wasserman, J.; McBride, J.; Gerard, J.; Fleischmann, M.; Tratner, J.; Perry, M.; Farmer, C.; Hjelle, G.A.; et al. Geopandas/geopandas: v0.6.1. 2019. Available online: https://zenodo.org/records/3483425 (accessed on 7 October 2021).
  • DAWE. National Vegetation Information System V6.0 ; The Australian Department of Agriculture, Water and the Environment (DAWE): Canberra, Australia, 2020. [ Google Scholar ]
  • Brooks, M.E.; Kristensen, K.; Van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017 , 9 , 378–400. [ Google Scholar ] [ CrossRef ]
  • Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. 2022. Available online: https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html (accessed on 3 September 2023).
  • R Core Team. R: A Language and Environment for Statistical Computing ; R Foundation for Statistical Computing: Vienna, Austria, 2022. [ Google Scholar ]
  • Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 92–96. [ Google Scholar ]
  • Van Dijk, A.I.J.M.; Beck, H.E.; Crosbie, R.S.; de Jeu, R.A.M.; Liu, Y.Y.; Podger, G.M.; Timbal, B.; Viney, N.R. The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 2013 , 49 , 1040–1057. [ Google Scholar ] [ CrossRef ]
  • Jiao, T.; Williams, C.A.; Rogan, J.; De Kauwe, M.G.; Medlyn, B.E. Drought impacts on Australian vegetation during the millennium drought measured with multisource spaceborne remote sensing. J. Geophys. Res. Biogeosci. 2020 , 125 , e2019JG005145. [ Google Scholar ] [ CrossRef ]
  • QGIS.org. QGIS Geographic Information System. 2021. Available online: https://www.qgis.org/ (accessed on 10 November 2023).
  • Crossman, S.; Li, O. Surface Hydrology Lines (Regional). 2015. Available online: http://pid.geoscience.gov.au/dataset/ga/83107 (accessed on 3 February 2023).
  • Rouault, E.; Warmerdam, F.; Schwehr, K.; Kiselev, A.; Butler, H.; Łoskot, M.; Szekeres, T.; Tourigny, E.; Landa, M.; Miara, I.; et al. GDAL. 2022. Available online: https://gdal.org (accessed on 22 March 2022).
  • Briscoe, N.J.; Kearney, M.R.; Taylor, C.A.; Wintle, B.A. Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia. Glob. Chang. Biol. 2016 , 22 , 2425–2439. [ Google Scholar ] [ CrossRef ]
  • Youngentob, K.N.; Yoon, H.; Stein, J.; Lindenmayer, D.B.; Held, A.A. Where the wild things are: Using remotely sensed forest productivity to assess arboreal marsupial species richness and abundance. Divers. Distrib. 2015 , 21 , 977–990. [ Google Scholar ] [ CrossRef ]
  • Pettorelli, N.; Bro-Jørgensen, J.; Durant, S.M.; Blackburn, T.; Carbone, C. Energy availability and density estimates in African ungulates. Am. Nat. 2009 , 173 , 698–704. [ Google Scholar ] [ CrossRef ]
  • Law, B.S.; Brassil, T.; Gonsalves, L.; Roe, P.; Truskinger, A.; McConville, A. Passive acoustics and sound recognition provide new insights on status and resilience of an iconic endangered marsupial (koala Phascolarctos cinereus) to timber harvesting. PLoS ONE 2018 , 13 , e0205075. [ Google Scholar ] [ CrossRef ]
  • Law, B.; Caccamo, G.; Roe, P.; Truskinger, A.; Brassil, T.; Gonsalves, L.; McConville, A.; Stanton, M. Development and field validation of a regional, management-scale habitat model: A koala Phascolarctos cinereus case study. Ecol. Evol. 2017 , 7 , 7475–7489. [ Google Scholar ] [ CrossRef ]
  • McArt, S.H.; Spalinger, D.E.; Collins, W.B.; Schoen, E.R.; Stevenson, T.; Bucho, M. Summer dietary nitrogen availability as a potential bottom-up constraint on moose in south-central Alaska. Ecology 2009 , 90 , 1400–1411. [ Google Scholar ] [ CrossRef ]
  • Pyke, G.H. Optimal foraging theory: An introduction. In Encyclopedia of Animal Behaviour ; Elsevier Academic Press: Amsterdam, The Netherlands, 2019; pp. 111–117. [ Google Scholar ]
  • Stephens, D.W.; Krebs, J.R. Foraging Theory ; Princeton University Press: Princeton, NJ, USA, 1986. [ Google Scholar ]
  • Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989 , 78 , 9–19. [ Google Scholar ] [ CrossRef ]
  • Moore, B.D.; Foley, W.J. Tree use by koalas in a chemically complex landscape. Nature 2005 , 435 , 488–490. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kozlowski, T.T.; Pallardy, S.G. Acclimation and adaptive responses of woody plants to environmental stresses. Bot. Rev. 2002 , 68 , 270–334. [ Google Scholar ] [ CrossRef ]
  • Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004 , 428 , 821–827. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ellis, W.; Melzer, A.; Clifton, I.; Carrick, F. Climate change and the koala Phascolarctos cinereus : Water and energy. Aust. Zool. 2010 , 35 , 369–377. [ Google Scholar ] [ CrossRef ]
  • Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Deriving consistent long-term vegetation information from AVHRR reflectance data using a cover-triangle-based framework. Remote Sens. Environ. 2008 , 112 , 2938–2949. [ Google Scholar ] [ CrossRef ]
  • Davies, N.; Gramotnev, G.; Seabrook, L.; Bradley, A.; Baxter, G.; Rhodes, J.; Lunney, D.; McAlpine, C. Movement patterns of an arboreal marsupial at the edge of its range: A case study of the koala. Mov. Ecol. 2013 , 1 , 8. [ Google Scholar ] [ CrossRef ]
  • Doody, T.M.; Benger, S.N.; Pritchard, J.L.; Overton, I.C. Ecological response of Eucalyptus camaldulensis (river red gum) to extended drought and flooding along the River Murray, South Australia (1997–2011) and implications for environmental flow management. Mar. Freshw. Res. 2014 , 65 , 1082–1093. [ Google Scholar ] [ CrossRef ]
  • DeGabriel, J.L.; Moore, B.D.; Felton, A.M.; Ganzhorn, J.U.; Stolter, C.; Wallis, I.R.; Johnson, C.N.; Foley, W.J. Translating nutritional ecology from the laboratory to the field: Milestones in linking plant chemistry to population regulation in mammalian browsers. Oikos 2014 , 123 , 298–308. [ Google Scholar ] [ CrossRef ]
  • Crowther, M.S.; Rus, A.I.; Mella, V.S.A.; Krockenberger, M.B.; Lindsay, J.; Moore, B.D.; McArthur, C. Patch quality and habitat fragmentation shape the foraging patterns of a specialist folivore. Behav. Ecol. 2022 , 33 , 1007–1017. [ Google Scholar ] [ CrossRef ]
  • CSIRO; BoM. State of the Climate 2022. 2023. Available online: https://www.csiro.au/en/research/environmental-impacts/climate-change/state-of-the-climate (accessed on 14 May 2024).
  • Santika, T.; McAlpine, C.A.; Lunney, D.; Wilson, K.A.; Rhodes, J.R. Modelling species distributional shifts across broad spatial extents by linking dynamic occupancy models with public-based surveys. Divers. Distrib. 2014 , 20 , 786–796. [ Google Scholar ] [ CrossRef ]
  • Adams-Hosking, C.; Grantham, H.S.; Rhodes, J.R.; McAlpine, C.; Moss, P.T. Modelling climate-change-induced shifts in the distribution of the koala. Wildl. Res. 2011 , 38 , 122–130. [ Google Scholar ] [ CrossRef ]
  • Fitzpatrick, M.C.; Hargrove, W.W. The projection of species distribution models and the problem of non-analog climate. Biodivers. Conserv. 2009 , 18 , 2255–2261. [ Google Scholar ] [ CrossRef ]
  • Nolan, R.H.; Lane, P.N.; Benyon, R.G.; Bradstock, R.A.; Mitchell, P.J. Trends in evapotranspiration and streamflow following wildfire in resprouting eucalypt forests. J. Hydrol. 2015 , 524 , 614–624. [ Google Scholar ] [ CrossRef ]
  • Caccamo, G.; Bradstock, R.; Collins, L.; Penman, T.; Watson, P. Using MODIS data to analyse post-fire vegetation recovery in Australian eucalypt forests. J. Spat. Sci. 2015 , 60 , 341–352. [ Google Scholar ] [ CrossRef ]
  • Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018 , 558 , 531–539. [ Google Scholar ] [ CrossRef ]
  • Yebra, M.; Quan, X.; Riaño, D.; Larraondo, P.R.; van Dijk, A.I.; Cary, G.J. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote. Sens. Environ. 2018 , 212 , 260–272. [ Google Scholar ] [ CrossRef ]
  • Johnson, D.C.; Shapcott, A. Koala forest habitat recovery varies with fire severity. For. Ecol. Manag. 2024 , 556 , 121704. [ Google Scholar ] [ CrossRef ]
  • Lane, M.R.; Youngentob, K.N.; Clark, R.G.; Marsh, K.J. The nutritional quality of post-fire eucalypt regrowth and its consumption by koalas in the New South Wales Southern Tablelands. Aust. J. Zool. 2024 , 71 , ZO23024. [ Google Scholar ] [ CrossRef ]
  • Rifai, S.W.; De Kauwe, M.G.; Gallagher, R.V.; Cernusak, L.A.; Meir, P.; Pitman, A.J. Burn severity and post-fire weather are key to predicting time-to-recover from Australian forest fires. Earth’s Future 2024 , 12 , e2023EF003780. [ Google Scholar ] [ CrossRef ]
  • Losso, A.; Challis, A.; Gauthey, A.; Nolan, R.H.; Hislop, S.; Roff, A.; Boer, M.M.; Jiang, M.; Medlyn, B.E.; Choat, B. Canopy dieback and recovery in Australian native forests following extreme drought. Sci. Rep. 2022 , 12 , 21608. [ Google Scholar ] [ CrossRef ]
  • Mella, V.S.A.; McArthur, C.; Krockenberger, M.B.; Frend, R.; Crowther, M.S. Needing a drink: Rainfall and temperature drive the use of free water by a threatened arboreal folivore. PLoS ONE 2019 , 14 , e0216964. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kirono, D.G.; Round, V.; Heady, C.; Chiew, F.H.; Osbrough, S. Drought projections for Australia: Updated results and analysis of model simulations. Weather. Clim. Extremes 2020 , 30 , 100280. [ Google Scholar ] [ CrossRef ]
  • Donaldson, J.E.; Parr, C.L.; Mangena, E.H.; Archibald, S. Droughts decouple African savanna grazers from their preferred forage with consequences for grassland productivity. Ecosystems 2020 , 23 , 689–701. [ Google Scholar ] [ CrossRef ]
  • Guo, W.; Huang, S.; Huang, Q.; Leng, G.; Mu, Z.; Han, Z.; Wei, X.; She, D.; Wang, H.; Wang, Z.; et al. Drought trigger thresholds for different levels of vegetation loss in China and their dynamics. Agric. For. Meteorol. 2023 , 331 , 109349. [ Google Scholar ] [ CrossRef ]
  • Pettorelli, N. The Normalized Difference Vegetation Index ; Oxford University Press: Oxford, UK, 2013. [ Google Scholar ]
  • Mitchell, D.L.; Soto-Berelov, M.; Langford, W.T.; Jones, S.D. Factors confounding koala habitat mapping at multiple decision-making scales. Ecol. Manag. Restor. 2021 , 22 , 171–182. [ Google Scholar ] [ CrossRef ]
SourceVariable Study UseNative ResolutionSource Website
Landsat satellite datacube hosted by Geoscience Aus. and NCINormalised difference vegetation index [NDVI] (from corrected reflectance rasters)Landscape vegetation condition and koala site vegetation condition 25 × 25 m
(accessed 4 August 2023)
Species Profile and Threats Database (SPRAT)Koala presenceIdentify associated vegetation conditionVector points
(accessed 7 October 2021)
National Vegetation Information System (NVIS v6.0)Vegetation group (based on NVIS major vegetation groups [MVG]) raster Assign NDVI and koala presence observations into vegetation groups100 × 100 m
(accessed 7 October 2021)
Surface Hydrology Lines (Regional)Perennial water courses and bodiesCalculate distance of observations and potential habitat to waterVector lines and polygons
(accessed 17 November 2021)
Area of Vegetation above the NDVI Thresholds (km )Difference between Periods (%)
Vegetation GroupPre-Drought
1995–1999
Drought
2005–2009
Woodlands100,30584,370−15.8%
Open Forests54,90451,180−6.8%
Tall Open Forests35,01731,195−10.9%
All groups190,227166,746−12.3%
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Kotzur, I.; Moore, B.D.; Meakin, C.; Evans, M.J.; Youngentob, K.N. Identifying Habitat Productivity Thresholds to Assess the Effects of Drought on a Specialist Folivore. Remote Sens. 2024 , 16 , 3279. https://doi.org/10.3390/rs16173279

Kotzur I, Moore BD, Meakin C, Evans MJ, Youngentob KN. Identifying Habitat Productivity Thresholds to Assess the Effects of Drought on a Specialist Folivore. Remote Sensing . 2024; 16(17):3279. https://doi.org/10.3390/rs16173279

Kotzur, Ivan, Ben D. Moore, Chris Meakin, Maldwyn J. Evans, and Kara N. Youngentob. 2024. "Identifying Habitat Productivity Thresholds to Assess the Effects of Drought on a Specialist Folivore" Remote Sensing 16, no. 17: 3279. https://doi.org/10.3390/rs16173279

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

IMAGES

  1. How to Write a Hypothesis

    hypothesis with suitable example

  2. Research Hypothesis: Definition, Types, Examples and Quick Tips

    hypothesis with suitable example

  3. How to Write a Hypothesis: The Ultimate Guide with Examples

    hypothesis with suitable example

  4. What Is A Hypothesis

    hypothesis with suitable example

  5. What is a Hypothesis

    hypothesis with suitable example

  6. Hypothesis Examples

    hypothesis with suitable example

VIDEO

  1. Two-Sample Hypothesis Testing: Dependent Sample

  2. Intro to hypothesis testing for quantitative variables (pg 104-105)

  3. Fun Example Hypothesis Testing for Two Populations

  4. NEGATIVE RESEARCH HYPOTHESIS STATEMENTS l 3 EXAMPLES l RESEARCH PAPER WRITING GUIDE l THESIS TIPS

  5. Hypothesis Testing

  6. Lesson 33 : Hypothesis Testing Procedure for One Population Mean

COMMENTS

  1. How to Write a Strong Hypothesis

    The specific group being studied. The predicted outcome of the experiment or analysis. 5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

  2. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  3. How Do You Write an Hypothesis? Detailed Explanation and Examples

    The first step in formulating a hypothesis is to identify your research question. This involves observing the subject matter and recognizing patterns or relationships between variables. Crafting a clear, testable, and grounded hypothesis is essential for research success. By pinpointing the exact question you aim to answer, you lay the ...

  4. 15 Hypothesis Examples (2024)

    15 Hypothesis Examples. A hypothesis is defined as a testable prediction, and is used primarily in scientific experiments as a potential or predicted outcome that scientists attempt to prove or disprove (Atkinson et al., 2021; Tan, 2022). In my types of hypothesis article, I outlined 13 different hypotheses, including the directional hypothesis ...

  5. How to Write a Hypothesis w/ Strong Examples

    Simple Hypothesis Examples. Increasing the amount of natural light in a classroom will improve students' test scores. Drinking at least eight glasses of water a day reduces the frequency of headaches in adults. Plant growth is faster when the plant is exposed to music for at least one hour per day.

  6. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  7. 13 Different Types of Hypothesis (2024)

    In the above example, we have multiple independent and dependent variables: Independent variables: Age and weight. Dependent variables: diabetes and heart disease. Because there are multiple variables, this study is a lot more complex than a simple hypothesis.It quickly gets much more difficult to prove these hypotheses.

  8. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  9. What Makes a Good Hypothesis? Essential Criteria and Examples

    A good hypothesis should be clear and precise, avoiding vague language and ambiguity. It must be testable and falsifiable, meaning it can be supported or refuted through experimentation. Grounding in existing knowledge is crucial; a hypothesis should be based on prior research or established theories.

  10. How to Write a Hypothesis [31 Tips + Examples]

    Tip 11: Review Existing Literature. Previous research offers insights into forming a hypothesis. Conduct a thorough literature review to identify trends and gaps. Use these studies to refine and build upon your hypothesis. Examples: Studies showing a link between screen time and anxiety.

  11. 7 Types of Research Hypothesis: Examples, Significance and Step-By-Step

    3. Clarity: A research hypothesis should be written in clear and concise language. It should avoid ambiguity and ensure that the intended meaning is easily understood by the readers. Clear language helps in communicating the hypothesis effectively and facilitates its evaluation. 4.

  12. 100 Hypothesis Examples Across Various Academic Fields

    100 Hypothesis Examples Across Various Academic Fields. A hypothesis is a statement or proposition that is made for the purpose of testing through empirical research. It represents an educated guess or prediction that can be tested through observation and experimentation. A hypothesis is often formulated using a logical construct of "if-then ...

  13. What is Hypothesis

    Hypothesis is a hypothesis isfundamental concept in the world of research and statistics. It is a testable statement that explains what is happening or observed. It proposes the relation between the various participating variables. Hypothesis is also called Theory, Thesis, Guess, Assumption, or Suggestion. Hypothesis creates a structure that ...

  14. Examples of Hypothesis: 15+ Ideas to Help You Formulate Yours

    Examples: 13% of the US population are poor. The current rate of divorce in the US stands at the rate of 80% because of irreconcilable differences. Nearly 40% of the Savannah population lives past the age of 60. 6. Null Hypothesis. A null hypothesis exists where there's no relationship between two variable.

  15. 36 Examples of a Hypothesis

    The following are illustrative examples of a hypothesis. Plants will grow faster in blue light as compared to red or green light.Regular watering can desalinate soil in a pot.Local air quality is better on weekends and holidays.Tennis balls bounce higher when they are cold.There is significant variation in the average amount of pollen in ...

  16. 9 Types of Hypothesis

    Null Hypothesis. A hypothesis predicts the relationship between independent and dependent variables. An independent variable is something you change as part of an experiment such as the amount of water given to a plant. A dependent variable is something that is predicted to change as a result such as the growth rate of a plant.

  17. Null & Alternative Hypotheses

    The null hypothesis (H0) answers "No, there's no effect in the population.". The alternative hypothesis (Ha) answers "Yes, there is an effect in the population.". The null and alternative are always claims about the population. That's because the goal of hypothesis testing is to make inferences about a population based on a sample.

  18. Hypothesis Testing in Statistics

    Let's understand this with an example. A sanitizer manufacturer claims that its product kills 95 percent of germs on average. To put this company's claim to the test, create a null and alternate hypothesis. H0 (Null Hypothesis): Average = 95%. Alternative Hypothesis (H1): The average is less than 95%.

  19. What is Hypothesis

    Functions of Hypothesis. Following are the functions performed by the hypothesis: Hypothesis helps in making an observation and experiments possible. It becomes the start point for the investigation. Hypothesis helps in verifying the observations. It helps in directing the inquiries in the right direction.

  20. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  21. Hypothesis Testing

    Example 1: The average weight of a dumbbell in a gym is 90lbs. However, a physical trainer believes that the average weight might be higher. A random sample of 5 dumbbells with an average weight of 110lbs and a standard deviation of 18lbs. Using hypothesis testing check if the physical trainer's claim can be supported for a 95% confidence level.

  22. Crafting Effective Hypothesis Statements: Examples & Best

    Hypothesis Statements - Overview and Template This document contains definitions, examples, and a template to complete for your assignment. Hypothesis Statements Overview A hypothesis is a prediction about the relationship between two variables. Hypotheses statements often start as an educated guess about how one variable affects a second variable. A hypothesis statement must be testable (i.e ...

  23. Understanding Hypothesis Testing

    Hypothesis testing is a statistical method that is used to make a statistical decision using experimental data. Hypothesis testing is basically an assumption that we make about a population parameter. It evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data.

  24. Remote Sensing

    This affirmed our second hypothesis, that NDVI decline in drought reduces the area of potential habitat for koalas (H 2). Figure 8 shows an example of this reduction within a landscape, where, of 606 ha of suitable vegetation prior to the drought, 16.8% (102 ha) declined below thresholds during the drought.