Your browser is not supported
Sorry but it looks as if your browser is out of date. To get the best experience using our site we recommend that you upgrade or switch browsers.
Find a solution
- Skip to main content
- Skip to navigation
- Macmillan English
- Onestopenglish
- Digital Shop
- Back to parent navigation item
- Sample material
- Amazing World of Animals
- Amazing World of Food
- Arts and Crafts
- Mathematics
- Transport and Communication
- Teaching Tools
- Sustainable Development and Global Citizenship
- Support for Teaching Children
- Vocabulary & Phonics
- Spelling Bee Games
- Phonics & Sounds
- The Alphabet
- Onestop Phonics: The Alphabet
- Alphabet Booklet
- Interactive Flashcards
- Warmers & Fillers
- Young Learner Games
- Stories and Poems
- Fillers & Pastimes
- Fun Fillers
- Ready for School!
- Topics & Themes
- Young Learner Topics
- Young Learner Festivals
- Festival Worksheets
- Art and Architecture
- Business and Tourism
- Geography and the Environment
- Information Technology
- Science and Nature
- Topic-based Listening Lessons
- Cambridge English
- Cambridge English: Preliminary (PET)
- Cambridge English: First (FCE)
- Cambridge English: Proficiency (CPE)
- Cambridge English: Advanced (CAE)
- General English
- News Lessons
- Topics and Themes
- Beyond (BrE)
- Beyond: Arts and Media
- Beyond: Knowledge
- Go Beyond (AmE)
- Go Beyond: Arts & Media
- Go Beyond: Knowledge
- Impressions
- Macmillan Readers
- A Time to Travel
- Life & School
- Skills for Problem Solving
- Digital Skills for Teens
- Support for Teaching Teenagers
- Games Teaching Materials
- Business and ESP
- Business Lesson Plans
- Business Skills Bank
- Business Top Trumps
- Elementary Business Lessons
- HR Management
- Let's Talk Business
- Business News Lessons
- ESP Lesson Plans
- Career Readiness
- Professional Communication Skills
- Cambridge English: Business (BEC)
- Everyday Life
- Celebrations
- Live from...
- Live from London
- Discussion Cards
- Writing Lesson Plans
- Life Skills
- Support for Teaching Adults
- Vocabulary Lesson Plans
- Language for...
- Vocabulary Teaching Materials
- Macmillan Dictionary Blog
- Vocabulary Infographics
- Kahoot! Quizzes
- Blog Articles
- Professional Development
- Lesson Share
- Methodology: Projects and Activities
- Methodology: Tips for Teachers
- Methodology: The World of ELT
- Advancing Learning
- Online Teaching
- More from navigation items
- 1 Your CLIL
- 2 Conclusions and findings: Science
- 3 Generalizations: Geography
- 4 Explanations: Science
- 5 Change: Science
- 6 Change: Geography
- 7 Roots: Science
- 8 Roots: Geography
- 9 Compounds: Science
- 10 Process: Science
- 11 Compounds: Geography
- 12 Process: Geography
- 13 Attributing: Science
- 14 Attributing: Geography
- 15 Line graphs: Science
- 16 Line graphs: Geography
- 17 Hypothesis: Science
- 18 Hypothesis: Geography
- 19 Measuring: Science
- 20 Measuring: Geography
- 21 Classification: Geography
- 22 Classification: Science
- 23 Comparisons: Science
- 24 Comparisons: Geography
- 25 Cause and effect: Geography
Hypothesis: Geography
By Keith Kelly
- No comments
Keith Kelly looks at examples of the language of hypothesis, prediction and conditions from the area of geography, covering common structures and lexical phrases.
Common structures
Predicting with a greater degree of certainty.
If … happens, … will: If the population continues to increase at this pace, it will double in less than 20 years.
As … happens, (then) … will/may happen: As a country’s economy develops, its population will grow very slowly at first, but will then grow rapidly later and may finally stop growing.
When … happens, (then) … will happen: When the magma cools, it will form igneous rock within the crust.
Because … happens, (then) … will happen: Because the resources are used at a faster rate than they are replaced, they will be run down to levels at which they become of little use to people.
Predicting with a lesser degree of certainty
If … happens, … may / might / can / could happen (possibility):
- If a cave erodes all the way through a headland, an arch may form.
- If many vehicles pass over the sand dunes throughout the year, this can greatly reduce vegetation cover.
- If greenhouse gases continue to accumulate at their present rate, the earth’s temperature could rise by around 3ºC in the 21 st century. Health problems could increase in temperate latitudes as tropical diseases might spread to these regions due to higher summer temperatures.
If … happened, … would happen (probability): If cultural regions were based only on language, they would be relatively easy to define.
Assuming … happened, … would happen (probability): Assuming working hours were reduced, the cost of manufacturing would increase.
If … had happened, … would have happened (speculation about the past): If a similar mudflow had hit a town in a rich country, fewer homes would have been destroyed.
Predicting using a negative construction
Unless … happens, … will not happen / … will not happen, unless … happens: Unless more oil is found, or energy use is controlled, the world’s oil supply will not last beyond the end of the 21st century. The population of the island will not be evacuated unless there is a real perceived threat from the active volcano.
If / When … does not happen, … will happen / … will not happen: If the rain does not fall, it will cause drought, crop failure and famine. When the tide comes in beyond the markers, the fishermen will not be able to lay their nets.
Common lexical phrases
Whether … happens depends on … / … happening requires … (entails, calls for, demands, needs): Whether river erosion happens quickly or slowly depends on hardness of rock, volume of water and river speed. Maximising a crop harvest demands a lot of forward planning and preparation and calls for a certain amount of pure luck.
A requirement (condition / prerequisite / necessity) for … to happen is … / One of the conditions for … is …: Conditions for effective distribution ( to happen ) include access to wide, well-surfaced routes, and airports or ports. One of the conditions for effective distribution is access to wide, well-surfaced routes, and airports or ports.
For … to happen, … is essential (necessary/crucial/vital): For rice to grow effectively, waterlogged conditions are essential .
- Geography & Places
Conclusions and findings: Science
Generalizations: geography, explanations: science, change: science, change: geography, roots: science, roots: geography, compounds: science, process: science, compounds: geography, process: geography, attributing: science, attributing: geography, line graphs: science, line graphs: geography, hypothesis: science, measuring: science, measuring: geography, classification: geography, classification: science, comparisons: science, comparisons: geography, cause and effect: geography, related articles.
Hard-hitting warning labels should be on everyday food, say campaigners
By Karen Capel
Read about a proposal to put warning labels on food products.
High tech, high yields? The Kenyan farmers deploying AI to increase productivity
By Tim Bowen
Farmers in Kenya are using artificial intelligence to get advice to help them improve their crops.
Business New Lessons: What sport can teach us about business
By Engeli Haupt
Read about what social scientists have learned from studying sport and real-life (and business) applications.
No comments yet
Only registered users can comment on this article., more from clil.
Keith Kelly looks at examples of language used in making conclusions and findings from the area of science, categorized by nouns, verbs, word groups and prepositions.
Conclusions and findings: Geography
Keith Kelly looks at examples of language used in making conclusions and findings from the area of geography, categorized by nouns, verbs, word groups and prepositions.
Generalizations: Science
Keith Kelly looks at examples of language used in making generalizations from the area of science; these can be split into three broad groups: quantity, frequency and certainty.
Join onestopenglish today
With more than 700,000 registered users in over 100 countries around the world, Onestopenglish is the number one resource site for English language teachers, providing access to thousands of resources, including lesson plans, worksheets, audio, video and flashcards.
- Connect with us on Facebook
- Connect with us on Twitter
- Connect with us on Youtube
Onestopenglish is a teacher resource site, part of Macmillan Education, one of the world’s leading publishers of English language teaching materials.
- Privacy Policy
- Cookie policy
- Manage cookies
©Macmillan Education Limited 2023. Company number: 1755588 VAT number: 199440621
Site powered by Webvision Cloud
- Essay Editor
How to Write a Hypothesis: Step-By-Step Guide
A hypothesis is a testable statement that guides scientific research. Want to know how to write a hypothesis for your research paper? This guide will show you the key steps involved, including defining your variables and phrasing your hypothesis correctly.
Key Takeaways
- A hypothesis is a testable statement proposed for investigation, grounded in existing knowledge, essential for guiding scientific research.
- Understanding different types of hypotheses, including simple, complex, null, and alternative, is crucial for selecting appropriate research approaches.
- Crafting a strong hypothesis involves a systematic process including defining variables, phrasing it as an if-then statement, and ensuring it is clear, specific, and testable.
Understanding a Hypothesis
An empirical hypothesis is not just a simple guess. It represents a preliminary concept that stands to be scrutinized through Research and experimentation. A well-constructed hypothesis is a fundamental component of the scientific method, guiding experiments and leading to conclusions. Within the realm of science, such hypotheses are crafted after an extensive examination of current knowledge, ensuring their foundation on already established evidence prior to beginning any new inquiry.
Essentially, a hypothesis in the scientific community must present itself as something capable of being tested, this characteristic distinguishes it from mere speculation by allowing its potential verification or falsification through methodical scrutiny. Hypotheses serve as crucial instruments within scientific studies, directing these investigations toward particular queries and forming the backbone upon which all experiments rest in their pursuit for advancements in comprehension.
When formulating a hypothesis for testing within research activities, one should employ language that remains neutral and detached from subjective bias thereby bolstering the legitimacy of outcomes produced during the study. This precision fosters greater confidence in results obtained under rigorous evaluation standards among peers.
Characteristics of a Good Hypothesis
A good hypothesis is the cornerstone of any successful scientific research. It should be clear, concise, and testable, providing a solid foundation for your investigation. Here are some key characteristics that define a good hypothesis:
- Clarity : A good hypothesis should be easy to understand and clearly state the expected outcome of the research. For example , “Increased exposure to sunlight will result in taller plant growth” is a clear and straightforward hypothesis.
- Conciseness : Avoid unnecessary complexity or jargon. A concise hypothesis is brief and to the point, making it easier to test and analyze. For instance, “Exercise improves mental health” is concise and direct.
- Testability : A good hypothesis must be testable and falsifiable, meaning it can be proven or disproven through scientific research methods. For example, “Consuming vitamin C reduces the duration of the common cold” is a testable hypothesis.
- Relevance : Ensure your hypothesis is relevant to the research question or problem and aligned with your research objectives. For example, if your research question is about the impact of diet on health, a relevant hypothesis could be “A high-fiber diet reduces the risk of heart disease.”
- Specificity : A good hypothesis should be specific and focused on a particular aspect of the research question. For example, “Daily meditation reduces stress levels in college students” is specific and targeted.
- Measurability : Your hypothesis should be measurable, meaning it can be quantified or observed. For example, “Regular physical activity lowers blood pressure” is a measurable hypothesis.
By ensuring your hypothesis possesses these characteristics, you set a strong foundation for your scientific research, guiding your investigation towards meaningful and reliable results.
Types of Hypotheses
Scientific research incorporates a range of research hypotheses, which are crucial for proposing relationships between different variables and steering the direction of the investigation. These seven unique forms of hypotheses cater to diverse needs within the realm of scientific inquiry.
Comprehending these various types is essential in selecting an appropriate method for conducting research. To delve into details, we have simple, complex, null and alternative hypotheses. Each brings its distinct features and practical implications to the table. It underscores why recognizing how they diverge and what purposes they serve is fundamental in any scientific study.
Simple Hypothesis
A basic hypothesis suggests a fundamental relationship between two elements: the independent and dependent variable. Take, for example, a hypothesis that says, “The taller growth of plants (dependent variable) is due to increased exposure to sunlight (independent variable).” Such hypotheses are clear-cut and easily testable as they concentrate on one direct cause-and-effect link.
These types of straightforward hypotheses are very beneficial in scientific experiments because they permit the isolation of variables for precise outcome measurement. Their simplicity lends itself well to being an essential component in conducting scientific research, thanks to their unambiguous nature and targeted focus on specific relationships.
Complex Hypothesis
Alternatively, a complex hypothesis proposes an interconnection amongst several variables. It builds on the concept of numerous variable interactions within research parameters. Take for instance a causal hypothesis which asserts that sustained alcohol consumption (the independent variable) leads to liver impairment (the dependent variable), with additional influences like use duration and general health results impacting this relationship.
Involving various factors, complex hypotheses reveal the nuanced interaction of elements that affect results. Although they provide extensive insight into studied phenomena, such hypotheses necessitate advanced research frameworks and analysis techniques to be understood properly.
Null Hypothesis
In the realm of hypothesis testing, the null hypothesis (H0) serves as a fundamental presumption suggesting that there exists no association between the variables under investigation. It posits that variations within the dependent variable are attributed to random chance and not an influential relationship. Take for instance a null hypothesis which could propose “There is no impact of sleep duration on productivity levels.”
The significance of the null hypothesis lies in its role as a reference point which researchers strive to refute during their investigations. Upon uncovering statistical evidence indicative of a substantial linkage, it becomes necessary to discard the null hypothesis. The act of rejecting this foundational assumption is critical for affirming research findings and assessing their importance with respect to outcomes observed.
Alternative Hypothesis
The alternative hypothesis, often represented by H1 or Ha, contradicts the null hypothesis and proposes a meaningful link between variables under examination. For example, where the null hypothesis asserts that a particular medication is ineffective, the alternative might posit that “Compared to placebo treatment, the new drug yields beneficial effects.”
By claiming outcomes are non-random and carry weight, the alternative hypothesis bolsters theoretical assertions. Its testable prediction propels scientific investigation forward as it aims either to corroborate or debunk what’s posited by the null hypothesis.
Consider an assertive statement like “Productivity is influenced by sleep duration” which serves as a crisp articulation of an alternative hypothesis.
Steps to Write a Hypothesis
Crafting a hypothesis is a methodical process that begins with curiosity and culminates in a testable prediction. Writing a hypothesis involves following structured steps to ensure clarity, focus, and researchability. Steps include asking a research question, conducting preliminary research, defining variables, and phrasing the hypothesis as an if-then statement.
Each step is critical in formulating a strong hypothesis to guide research and lead to meaningful discoveries.
Ask a Research Question
A well-defined research question forms the cornerstone of a strong hypothesis, guiding your investigation towards a significant and targeted exploration. By rooting this question in observations and existing studies, it becomes pertinent and ripe for research. For example, noting that certain snacks are more popular could prompt the inquiry: “Does providing healthy snack options in an office setting enhance employee productivity?”.
Such a thoughtfully constructed question lays the groundwork for your research hypothesis, steering your scholarly work to be concentrated and purposeful.
Conduct Preliminary Research
Begin your research endeavor by conducting preliminary investigations into established theories, past studies, and available data. This initial stage is crucial as it equips you with a comprehensive background to craft an informed hypothesis while pinpointing any existing voids in current knowledge. Understanding the concept of a statistical hypothesis can also be beneficial, as it involves drawing conclusions about a population based on a sample and applying statistical evidence.
By reviewing literature and examining previously published research papers, one can discern the various variables of interest and their interconnections. Should the findings from these early inquiries refute your original hypothesis, adjust it accordingly so that it resonates with already recognized evidence.
Define Your Variables
A well-formed hypothesis should unambiguously identify the independent and dependent variables involved. In an investigation exploring how plant growth is affected by sunlight, for instance, plant height represents the dependent variable, while the quantity of sunlight exposure constitutes the independent variable.
It is essential to explicitly state all the variables included in a study so that the hypothesis can be tested with accuracy and specificity. Defining these variables distinctly facilitates a targeted and quantifiable examination.
Phrase as an If-Then Statement
A good hypothesis is typically structured in the form of if-then statements, allowing for a clear demonstration of the anticipated link between different variables. Take, for example, stating that administering drug X could result in reduced fatigue among patients. This outcome would be especially advantageous to individuals receiving cancer therapy. The structure aids in explicitly defining the cause-and-effect dynamic.
In order to craft a strong hypothesis, it should be capable of being tested and grounded on existing knowledge or theoretical frameworks. It should also be framed as a statement that can potentially be refuted by experimental data, which qualifies it as a solidly formulated hypothesis.
Collect Data to Support Your Hypothesis
Once you have formulated a hypothesis, the next crucial step is to collect data to support or refute it. This involves designing and conducting experiments or studies that test the hypothesis, and collecting and analyzing data to determine whether the hypothesis holds true.
Here are the key steps in collecting data to support your hypothesis:
- Designing an Experiment or Study : Start by identifying your research question or problem. Design a study or experiment that specifically tests your hypothesis. For example, if your hypothesis is “Daily exercise improves cognitive function,” design an experiment that measures cognitive function in individuals who exercise daily versus those who do not.
- Collecting Data : Gather data through various methods such as experiments, surveys, observations, or other techniques. Ensure your data collection methods are reliable and valid. For instance, use standardized tests to measure cognitive function in your exercise study.
- Analyzing Data : Use statistical methods or other techniques to analyze the data. This step involves determining whether the data supports or refutes your hypothesis. For example, use statistical tests to compare cognitive function scores between the exercise and non-exercise groups .
- Interpreting Results : Interpret the results of your data analysis to determine whether your hypothesis is supported. For instance, if the exercise group shows significantly higher cognitive function scores, your hypothesis is supported. If not, you may need to refine your hypothesis or explore other variables.
By following these steps, you can systematically collect and analyze data to support or refute your hypothesis, ensuring your research is grounded in empirical evidence.
Refining Your Hypothesis
To ensure your hypothesis is precise, comprehensible, verifiable, straightforward, and pertinent, you must refine it meticulously. Creating a compelling hypothesis involves careful consideration of its transparency, purposeful direction and the potential results. This requires unmistakably delineating the subject matter and central point of your experiment.
Your hypothesis should undergo stringent examination to remove any uncertainties and define parameters that guarantee both ethical integrity and scientific credibility. An effective hypothesis not only questions prevailing assumptions, but also maintains an ethically responsible framework.
Testing Your Hypothesis
Having a robust research methodology is essential for efficiently evaluating your hypothesis. It is important to ensure that the integrity and validity of the research are upheld through adherence to ethical standards. The data gathered ought to be both representative and tailored specifically towards validating or invalidating the hypothesis.
In order to ascertain whether there’s any significant difference, statistical analyses measure variations both within and across groups. Frequently, the decision on whether to discard the null hypothesis hinges on establishing a p-value cut-off point, which conventionally stands at 0.05.
Tips for Writing a Research Hypothesis
Writing a research hypothesis can be a challenging task, but with the right approach, you can craft a strong and testable hypothesis. Here are some tips to help you write a research hypothesis:
- Start with a Research Question : A good hypothesis starts with a clear and focused research question. For example, “Does regular exercise improve mental health?” can lead to a hypothesis like “Regular exercise reduces symptoms of depression.”
- Conduct Preliminary Research : Conducting preliminary research helps you identify a knowledge gap in your field and develop a hypothesis that is relevant and testable. Review existing literature and studies to inform your hypothesis.
- Use Clear and Concise Language : A good hypothesis should be easy to understand and use clear and concise language. Avoid jargon and complex terms. For example, “Increased screen time negatively impacts sleep quality” is clear and straightforward.
- Avoid Ambiguity and Vagueness : Ensure your hypothesis is free from ambiguity and vagueness. Clearly state the expected outcome of the research. For example, “Consuming caffeine before bedtime reduces sleep duration” is specific and unambiguous.
- Make Sure It Is Testable : A good hypothesis should be testable and falsifiable, meaning it can be proven or disproven through scientific research methods. For example, “A high-protein diet increases muscle mass” is a testable hypothesis.
- Use Existing Knowledge and Research : Base your hypothesis on existing knowledge and research. Align it with your research objectives and ensure it is grounded in established theories or findings.
Common mistakes to avoid when writing a research hypothesis include:
- Making It Too Broad or Too Narrow : A good hypothesis should be specific and focused on a particular aspect of the research question. Avoid overly broad or narrow hypotheses.
- Making It Too Vague or Ambiguous : Ensure your hypothesis is clear and concise, avoiding ambiguity and vagueness.
- Failing to Make It Testable : A good hypothesis should be testable and falsifiable. Ensure it can be proven or disproven through scientific research methods.
- Failing to Use Existing Knowledge and Research : Base your hypothesis on existing knowledge and research. Align it with your research objectives and ensure it is grounded in established theories or findings.
By following these tips and avoiding common mistakes, you can write a strong and testable research hypothesis that will guide your scientific investigation towards meaningful and reliable results.
Examples of Good and Bad Hypotheses
A well-constructed hypothesis is distinct, precise, and capable of being empirically verified. To be considered a good hypothesis, it must offer measurable and examinable criteria through experimental means. Take the claim “Working from home boosts job satisfaction” as an example. This posits a testable outcome related to work environments.
On the other hand, a subpar hypothesis such as “Garlic repels vampires” falls short because it hinges on fantastical elements that cannot be substantiated or refuted in reality. The ability to distinguish between strong and weak hypotheses plays an essential role in conducting successful research.
Importance of a Testable Hypothesis
A hypothesis that can be subjected to testing forms the basis of a scientific experiment, outlining anticipated results. For a hypothesis to qualify as testable, it must possess key attributes such as being able to be falsified and verifiable or disprovable via experimental means. It serves as an essential platform for conducting fresh research with the potential to confirm or debunk it.
Crafting a robust testable hypothesis yields clear forecasts derived from previous studies. Should both the predictions and outcomes stemming from a hypothesis lack this critical aspect of testability, they will remain ambiguous, rendering the associated experiment ineffective in conclusively proving or negating anything of substance.
In summary, crafting a strong hypothesis constitutes an essential ability within the realm of scientific research. Grasping the various forms of hypotheses and mastering the process for their formulation and refinement are critical to establishing your research as solid and significant. It is crucial to underscore that having a testable hypothesis serves as the bedrock for successful scientific investigation.
Frequently Asked Questions
How can you formulate a hypothesis.
To formulate a hypothesis, first state the question your experiment aims to answer and identify the independent and dependent variables.
Then create an “If, Then” statement that succinctly defines the relationship between these variables.
What is a hypothesis in scientific research?
In the research process, a hypothesis acts as a tentative concept that is put forward for additional scrutiny and examination, establishing the bedrock upon which scientific experiments are built. It steers the course of research by forecasting possible results.
What are the different types of hypotheses?
Hypotheses can be classified into simple, complex, null, and alternative types, each type fulfilling distinct roles in scientific research.
Understanding these differences is crucial for effective hypothesis formulation.
How do I write a hypothesis?
To write a hypothesis, start by formulating a research question and conducting preliminary research.
Then define your variables and express your hypothesis in the form of an if-then statement.
Why is a testable hypothesis important?
Having a testable hypothesis is vital because it provides a definitive structure for conducting research, allowing for particular predictions that experimentation can either verify or refute.
Such an element significantly improves the process of scientific investigation.
Related articles
How to write a college essay.
Every high school student knows that the college essay is a make-or-break part of the application process. There are, of course, distinct requirements involved and strict scoring criteria. It is a personal statement about you and your character. In this article, we will provide a comprehensive overview of how to write the common application essay, what colleges are looking for, and some important dos and don’ts to keep in mind for college essays. Remember that you should start writing college ...
Top Transition Words for Essays: Enhance Your Writing Now
Transition words are crucial for crafting coherent, engaging essays. They help guide your readers from one idea to the next or from one paragraph to another, ensuring your arguments flow logically. In this article, we’ll explore essential transition words for essays and how to use them effectively. Key Takeaways * Transition words are essential in academic writing as they enhance coherence and clarity by connecting ideas and guiding readers through the text, helping the reader understand the ...
Mastering the Art of Essay Writing: How to Write an Essay
Struggling with how to write an essay? Before you begin writing, it's crucial to brainstorm and organize your thoughts. This guide will cover everything you need to know, from generating ideas to polishing your final draft. Let’s break down the essay writing process into simple, manageable steps that anyone can follow. Key Takeaways * A successful essay involves preparation, writing, and revisions with a clear understanding of your message and audience. * The introduction should hook the re ...
Perfecting How to Write a Conclusion for an Essay
Struggling to wrap up your college essay? You need a conclusion that ties everything together and leaves a strong final impression. This article will show you exactly how to write a conclusion for an essay, covering how to restate your thesis, summarize key points, highlight broader implications, and avoid common mistakes. Key Takeaways * Restate your thesis in a fresh way to remind readers of your main argument while reflecting on insights from the essay. * Summarize key points cohesively ...
How to Write a Research Paper: The Ultimate Step-by-Step Guide
Writing a research paper can seem daunting, but breaking it down into clear steps can make the process manageable and even enjoyable. An essential part of this process is data collection, which involves gathering information systematically to support your thesis or inquiry. This guide will walk you through each stage of writing a research paper, from understanding what a research paper is to choosing an engaging topic, conducting preliminary research, crafting a thesis statement, and more. By fo ...
How Long Is An Essay
If you are a student, you undoubtedly face the question of how long your essays should be. The short answer to this question is that it depends. However, there are certain constructs that you should keep in mind regardless of the length of time your professor requires. Academic writing is a fine art, after all. In this article, we will provide an overview of typical essay lengths and the components that they should include. One thing that you should keep in mind is that essays are different f ...
Chicago Manual of Style: Chicago Style Footnotes
Essays and similar educational papers when you are working on your master's degree are an essential part of any student's life. Even when you become a professional, stating your opinion or establishing a viewpoint might require assembling a written article to reach the necessary audience. And 99% of the time, you will be basing your text on any kind of published work of another specialist. Surely, the process of writing an entire essay requires the most time and effort from the creator. However ...
What Is a Dissertation? How Doctoral Students Navigate the Process?
So, when does a person start getting interested in writing a dissertation? You can still be a university student, thinking about starting the doctorate program, or maybe you are already done with the comprehensive exams, and the dissertation process is about to start. Surely, all doctoral candidates must write a dissertation to get the degree they have been working on for years, yet what else? In this article, you will learn about what a dissertation is, as well as dive into the step-by-step pr ...
- PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
- EDIT Edit this Article
- EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Forums Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
- Browse Articles
- Learn Something New
- Quizzes Hot
- Happiness Hub
- This Or That Game
- Train Your Brain
- Explore More
- Support wikiHow
- About wikiHow
- Log in / Sign up
- Education and Communications
- Science Writing
How to Write a Hypothesis
Last Updated: October 30, 2024 Fact Checked
This article was co-authored by Bess Ruff, MA . Bess Ruff is a Geography PhD student at Florida State University. She received her MA in Environmental Science and Management from the University of California, Santa Barbara in 2016. She has conducted survey work for marine spatial planning projects in the Caribbean and provided research support as a graduate fellow for the Sustainable Fisheries Group. There are 9 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 1,036,624 times.
A hypothesis is a description of a pattern in nature or an explanation about some real-world phenomenon that can be tested through observation and experimentation. The most common way a hypothesis is used in scientific research is as a tentative, testable, and falsifiable statement that explains some observed phenomenon in nature. [1] X Research source Many academic fields, from the physical sciences to the life sciences to the social sciences, use hypothesis testing as a means of testing ideas to learn about the world and advance scientific knowledge. Whether you are a beginning scholar or a beginning student taking a class in a science subject, understanding what hypotheses are and being able to generate hypotheses and predictions yourself is very important. These instructions will help get you started.
Preparing to Write a Hypothesis
- If you are writing a hypothesis for a school assignment, this step may be taken care of for you.
- Focus on academic and scholarly writing. You need to be certain that your information is unbiased, accurate, and comprehensive. Scholarly search databases such as Google Scholar and Web of Science can help you find relevant articles from reputable sources.
- You can find information in textbooks, at a library, and online. If you are in school, you can also ask for help from teachers, librarians, and your peers.
- For example, if you are interested in the effects of caffeine on the human body, but notice that nobody seems to have explored whether caffeine affects males differently than it does females, this could be something to formulate a hypothesis about. Or, if you are interested in organic farming, you might notice that no one has tested whether organic fertilizer results in different growth rates for plants than non-organic fertilizer.
- You can sometimes find holes in the existing literature by looking for statements like “it is unknown” in scientific papers or places where information is clearly missing. You might also find a claim in the literature that seems far-fetched, unlikely, or too good to be true, like that caffeine improves math skills. If the claim is testable, you could provide a great service to scientific knowledge by doing your own investigation. If you confirm the claim, the claim becomes even more credible. If you do not find support for the claim, you are helping with the necessary self-correcting aspect of science.
- Examining these types of questions provides an excellent way for you to set yourself apart by filling in important gaps in a field of study.
- Following the examples above, you might ask: "How does caffeine affect females as compared to males?" or "How does organic fertilizer affect plant growth compared to non-organic fertilizer?" The rest of your research will be aimed at answering these questions.
- Following the examples above, if you discover in the literature that there is a pattern that some other types of stimulants seem to affect females more than males, this could be a clue that the same pattern might be true for caffeine. Similarly, if you observe the pattern that organic fertilizer seems to be associated with smaller plants overall, you might explain this pattern with the hypothesis that plants exposed to organic fertilizer grow more slowly than plants exposed to non-organic fertilizer.
Formulating Your Hypothesis
- You can think of the independent variable as the one that is causing some kind of difference or effect to occur. In the examples, the independent variable would be biological sex, i.e. whether a person is male or female, and fertilizer type, i.e. whether the fertilizer is organic or non-organically-based.
- The dependent variable is what is affected by (i.e. "depends" on) the independent variable. In the examples above, the dependent variable would be the measured impact of caffeine or fertilizer.
- Your hypothesis should only suggest one relationship. Most importantly, it should only have one independent variable. If you have more than one, you won't be able to determine which one is actually the source of any effects you might observe.
- Don't worry too much at this point about being precise or detailed.
- In the examples above, one hypothesis would make a statement about whether a person's biological sex might impact the way the person is affected by caffeine; for example, at this point, your hypothesis might simply be: "a person's biological sex is related to how caffeine affects his or her heart rate." The other hypothesis would make a general statement about plant growth and fertilizer; for example your simple explanatory hypothesis might be "plants given different types of fertilizer are different sizes because they grow at different rates."
- Using our example, our non-directional hypotheses would be "there is a relationship between a person's biological sex and how much caffeine increases the person's heart rate," and "there is a relationship between fertilizer type and the speed at which plants grow."
- Directional predictions using the same example hypotheses above would be : "Females will experience a greater increase in heart rate after consuming caffeine than will males," and "plants fertilized with non-organic fertilizer will grow faster than those fertilized with organic fertilizer." Indeed, these predictions and the hypotheses that allow for them are very different kinds of statements. More on this distinction below.
- If the literature provides any basis for making a directional prediction, it is better to do so, because it provides more information. Especially in the physical sciences, non-directional predictions are often seen as inadequate.
- Where necessary, specify the population (i.e. the people or things) about which you hope to uncover new knowledge. For example, if you were only interested the effects of caffeine on elderly people, your prediction might read: "Females over the age of 65 will experience a greater increase in heart rate than will males of the same age." If you were interested only in how fertilizer affects tomato plants, your prediction might read: "Tomato plants treated with non-organic fertilizer will grow faster in the first three months than will tomato plants treated with organic fertilizer."
- For example, you would not want to make the hypothesis: "red is the prettiest color." This statement is an opinion and it cannot be tested with an experiment. However, proposing the generalizing hypothesis that red is the most popular color is testable with a simple random survey. If you do indeed confirm that red is the most popular color, your next step may be to ask: Why is red the most popular color? The answer you propose is your explanatory hypothesis .
- An easy way to get to the hypothesis for this method and prediction is to ask yourself why you think heart rates will increase if children are given caffeine. Your explanatory hypothesis in this case may be that caffeine is a stimulant. At this point, some scientists write a research hypothesis , a statement that includes the hypothesis, the experiment, and the prediction all in one statement.
- For example, If caffeine is a stimulant, and some children are given a drink with caffeine while others are given a drink without caffeine, then the heart rates of those children given a caffeinated drink will increase more than the heart rate of children given a non-caffeinated drink.
- Using the above example, if you were to test the effects of caffeine on the heart rates of children, evidence that your hypothesis is not true, sometimes called the null hypothesis , could occur if the heart rates of both the children given the caffeinated drink and the children given the non-caffeinated drink (called the placebo control) did not change, or lowered or raised with the same magnitude, if there was no difference between the two groups of children.
- It is important to note here that the null hypothesis actually becomes much more useful when researchers test the significance of their results with statistics. When statistics are used on the results of an experiment, a researcher is testing the idea of the null statistical hypothesis. For example, that there is no relationship between two variables or that there is no difference between two groups. [8] X Research source
Hypothesis Examples
Community Q&A
- Remember that science is not necessarily a linear process and can be approached in various ways. [10] X Research source Thanks Helpful 0 Not Helpful 0
- When examining the literature, look for research that is similar to what you want to do, and try to build on the findings of other researchers. But also look for claims that you think are suspicious, and test them yourself. Thanks Helpful 0 Not Helpful 0
- Be specific in your hypotheses, but not so specific that your hypothesis can't be applied to anything outside your specific experiment. You definitely want to be clear about the population about which you are interested in drawing conclusions, but nobody (except your roommates) will be interested in reading a paper with the prediction: "my three roommates will each be able to do a different amount of pushups." Thanks Helpful 0 Not Helpful 0
You Might Also Like
- ↑ https://undsci.berkeley.edu/for-educators/prepare-and-plan/correcting-misconceptions/#a4
- ↑ https://owl.purdue.edu/owl/general_writing/common_writing_assignments/research_papers/choosing_a_topic.html
- ↑ https://owl.purdue.edu/owl/subject_specific_writing/writing_in_the_social_sciences/writing_in_psychology_experimental_report_writing/experimental_reports_1.html
- ↑ https://www.grammarly.com/blog/how-to-write-a-hypothesis/
- ↑ https://grammar.yourdictionary.com/for-students-and-parents/how-create-hypothesis.html
- ↑ https://flexbooks.ck12.org/cbook/ck-12-middle-school-physical-science-flexbook-2.0/section/1.19/primary/lesson/hypothesis-ms-ps/
- ↑ https://iastate.pressbooks.pub/preparingtopublish/chapter/goal-1-contextualize-the-studys-methods/
- ↑ http://mathworld.wolfram.com/NullHypothesis.html
- ↑ https://undsci.berkeley.edu/science-flowchart/
About This Article
Before writing a hypothesis, think of what questions are still unanswered about a specific subject and make an educated guess about what the answer could be. Then, determine the variables in your question and write a simple statement about how they might be related. Try to focus on specific predictions and variables, such as age or segment of the population, to make your hypothesis easier to test. For tips on how to test your hypothesis, read on! Did this summary help you? Yes No
- Send fan mail to authors
Reader Success Stories
Onyia Maxwell
Sep 13, 2016
Did this article help you?
Nov 26, 2017
ABEL SHEWADEG
Jun 12, 2018
Connor Gilligan
Jan 2, 2017
Dec 30, 2017
Featured Articles
Trending Articles
Watch Articles
- Terms of Use
- Privacy Policy
- Do Not Sell or Share My Info
- Not Selling Info
wikiHow Tech Help Pro:
Develop the tech skills you need for work and life
How to Write a Hypothesis? Types and Examples
All research studies involve the use of the scientific method, which is a mathematical and experimental technique used to conduct experiments by developing and testing a hypothesis or a prediction about an outcome. Simply put, a hypothesis is a suggested solution to a problem. It includes elements that are expressed in terms of relationships with each other to explain a condition or an assumption that hasn’t been verified using facts. 1 The typical steps in a scientific method include developing such a hypothesis, testing it through various methods, and then modifying it based on the outcomes of the experiments.
A research hypothesis can be defined as a specific, testable prediction about the anticipated results of a study. 2 Hypotheses help guide the research process and supplement the aim of the study. After several rounds of testing, hypotheses can help develop scientific theories. 3 Hypotheses are often written as if-then statements.
Here are two hypothesis examples:
Dandelions growing in nitrogen-rich soils for two weeks develop larger leaves than those in nitrogen-poor soils because nitrogen stimulates vegetative growth. 4
If a company offers flexible work hours, then their employees will be happier at work. 5
Table of Contents
- What is a hypothesis?
- Types of hypotheses
- Characteristics of a hypothesis
- Functions of a hypothesis
- How to write a hypothesis
- Hypothesis examples
- Frequently asked questions
What is a hypothesis?
A hypothesis expresses an expected relationship between variables in a study and is developed before conducting any research. Hypotheses are not opinions but rather are expected relationships based on facts and observations. They help support scientific research and expand existing knowledge. An incorrectly formulated hypothesis can affect the entire experiment leading to errors in the results so it’s important to know how to formulate a hypothesis and develop it carefully.
A few sources of a hypothesis include observations from prior studies, current research and experiences, competitors, scientific theories, and general conditions that can influence people. Figure 1 depicts the different steps in a research design and shows where exactly in the process a hypothesis is developed. 4
There are seven different types of hypotheses—simple, complex, directional, nondirectional, associative and causal, null, and alternative.
Types of hypotheses
The seven types of hypotheses are listed below: 5 , 6,7
- Simple : Predicts the relationship between a single dependent variable and a single independent variable.
Example: Exercising in the morning every day will increase your productivity.
- Complex : Predicts the relationship between two or more variables.
Example: Spending three hours or more on social media daily will negatively affect children’s mental health and productivity, more than that of adults.
- Directional : Specifies the expected direction to be followed and uses terms like increase, decrease, positive, negative, more, or less.
Example: The inclusion of intervention X decreases infant mortality compared to the original treatment.
- Non-directional : Does not predict the exact direction, nature, or magnitude of the relationship between two variables but rather states the existence of a relationship. This hypothesis may be used when there is no underlying theory or if findings contradict prior research.
Example: Cats and dogs differ in the amount of affection they express.
- Associative and causal : An associative hypothesis suggests an interdependency between variables, that is, how a change in one variable changes the other.
Example: There is a positive association between physical activity levels and overall health.
A causal hypothesis, on the other hand, expresses a cause-and-effect association between variables.
Example: Long-term alcohol use causes liver damage.
- Null : Claims that the original hypothesis is false by showing that there is no relationship between the variables.
Example: Sleep duration does not have any effect on productivity.
- Alternative : States the opposite of the null hypothesis, that is, a relationship exists between two variables.
Example: Sleep duration affects productivity.
Characteristics of a hypothesis
So, what makes a good hypothesis? Here are some important characteristics of a hypothesis. 8,9
- Testable : You must be able to test the hypothesis using scientific methods to either accept or reject the prediction.
- Falsifiable : It should be possible to collect data that reject rather than support the hypothesis.
- Logical : Hypotheses shouldn’t be a random guess but rather should be based on previous theories, observations, prior research, and logical reasoning.
- Positive : The hypothesis statement about the existence of an association should be positive, that is, it should not suggest that an association does not exist. Therefore, the language used and knowing how to phrase a hypothesis is very important.
- Clear and accurate : The language used should be easily comprehensible and use correct terminology.
- Relevant : The hypothesis should be relevant and specific to the research question.
- Structure : Should include all the elements that make a good hypothesis: variables, relationship, and outcome.
Functions of a hypothesis
The following list mentions some important functions of a hypothesis: 1
- Maintains the direction and progress of the research.
- Expresses the important assumptions underlying the proposition in a single statement.
- Establishes a suitable context for researchers to begin their investigation and for readers who are referring to the final report.
- Provides an explanation for the occurrence of a specific phenomenon.
- Ensures selection of appropriate and accurate facts necessary and relevant to the research subject.
To summarize, a hypothesis provides the conceptual elements that complete the known data, conceptual relationships that systematize unordered elements, and conceptual meanings and interpretations that explain the unknown phenomena. 1
How to write a hypothesis
Listed below are the main steps explaining how to write a hypothesis. 2,4,5
- Make an observation and identify variables : Observe the subject in question and try to recognize a pattern or a relationship between the variables involved. This step provides essential background information to begin your research.
For example, if you notice that an office’s vending machine frequently runs out of a specific snack, you may predict that more people in the office choose that snack over another.
- Identify the main research question : After identifying a subject and recognizing a pattern, the next step is to ask a question that your hypothesis will answer.
For example, after observing employees’ break times at work, you could ask “why do more employees take breaks in the morning rather than in the afternoon?”
- Conduct some preliminary research to ensure originality and novelty : Your initial answer, which is your hypothesis, to the question is based on some pre-existing information about the subject. However, to ensure that your hypothesis has not been asked before or that it has been asked but rejected by other researchers you would need to gather additional information.
For example, based on your observations you might state a hypothesis that employees work more efficiently when the air conditioning in the office is set at a lower temperature. However, during your preliminary research you find that this hypothesis was proven incorrect by a prior study.
- Develop a general statement : After your preliminary research has confirmed the originality of your proposed answer, draft a general statement that includes all variables, subjects, and predicted outcome. The statement could be if/then or declarative.
- Finalize the hypothesis statement : Use the PICOT model, which clarifies how to word a hypothesis effectively, when finalizing the statement. This model lists the important components required to write a hypothesis.
P opulation: The specific group or individual who is the main subject of the research
I nterest: The main concern of the study/research question
C omparison: The main alternative group
O utcome: The expected results
T ime: Duration of the experiment
Once you’ve finalized your hypothesis statement you would need to conduct experiments to test whether the hypothesis is true or false.
Hypothesis examples
The following table provides examples of different types of hypotheses. 10 ,11
Key takeaways
Here’s a summary of all the key points discussed in this article about how to write a hypothesis.
- A hypothesis is an assumption about an association between variables made based on limited evidence, which should be tested.
- A hypothesis has four parts—the research question, independent variable, dependent variable, and the proposed relationship between the variables.
- The statement should be clear, concise, testable, logical, and falsifiable.
- There are seven types of hypotheses—simple, complex, directional, non-directional, associative and causal, null, and alternative.
- A hypothesis provides a focus and direction for the research to progress.
- A hypothesis plays an important role in the scientific method by helping to create an appropriate experimental design.
Frequently asked questions
Hypotheses and research questions have different objectives and structure. The following table lists some major differences between the two. 9
Here are a few examples to differentiate between a research question and hypothesis.
Yes, here’s a simple checklist to help you gauge the effectiveness of your hypothesis. 9 1. When writing a hypothesis statement, check if it: 2. Predicts the relationship between the stated variables and the expected outcome. 3. Uses simple and concise language and is not wordy. 4. Does not assume readers’ knowledge about the subject. 5. Has observable, falsifiable, and testable results.
As mentioned earlier in this article, a hypothesis is an assumption or prediction about an association between variables based on observations and simple evidence. These statements are usually generic. Research objectives, on the other hand, are more specific and dictated by hypotheses. The same hypothesis can be tested using different methods and the research objectives could be different in each case. For example, Louis Pasteur observed that food lasts longer at higher altitudes, reasoned that it could be because the air at higher altitudes is cleaner (with fewer or no germs), and tested the hypothesis by exposing food to air cleaned in the laboratory. 12 Thus, a hypothesis is predictive—if the reasoning is correct, X will lead to Y—and research objectives are developed to test these predictions.
Null hypothesis testing is a method to decide between two assumptions or predictions between variables (null and alternative hypotheses) in a statistical relationship in a sample. The null hypothesis, denoted as H 0 , claims that no relationship exists between variables in a population and any relationship in the sample reflects a sampling error or occurrence by chance. The alternative hypothesis, denoted as H 1 , claims that there is a relationship in the population. In every study, researchers need to decide whether the relationship in a sample occurred by chance or reflects a relationship in the population. This is done by hypothesis testing using the following steps: 13 1. Assume that the null hypothesis is true. 2. Determine how likely the sample relationship would be if the null hypothesis were true. This probability is called the p value. 3. If the sample relationship would be extremely unlikely, reject the null hypothesis and accept the alternative hypothesis. If the relationship would not be unlikely, accept the null hypothesis.
To summarize, researchers should know how to write a good hypothesis to ensure that their research progresses in the required direction. A hypothesis is a testable prediction about any behavior or relationship between variables, usually based on facts and observation, and states an expected outcome.
We hope this article has provided you with essential insight into the different types of hypotheses and their functions so that you can use them appropriately in your next research project.
References
- Dalen, DVV. The function of hypotheses in research. Proquest website. Accessed April 8, 2024. https://www.proquest.com/docview/1437933010?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals&imgSeq=1
- McLeod S. Research hypothesis in psychology: Types & examples. SimplyPsychology website. Updated December 13, 2023. Accessed April 9, 2024. https://www.simplypsychology.org/what-is-a-hypotheses.html
- Scientific method. Britannica website. Updated March 14, 2024. Accessed April 9, 2024. https://www.britannica.com/science/scientific-method
- The hypothesis in science writing. Accessed April 10, 2024. https://berks.psu.edu/sites/berks/files/campus/HypothesisHandout_Final.pdf
- How to develop a hypothesis (with elements, types, and examples). Indeed.com website. Updated February 3, 2023. Accessed April 10, 2024. https://www.indeed.com/career-advice/career-development/how-to-write-a-hypothesis
- Types of research hypotheses. Excelsior online writing lab. Accessed April 11, 2024. https://owl.excelsior.edu/research/research-hypotheses/types-of-research-hypotheses/
- What is a research hypothesis: how to write it, types, and examples. Researcher.life website. Published February 8, 2023. Accessed April 11, 2024. https://researcher.life/blog/article/how-to-write-a-research-hypothesis-definition-types-examples/
- Developing a hypothesis. Pressbooks website. Accessed April 12, 2024. https://opentext.wsu.edu/carriecuttler/chapter/developing-a-hypothesis/
- What is and how to write a good hypothesis in research. Elsevier author services website. Accessed April 12, 2024. https://scientific-publishing.webshop.elsevier.com/manuscript-preparation/what-how-write-good-hypothesis-research/
- How to write a great hypothesis. Verywellmind website. Updated March 12, 2023. Accessed April 13, 2024. https://www.verywellmind.com/what-is-a-hypothesis-2795239
- 15 Hypothesis examples. Helpfulprofessor.com Published September 8, 2023. Accessed March 14, 2024. https://helpfulprofessor.com/hypothesis-examples/
- Editage insights. What is the interconnectivity between research objectives and hypothesis? Published February 24, 2021. Accessed April 13, 2024. https://www.editage.com/insights/what-is-the-interconnectivity-between-research-objectives-and-hypothesis
- Understanding null hypothesis testing. BCCampus open publishing. Accessed April 16, 2024. https://opentextbc.ca/researchmethods/chapter/understanding-null-hypothesis-testing/#:~:text=In%20null%20hypothesis%20testing%2C%20this,said%20to%20be%20statistically%20significant
Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.
Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.
Experience the future of academic writing – Sign up to Paperpal and start writing for free!
Related Reads:
- What is an Argumentative Essay? How to Write It (With Examples)
- Empirical Research: A Comprehensive Guide for Academics
- How to Write a Scientific Paper in 10 Steps
- What is a Literature Review? How to Write It (with Examples)
Measuring Academic Success: Definition & Strategies for Excellence
What are scholarly sources and where can you find them , you may also like, what is the purpose of an abstract why..., what are citation styles which citation style to..., what are the types of literature reviews , abstract vs introduction: what is the difference , mla format: guidelines, template and examples , machine translation vs human translation: which is reliable..., dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write a research proposal: (with examples..., how to write your research paper in apa....
Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, automatically generate references for free.
- Knowledge Base
- Methodology
- How to Write a Strong Hypothesis | Guide & Examples
How to Write a Strong Hypothesis | Guide & Examples
Published on 6 May 2022 by Shona McCombes .
A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.
Table of contents
What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.
A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.
A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).
Variables in hypotheses
Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.
In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .
Prevent plagiarism, run a free check.
Step 1: ask a question.
Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.
Step 2: Do some preliminary research
Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.
At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.
Step 3: Formulate your hypothesis
Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.
Step 4: Refine your hypothesis
You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:
- The relevant variables
- The specific group being studied
- The predicted outcome of the experiment or analysis
Step 5: Phrase your hypothesis in three ways
To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.
In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.
If you are comparing two groups, the hypothesis can state what difference you expect to find between them.
Step 6. Write a null hypothesis
If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .
Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.
A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).
A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).
A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.
McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 25 November 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/
Is this article helpful?
Shona McCombes
Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.
IMAGES
VIDEO
COMMENTS
6. Write a null hypothesis. If your research involves statistical hypothesis testing, you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0, while the alternative hypothesis is H 1 or H a.
3 Null hypothesis. A null hypothesis, abbreviated as H 0, suggests that there is no relationship between variables. Examples: There is no difference in plant growth when using either bottled water or tap water. Professional psychics do not win the lottery more than other people. 4 Alternative hypothesis
Aims & Hypothesis Aims/Hypothesis. Fieldwork is based around an enquiry into a 'real life' issue. This is linked to the content in the specification and then related to a place-specific context. All fieldwork begins with the aims and hypothesis. The aim explains what the enquiry is attempting to achieve
Therefore, a sensible positive or alternative hypothesis (shown as the symbol 𝐻 1) would be . 𝑯 1: "The size of the bedload in River X is directly correlated to the distance in which it is found from the source." However, a good researcher should not look to prove true a statement they suspect to be true to begin with.
Conclusions and findings: Geography. By Keith Kelly. Keith Kelly looks at examples of language used in making conclusions and findings from the area of geography, categorized by nouns, verbs, word groups and prepositions.
Tips for Writing a Research Hypothesis. Writing a research hypothesis can be a challenging task, but with the right approach, you can craft a strong and testable hypothesis. Here are some tips to help you write a research hypothesis: Start with a Research Question: A good hypothesis starts with a clear and focused research question. For example ...
Bess Ruff is a Geography PhD student at Florida State University. She received her MA in Environmental Science and Management from the University of California, Santa Barbara in 2016. ... You'll need to become an expert on the subject and develop a good grasp of what is already known about the topic. Focus on academic and scholarly writing. You ...
How to Write a Good Hypothesis. Writing a good hypothesis is definitely a good skill to have in scientific research. But it is also one that you can definitely learn with some practice if you don't already have it. Just keep in mind that the hypothesis is what sets the stage for the entire investigation. It guides the methods and analysis.
To summarize, a hypothesis provides the conceptual elements that complete the known data, conceptual relationships that systematize unordered elements, and conceptual meanings and interpretations that explain the unknown phenomena. 1 . How to write a hypothesis. Listed below are the main steps explaining how to write a hypothesis. 2,4,5
Step 6. Write a null hypothesis. If your research involves statistical hypothesis testing, you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0, while the alternative hypothesis is H 1 or H a.