Importance Of Research In Daily Life
Whether we are students, professionals, or stay-at-home parents, we all need to do research on a daily basis.
The reason?
Research helps us make informed decisions.
It allows us to learn about new things, and it teaches us how to think critically.
There is an importance of research in daily life.
Let’s discuss the importance of research in our daily lives and how it can help us achieve our goals!
6 ways research plays an important role in our daily lives.
- It leads to new discoveries and innovations that improve our lives. Many of the technologies we rely on today are the result of research in fields like medicine, computer science, engineering, etc. Things like smartphones, wifi, GPS, and medical treatments were made possible by research.
- It informs policy making. Research provides data and evidence that allows policymakers to make more informed decisions on issues that impact society, whether it’s related to health, education, the economy, or other areas. Research gives insights into problems.
- It spreads knowledge and awareness. The research contributes new information and facts to various fields and disciplines. The sharing of research educates people on new topics, ideas, social issues, etc. It provides context for understanding the world.
- It drives progress and change. Research challenges existing notions, tests new theories and hypotheses, and pushes boundaries of what’s known. Pushing the frontiers of knowledge through research is key for advancement. Even when research invalidates ideas, it leads to progress.
- It develops critical thinking skills. The research process itself – asking questions, collecting data, analyzing results, drawing conclusions – builds logic, problem-solving, and cognitive skills that benefit individuals in their professional and personal lives.
- It fuels innovation and the economy. Research leads to the development of new products and services that create jobs and improve productivity in the marketplace. Private sector research drives economic growth.
So while not always visible, research underlies much of our technological, social, economic, and human progress. It’s a building block for society.
Conducting quality research and using it to maximum benefit is key.
Research is important in everyday life because it allows us to make informed decisions about the things that matter most to us.
Whether we’re researching a new car before making a purchase, studying for an important test, or looking into different treatment options for a health issue, research allows us to get the facts and make the best choices for ourselves and our families.
- In today’s world, there’s so much information available at our fingertips, and research is more accessible than ever.
- The internet has made it possible for anyone with an interest in doing research to access vast amounts of information in a short amount of time.
This is both a blessing and a curse; while it’s great that we have so much information available to us, it can be overwhelming to try to sort through everything and find the most reliable sources.
What is the importance of research in our daily life?
Research is essential to our daily lives.
- It helps us to make informed decisions about everything from the food we eat to the medicines we take.
- It also allows us to better understand the world around us and find solutions to problems.
In short, research is essential for our health, safety, and well-being. Without it, we would be living in a world of ignorance and misinformation.
What is the importance of research in our daily lives as a student?
As a student, research plays an important role in our daily life. It helps us to gain knowledge and understanding of the world around us.
- It also allows us to develop new skills and perspectives.
- In addition, research helps us to innovate and create new things.
- Research is essential for students because it helps us to learn about the world around us. Without research, we would be limited to our own personal experiences and observations.
- Research allows us to go beyond our personal bubble and explore new ideas and concepts.
- It also gives us the opportunity to develop new skills and perspectives.
- In addition, research is important because it helps us to innovate and create new things. When we conduct research, we are constantly learning new information that can be used to create something new.
This could be anything from a new product or service to a new way of doing things.
Research is essential for students because it allows us to be innovative and create new things that can make a difference in the world.
Consequently, while each person’s daily life routine might differ based on their unique circumstances, the role that research plays in our lives as students is an integral one nonetheless.
Different though our routines might be, the value of research in our lives shines through brightly regardless. And that importance cannot be overstated .
How does research affect your daily life?
Every day, we benefit from the countless hours of research that have been conducted by scientists and scholars around the world.
- From the moment we wake up in the morning to the time we go to bed at night, we rely on research to improve our lives in a variety of ways.
- For instance, many of the items we use every day, such as our phones and laptops, are the result of years of research and development.
- And when we see a news story about a new medical breakthrough or a natural disaster, it is often the result of research that has been conducted over a long period of time.
In short, research affects our daily lives in countless ways, both big and small. Without it, we would be living in a very different world.
What are the purposes of research?
The word “research” is used in a variety of ways. In its broadest sense, research includes any gathering of data, information, and facts for the advancement of knowledge.
Whether you are looking for a new recipe or trying to find a cure for cancer, the process of research is the same.
You start with a question or an area of interest and then use different sources to find information that will help you answer that question or learn more about that topic.
“The purpose of research is to find answers to questions, solve problems, or develop new knowledge.”
It is an essential tool in business, education, science, and many other fields. By conducting research, we can learn about the world around us and make it a better place.
How to do effective research
Research is a process of uncovering facts and information about a subject.
It is usually done when preparing for an assignment or project and can be either primary research, which involves collecting data yourself, or secondary research, which involves finding existing data.
Regardless of the type of research you do, there are some effective strategies that will help you get the most out of your efforts:
- First, start by clearly defining your topic and what you hope to learn. This will help you to focus your search and find relevant information more quickly.
- Once you know what you’re looking for, try using keyword searches to find websites, articles, and other resources that are relevant to your topic.
- When evaluating each source, be sure to consider its reliability and biases.
- Finally, take good notes as you read, and make sure to keep track of where each piece of information came from so that you can easily cite it later.
By following these steps, you can ensure that your research is both thorough and accurate.
How to use research to achieve your goals.
Achieving your goals requires careful planning and a lot of hard work.
But even the best-laid plans can sometimes go awry.
That’s where research comes in.
By taking the time to do your homework, you can increase your chances of success while also learning more about your topic of interest.
When it comes to goal-setting, research can help you to identify realistic targets and develop a roadmap for achieving them.
It can also provide valuable insights into potential obstacles and how to overcome them.
In short, research is an essential tool for anyone who wants to achieve their goals.
So if you’re serious about reaching your target, be sure to do your homework first.
So the next time you are faced with a decision, don’t forget to do your research!
It could very well be the most important thing you do all day.
Jacks of Science sources the most authoritative, trustworthy, and highly recognized institutions for our article research. Learn more about our Editorial Teams process and diligence in verifying the accuracy of every article we publish.
10 Reasons Why Research is Important
No matter what career field you’re in or how high up you are, there’s always more to learn . The same applies to your personal life. No matter how many experiences you have or how diverse your social circle, there are things you don’t know. Research unlocks the unknowns, lets you explore the world from different perspectives, and fuels a deeper understanding. In some areas, research is an essential part of success. In others, it may not be absolutely necessary, but it has many benefits. Here are ten reasons why research is important:
#1. Research expands your knowledge base
The most obvious reason to do research is that you’ll learn more. There’s always more to learn about a topic, even if you are already well-versed in it. If you aren’t, research allows you to build on any personal experience you have with the subject. The process of research opens up new opportunities for learning and growth.
#2. Research gives you the latest information
Research encourages you to find the most recent information available . In certain fields, especially scientific ones, there’s always new information and discoveries being made. Staying updated prevents you from falling behind and giving info that’s inaccurate or doesn’t paint the whole picture. With the latest info, you’ll be better equipped to talk about a subject and build on ideas.
#3. Research helps you know what you’re up against
In business, you’ll have competition. Researching your competitors and what they’re up to helps you formulate your plans and strategies. You can figure out what sets you apart. In other types of research, like medicine, your research might identify diseases, classify symptoms, and come up with ways to tackle them. Even if your “enemy” isn’t an actual person or competitor, there’s always some kind of antagonist force or problem that research can help you deal with.
#4. Research builds your credibility
People will take what you have to say more seriously when they can tell you’re informed. Doing research gives you a solid foundation on which you can build your ideas and opinions. You can speak with confidence about what you know is accurate. When you’ve done the research, it’s much harder for someone to poke holes in what you’re saying. Your research should be focused on the best sources. If your “research” consists of opinions from non-experts, you won’t be very credible. When your research is good, though, people are more likely to pay attention.
#5. Research helps you narrow your scope
When you’re circling a topic for the first time, you might not be exactly sure where to start. Most of the time, the amount of work ahead of you is overwhelming. Whether you’re writing a paper or formulating a business plan, it’s important to narrow the scope at some point. Research helps you identify the most unique and/or important themes. You can choose the themes that fit best with the project and its goals.
#6. Research teaches you better discernment
Doing a lot of research helps you sift through low-quality and high-quality information. The more research you do on a topic, the better you’ll get at discerning what’s accurate and what’s not. You’ll also get better at discerning the gray areas where information may be technically correct but used to draw questionable conclusions.
#7. Research introduces you to new ideas
You may already have opinions and ideas about a topic when you start researching. The more you research, the more viewpoints you’ll come across. This encourages you to entertain new ideas and perhaps take a closer look at yours. You might change your mind about something or, at least, figure out how to position your ideas as the best ones.
#8. Research helps with problem-solving
Whether it’s a personal or professional problem, it helps to look outside yourself for help. Depending on what the issue is, your research can focus on what others have done before. You might just need more information, so you can make an informed plan of attack and an informed decision. When you know you’ve collected good information, you’ll feel much more confident in your solution.
#9. Research helps you reach people
Research is used to help raise awareness of issues like climate change , racial discrimination, gender inequality , and more. Without hard facts, it’s very difficult to prove that climate change is getting worse or that gender inequality isn’t progressing as quickly as it should. The public needs to know what the facts are, so they have a clear idea of what “getting worse” or “not progressing” actually means. Research also entails going beyond the raw data and sharing real-life stories that have a more personal impact on people.
#10. Research encourages curiosity
Having curiosity and a love of learning take you far in life. Research opens you up to different opinions and new ideas. It also builds discerning and analytical skills. The research process rewards curiosity. When you’re committed to learning, you’re always in a place of growth. Curiosity is also good for your health. Studies show curiosity is associated with higher levels of positivity, better satisfaction with life, and lower anxiety.
Emmaline Soken-Huberty. "10 Reasons Why Research is Important." The Important Site, 2020-04-18, available at: https://theimportantsite.com/10-reasons-why-research-is-important/ .
8 examples of how research has improved our daily life
The importance of research in our lives is not obvious at first — and that’s because we take many things for granted.
Look around you. It’s not just the creation of vaccines and the discovery of the molecular structure of DNA that require researchers.
Neither is it just grand things, like atomic bombs and rockets.
Behind every object, person and service you see is an uncountable amount of sweat and toil by an army of researchers and decades of trial and error.
They are the reason we can live, work and connect with our loved ones today.
Below are tangible examples of the importance of research lying in plain sight:
Eight examples of the importance of research in daily life:
Mobile phones have gone from being big and stationary to small and compact. Source: Olivier Douliery/AFP
It is difficult to explain just how much the invention of smartphones has upended life as we knew it.
From sending messages to taking pictures and creating Oscar-worthy short films, it seems like the iPhone can do it all.
Today with everything just at our fingertips, it is hard to imagine that there was a time when phones were big bulky devices plugged into our walls.
Then, in the early 1990s, an IBM engineer discovered that chip-and-wireless technology was getting small enough to use in handheld devices.
And now you’re holding the latest iteration of it in your hands as you read this.
Air conditioning
Feeling hot? Switch on the air conditioning to cool down.
This seems so simple now. We have air conditioners everywhere now – in our homes, dorm rooms, public transport and even our educational institutions.
But there was a time when this was not the case. Though air conditioning was invented in 1901, at the time, they were nothing like the ones we know today.
Throughout the years, researchers have found ways to make air conditioning more accessible to everyone.
Paracetamol
Paracetamol is a drug that is very common and easily accessible today. Designed for pain relief, this drug has come a long since it was first invented.
Today, you can pick it up anywhere, from pharmacies to supermarkets.
The discovery of paracetamol was actually an accident . It was discovered when a similar molecule was added to a patient’s prescription, and paracetamol was later found in their urine.
Netflix has changed the way we watch TVs and movies forever. Source: Patrick T. Fallon/AFP
There was a time we had to wait for a scheduled time to watch our favourite TV programmes and movies. And even that would be interrupted by advertisements.
Since the invention of Netflix, that is no longer an issue.
One of the founders, Reed Hastings , says that the idea for Netflix came to him when he received a US$40 fine for renting the movie “Apollo 13” from long-dead Blockbuster and returning it six weeks late.
Thanks to research and invention, we now have an endless stream of TV shows and films, accessible from any device at any time.
Gone are the days of spending money on hard-copy books or running out of space to store all your books.
The development of technology brought about e-books and products like Kindle. Now you can read anywhere at any time.
They not only make life easier but reduce the world’s carbon footprint.
Wireless earphones
Look around you, and you’ll see many people with earphones on, listening to music.
The first headphones were invented when Nathaniel Baldwin searched for a device to help him hear the sermons at his local Mormon temple — from his kitchen.
Over time those big bulky headphones have gone through changes from earphones to now the wireless earphone that we all know and love.
Another example of the importance of research in our daily lives is the invention of Spotify.
Based on research, it was found that music can lessen the impact of depression and anxiety . It is the perfect way to escape reality, especially when dealing with university stress and assignments.
With Spotify, you don’t need to wait for your favourite songs to come up on the radio, download MP3 files or move the antenna around to get clear sound.
Smartwatch
If you thought smartphones were a great invention, the smartwatch will blow you away.
Watches started off as devices to tell time, but today it is so much more than that.
Now watches can be used to answer phone calls and messages, record your footsteps, make payments and even calculate your heart rate.
The first smartwatch was invented in 1994 and has since gone through many improvements to become what it is today.
Popular stories
The master in public administration graduate helping nigerians study abroad.
As low as US$2,000 a year: The best Russian universities for international students
Marketing, psychology, math: Why these degrees are perfect for introverts
Say more with less: 6 effective communication skills to sound smarter and more confident
What is the importance of research in everyday life?
5 free personal development apps for students
Apps you didn’t know you needed as an international student in the UK
2.1 Why Is Research Important?
Learning objectives.
By the end of this section, you will be able to:
- Explain how scientific research addresses questions about behavior
- Discuss how scientific research guides public policy
- Appreciate how scientific research can be important in making personal decisions
Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure 2.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.
The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.
While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.
Use of Research Information
Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student's acquisition of knowledge, study skills, and mental health.
In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.
We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children's development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.
Link to Learning
Watch this video about early childhood program effectiveness to learn how scientists evaluate effectiveness and how best to invest money into programs that are most effective.
Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine that your sister, Maria, expresses concern about her two-year-old child, Umberto. Umberto does not speak as much or as clearly as the other children in his daycare or others in the family. Umberto's pediatrician undertakes some screening and recommends an evaluation by a speech pathologist, but does not refer Maria to any other specialists. Maria is concerned that Umberto's speech delays are signs of a developmental disorder, but Umberto's pediatrician does not; she sees indications of differences in Umberto's jaw and facial muscles. Hearing this, you do some internet searches, but you are overwhelmed by the breadth of information and the wide array of sources. You see blog posts, top-ten lists, advertisements from healthcare providers, and recommendations from several advocacy organizations. Why are there so many sites? Which are based in research, and which are not?
In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.
NOTABLE RESEARCHERS
Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ( Figure 2.3 ). For instance, Margaret Floy Washburn (1871–1939) was the first woman to earn a PhD in psychology. Her research focused on animal behavior and cognition (Margaret Floy Washburn, PhD, n.d.). Mary Whiton Calkins (1863–1930) was a preeminent first-generation American psychologist who opposed the behaviorist movement, conducted significant research into memory, and established one of the earliest experimental psychology labs in the United States (Mary Whiton Calkins, n.d.).
Francis Sumner (1895–1954) was the first African American to receive a PhD in psychology in 1920. His dissertation focused on issues related to psychoanalysis. Sumner also had research interests in racial bias and educational justice. Sumner was one of the founders of Howard University’s department of psychology, and because of his accomplishments, he is sometimes referred to as the “Father of Black Psychology.” Thirteen years later, Inez Beverly Prosser (1895–1934) became the first African American woman to receive a PhD in psychology. Prosser’s research highlighted issues related to education in segregated versus integrated schools, and ultimately, her work was very influential in the hallmark Brown v. Board of Education Supreme Court ruling that segregation of public schools was unconstitutional (Ethnicity and Health in America Series: Featured Psychologists, n.d.).
Although the establishment of psychology’s scientific roots occurred first in Europe and the United States, it did not take much time until researchers from around the world began to establish their own laboratories and research programs. For example, some of the first experimental psychology laboratories in South America were founded by Horatio Piñero (1869–1919) at two institutions in Buenos Aires, Argentina (Godoy & Brussino, 2010). In India, Gunamudian David Boaz (1908–1965) and Narendra Nath Sen Gupta (1889–1944) established the first independent departments of psychology at the University of Madras and the University of Calcutta, respectively. These developments provided an opportunity for Indian researchers to make important contributions to the field (Gunamudian David Boaz, n.d.; Narendra Nath Sen Gupta, n.d.).
When the American Psychological Association (APA) was first founded in 1892, all of the members were White males (Women and Minorities in Psychology, n.d.). However, by 1905, Mary Whiton Calkins was elected as the first female president of the APA, and by 1946, nearly one-quarter of American psychologists were female. Psychology became a popular degree option for students enrolled in the nation’s historically Black higher education institutions, increasing the number of Black Americans who went on to become psychologists. Given demographic shifts occurring in the United States and increased access to higher educational opportunities among historically underrepresented populations, there is reason to hope that the diversity of the field will increasingly match the larger population, and that the research contributions made by the psychologists of the future will better serve people of all backgrounds (Women and Minorities in Psychology, n.d.).
The Process of Scientific Research
Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested in the real world; in inductive reasoning , real-world observations lead to new ideas ( Figure 2.4 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.
In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.
Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.
For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.
We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.
A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure 2.5 .
To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.
A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure 2.6 ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.
In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).
Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.
This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.
Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.
Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
- Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
- Publisher/website: OpenStax
- Book title: Psychology 2e
- Publication date: Apr 22, 2020
- Location: Houston, Texas
- Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
- Section URL: https://openstax.org/books/psychology-2e/pages/2-1-why-is-research-important
© Sep 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.
Please log in to save materials. Log in
- Deductive Reasoning
- Drug Abuse Resistance Education
- Falsifiable
- Inductive Reasoning
- Scientific Method
- Scientific Research
Why Is Research Important?
By the end of this section, you will be able to:
- Explain how scientific research addresses questions about behavior
- Discuss how scientific research guides public policy
- Appreciate how scientific research can be important in making personal decisions
Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.
The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.
While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.
USE OF RESEARCH INFORMATION
Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the hypothesized link between exposure to media violence and subsequent aggression has been debated in the scientific community for roughly 60 years. Even today, we will find detractors, but a consensus is building. Several professional organizations view media violence exposure as a risk factor for actual violence, including the American Medical Association, the American Psychiatric Association, and the American Psychological Association (American Academy of Pediatrics, American Academy of Child & Adolescent Psychiatry, American Psychological Association, American Medical Association, American Academy of Family Physicians, American Psychiatric Association, 2000).
In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.
We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding the D.A.R.E. (Drug Abuse Resistance Education) program in public schools ( Figure ). This program typically involves police officers coming into the classroom to educate students about the dangers of becoming involved with alcohol and other drugs. According to the D.A.R.E. website (www.dare.org), this program has been very popular since its inception in 1983, and it is currently operating in 75% of school districts in the United States and in more than 40 countries worldwide. Sounds like an easy decision, right? However, on closer review, you discover that the vast majority of research into this program consistently suggests that participation has little, if any, effect on whether or not someone uses alcohol or other drugs (Clayton, Cattarello, & Johnstone, 1996; Ennett, Tobler, Ringwalt, & Flewelling, 1994; Lynam et al., 1999; Ringwalt, Ennett, & Holt, 1991). If you are committed to being a good steward of taxpayer money, will you fund this particular program, or will you try to find other programs that research has consistently demonstrated to be effective?
Watch this news report to learn more about some of the controversial issues surrounding the D.A.R.E. program.
Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.
In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.
THE PROCESS OF SCIENTIFIC RESEARCH
Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested against the empirical world; in inductive reasoning , empirical observations lead to new ideas ( Figure ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.
In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.
Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.
For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.
Play this “Deal Me In” interactive card game to practice using inductive reasoning.
We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.
A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure .
To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.
A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.
In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).
Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.
Visit this website to apply the scientific method and practice its steps by using them to solve a murder mystery, determine why a student is in trouble, and design an experiment to test house paint.
Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. In this way, research enables scientists to separate fact from simple opinion. Having good information generated from research aids in making wise decisions both in public policy and in our personal lives.
Review Questions
Scientific hypotheses are ________ and falsifiable.
________ are defined as observable realities.
Scientific knowledge is ________.
A major criticism of Freud’s early theories involves the fact that his theories ________.
- were too limited in scope
- were too outrageous
- were too broad
- were not testable
Critical Thinking Questions
In this section, the D.A.R.E. program was described as an incredibly popular program in schools across the United States despite the fact that research consistently suggests that this program is largely ineffective. How might one explain this discrepancy?
There is probably tremendous political pressure to appear to be hard on drugs. Therefore, even though D.A.R.E. might be ineffective, it is a well-known program with which voters are familiar.
The scientific method is often described as self-correcting and cyclical. Briefly describe your understanding of the scientific method with regard to these concepts.
This cyclical, self-correcting process is primarily a function of the empirical nature of science. Theories are generated as explanations of real-world phenomena. From theories, specific hypotheses are developed and tested. As a function of this testing, theories will be revisited and modified or refined to generate new hypotheses that are again tested. This cyclical process ultimately allows for more and more precise (and presumably accurate) information to be collected.
Personal Application Questions
Healthcare professionals cite an enormous number of health problems related to obesity, and many people have an understandable desire to attain a healthy weight. There are many diet programs, services, and products on the market to aid those who wish to lose weight. If a close friend was considering purchasing or participating in one of these products, programs, or services, how would you make sure your friend was fully aware of the potential consequences of this decision? What sort of information would you want to review before making such an investment or lifestyle change yourself?
IMAGES
VIDEO
COMMENTS
The main purpose of research is to inform action, gather evidence for theories, and contribute to developing knowledge in a field of study. This article discusses the significance of research and the many reasons it's important for everyone—not just students and scientists.
Research empowers us with knowledge. Though scientists carry out research, the rest of the world benefits from their findings. We get to know the way of nature, and how our actions affect it. We gain a deeper understanding of people, and why they do the things they do.
What is the importance of research in our daily life? Research is essential to our daily lives. It helps us to make informed decisions about everything from the food we eat to the medicines we take. It also allows us to better understand the world around us and find solutions to problems.
Research: The Invisible Driver of Our Lives. Unravel the essential role of research in our daily lives. This comprehensive article illuminates how research drives our choices, shapes our world, and plays a pivotal part in everything from the products we use to our health decisions.
In some areas, research is an essential part of success. In others, it may not be absolutely necessary, but it has many benefits. Here are ten reasons why research is important: #1. Research expands your knowledge base. The most obvious reason to do research is that you’ll learn more.
The importance of research in our lives is not obvious at first — and that’s because we take many things for granted. Look around you. It’s not just the creation of vaccines and the discovery of the molecular structure of DNA that require researchers.
Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck.
Explain how scientific research addresses questions about behavior. Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world.
Explain how scientific research addresses questions about behavior. Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world.
Explain how scientific research addresses questions about behavior; Discuss how scientific research guides public policy; Appreciate how scientific research can be important in making personal decisions