• Dissertations & Theses
  • Collections

EliScholar > Medicine > Medicine Thesis Digital Library

Yale Medicine Thesis Digital Library

Starting with the Yale School of Medicine (YSM) graduating class of 2002, the Cushing/Whitney Medical Library and YSM Office of Student Research have collaborated on the Yale Medicine Thesis Digital Library (YMTDL) project, publishing the digitized full text of medical student theses on the web as a valuable byproduct of Yale student research efforts. The digital thesis deposit has been a graduation requirement since 2006. Starting in 2012, alumni of the Yale School of Medicine were invited to participate in the YMTDL project by granting scanning and hosting permission to the Cushing/Whitney Medical Library, which digitized the Library’s print copy of their thesis or dissertation. A grant from the Arcadia Fund in 2017 provided the means for digitizing over 1,000 additional theses. IF YOU ARE A MEMBER OF THE YALE COMMUNITY AND NEED ACCESS TO A THESIS RESTRICTED TO THE YALE NETWORK, PLEASE MAKE SURE YOUR VPN (VIRTUAL PRIVATE NETWORK) IS ON.

Theses/Dissertations from 2024 2024

Refractory Neurogenic Cough Management: The Non-Inferiority Of Soluble Steroids To Particulate Suspensions For Superior Laryngeal Nerve Blocks , Hisham Abdou

Percutaneous Management Of Pelvic Fluid Collections: A 10-Year Series , Chidumebi Alim

Behavioral Outcomes In Patients With Metopic Craniosynostosis: Relationship With Radiographic Severity , Mariana Almeida

Ventilator Weaning Parameters Revisited: A Traditional Analysis And A Test Of Artificial Intelligence To Predict Successful Extubation , John James Andrews

Developing Precision Genome Editors: Peptide Nucleic Acids Modulate Crispr Cas9 To Treat Autosomal Dominant Disease , Jem Atillasoy

Radiology Education For U.s. Medical Students In 2024: A State-Of-The-Art Analysis , Ryan Bahar

Out-Of-Pocket Spending On Medications For Diabetes In The United States , Baylee Bakkila

Imaging Markers Of Microstructural Development In Neonatal Brains And The Impact Of Postnatal Pathologies , Pratheek Sai Bobba

A Needs Assessment For Rural Health Education In United States Medical Schools , Kailey Carlson

Racial Disparities In Behavioral Crisis Care: Investigating Restraint Patterns In Emergency Departments , Erika Chang-Sing

Social Determinants Of Health & Barriers To Care In Diabetic Retinopathy Patients Lost To Follow-Up , Thomas Chang

Association Between Fine Particulate Matter And Eczema: A Cross-Sectional Study Of The All Of Us Research Program And The Center For Air, Climate, And Energy Solutions , Gloria Chen

Predictors Of Adverse Outcomes Following Surgical Intervention For Cervical Spondylotic Myelopathy , Samuel Craft

Genetic Contributions To Thoracic Aortic Disease , Ellelan Arega Degife

Actigraphy And Symptom Changes With A Social Rhythm Intervention In Young Persons With Mood Disorders , Gabriela De Queiroz Campos

Incidence Of Pathologic Nodal Disease In Clinically Node Negative, Microinvasive/t1a Breast Cancers , Pranammya Dey

Spinal Infections: Pathophysiology, Diagnosis, Prevention, And Management , Meera Madhav Dhodapkar

Childen's Reentry To School After Psychiatric Hospitalization: A Qualitative Study , Madeline Digiovanni

Bringing Large Language Models To Ophthalmology: Domain-Specific Ontologies And Evidence Attribution , Aidan Gilson

Surgical Personalities: A Cultural History Of Early 20th Century American Plastic Surgery , Joshua Zev Glahn

Implications Of Acute Brain Injury Following Transcatheter Aortic Valve Replacement , Daniel Grubman

Latent Health Status Trajectory Modelling In Patients With Symptomatic Peripheral Artery Disease , Scott Grubman

The Human Claustrum Tracks Slow Waves During Sleep , Brett Gu

Patient Perceptions Of Machine Learning-Enabled Digital Mental Health , Clara Zhang Guo

Variables Affecting The 90-Day Overall Reimbursement Of Four Common Orthopaedic Procedures , Scott Joseph Halperin

The Evolving Landscape Of Academic Plastic Surgery: Understanding And Shaping Future Directions In Diversity, Equity, And Inclusion , Sacha C. Hauc

Association Of Vigorous Physical Activity With Psychiatric Disorders And Participation In Treatment , John L. Havlik

Long-Term Natural History Of Ush2a-Retinopathy , Michael Heyang

Clinical Decision Support For Emergency Department-Initiated Buprenorphine For Opioid Use Disorder , Wesley Holland

Applying Deep Learning To Derive Noninvasive Imaging Biomarkers For High-Risk Phenotypes Of Prostate Cancer , Sajid Hossain

The Hardships Of Healthcare Among People With Lived Experiences Of Homelessness In New Haven, Ct , Brandon James Hudik

Outcomes Of Peripheral Vascular Interventions In Patients Treated With Factor Xa Inhibitors , Joshua Joseph Huttler

Janus Kinase Inhibition In Granuloma Annulare: Two Single-Arm, Open-Label Clinical Trials , Erica Hwang

Medicaid Coverage For Undocumented Children In Connecticut: A Political History , Chinye Ijeli

Population Attributable Fraction Of Reproductive Factors In Triple Negative Breast Cancer By Race , Rachel Jaber Chehayeb

Evaluation Of Gastroesophageal Reflux And Hiatal Hernia As Risk Factors For Lobectomy Complications , Michael Kaminski

Health-Related Social Needs Before And After Critical Illness Among Medicare Beneficiaries , Tamar A. Kaminski

Effects Of Thoracic Endovascular Aortic Repair On Cardiac Function At Rest , Nabeel Kassam

Conditioned Hallucinations By Illness Stage In Individuals With First Episode Schizophrenia, Chronic Schizophrenia, And Clinical High Risk For Psychosis , Adam King

The Choroid Plexus Links Innate Immunity To Dysregulation Of Csf Homeostasis In Diverse Forms Of Hydrocephalus , Emre Kiziltug

Health Status Changes After Stenting For Stroke Prevention In Carotid Artery Stenosis , Jonathan Kluger

Rare And Undiagnosed Liver Diseases: New Insights From Genomic And Single Cell Transcriptomic Analyses , Chigoziri Konkwo

“Teen Health” Empowers Informed Contraception Decision-Making In Adolescents And Young Adults , Christina Lepore

Barriers To Mental Health Care In Us Military Veterans , Connor Lewis

Barriers To Methadone For Hiv Prevention Among People Who Inject Drugs In Kazakhstan , Amanda Rachel Liberman

Unheard Voices: The Burden Of Ischemia With No Obstructive Coronary Artery Disease In Women , Marah Maayah

Partial And Total Tonsillectomy For Pediatric Sleep-Disordered Breathing: The Role Of The Cas-15 , Jacob Garn Mabey

Association Between Insurance, Access To Care, And Outcomes For Patients With Uveal Melanoma In The United States , Victoria Anne Marks

Urinary Vegf And Cell-Free Dna As Non-Invasive Biomarkers For Diabetic Retinopathy Screening , Mitchelle Matesva

Pain Management In Facial Trauma: A Narrative Review , Hunter Mccurdy

Meningioma Relational Database Curation Using A Pacs-Integrated Tool For Collection Of Clinical And Imaging Features , Ryan Mclean

Colonoscopy Withdrawal Time And Dysplasia Detection In Patients With Inflammatory Bowel Disease , Chandler Julianne Mcmillan

Cerebral Arachnoid Cysts Are Radiographic Harbingers Of Epigenetics Defects In Neurodevelopment , Kedous Mekbib

Regulation And Payment Of New Medical Technologies , Osman Waseem Moneer

Permanent Pacemaker Implantation After Tricuspid Valve Repair Surgery , Alyssa Morrison

Non-Invasive Epidermal Proteome-Based Subclassification Of Psoriasis And Eczema And Identification Of Treatment Relevant Biomarkers , Michael Murphy

Ballistic And Explosive Orthopaedic Trauma Epidemiology And Outcomes In A Global Population , Jamieson M. O'marr

Dermatologic Infectious Complications And Mimickers In Cancer Patients On Oncologic Therapy , Jolanta Pach

Distressed Community Index In Patients Undergoing Carotid Endarterectomy In Medicare-Linked Vqi Registry , Carmen Pajarillo

Preoperative Psychosocial Risk Burden Among Patients Undergoing Major Thoracic And Abdominal Surgery , Emily Park

Volumetric Assessment Of Imaging Response In The Pnoc Pediatric Glioma Clinical Trials , Divya Ramakrishnan

Racial And Sex Disparities In Adult Reconstructive Airway Surgery Outcomes: An Acs Nsqip Analysis , Tagan Rohrbaugh

A School-Based Study Of The Prevalence Of Rheumatic Heart Disease In Bali, Indonesia , Alysha Rose

Outcomes Following Hypofractionated Radiotherapy For Patients With Thoracic Tumors In Predominantly Central Locations , Alexander Sasse

Healthcare Expenditure On Atrial Fibrillation In The United States: The Medical Expenditure Panel Survey 2016-2021 , Claudia See

A Cost-Effectiveness Analysis Of Oropharyngeal Cancer Post-Treatment Surveillance Practices , Rema Shah

Machine Learning And Risk Prediction Tools In Neurosurgery: A Rapid Review , Josiah Sherman

Maternal And Donor Human Milk Support Robust Intestinal Epithelial Growth And Differentiation In A Fetal Intestinal Organoid Model , Lauren Smith

Constructing A Fetal Human Liver Atlas: Insights Into Liver Development , Zihan Su

Somatic Mutations In Aging, Paroxysmal Nocturnal Hemoglobinuria, And Myeloid Neoplasms , Tho Tran

Illness Perception And The Impact Of A Definitive Diagnosis On Women With Ischemia And No Obstructive Coronary Artery Disease: A Qualitative Study , Leslie Yingzhijie Tseng

Advances In Keratin 17 As A Cancer Biomarker: A Systematic Review , Robert Tseng

Regionalization Strategy To Optimize Inpatient Bed Utilization And Reduce Emergency Department Crowding , Ragini Luthra Vaidya

Survival Outcomes In T3 Laryngeal Cancer Based On Staging Features At Diagnosis , Vickie Jiaying Wang

Analysis Of Revertant Mosaicism And Cellular Competition In Ichthyosis With Confetti , Diana Yanez

A Hero's Journey: Experiences Using A Therapeutic Comicbook In A Children’s Psychiatric Inpatient Unit , Idil Yazgan

Prevalence Of Metabolic Comorbidities And Viral Infections In Monoclonal Gammopathy , Mansen Yu

Automated Detection Of Recurrent Gastrointestinal Bleeding Using Large Language Models , Neil Zheng

Vascular Risk Factor Treatment And Control For Stroke Prevention , Tianna Zhou

Theses/Dissertations from 2023 2023

Radiomics: A Methodological Guide And Its Applications To Acute Ischemic Stroke , Emily Avery

Characterization Of Cutaneous Immune-Related Adverse Events Due To Immune Checkpoint Inhibitors , Annika Belzer

An Investigation Of Novel Point Of Care 1-Tesla Mri Of Infants’ Brains In The Neonatal Icu , Elisa Rachel Berson

Understanding Perceptions Of New-Onset Type 1 Diabetes Education In A Pediatric Tertiary Care Center , Gabriel BetancurVelez

Effectiveness Of Acitretin For Skin Cancer Prevention In Immunosuppressed And Non-Immunosuppressed Patients , Shaman Bhullar

Adherence To Tumor Board Recommendations In Patients With Hepatocellular Carcinoma , Yueming Cao

Clinical Trials Related To The Spine & Shoulder/elbow: Rates, Predictors, & Reasons For Termination , Dennis Louis Caruana

Improving Delivery Of Immunomodulator Mpla With Biodegradable Nanoparticles , Jungsoo Chang

Sex Differences In Patients With Deep Vein Thrombosis , Shin Mei Chan

Incorporating Genomic Analysis In The Clinical Practice Of Hepatology , David Hun Chung

Emergency Medicine Resident Perceptions Of A Medical Wilderness Adventure Race (medwar) , Lake Crawford

Surgical Outcomes Following Posterior Spinal Fusion For Adolescent Idiopathic Scoliosis , Wyatt Benajmin David

Representing Cells As Sentences Enables Natural Language Processing For Single Cell Transcriptomics , Rahul M. Dhodapkar

Life Vs. Liberty And The Pursuit Of Happiness: Short-Term Involuntary Commitment Laws In All 50 US States , Sofia Dibich

Healthcare Disparities In Preoperative Risk Management For Total Joint Arthroplasty , Chloe Connolly Dlott

Toll-Like Receptors 2/4 Directly Co-Stimulate Arginase-1 Induction Critical For Macrophage-Mediated Renal Tubule Regeneration , Natnael Beyene Doilicho

Associations Of Atopic Dermatitis With Neuropsychiatric Comorbidities , Ryan Fan

International Academic Partnerships In Orthopaedic Surgery , Michael Jesse Flores

Young Adults With Adhd And Their Involvement In Online Communities: A Qualitative Study , Callie Marie Ginapp

Becoming A Doctor, Becoming A Monster: Medical Socialization And Desensitization In Nazi Germany And 21st Century USA , SimoneElise Stern Hasselmo

Comparative Efficacy Of Pharmacological Interventions For Borderline Personality Disorder: A Network Meta-Analysis , Olivia Dixon Herrington

Page 1 of 32

Advanced Search

  • Notify me via email or RSS
  • Disciplines
  • Researcher Profiles
  • Author Help

Copyright, Publishing and Open Access

  • Terms & Conditions
  • Open Access at Yale
  • Yale University Library
  • Yale Law School Repository

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Implementation and Use of Disease Diagnosis Systems for Electronic Medical Records Based on Machine Learning: A Complete Review

Profile image of Sadaqat Rehman

IEEE Access

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

IEEE Account

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Healthcare (Basel)

Logo of healthcare

Machine-Learning-Based Disease Diagnosis: A Comprehensive Review

Md manjurul ahsan.

1 School of Industrial and Systems Engineering, University of Oklahoma, Norman, OK 73019, USA

Shahana Akter Luna

2 Medicine & Surgery, Dhaka Medical College & Hospital, Dhaka 1000, Bangladesh; [email protected]

Zahed Siddique

3 Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA; ude.uo@euqiddisz

Globally, there is a substantial unmet need to diagnose various diseases effectively. The complexity of the different disease mechanisms and underlying symptoms of the patient population presents massive challenges in developing the early diagnosis tool and effective treatment. Machine learning (ML), an area of artificial intelligence (AI), enables researchers, physicians, and patients to solve some of these issues. Based on relevant research, this review explains how machine learning (ML) is being used to help in the early identification of numerous diseases. Initially, a bibliometric analysis of the publication is carried out using data from the Scopus and Web of Science (WOS) databases. The bibliometric study of 1216 publications was undertaken to determine the most prolific authors, nations, organizations, and most cited articles. The review then summarizes the most recent trends and approaches in machine-learning-based disease diagnosis (MLBDD), considering the following factors: algorithm, disease types, data type, application, and evaluation metrics. Finally, in this paper, we highlight key results and provides insight into future trends and opportunities in the MLBDD area.

1. Introduction

In medical domains, artificial intelligence (AI) primarily focuses on developing the algorithms and techniques to determine whether a system’s behavior is correct in disease diagnosis. Medical diagnosis identifies the disease or conditions that explain a person’s symptoms and signs. Typically, diagnostic information is gathered from the patient’s history and physical examination [ 1 ]. It is frequently difficult due to the fact that many indications and symptoms are ambiguous and can only be diagnosed by trained health experts. Therefore, countries that lack enough health professionals for their populations, such as developing countries like Bangladesh and India, face difficulty providing proper diagnostic procedures for their maximum population of patients [ 2 ]. Moreover, diagnosis procedures often require medical tests, which low-income people often find expensive and difficult to afford.

As humans are prone to error, it is not surprising that a patient may have overdiagnosis occur more often. If overdiagnosis, problems such as unnecessary treatment will arise, impacting individuals’ health and economy [ 3 ]. According to the National Academics of Science, Engineering, and Medicine report of 2015, the majority of people will encounter at least one diagnostic mistake during their lifespan [ 4 ]. Various factors may influence the misdiagnosis, which includes:

  • lack of proper symptoms, which often unnoticeable
  • the condition of rare disease
  • the disease is omitted mistakenly from the consideration

Machine learning (ML) is used practically everywhere, from cutting-edge technology (such as mobile phones, computers, and robotics) to health care (i.e., disease diagnosis, safety). ML is gaining popularity in various fields, including disease diagnosis in health care. Many researchers and practitioners illustrate the promise of machine-learning-based disease diagnosis (MLBDD), which is inexpensive and time-efficient [ 5 ]. Traditional diagnosis processes are costly, time-consuming, and often require human intervention. While the individual’s ability restricts traditional diagnosis techniques, ML-based systems have no such limitations, and machines do not get exhausted as humans do. As a result, a method to diagnose disease with outnumbered patients’ unexpected presence in health care may be developed. To create MLBDD systems, health care data such as images (i.e., X-ray, MRI) and tabular data (i.e., patients’ conditions, age, and gender) are employed [ 6 ].

Machine learning (ML) is a subset of AI that uses data as an input resource [ 7 ]. The use of predetermined mathematical functions yields a result (classification or regression) that is frequently difficult for humans to accomplish. For example, using ML, locating malignant cells in a microscopic image is frequently simpler, which is typically challenging to conduct just by looking at the images. Furthermore, since advances in deep learning (a form of machine learning), the most current study shows MLBDD accuracy of above 90% [ 5 ]. Alzheimer’s disease, heart failure, breast cancer, and pneumonia are just a few of the diseases that may be identified with ML. The emergence of machine learning (ML) algorithms in disease diagnosis domains illustrates the technology’s utility in medical fields.

Recent breakthroughs in ML difficulties, such as imbalanced data, ML interpretation, and ML ethics in medical domains, are only a few of the many challenging fields to handle in a nutshell [ 8 ]. In this paper, we provide a review that highlights the novel uses of ML and DL in disease diagnosis and gives an overview of development in this field in order to shed some light on this current trend, approaches, and issues connected with ML in disease diagnosis. We begin by outlining several methods to machine learning and deep learning techniques and particular architecture for detecting and categorizing various forms of disease diagnosis.

The purpose of this review is to provide insights to recent and future researchers and practitioners regarding machine-learning-based disease diagnosis (MLBDD) that will aid and enable them to choose the most appropriate and superior machine learning/deep learning methods, thereby increasing the likelihood of rapid and reliable disease detection and classification in diagnosis. Additionally, the review aims to identify potential studies related to the MLBDD. In general, the scope of this study is to provide the proper explanation for the following questions:

  • 1. What are some of the diseases that researchers and practitioners are particularly interested in when evaluating data-driven machine learning approaches?
  • 2. Which MLBDD datasets are the most widely used?
  • 3. Which machine learning and deep learning approaches are presently used in health care to classify various forms of disease?
  • 4. Which architecture of convolutional neural networks (CNNs) is widely employed in disease diagnosis?
  • 5. How is the model’s performance evaluated? Is that sufficient?

In this paper, we summarize the different machine learning (ML) and deep learning (DL) methods utilized in various disease diagnosis applications. The remainder of the paper is structured as follows. In Section 2 , we discuss the background and overview of ML and DL, whereas in Section 3 , we detail the article selection technique. Section 4 includes bibliometric analysis. In Section 5 , we discuss the use of machine learning in various disease diagnoses, and in Section 6 , we identify the most frequently utilized ML methods and datatypes based on the linked research. In Section 7 , we discuss the findings, anticipated trends, and problems. Finally, Section 9 concludes the article with a general conclusion.

2. Basics and Background

Machine learning (ML) is an approach that analyzes data samples to create main conclusions using mathematical and statistical approaches, allowing machines to learn without programming. Arthur Samuel presented machine learning in games and pattern recognition algorithms to learn from experience in 1959, which was the first time the important advancement was recognized. The core principle of ML is to learn from data in order to forecast or make decisions depending on the assigned task [ 9 ]. Thanks to machine learning (ML) technology, many time-consuming jobs may now be completed swiftly and with minimal effort. With the exponential expansion of computer power and data capacity, it is becoming simpler to train data-driven ML models to predict outcomes with near-perfect accuracy. Several papers offer various sorts of ML approaches [ 10 , 11 ].

The ML algorithms are generally classified into three categories such as supervised, unsupervised, and semisupervised [ 10 ]. However, ML algorithms can be divided into several subgroups based on different learning approaches, as shown in Figure 1 . Some of the popular ML algorithms include linear regression, logistic regression, support vector machines (SVM), random forest (RF), and naïve Bayes (NB) [ 10 ].

An external file that holds a picture, illustration, etc.
Object name is healthcare-10-00541-g001.jpg

Different types of machine learning algorithms.

2.1. Machine Learning Algorithms

This section provides a comprehensive review of the most frequently used machine learning algorithms in disease diagnosis.

2.1.1. Decision Tree

The decision tree (DT) algorithm follows divide-and-conquer rules. In DT models, the attribute may take on various values known as classification trees; leaves indicate distinct classes, whereas branches reflect the combination of characteristics that result in those class labels. On the other hand, DT can take continuous variables called regression trees. C4.5 and EC4.5 are the two famous and most widely used DT algorithms [ 12 ]. DT is used extensively by following reference literature: [ 13 , 14 , 15 , 16 ].

2.1.2. Support Vector Machine

For classification and regression-related challenges, support vector machine (SVM) is a popular ML approach. SVM was introduced by Vapnik in the late twentieth century [ 17 ]. Apart from disease diagnosis, SVMs have been extensively employed in various other disciplines, including facial expression recognition, protein fold, distant homology discovery, speech recognition, and text classification. For unlabeled data, supervised ML algorithms are unable to perform. Using a hyperplane to find the clustering among the data, SVM can categorize unlabeled data. However, SVM output is not nonlinearly separable. To overcome such problems, selecting appropriate kernel and parameters is two key factors when applying SVM in data analysis [ 11 ].

2.1.3. K -Nearest Neighbor

K -nearest neighbor (KNN) classification is a nonparametric classification technique invented in 1951 by Evelyn Fix and Joseph Hodges. KNN is suitable for classification as well as regression analysis. The outcome of KNN classification is class membership. Voting mechanisms are used to classify the item. Euclidean distance techniques are utilized to determine the distance between two data samples. The projected value in regression analysis is the average of the values of the KNN [ 18 ].

2.1.4. Naïve Bayes

The naïve Bayes (NB) classifier is a Bayesian-based probabilistic classifier. Based on a given record or data point, it forecasts membership probability for each class. The most probable class is the one having the greatest probability. Instead of predictions, the NB classifier is used to project likelihood [ 11 ].

2.1.5. Logistic Regression

Logistic regression (LR) is an ML approach that is used to solve classification issues. The LR model has a probabilistic framework, with projected values ranging from 0 to 1. Examples of LR-based ML include spam email identification, online fraud transaction detection, and malignant tumor detection. The cost function, often known as the sigmoid function, is used by LR. The sigmoid function transforms every real number between 0 and 1 [ 19 ].

2.1.6. AdaBoost

Yoav Freund and Robert Schapire developed Adaptive Boosting, popularly known as AdaBoost. AdaBoost is a classifier that combines multiple weak classifiers into a single classifier. AdaBoost works by giving greater weight to samples that are harder to classify and less weight to those that are already well categorized. It may be used for categorization as well as regression analysis [ 20 ].

2.2. Deep Learning Overview

Deep learning (DL) is a subfield of machine learning (ML) that employs multiple layers to extract both higher and lower-level information from input (i.e., images, numerical value, categorical values). The majority of contemporary DL models are built on artificial neural networks (ANN), notably convolutional neural networks (CNN), which may be integrated with other DL models, including generative models, deep belief networks, and the Boltzmann machine. Deep learning may be classified into three types: supervised, semisupervised, and unsupervised. Deep neural networks (DNN), reinforcement learning, and recurrent neural networks (RNN) are some of the most prominent DL architectures (RNN) [ 21 ].

Each level in DL learns to convert its input data to the succeeding layers while learning distinct data attributes. For example, the raw input may be a pixel matrix in image recognition applications, and the first layers may detect the image’s edges. On the other hand, the second layer will construct and encode the nose and eyes, and the third layer may recognize the face by merging all of the information gathered from the previous two layers [ 6 ].

In medical fields, DL has enormous promise. Radiology and pathology are two well-known medical fields that have widely used DL in disease diagnosis over the years [ 22 ]. Furthermore, collecting valuable information from molecular state and determining disease progression or therapy sensitivity are practical uses of DL that are frequently unidentified by human investigations [ 23 ].

Convolutional Neural Network

Convolutional neural networks (CNNs) are a subclass of artificial neural networks (ANNs) that are extensively used in image processing. CNN is widely employed in face identification, text analysis, human organ localization, and biological image detection or recognition [ 24 ]. Since the initial development of CNN in 1989, a different type of CNN has been proposed that has performed exceptionally well in disease diagnosis over the last three decades. A CNN architecture comprises three parts: input layer, hidden layer, and output layer. The intermediate levels of any feedforward network are known as hidden layers, and the number of hidden layers varies depending on the type of architecture. Convolutions are performed in hidden layers, which contain dot products of the convolution kernel with the input matrix. Each convolutional layer provides feature maps used as input by the subsequent layers. Following the concealed layer are more layers, such as pooling and fully connected layers [ 21 ]. Several CNN models have been proposed throughout the years, and the most extensively used and popular CNN models are shown in Figure 2 .

An external file that holds a picture, illustration, etc.
Object name is healthcare-10-00541-g002.jpg

Some of the most well-known CNN models, along with their development time frames.

In general, it may be considered that ML and DL have grown substantially throughout the years. The increased computational capability of computers and the enormous number of data available inspire academics and practitioners to employ ML/DL more efficiently. A schematic overview of machine learning and deep learning algorithms and their development chronology is shown in Figure 3 , which may be a helpful resource for future researchers and practitioner.

An external file that holds a picture, illustration, etc.
Object name is healthcare-10-00541-g003.jpg

Illustration of machine learning and deep learning algorithms development timeline.

2.3. Performance Evaluations

This section describes the performance measures used in reference literature. Performance indicators, including accuracy, precision, recall, and F1 score, are widely employed in disease diagnosis. For example, lung cancer can be categorized as true positive ( T P ) or true-negative ( T N ) if individuals are diagnosed correctly, while it can be categorized into false positive ( F P ) or false negative ( F N ) if misdiagnosed. The most widely used metrics are described below [ 10 ].

Accuracy (Acc) : The accuracy denotes total correctly identifying instances among all of the instances. Accuracy can be calculated using following formulas:

Precision ( P n ): Precision is measured as the proportion of precisely predicted to all expected positive observations.

Recall ( R c ): The proportion of overall relevant results that the algorithm properly recognizes is referred to as recall.

Sensitivity ( S n ) : Sensitivity denotes only true positive measure considering total instances and can be measured as follows:

Specificity ( S p ): It identifies how many true negatives are appropriately identified and calculated as follows:

F-measure: The F1 score is the mean of accuracy and recall in a harmonic manner. The highest F score is 1, indicating perfect precision and recall score.

Area under curve (AUC): The area under the curve represents the models’ behaviors in different situations. The AUC can be calculated as follows:

where l p and l n denotes positive and negative data samples and R i is the rating of the i th positive samples.

3. Article Selection

3.1. identification.

The Scopus and Web of Science (WOS) databases are utilized to find original research publications. Due to their high quality and peer review paper index, Scopus and WOS are prominent databases for article searching, as many academics and scholars utilized them for systematic review [ 25 , 26 ]. Using keywords along with Boolean operators, the title search was carried out as follows:

“disease” AND (“diagnsois” OR “Supprot vector machine” OR “SVM” OR “KNN” OR “K-nearest neighbor” OR “logistic regression” OR “K-means clustering” OR “random forest” OR “RF” OR “adaboost” OR “XGBoost”, “decision tree” OR “neural network” OR “NN” OR “artificial neural network” OR “ANN” OR “convolutional neural network” OR “CNN” OR “deep neural network” OR “DNN” OR “machine learning" or “adversarial network” or “GAN”).

The initial search yielded 16,209 and 2129 items, respectively, from Scopus and Web of Science (WOS).

3.2. Screening

Once the search period was narrowed to 2012–2021 and only peer-reviewed English papers were evaluated, the total number of articles decreased to 9117 for Scopus and 1803 for WOS, respectively.

3.3. Eligibility and Inclusion

These publications were chosen for further examination if they are open access and are journal articles. There were 1216 full-text articles (724 from the Scopus database and 492 from WOS). Bibliographic analysis was performed on all 1216 publications. One investigator (Z.S.) imported the 1216 article information as excel CSV data for future analysis. Excel duplication functions were used to identify and eliminate duplicates. Two independent reviewers (M.A. and Z.S.) examined the titles and abstracts of 1192 publications. Disagreements were settled through conversation. We omitted studies that were not relevant to machine learning but were relevant to disease diagnosis or vice versa.

After screening the titles and abstracts, the complete text of 102 papers was examined, and all 102 articles satisfied all inclusion requirements. Factors that contributed to the article’s exclusion from the full-text screening includes:

  • 1. Inaccessibility of the entire text
  • 2. Nonhuman studies, book chapters, reviews
  • 3. Incomplete information related to test result

Figure 4 shows the flow diagram of the systematic article selection procedure used in this study.

An external file that holds a picture, illustration, etc.
Object name is healthcare-10-00541-g004.jpg

MLBDD article selection procedure used in this study.

4. Bibliometric Analysis

The bibliometric study in this section was carried out using reference literature gathered from the Scopus and WOS databases. The bibliometric study examines publications in terms of the subject area, co-occurrence network, year of publication, journal, citations, countries, and authors.

4.1. Subject Area

Many research disciplines have uncovered machine learning-based disease diagnostics throughout the years. Figure 5 depicts a schematic representation of machine learning-based disease detection spread across several research fields. According to the graph, computer science (40%) and engineering (31.2%) are two dominating fields that vigorously concentrated on MLBDD.

An external file that holds a picture, illustration, etc.
Object name is healthcare-10-00541-g005.jpg

Distribution of articles by subject area.

4.2. Co-Occurrence Network

Co-occurrence of keywords provides an overview of how the keywords are interconnected or used by the researchers. Figure 6 displays the co-occurrence network of the article’s keywords and their connection, developed by VOSviewer software. The figure shows that some of the significant clusters include neural networks (NN), decision trees (DT), machine learning (ML), and logistic regression (LR). Each cluster is also connected with other keywords that fall under that category. For instance, the NN cluster contains support vector machine (SVM), Parkinson’s disease, and classification.

An external file that holds a picture, illustration, etc.
Object name is healthcare-10-00541-g006.jpg

Bibliometric map representing co-occurrence analysis of keywords in network visualization.

4.3. Publication by Year

The exponential growth of journal publications is observed from 2017. Figure 7 displays the number of publications between 2012 to 2021 based on the Scopus and WOS data. Note that while the image may not accurately depict the MLBDD’s real contribution, it does illustrate the influence of MLBDD over time.

An external file that holds a picture, illustration, etc.
Object name is healthcare-10-00541-g007.jpg

Publications of machine-learning-based disease diagnosis (MLBDD) by year.

4.4. Publication by Journal

We investigated the most prolific journals in MLBDD domains based on our referred literature.The top ten journals and the number of articles published in the last ten years are depicted in Figure 8 . IEEE Access and Scientific Reports are the most productive journals that published 171 and 133 MLBDD articles, respectively.

An external file that holds a picture, illustration, etc.
Object name is healthcare-10-00541-g008.jpg

Publications by journals.

4.5. Publication by Citations

Citations are one of the primary indicators of an article’s effect. Here, we have identified the top ten cited articles using the R Studio tool. Table 1 summarizes the top articles that achieved the highest citation during the year between 2012 to 2021. Note that Google Scholar and other online databases may have various indexing procedures and times; therefore, the citations in this manuscript may differ from the number of citations shown in this study. The table shows that published articles by [ 27 ] earned the most citations (257), with 51.4 citations per year, followed by Gray [ 28 ]’s article, which obtained 218 citations. It is assumed that all the authors included in Table 1 are among those prominent authors that contributed to MLBDD.

Top ten cited papers published in MLBDD in between 2012–2021 based on Scopus and WOS database.

Author(s)Article TitlesCitation
[ ]Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis257
[ ]Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease248
[ ]Effective Heart disease prediction Using hybrid Machine Learning techniques214
[ ]Deep Convolutional Neural Network based medical image classification for disease diagnosis155
[ ]Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on Eigenbrain and Machine Learning147
[ ]Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of Heart failure subtypes139
[ ]DWT based detection of Epileptic Seizure From EEG signals using Naive Bayes and k-NN classifiers134
[ ]Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness129
[ ]ECG Arrhythmia classification based on optimum-path forest111
[ ]Gaussian process classification of Alzheimer’s disease and mild cognitive impairment from resting-state fMRI107

4.6. Publication by Countries

Figure 9 displayed that China published the most publications in MLBDD, total 259 articles. USA and India are placed 2nd and 3rd, respectively, as they published 139 and 103 papers related to MLBDD. Interestingly, four out of the top ten productive countries are from Asia: China, India, Korea, and Japan.

An external file that holds a picture, illustration, etc.
Object name is healthcare-10-00541-g009.jpg

Top ten countries that contributed to MLBDD literature.

4.7. Publication by Author

According to Table 2 , author Kim J published the most publications (20 out of 1216). Wang Y and Li J Ranked 2nd and 3rd by publishing 19 and 18 articles, respectively. As shown in Table 2 , the number of papers produced by the top 10 authors ranges between 15–20.

Top ten authors based on total number of publications.

AuthorTotal Article
Kim, J.20
Wang, Y.19
Li, J.18
Liu, Y.18
Chen, Y.17
Kim, H.16
Kim, Y.15
Lee, S.15
Li, Y.15
Wang, L.15

5. Machine Learning Techniques for Different Disease Diagnosis

Many academics and practitioners have used machine learning (ML) approaches in disease diagnosis. This section describes many types of machine-learning-based disease diagnosis (MLBDD) that have received much attention because of their importance and severity. For example, due to the global relevance of COVID-19, several studies concentrated on COVID-19 disease detection using ML from 2020 to the present, which also received greater priority in our study. Severe diseases such as heart disease, kidney disease, breast cancer, diabetes, Parkinson’s, Alzheimer’s, and COVID-19 are discussed briefly, while other diseases are covered briefly under the “other disease”.

5.1. Heart Disease

Most researchers and practitioners use machine learning (ML) approaches to identify cardiac disease [ 37 , 38 ]. Ansari et al. (2011), for example, offered an automated coronary heart disease diagnosis system based on neurofuzzy integrated systems that yield around 89% accuracy [ 37 ]. One of the study’s significant weaknesses is the lack of a clear explanation for how their proposed technique would work in various scenarios such as multiclass classification, big data analysis, and unbalanced class distribution. Furthermore, there is no explanation about the credibility of the model’s accuracy, which has lately been highly encouraged in medical domains, particularly to assist users who are not from the medical domains in understanding the approach.

Rubin et al. (2017) uses deep-convolutional-neural-network-based approaches to detect irregular cardiac sounds. The authors of this study adjusted the loss function to improve the training dataset’s sensitivity and specificity. Their suggested model was tested in the 2016 PhysioNet computing competition. They finished second in the competition, with a final prediction of 0.95 specificity and 0.73 sensitivity [ 39 ].

Aside from that, deep-learning (DL)-based algorithms have lately received attention in detecting cardiac disease. Miao and Miao et al. (2018), for example, offered a DL-based technique to diagnosing cardiotocographic fetal health based on a multiclass morphologic pattern. The created model is used to differentiate and categorize the morphologic pattern of individuals suffering from pregnancy complications. Their preliminary computational findings include accuracy of 88.02%, a precision of 85.01%, and an F-score of 0.85 [ 40 ]. During that study, they employed multiple dropout strategies to address overfitting problems, which finally increased training time, which they acknowledged as a tradeoff for higher accuracy.

Although ML applications have been widely employed in heart disease diagnosis, no research has been conducted that addressed the issues associated with unbalanced data with multiclass classification. Furthermore, the model’s explainability during final prediction is lacking in most cases. Table 3 summarizes some of the cited publications that employed ML and DL approaches in the diagnosis of cardiac disease. However, further information about machine-learning-based cardiac disease diagnosis can be found in [ 5 ].

Referenced literature that considered machine-learning-based heart disease diagnosis.

StudyContributionsAlgorithmDatasetData TypePerformance Evaluation
[ ]Predict coronary heart diseaseGaussian NB, Bernoulli NB, and RFCleveland datasetTabularAccuracy—85.00%, 85.00% and 75.00%
[ ]Predicting heart diseasesRF, CNNCleveland datasetTabularRF (Accuracy—80.327%, Precision—82%, Recall—80%, F1-score—80%), CNN (Accuracy—78.688, Precision—80%, Recall—79%, F1-score—78%)
[ ]Heart disease classificationSVMCleveland databaseTabularAccuracy—73–91%
[ ]Heart disease classificationBack-propagation NN, LRCleveland datasetTabularAccuracy (BNN—85.074%, LR—92.58%)
[ ]ECG arrhythmia for heart disease detectionSVM and Cuckoo search optimized NNCleveland datasetTabularAccuracy (SVM—94.44%)
[ ]Intelligent scoring system for the prediction of cardiac arrest within 72 hSVMPrivately ownendTabularSpecificity—78.8%, Sensitivity—62.3%, Positive predictive value—10%, Negative predictive value—98.2%
[ ]Automatically identify 5 different categories of heartbeats in ECG signalsCNNMIT-BIHTabularAccuracy—94% (balance data) Accuracy—89.07% (imbalance data)
[ ]Novel heartbeat recognition method is presentedSVMMIT-BIHTabularAccuracy—97.77% (imbalance data), Accuracy—97.08% (noise-free ECGs)

5.2. Kidney Disease

Kidney disease, often known as renal disease, refers to nephropathy or kidney damage. Patients with kidney disease have decreased kidney functional activity, which can lead to kidney failure if not treated promptly. According to the National Kidney Foundation, 10% of the world’s population has chronic kidney disease (CKD), and millions die each year due to insufficient treatment. The recent advancement of ML- and DL-based kidney disease diagnosis may provide a possibility for those countries that are unable to handle the kidney disease diagnostic-related tests [ 49 ]. For instance, Charleonnan et al. (2016) used publicly available datasets to evaluate four different ML algorithms: K -nearest neighbors (KNN), support vector machine (SVM), logistic regression (LR), and decision tree classifiers and received the accuracy of 98.1%, 98.3%, 96.55%, and 94.8%, respectively [ 50 ]. Aljaaf et al. (2018) conducted a similar study. The authors tested different ML algorithms, including RPART, SVM, LOGR, and MLP, using a comparable dataset, CKD, as used by [ 50 ], and found that MLP performed best (98.1 percent) in identifying chronic kidney disease [ 51 ]. To identify chronic kidney disease, Ma et al. (2020) utilizes a collection of datasets containing data from many sources [ 52 ]. Their suggested heterogeneous modified artificial neural network (HMANN) model obtained an accuracy of 87–99%.

Table 4 summarizes some of the cited publications that employed ML and DL approaches to diagnose kidney disease.

Referenced literature that considered machine-learning-based kidney disease diagnosis.

StudyContributionsAlgorithmDatasetData TypePerformance Evaluation
[ ]Analysis of Chronic Kidney DiseaseNB, DT, and RFChronic kidney disease datasetTabularAccuracy—100% (RF)
[ ]Kidney disease detection and segmentationANN & kernel KMC100 collected image data of patients UltrasoundImageAccuracy—99.61%
[ ]Classification of Chronic kidney diseaseLR, Feedforward NN and Wide DLChronic kidney disease datasetTabularFeedforward NN (F1-score—99%, Precision—97%, Recall—99%, and AUC—99%)
[ ]Chronic kidney diseaseCNN-SVMPrivately own datasetTabularAccuracy—97.67%, Sensitivity—97.5%, Specificity—97.83%
[ ]Detection and localization of kidneys in patients with autosomal dominant polycysticCNNPrivately own dataImageAccuracy—95%

5.3. Breast Cancer

Many scholars in the medical field have proposed machine-learning (ML)-based breast cancer analysis as a potential solution to early-stage diagnosis. Miranda and Felipe (2015), for example, proposed fuzzy-logic-based computer-aided diagnosis systems for breast cancer categorization. The advantage of fuzzy logic over other classic ML techniques is that it can minimize computational complexity while simulating the expert radiologist’s reasoning and style. If the user inputs parameters such as contour, form, and density, the algorithm offers a cancer categorization based on their preferred method [ 57 ]. Miranda and Felipe (2015)’s proposed model had an accuracy of roughly 83.34%. The authors employed an approximately equal ratio of images for the experiment, which resulted in improved accuracy and unbiased performance. However, as the study did not examine the interpretation of their results in an explainable manner, it may be difficult to conclude that accuracy, in general, indicates true accuracy for both benign and malignant classifications. Furthermore, no confusion matrix is presented to demonstrate the models’ actual prediction for the each class.

Zheng et al. (2014) presented hybrid strategies for diagnosing breast cancer disease utilizing k -means clustering (KMC) and SVM. Their proposed model considerably decreased the dimensional difficulties and attained an accuracy of 97.38% using Wisconsin Diagnostic Breast Cancer (WDBC) dataset [ 58 ]. The dataset is normally distributed and has 32 features divided into 10 categories. It is difficult to conclude that their suggested model will outperform in a dataset with an unequal class ratio, which may contain missing value as well.

To determine the best ML models, Asri et al. (2016) applied various ML approaches such as SVM, DT (C4.5), NB, and KNN on the Wisconsin Breast Cancer (WBC) datasets. According to their findings, SVM outperformed all other ML algorithms, obtaining an accuracy of 97.13% [ 59 ]. However, if a same experiment is repeated in a different database, the results may differ. Furthermore, experimental results accompanied by ground truth values may provide a more precise estimate in determining which ML model is the best or not.

Mohammed et al. (2020) conducted a nearly identical study. The authors employ three ML algorithms to find the best ML methods: DT (J48), NB, and sequential minimal optimization (SMO), and the experiment was conducted on two popular datasets: WBC and breast cancer datasets. One of the interesting aspects of this research is that they focused on data imbalance issues and minimized the imbalance problem through the use of resampling data labeling procedures. Their findings showed that the SMO algorithms exceeded the other two classifiers, attaining more than 95% accuracy on both datasets [ 60 ]. However, in order to reduce the imbalance ratio, they used resampling procedures numerous times, potentially lowering the possibility of data diversity. As a result, the performance of those three ML methods may suffer on a dataset that is not normally distributed or imbalanced.

Assegie (2021) used the grid search approach to identify the best k -nearest neighbor (KNN) settings. Their investigation showed that parameter adjustment had a considerable impact on the model’s performance. They demonstrated that by fine-tuning the settings, it is feasible to get 94.35% accuracy, whereas the default KNN achieved around 90% accuracy [ 61 ].

To detect breast cancer, Bhattacherjee et al. (2020) employed a backpropagation neural network (BNN). The experiment was carried out in the WBC dataset with nine features, and they achieved 99.27% accuracy [ 62 ]. Alshayeji et al. (2021) used the WBCD and WDBI datasets to develop a shallow ANN model for classifying breast cancer tumors. The authors demonstrated that the suggested model could classify tumors up to 99.85% properly without selecting characteristics or tweaking the algorithms [ 63 ].

Sultana et al. (2021) detect breast cancer using a different ANN architecture on the WBC dataset. They employed a variety of NN architectures, including the multilayer perceptron (MLP) neural network, the Jordan/Elman NN, the modular neural network (MNN), the generalized feedforward neural network (GFFNN), the self-organizing feature map (SOFM), the SVM neural network, the probabilistic neural network (PNN), and the recurrent neural network (RNN). Their final computational result demonstrates that the PNN with 98.24% accuracy outperforms the other NN models utilized in that study [ 64 ]. However, this study lacks the interpretability as of many other investigations because it does not indicate which features are most important during the prediction phase.

Deep learning (DL) was also used by Ghosh et al. (2021). The WBC dataset was used by the authors to train seven deep learning (DL) models: ANN, CNN, GRU, LSTM, MLP, PNN, and RNN. Long short-term memory (LSTM) and gated recurrent unit (GRU) demonstrated the best performance among all DL models, achieving an accuracy of roughly 99% [ 65 ]. Table 5 summarizes some of the referenced literature that used ML and DL techniques in breast cancer diagnosis.

Referenced literature that considered machine-learning-based breast cancer disease diagnosis.

StudyContributionsAlgorithmDatasetData TypePerformance Evaluation
[ ]Breast cancerNB, BN, RF and DT (C4.5)BCSCImageROC—0.937 (BN)
[ ]Classification of breast density and massSVMMini-MIAS, INBreastImageMini-MIAS: Accuracy—99%, AUC—0.9325
[ ]Classify vector features as malignant or non-malignantSVMIRMA, DDSMImageIRMA: Sensitivity—99%, Specificity—99%, DDSM: Sensitivity—97%, Specificity—96%
[ ]Classification of breast cancers by tumor sizeLR-ANN156 Privately owned casesImageAccuracy—81.8%, Sensitivity—85.4%, Specificity—77.8%, AUC—0.855
[ ]CAD tumorBinary-LR18 Privately owned casesImageAccuracy—80.39%
[ ]Differentiating malignant and benign massesNB, LR-AdaBoost246 Privately owned imageImageSensitivity—90%, Specificity—97.5%, AUC—0.98

5.4. Diabetes

According to the International Diabetes Federation (IDF), there are currently over 382 million individuals worldwide who have diabetes, with that number anticipated to increase to 629 million by 2045 [ 71 ]. Numerous studies widely presented ML-based systems for diabetes patient detection. For example, Kandhasamy and Balamurali (2015) compared ML classifiers (J48 DT, KNN, RF, and SVM) for classifying patients with diabetes mellitus. The experiment was conducted on the UCI Diabetes dataset, and the KNN (K = 1) and RF classifiers obtained near-perfect accuracy [ 72 ]. However, one disadvantage of this work is that it used a simplified Diabetes dataset with only eight binary-classified parameters. As a result, getting 100% accuracy with a less difficult dataset is unsurprising. Furthermore, there is no discussion of how the algorithms influence the final prediction or how the result should be viewed from a nontechnical position in the experiment.

Yahyaoui et al. (2019) presented a Clinical Decision Support Systems (CDSS) to aid physicians or practitioners with Diabetes diagnosis. To reach this goal, the study utilized a variety of ML techniques, including SVM, RF, and deep convolutional neural network (CNN). RF outperformed all other algorithms in their computations, obtaining an accuracy of 83.67%, while DL and SVM scored 76.81% and 65.38% accuracy, respectively [ 73 ].

Naz and Ahuja (2020) employed a variety of ML techniques, including artificial neural networks (ANN), NB, DT, and DL, to analyze open-source PIMA Diabetes datasets. Their study indicates that DL is the most accurate method for detecting the development of diabetes, with an accuracy of approximately 98.07% [ 71 ]. The PIMA dataset is one of the most thoroughly investigated and primary datasets, making it easy to perform conventional and sophisticated ML-based algorithms. As a result, gaining greater accuracy with the PIMA Indian dataset is not surprising. Furthermore, the paper makes no mention of interpretability issues and how the model would perform with an unbalanced dataset or one with a significant number of missing variables. As is widely recognized in healthcare, several types of data can be created that are not always labeled, categorized, and preprocessed in the same way as the PIMA Indian dataset. As a result, it is critical to examine the algorithms’ fairness, unbiasedness, dependability, and interpretability while developing a CDSS, especially when a considerable amount of information is missing in a multiclass classification dataset.

Ashiquzzaman et al. (2017) developed a deep learning strategy to address the issue of overfitting in diabetes datasets. The experiment was carried out on the PIMA Indian dataset and yielded an accuracy of 88.41%. The authors claimed that performance improved significantly when dropout techniques were utilized and the overfitting problems were reduced [ 74 ]. Overuse of the dropout approach, on the other hand, lengthens overall training duration. As a result, as they did not address these concerns in their study, assessing whether their proposed model is optimum in terms of computational time is difficult.

Alhassan et al. (2018) introduced the King Abdullah International Research Center for Diabetes (KAIMRCD) dataset, which includes data from 14k people and is the world’s largest diabetic dataset. During that experiment, the author presented a CDSS architecture based on LSTM and GRU-based deep neural networks, which obtained up to 97% accuracy [ 75 ]. Table 6 highlights some of the relevant publications that employed ML and DL approaches in the diagnosis of diabetic disease.

Referenced literature that considered machine-learning-based diabetic disease diagnosis.

StudyContributionsAlgorithmDatasetData TypePerformance Evaluation
[ ]Diabetes and hypertensionDPMPrivately ownedTabularAccuracy—96.74%
[ ]Type 1 diabetesRFDIABIM-MUNETabularAUC—0.80
[ ]Diabetes classificationKNNPrivately owned- 4900 samplesTabularAccuracy—99.9%
[ ]Predict diabetic retinopathy and identify interpretable biomedical featuresSVM, DT, ANN, and LRPrivately ownedTabularSVM (Accuracy—79.5%, AUC—0.839)
[ ]Diabetes classificationPSO and MLPNNPrivately ownedTabularAccuracy—98.73%

5.5. Parkinson’s Disease

Parkinson’s disease is one of the conditions that has received a great amount of attention in the ML literature. It is a slow-progressing chronic neurological disorder. When dopamine-producing neurons in certain parts of the brain are harmed or die, people have difficulty speaking, writing, walking, and doing other core activities [ 80 ]. There are several ML-based approaches have been proposed. For instance, Sriram et al. (2013) used KNN, SVM, NB, and RF algorithms to develop intelligent Parkinson’s disease diagnosis systems. Their computational result shows that, among all other algorithms, RF shows the best performance (90.26% accuracy), and NB demonstrate the worst performance (69.23% accuracy) [ 81 ].

Esmaeilzadeh et al. (2018) proposed a deep CNN-based model to diagnose Parkinson’s disease and achieved almost 100% accuracy on train and test set [ 82 ]. However, there was no mention of any overfitting difficulties in the trial. Furthermore, the experimental results do not provide a good interpretation of the final classification and regression, which is now widely expected, particularly in CDSS. Grover et al. (2018) also used DL-based approaches on UCI’s Parkinson’s telemonitoring voice dataset. Their experiment using DNN has achieved around 81.67% accuracy in diagnosing patients with Parkinson’s disease symptoms [ 80 ].

Warjurkar and Ridhorkar (2021) conducted a thorough study on the performance of the ML-based approach in decision support systems that can detect both brain tumors and diagnose Parkinson’s patients. Based on their findings, it was obvious that, when compared to other algorithms, boosted logistic regression surpassed all other models, attaining 97.15% accuracy in identifying Parkinson’s disease patients. In tumor segmentation, however, the Markov random technique performed best, obtaining an accuracy of 97.4% [ 83 ]. Parkinson’s disease diagnosis using ML and DL approaches is summarized in Table 7 , which includes a number of references to the relevant research.

Referenced literature that considered machine-learning-based Parkinson’s disease diagnosis.

StudyContributionsAlgorithmDatasetData TypePerformance Evaluation
[ ]Parkinson’s diseaseKMC and DTPrivately ownedSpeechAccuracy—95.56%
[ ]Parkinson’s disease subtype classificationDT, LRPPMITabularAccuracy—98.3%, Sensitivity—98.41%, and Specificity—99.07%
[ ]Parkinson’s disease identificationKNN and ANNParkinson’s UI machine learning datasetTabularANN (Accuracy—96.7%)
[ ]Diagnosis system for Parkinson’s diseaseANN, KMCParkinsons datasetSpeech and soundAccuracy—99.52%
[ ]identify Parkinson’s diseaseSVMNIHSSpeech and soundAccuracy—83.33%, True positive—75%, False positive—16.67%

5.6. COVID-19

The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, pandemic has become humanity’s greatest challenge in contemporary history. Despite the fact that a vaccine had been advanced in distribution because to the global emergency, it was unavailable to the majority of people for the duration of the crisis [ 88 ]. Because of the new COVID-19 Omicron strain’s high transmission rates and vaccine-related resistance, there is an extra layer of concern. The gold standard for diagnosing COVID-19 infection is now Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) [ 89 , 90 ]. Throughout the epidemic, the researcher advocated other technologies including as chest X-rays and Computed Tomography (CT) combined with Machine Learning and Artificial Intelligence to aid in the early detection of people who might be infected. For example, Chen et al. (2020) proposed a UNet++ model employing CT images from 51 COVID-19 and 82 non-COVID-19 patients and achieved an accuracy of 98.5% [ 91 ]. Ardakani et al. (2020) used a small dataset of 108 COVID-19 and 86 non-COVID-19 patients to evaluate ten different DL models and achieved a 99% overall accuracy [ 92 ]. Wang et al. (2020) built an inception-based model with a large dataset, containing 453 CT scan images, and achieved 73.1% accuracy. However, the model’s network activity and region of interest were poorly explained [ 93 ]. Li et al. (2020) suggested the COVNet model and obtain 96% accuracy utilizing a large dataset of 4356 chest CT images of Pneumonia patients, 1296 of which were verified COVID-19 cases [ 94 ].

Several studies investigated and advised screening COVID-19 patients utilizing chest X-ray images in parallel, with major contributions in [ 95 , 96 , 97 ]. For example, Hemdan et al. (2020) used a small dataset of only 50 images to identify COVID-19 patients from chest X-ray images with an accuracy of 90% and 95%, respectively, using VGG19 and ResNet50 models [ 95 ]. Using a dataset of 100 chest X-ray images, Narin et al. (2021) distinguished COVID-19 patients from those with Pneumonia with 86% accuracy [ 97 ].

In addition, in order to develop more robust and better screening systems, other studies considered larger datasets. For example, Brunese et al. (2020) employed 6505 images with a data ratio of 1:1.17, with 3003 images classified as COVID-19 symptoms and 3520 as “other patients” for the objectives of that study [ 98 ]. With a dataset of 5941 images, Ghoshal and Tucker (2020) achieved 92.9% accuracy [ 99 ]. However, neither study looked at how their proposed models would work with data that was severely unbalanced and had mismatched class ratios. Apostolopoulos and Mpesiana (2020) employed a CNN-based Xception model on an imbalanced dataset of 284 COVID-19 and 967 non-COVID-19 patient chest X-ray images and achieved 89.6% accuracy [ 100 ].

The following Table 8 summarizes some of the relevant literature that employed ML and DL approaches to diagnose COVID-19 disease.

Referenced literature that considered machine-learning-based COVID-19 disease diagnosis.

StudyContributionsAlgorithmDatasetData TypePerformance Evaluation
[ ]COVID-19 disease detectionCNNMixed datasetImageAccuracy—90%
[ ]COVID-19 disease detectionCNNMixed datasetImageAccuracy—98.5%
[ ]COVID-19 disease detectionCNNMixed datasetImageAccuracy—86%
[ ]COVID-19 disease detectionCNNCohen’s datasetImageAccuracy—94.1%
[ ]COVID-19 disease detection and image segmentationCNNCohen’s datasetImage and TabularAccuracy—95.38%

5.7. Alzheimer’s Disease

Alzheimer is a brain illness that often begins slowly but progresses over time, and it affects 60–70% of those who are diagnosed with dementia [ 103 ]. Alzheimer’s disease symptoms include language problems, confusion, mood changes, and other behavioral disorders. Body functions gradually deteriorated, and the usual life expectancy is three to nine years after diagnosis. Early diagnosis, on the other hand, may assist to avoid and take required actions to enter into suitable treatment as soon as possible, which will also raise the possibility of life expectancy. Machine learning and deep learning have shown promising outcomes in detecting Alzheimer’s disease patients throughout the years. For instance, Neelaveni and Devasana (2020) proposed a model that can detect Alzheimer patients using SVM and DT, and achieved an accuracy of 85% and 83% respectively [ 104 ]. Collij et al. (2016) also used SVM to detect single-subject Alzheimer’s disease and mild cognitive impairment (MCI) prediction and achieved an accuracy of 82% [ 105 ].

Multiple algorithms have been adopted and tested in developing ML based Alzheimer disease diagnosis. For example, Vidushi and Shrivastava (2019) experimented using Logistic Regression (LR), SVM, DT, ensemble Random Forest (RF), and Boosting Adaboost and achieved an accuracy of 78.95%, 81.58%, 81.58%, 84.21%, and 84.21% respectively [ 106 ]. Many of the study adopted CNN based approach to detect Alzheimer patients as CNN demonstrates robust results in image processing compared to other existing algorithms. As a consequence, Ahmed et al. (2020) proposed a CNN model for earlier diagnosis and classification of Alzheimer disease. Within the dataset consists of 6628 MRI images, the proposed model achieved 99% accuracy [ 107 ]. Nawaz et al. (2020) proposed deep feature-based models and achieved an accuracy of 99.12% [ 108 ]. Additionally, Studies conducted by Haft-Javaherian et al. (2019) [ 109 ] and Aderghal et al. (2017) [ 110 ] are some of the CNN based study that also demonstrates the robustness of CNN based approach in Alzheimer disease diagnosis. ML and DL approaches employed in the diagnosis of Alzheimer’s disease are summarized in Table 9 .

Referenced literature that considered Machine Learning-based Alzheimer disease diagnosis.

StudyContributionsAlgorithmDatasetData TypePerformance Evaluation
[ ]Automatic diagnosis of Alzheimer’s disease and mild cognitive impairmentCNN+SVMF-FDG PET:PETImageAccuracy—74–90%
[ ]Predicting transition from mild cognitive impairment to Alzheimer’sLR, ARN, DT1913 privately owned casesTabularAccuracy—(89.52 ± 0.36%), AUC-ROC (92.08 ± 0.12), Sensitivity—(82.11 ± 0.42%) and Positive predictive value (75.26 ± 0.86%)
[ ]Automatic classification of Alzheimer’sDNN+RFTabularAccuracy—67%

5.8. Other Diseases

Beyond the disease mentioned above, ML and DL have been used to identify various other diseases. Big data and increasing computer processing power are two key reasons for this increased use. For example, Mao et al. (2020) used Decision Tree (DT) and Random Forest (RF) to disease classification based on eye movement [ 114 ]. Nosseir and Shawky (2019) evaluated KNN and SVM to develop automatic skin disease classification systems, and the best performance was observed using KNN by achieving an accuracy of 98.22% [ 115 ]. Khan et al. (2020) employed CNN-based approaches such as VGG16 and VGG19 to classify multimodal Brain tumors. The experiment was carried out using publicly available three image datasets: BraTs2015, BraTs2017, and BraTs2018, and achieved 97.8%, 96.9%, and 92.5% accuracy, respectively [ 116 ]. Amin et al. (2018) conducted a similar experiment utilizing the RF classifier for tumor segmentation. The authors achieved 98.7%, 98.7%, 98.4%, 90.2%, and 90.2% accuracy using BRATS 2012, BRATS 2013, BRATS 2014, BRATS 2015, and ISLES 2015 dataset, respectively [ 117 ].

Dai et al. (2019) proposed a CNN-based model to develop an application to detect Skin cancer. The authors used a publicly available dataset, HAM10000, to experiment and achieved 75.2% accuracy [ 118 ]. Daghrir et al. (2020) evaluated KNN, SVM, CNN, Majority Voting using ISIC (International Skin Imaging Collaboration) dataset to detect Melanoma skin cancer. The best result was found using Majority Voting (88.4% accuracy) [ 119 ]. Table 10 summarizes some of the referenced literature that used ML and DL techniques in various disease diagnosis.

Referenced literature that considered Machine Learning on various disease diagnoses.

StudyContributionsAlgorithmDatasetData TypePerformance Evaluation
[ ]Classify pediatric colonic inflammatory bowel disease subtypeRF74 Privately owned casesImageAccuracy—100%
[ ]classification of liver diseasessvmILPD and BUPATabularAccuracy—90–92%, Sensitivity—89–91%, F1-score—94–94.3%
[ ]HypertensionLR and ANNBRFSSTabularAccuracy—72%, AUC > 0.77
[ ]Brain tumor diagnosticCNNBrain tumor challenge websites and MRI centersImageAccuracy—90–99%
[ ]Brain tumor segmentation for multi-modality MRIRFMICCAI, BraTS 2013Image88% disc overlap
[ ]Melanoma detection with dermoscopic imagesSVM with color and feature extractorPH2ImageAccuracy—96%
[ ]Melanoma skin cancer detectionNB, DT, and KNNMED-NODEImageDT (Accuracy—82.35%)
[ ]Skin cancer detection with infrared thermal imagingEnsemble learning and DL ImagePrecision—0.9665, Recall—0.9411, F1-score—0.9536, ROC-AUC—0.9185
[ ]Hepatocellular carcinomaInceptionV3Genomic data commons databasesImageAccuracy—89–96%
[ ]Identification of liver cancerWatershed gaussian based DL (WGDL)Privately ownedImageAccuracy—99.38%
[ ]Hepatocellular carcinoma (HCC) postoperative death outcomesRF, Gradient boosting, Gbm, LR, DTBioStudies databaseTabularAUC—0.803 (RF)

6. Algorithm and Dataset Analysis

Most of the referenced literature considered multiple algorithms in MLBDD approaches. Here we have addressed multiple algorithms as hybrid approaches. For instance, Sun et al. (2021) used hybrid approaches to predict coronary Heart disease using Gaussian Naïve Bayes, Bernoulli Naïve Bayes, and Random Forest (RF) algorithms [ 111 ]. Bemando et al. (2021) adopted CNN and SVM to automate the diagnosis of Alzheimer’s disease and mild cognitive impairment [ 41 ]. Saxena et al. (2019) used KNN and Decision Tree (DT) in Heart disease diagnosis [ 131 ]; Elsalamony (2018) employed Neural Networks (NN) and SVM in detecting Anaemia disease in human red blood cells [ 132 ]. One of the key benefits of using the hybrid technique is that it is more accurate than using single ML models.

According to the relevant literature, the most extensively utilized induvial algorithms in developing MLBDD models are CNN, SVM, and LR. For instance, Kalaiselvi et al. (2020) proposed CNN based approach in Brain tumor diagnosis [ 123 ]; Dai et al. (2019) used CNN in developing a device inference app for Skin cancer detection [ 118 ]; Fathi et al. (2020) used SVM to classify liver diseases [ 121 ]; Sing et al. (2019) used SVM to classify the patients with Heart disease symptoms [ 43 ]; and Basheer et al. (2019) used Logistic Regression to detect Heart disease [ 133 ].

Figure 10 depicts the most commonly used Machine Learning algorithms in disease diagnosis. The bolder and larger font emphasizes the importance and frequency with which the algorithms in MLBDD are used. Based on the Figure, we can observe that Neural Networks, CNN, SVM, and Logistic Regression are the most commonly employed algorithms by MLBDD researchers.

An external file that holds a picture, illustration, etc.
Object name is healthcare-10-00541-g010.jpg

Word cloud for most frequently used ML algorithms in MLBDD publications.

Most MLBDD researchers utilize publically accessible datasets since they do not require permission and provide sufficient information to do the entire study. Manually gathering data from patients, on the other hand, is time-consuming; yet, numerous research utilized privately collected/owned data, either owing to their special necessity based on their experiment setup or to produce a result with actual data [ 46 , 55 , 56 , 68 , 70 ]. The Cleveland Heart disease dataset, PIMA dataset, and Parkinson dataset are the most often utilized datasets in disease diagnosis areas. Table 11 lists publicly available datasets and sources that may be useful to future academics and practitioners.

Most widely used disease diagnosis dataset URL along with the referenced literature (accessed on 16 December 2021).

StudyDiseaseDatasetURL
[ , , , , , , ]Heart diseaseCleveland database
[ , , , ]Kidney diseaseChronic kidney disease dataset
[ , , , ]DiabeticsPima diabetic dataset
[ , , , ]Parkinson diseaseParkinsons Dataset
[ , , ]Breast cancerWDBC dataset
[ , ]COVID-19Covid-chest X-ray dataset

7. Discussion

In the last 10 years, Machine Learning (ML) and Deep Learning (DL) have grown in prominence in disease diagnosis, which the annotated literature has strengthened in this study. The review began with specific research questions and attempted to answer them using the reference literature. According to the overall research, CNN is one of the most emerging algorithms, outperforming all other ML algorithms due to its solid performance with both image and tabular data [ 94 , 123 , 128 , 137 ]. Transfer learning is also gaining popularity since it does not necessitate constructing a CNN model from scratch and produces better results than typical ML methods [ 47 , 91 ]. Aside from CNN, the reference literature lists SVM, RF, and DT as some of the most common algorithms utilized widely in MLBDD. Furthermore, several researchers are emphasizing ensemble techniques in MLBDD [ 127 , 130 ]. Nonetheless, when compared to other ML algorithms, CNN is the most dominating. VGG16, VGG19, ResNet50, and UNet++ are among of the most prominent CNN architectures utilized widely in disease diagnosis.

In terms of databases, it was discovered that UCI repository data is the preferred option of academics and practitioners for constructing a Machine Learning-based Disease Diagnosis (MLBDD) model. However, while the current dataset frequently has shortcomings, several researchers have recently relied on additional data acquired from the hospital or clinic (i.e., imbalance data, missing data). To assist future researchers and practitioners interested in studying MLBDD, we have included a list of some of the most common datasets utilized in the reference literature in Table 11 , along with the link to the repository.

As previously indicated, there were several inconsistencies in terms of assessment measures published by the literature. For example, some research reported their results with accuracy [ 45 ]; others provided with accuracy, precision, recall, and F1-score [ 42 ]; while a few studies emphasized sensitivity, specificity, and true positive [ 67 ]. As a result, there were no criteria for the authors to follow in order to report their findings correctly and genuinely. Nonetheless, of all assessment criteria, accuracy is the most extensively utilized and recognized by academics.

With the emergence of COVID-19, MLBDD research switched mostly on Pneumonia and COVID-19 patient detection beginning in 2020, and COVID-19 remains a popular subject as the globe continues to battle this disease. As a result, it is projected that the application of ML and DL in the medical sphere for disease diagnosis would expand significantly in this domain in the future as well. Many questions have been raised due to the progress of ML and DL-based disease diagnosis. For example, if a doctor or other health practitioner incorrectly diagnoses a patient, he or she will be held accountable. However, if the machine does, who will be held accountable? Furthermore, fairness is an issue in ML because most ML models are skewed towards the majority class. As a result, future research should concentrate on ML ethics and fairness.

Model interpretation is absent in nearly all investigations, which is surprising. Interpreting machine learning models used to be difficult, but explainable and interpretable XAI have made it much easier. Despite the fact that the previous MLBDD lacked sufficient interpretations, it is projected that future researchers and practitioners would devote more attention to interpreting the machine learning model due to the growing demand for model interpretability.

The idea that ML alone will enough to construct an MLBDD model is a flawed one. To make the MLBDD model more dynamic, it may be anticipated that the model will need to be developed and stored on a cloud system, as the heath care industry generates a lot of data that is typically kept in cloud systems. As a result, the adversarial attack will focus on patients’ data, which is very sensitive. For future ML-based models, the data bridge and security challenges must be taken into consideration.

It is a major issue to analyze data if there is a large disparity in the data. As the ML-based diagnostic model deals with human life, every misdiagnosis is a possible danger to one’s health. However, despite the fact that many study used the imbalance dataset to perform their experiment, none of the cited literature highlights issues related to imbalance data. Thus, future work should demonstrate the validity of any ML models while developing with imbalanced data.

Within the many scopes this review paper also have some limitations which can be summarized as follows:

  • 1. The study first searched the Scopus and WOS databases for relevant papers and then examined other papers that were pertinent to this investigation. If other databases like Google Scholar and Pubmed were used, the findings might be somewhat different. As a result, our study may provide some insight into MLBDD, but there is still a great deal of information that is outside of our control.
  • 2. ML algorithms, DL algorithms, dataset, disease classifications, and evaluation metrics are highlighted in the review. Though the suggested ML process is thoroughly examined in reference literature, this paper does not go into that level of detail.
  • 3. Only those publications that adhered to a systematic literature review technique were included in the study’s paper selection process. Using a more comprehensive range of keywords, on the other hand, might lead to higher search activity. However, our SLR approach will provide researchers and practitioners with a more thorough understanding of MLBDD.

8. Research Challenges and Future Agenda

While machine learning-based applications have been used extensively in disease diagnosis, researchers and practitioners still face several challenges when deploying them as a practical application in healthcare. In this section, the key challenges associated with ML in disease diagnosis have been summarized as follows:

8.1. Data Related Challenges

  • 1. Data scarcity: Even though many patients’ data has been recorded by different hospitals and healthcare, due to the data privacy act, real-world data is not often available for global research purposes.
  • 2. Noisy data: Frequently, the clinical data contains noise or missing values; therefore, such kind of data takes a reasonable amount of time to make it trainable.
  • 3. Adversarial attack: Adversarial attack is one of the key issues in the disease dataset. Adversarial attack means the manipulation of training data, testing data, or machine learning model to result in wrong output from ML.

8.2. Disease Diagnosis-Related Challenges

  • 1. Misclassification: While the machine learning model can be used to develop as a disease diagnosis model, any misclassification for a particular disease might bring severe damage. For instance, if a patient with stomach cancer is diagnosed as a non-cancer patient, it will have a huge impact.
  • 2. Wrong image segmentation: One of the key challenges with the ML model is that the model often identifies the wrong region as an infected region. For instance, author Ahsan et al. (2020) shows that even though the accuracy is around 100% in detecting COVID-19 and non-COVID-19 patients, the pre-trained CNN models such as VGG16 and VGG19 often pay attention to the wrong region during the training process [ 2 ]. As a result, it also raises the question of the validity of the MLBDD.
  • 3. Confusion: Some of the diseases such as COVID-19, pneumonia, edema in the chest often demonstrate similar symptoms; in these particular cases, many CNN models detect all of the data samples into one class, i.e., COVID-19.

8.3. Algorithm Related Challenges

  • 1. Supervised vs. unsupervised: Most ML models (Linear regression, logistic regression) performed very well with the labeled data. However, similar algorithms’ performance was significantly reduced with the unlabeled data. On the other hand, popular algorithms that can perform well with unlabeled data such as K-means clustering, SVM, and KNNs performance also degraded with multidimensional data.
  • 2. Blackbox-related challenges: One of the most widely used ML algorithms is convolutional neural networks. However, one of the key challenges associated with this algorithm is that it is often hard to interpret how the model adjusts internal parameters such as learning rate and weights. In healthcare, implementing such an algorithm-related model needs proper explanations.

8.4. Future Directions

The challenges addressed in the above section might give some future direction to future researchers and practitioners. Here we have introduced some of the possible algorithms and applications that might overcome existing MLBDD challenges.

  • 1. GAN-based approach: Generative adversarial network is one of the most popular approaches in deep learning fields. Using this approach, it is possible to generate synthetic data which looks almost similar to the real data. Therefore, GAN might be a good option for handling data scarcity issues. Moreover, it will also reduce the dependency on real data and also will help to follow the data privacy act.
  • 2. Explainable AI: Explainable AI is a popular domain that is now widely used to explain the algorithms’ behavior during training and prediction. Still, the explainable AI domains face many challenges; however, the implementation of interpretability and explainability clarifies the ML models’ deployment in the real world.
  • 3. Ensemble-based approach: With the advancement of modern technology, we can now capture high resolutions and multidimensional data. While the traditional ML approach might not perform well with high-quality data, a combination of several machine learning models might be an excellent option to handle such high-dimensional data.

9. Conclusions and Potential Remarks

This study reviewed the papers published between 2012–2021 that focused on Machine Learning-based Disease Diagnosis (MLBDD). Researchers are particularly interested in some diseases, such as Heart disease, Breast cancer, Kidney disease, Diabetes, Alzheimer’s, and Parkinson’s diseases, which are discussed considering machine learning/deep learning-based techniques. Additionally, some other ML-based disease diagnosis approaches are discussed as well. Prior to that, A bibliometric analysis was performed, taking into account a variety of parameters such as subject area, publication year, journal, country, and identifying the most prominent contributors in the MLBDD field. According to our bibliometric research, machine learning applications in disease diagnosis have grown at an exponential rate since 2017. In terms of overall number of publications over the years, IEEE Access, Scientific Reports, and the International Journal of advanced computer science and applications are the three most productive journals. The three most-cited publications on MLBDD are those by Motwani et al. (2017), Gray et al. (2013), and Mohan et al. (2019). In terms of overall publications, China, the United States, and India are the three most productive countries. Kim J, the most influential author, published around 20 publications between 2012 and 2021, followed by Wang Y and Li J, who came in second and third place, respectively. Around 40% of the publication are from computer science domains and around 31% from engineering fields, demonstrating their domination in the MLBDD field.

Finally, we have systematically selected 102 papers for in-depth analysis. Our overall findings were highlighted in the discussion sections. Because of its remarkable performance in constructing a robust model, our primary conclusion implies that deep learning is the most popular method for researchers. Despite the fact that deep learning is widely applied in MLBDD fields, the majority of the research lacks sufficient explanations of the final predictions. As a result, future research in MLBDD needs focus on pre and post hoc analysis and model interpretation in order to use the ML model in healthcare.

Physical patient services are increasingly dangerous as a result of the emergence of COVID-19. At the same time, the health-care system must be maintained. While telemedicine and online consultation are becoming more popular, it is still important to consider an alternate strategy that may also highlight the importance of in-person health facilities. Many recent studies recommend home-robot service for patient care rather than hospitalization [ 138 ].

Many countries are increasingly worried about the privacy of patients’ data. Many nations have also raised legal concerns about the ethics of AI and ML when used with real-world patient data [ 139 ]. As a result, rather of depending on data gathering and processing, future study could try producing synthetic data. Some of the techniques that future researchers and practitioners may be interested in to produce synthetic data for the experiment include generative adversarial networks, ADASYN, SMOTE, and SVM-SMOTE.

Cloud systems are becoming potential threats as a result of data storage in it. As a result, any built ML models must safeguard patient access and transaction concerns. Many academics exploited blockchain technology to access and distribute data [ 140 , 141 ]. As a result, blockchain technology paired with deep learning and machine learning might be a promising study subject for constructing safe diagnostic systems.

We anticipate that our review will guide both novice and expert research and practitioners in MLBDD. It would be interesting to see some research work based on the limitations addressed in the discussion and conclusion section. Additionally, future works in MLBDD might focus on multiclass classification with highly imbalanced data along with highly missing data, explanation and Interpretation of multiclass data classification using XAI, and optimizing the big data containing numerical, categorical, and image data.

Author Contributions

Conceptualization—M.M.A.; methodology—M.M.A. and Z.S.; software—M.M.A.; validation—Z.S. and S.A.L.; formal analysis—S.A.L.; investigation—Z.S.; writing—original draft preparation—M.M.A.; writing—review and editing—M.M.A., S.A.L., Z.S.; supervision—Z.S. All authors have read and agreed to the published version of the manuscript.

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

COMMENTS

  1. Yale Medicine Thesis Digital Library | School of Medicine ...

    Starting with the Yale School of Medicine (YSM) graduating class of 2002, the Cushing/Whitney Medical Library and YSM Office of Student Research have collaborated on the Yale Medicine Thesis Digital Library (YMTDL) project, publishing the digitized full text of medical student theses on the web as a valuable byproduct of Yale student research ...

  2. (PDF) Medical Diagnostic Systems Using Artificial ...

    This research paper aims to reveal some important insights into current and previous different AI techniques in the medical field used in today’s medical research, particularly in heart disease...

  3. (PDF) Medical Diagnosis Using Machine Learning: A Statistical ...

    Hence, to determine the use of ML to improve the diagnosis in varied medical disciplines, a systematic review is conducted in this study. To carry out the review, six different databases are ...

  4. Artificial Intelligence in Healthcare - DiVA

    thesis intends to investigate how AI can affect the accuracy of diagnosis as well as how its integration in healthcare relates to the technical, ethical and legal aspects. The thesis begins with a literature review, which serves as a theoretical foundation and allows for a conceptual framework to be formed.

  5. (PDF) Research Methodology for Studies of Diagnostic Tests

    This chapter will introduce the various ways of assessing the accuracy of diagnostic tests, which will include discussions of sensitivity, specificity, predictive value, likelihood ratio, and...

  6. (PDF) Implementation and Use of Disease ... - Academia.edu

    I. INTRODUCTION The term diagnosis is used for finding symptoms of disease or analysis of the patients to determine the health conditions.

  7. Improving Clinical Diagnosis Performance with Automated X-ray ...

    In this paper, approaches for automatically assessing the quality of diagnostic scan images as part of clinical workflow management is proposed. The exposure level of each input image is analyzed using an exposure-level detection algorithm, and classified as under-exposed, over-exposed or normal, and normalized using image intensity equalization.

  8. Artificial intelligence in medical imaging: switching from ...

    The use of artificial intelligence (AI) in diagnostic . medical imaging is undergoing extensive evaluation. AI has shown impressive accuracy and sensitivity in the identification of imaging abnormalities and promises to enhance tissue-based detection and characterisation. 1. However, with improved sensitivity emerges an impor-

  9. Medical Diagnostic Systems Using Artificial Intelligence (AI ...

    A detailed analysis of those articles was conducted in order to classify most used AI techniques for medical diagnostic systems. We further discuss various diseases along with corresponding techniques of AI, including Fuzzy Logic, Machine Learning, and Deep Learning.

  10. Machine-Learning-Based Disease Diagnosis: A Comprehensive ...

    In medical domains, artificial intelligence (AI) primarily focuses on developing the algorithms and techniques to determine whether a system’s behavior is correct in disease diagnosis. Medical diagnosis identifies the disease or conditions that explain a person’s symptoms and signs.