Enago Academy

Experimental Research Design — 6 mistakes you should never make!

' src=

Since school days’ students perform scientific experiments that provide results that define and prove the laws and theorems in science. These experiments are laid on a strong foundation of experimental research designs.

An experimental research design helps researchers execute their research objectives with more clarity and transparency.

In this article, we will not only discuss the key aspects of experimental research designs but also the issues to avoid and problems to resolve while designing your research study.

Table of Contents

What Is Experimental Research Design?

Experimental research design is a framework of protocols and procedures created to conduct experimental research with a scientific approach using two sets of variables. Herein, the first set of variables acts as a constant, used to measure the differences of the second set. The best example of experimental research methods is quantitative research .

Experimental research helps a researcher gather the necessary data for making better research decisions and determining the facts of a research study.

When Can a Researcher Conduct Experimental Research?

A researcher can conduct experimental research in the following situations —

  • When time is an important factor in establishing a relationship between the cause and effect.
  • When there is an invariable or never-changing behavior between the cause and effect.
  • Finally, when the researcher wishes to understand the importance of the cause and effect.

Importance of Experimental Research Design

To publish significant results, choosing a quality research design forms the foundation to build the research study. Moreover, effective research design helps establish quality decision-making procedures, structures the research to lead to easier data analysis, and addresses the main research question. Therefore, it is essential to cater undivided attention and time to create an experimental research design before beginning the practical experiment.

By creating a research design, a researcher is also giving oneself time to organize the research, set up relevant boundaries for the study, and increase the reliability of the results. Through all these efforts, one could also avoid inconclusive results. If any part of the research design is flawed, it will reflect on the quality of the results derived.

Types of Experimental Research Designs

Based on the methods used to collect data in experimental studies, the experimental research designs are of three primary types:

1. Pre-experimental Research Design

A research study could conduct pre-experimental research design when a group or many groups are under observation after implementing factors of cause and effect of the research. The pre-experimental design will help researchers understand whether further investigation is necessary for the groups under observation.

Pre-experimental research is of three types —

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

2. True Experimental Research Design

A true experimental research design relies on statistical analysis to prove or disprove a researcher’s hypothesis. It is one of the most accurate forms of research because it provides specific scientific evidence. Furthermore, out of all the types of experimental designs, only a true experimental design can establish a cause-effect relationship within a group. However, in a true experiment, a researcher must satisfy these three factors —

  • There is a control group that is not subjected to changes and an experimental group that will experience the changed variables
  • A variable that can be manipulated by the researcher
  • Random distribution of the variables

This type of experimental research is commonly observed in the physical sciences.

3. Quasi-experimental Research Design

The word “Quasi” means similarity. A quasi-experimental design is similar to a true experimental design. However, the difference between the two is the assignment of the control group. In this research design, an independent variable is manipulated, but the participants of a group are not randomly assigned. This type of research design is used in field settings where random assignment is either irrelevant or not required.

The classification of the research subjects, conditions, or groups determines the type of research design to be used.

experimental research design

Advantages of Experimental Research

Experimental research allows you to test your idea in a controlled environment before taking the research to clinical trials. Moreover, it provides the best method to test your theory because of the following advantages:

  • Researchers have firm control over variables to obtain results.
  • The subject does not impact the effectiveness of experimental research. Anyone can implement it for research purposes.
  • The results are specific.
  • Post results analysis, research findings from the same dataset can be repurposed for similar research ideas.
  • Researchers can identify the cause and effect of the hypothesis and further analyze this relationship to determine in-depth ideas.
  • Experimental research makes an ideal starting point. The collected data could be used as a foundation to build new research ideas for further studies.

6 Mistakes to Avoid While Designing Your Research

There is no order to this list, and any one of these issues can seriously compromise the quality of your research. You could refer to the list as a checklist of what to avoid while designing your research.

1. Invalid Theoretical Framework

Usually, researchers miss out on checking if their hypothesis is logical to be tested. If your research design does not have basic assumptions or postulates, then it is fundamentally flawed and you need to rework on your research framework.

2. Inadequate Literature Study

Without a comprehensive research literature review , it is difficult to identify and fill the knowledge and information gaps. Furthermore, you need to clearly state how your research will contribute to the research field, either by adding value to the pertinent literature or challenging previous findings and assumptions.

3. Insufficient or Incorrect Statistical Analysis

Statistical results are one of the most trusted scientific evidence. The ultimate goal of a research experiment is to gain valid and sustainable evidence. Therefore, incorrect statistical analysis could affect the quality of any quantitative research.

4. Undefined Research Problem

This is one of the most basic aspects of research design. The research problem statement must be clear and to do that, you must set the framework for the development of research questions that address the core problems.

5. Research Limitations

Every study has some type of limitations . You should anticipate and incorporate those limitations into your conclusion, as well as the basic research design. Include a statement in your manuscript about any perceived limitations, and how you considered them while designing your experiment and drawing the conclusion.

6. Ethical Implications

The most important yet less talked about topic is the ethical issue. Your research design must include ways to minimize any risk for your participants and also address the research problem or question at hand. If you cannot manage the ethical norms along with your research study, your research objectives and validity could be questioned.

Experimental Research Design Example

In an experimental design, a researcher gathers plant samples and then randomly assigns half the samples to photosynthesize in sunlight and the other half to be kept in a dark box without sunlight, while controlling all the other variables (nutrients, water, soil, etc.)

By comparing their outcomes in biochemical tests, the researcher can confirm that the changes in the plants were due to the sunlight and not the other variables.

Experimental research is often the final form of a study conducted in the research process which is considered to provide conclusive and specific results. But it is not meant for every research. It involves a lot of resources, time, and money and is not easy to conduct, unless a foundation of research is built. Yet it is widely used in research institutes and commercial industries, for its most conclusive results in the scientific approach.

Have you worked on research designs? How was your experience creating an experimental design? What difficulties did you face? Do write to us or comment below and share your insights on experimental research designs!

Frequently Asked Questions

Randomization is important in an experimental research because it ensures unbiased results of the experiment. It also measures the cause-effect relationship on a particular group of interest.

Experimental research design lay the foundation of a research and structures the research to establish quality decision making process.

There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design.

The difference between an experimental and a quasi-experimental design are: 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2. Experimental research group always has a control group; on the other hand, it may not be always present in quasi experimental research.

Experimental research establishes a cause-effect relationship by testing a theory or hypothesis using experimental groups or control variables. In contrast, descriptive research describes a study or a topic by defining the variables under it and answering the questions related to the same.

' src=

good and valuable

Very very good

Good presentation.

Rate this article Cancel Reply

Your email address will not be published.

experimental research parts

Enago Academy's Most Popular Articles

Graphical Abstracts vs. Infographics: Best Practices for Visuals - Enago

  • Promoting Research

Graphical Abstracts Vs. Infographics: Best practices for using visual illustrations for increased research impact

Dr. Sarah Chen stared at her computer screen, her eyes staring at her recently published…

10 Tips to Prevent Research Papers From Being Retracted - Enago

  • Publishing Research

10 Tips to Prevent Research Papers From Being Retracted

Research paper retractions represent a critical event in the scientific community. When a published article…

2024 Scholar Metrics: Unveiling research impact (2019-2023)

  • Industry News

Google Releases 2024 Scholar Metrics, Evaluates Impact of Scholarly Articles

Google has released its 2024 Scholar Metrics, assessing scholarly articles from 2019 to 2023. This…

What is Academic Integrity and How to Uphold it [FREE CHECKLIST]

Ensuring Academic Integrity and Transparency in Academic Research: A comprehensive checklist for researchers

Academic integrity is the foundation upon which the credibility and value of scientific findings are…

7 Step Guide for Optimizing Impactful Research Process

  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

experimental research parts

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • AI in Academia
  • Career Corner
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer Review Week 2024
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

experimental research parts

Which among these features would you prefer the most in a peer review assistant?

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Writing the Experimental Report: Overview, Introductions, and Literature Reviews

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

Experimental reports (also known as "lab reports") are reports of empirical research conducted by their authors. You should think of an experimental report as a "story" of your research in which you lead your readers through your experiment. As you are telling this story, you are crafting an argument about both the validity and reliability of your research, what your results mean, and how they fit into other previous work.

These next two sections provide an overview of the experimental report in APA format. Always check with your instructor, advisor, or journal editor for specific formatting guidelines.

General-specific-general format

Experimental reports follow a general to specific to general pattern. Your report will start off broadly in your introduction and discussion of the literature; the report narrows as it leads up to your specific hypotheses, methods, and results. Your discussion transitions from talking about your specific results to more general ramifications, future work, and trends relating to your research.

Experimental reports in APA format have a title page. Title page formatting is as follows:

  • A running head and page number in the upper right corner (right aligned)
  • A definition of running head in IN ALL CAPS below the running head (left aligned)
  • Vertically and horizontally centered paper title, followed by author and affiliation

Please see our sample APA title page .

Crafting your story

Before you begin to write, carefully consider your purpose in writing: what is it that you discovered, would like to share, or would like to argue? You can see report writing as crafting a story about your research and your findings. Consider the following.

  • What is the story you would like to tell?
  • What literature best speaks to that story?
  • How do your results tell the story?
  • How can you discuss the story in broad terms?

During each section of your paper, you should be focusing on your story. Consider how each sentence, each paragraph, and each section contributes to your overall purpose in writing. Here is a description of one student's process.

Briel is writing an experimental report on her results from her experimental psychology lab class. She was interested in looking at the role gender plays in persuading individuals to take financial risks. After her data analysis, she finds that men are more easily persuaded by women to take financial risks and that men are generally willing to take more financial risks.

When Briel begins to write, she focuses her introduction on financial risk taking and gender, focusing on male behaviors. She then presents relevant literature on financial risk taking and gender that help illuminate her own study, but also help demonstrate the need for her own work. Her introduction ends with a study overview that directly leads from the literature review. Because she has already broadly introduced her study through her introduction and literature review, her readers can anticipate where she is going when she gets to her study overview. Her methods and results continue that story. Finally, her discussion concludes that story, discussing her findings, implications of her work, and the need for more research in the area of gender and financial risk taking.

The abstract gives a concise summary of the contents of the report.

  • Abstracts should be brief (about 100 words)
  • Abstracts should be self-contained and provide a complete picture of what the study is about
  • Abstracts should be organized just like your experimental report—introduction, literature review, methods, results and discussion
  • Abstracts should be written last during your drafting stage

Introduction

The introduction in an experimental article should follow a general to specific pattern, where you first introduce the problem generally and then provide a short overview of your own study. The introduction includes three parts: opening statements, literature review, and study overview.

Opening statements: Define the problem broadly in plain English and then lead into the literature review (this is the "general" part of the introduction). Your opening statements should already be setting the stage for the story you are going to tell.

Literature review: Discusses literature (previous studies) relevant to your current study in a concise manner. Keep your story in mind as you organize your lit review and as you choose what literature to include. The following are tips when writing your literature review.

  • You should discuss studies that are directly related to your problem at hand and that logically lead to your own hypotheses.
  • You do not need to provide a complete historical overview nor provide literature that is peripheral to your own study.
  • Studies should be presented based on themes or concepts relevant to your research, not in a chronological format.
  • You should also consider what gap in the literature your own research fills. What hasn't been examined? What does your work do that others have not?

Study overview: The literature review should lead directly into the last section of the introduction—your study overview. Your short overview should provide your hypotheses and briefly describe your method. The study overview functions as a transition to your methods section.

You should always give good, descriptive names to your hypotheses that you use consistently throughout your study. When you number hypotheses, readers must go back to your introduction to find them, which makes your piece more difficult to read. Using descriptive names reminds readers what your hypotheses were and allows for better overall flow.

In our example above, Briel had three different hypotheses based on previous literature. Her first hypothesis, the "masculine risk-taking hypothesis" was that men would be more willing to take financial risks overall. She clearly named her hypothesis in the study overview, and then referred back to it in her results and discussion sections.

Thais and Sanford (2000) recommend the following organization for introductions.

  • Provide an introduction to your topic
  • Provide a very concise overview of the literature
  • State your hypotheses and how they connect to the literature
  • Provide an overview of the methods for investigation used in your research

Bem (2006) provides the following rules of thumb for writing introductions.

  • Write in plain English
  • Take the time and space to introduce readers to your problem step-by-step; do not plunge them into the middle of the problem without an introduction
  • Use examples to illustrate difficult or unfamiliar theories or concepts. The more complicated the concept or theory, the more important it is to have clear examples
  • Open with a discussion about people and their behavior, not about psychologists and their research

Logo for University of Southern Queensland

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

10 Experimental research

Experimental research—often considered to be the ‘gold standard’ in research designs—is one of the most rigorous of all research designs. In this design, one or more independent variables are manipulated by the researcher (as treatments), subjects are randomly assigned to different treatment levels (random assignment), and the results of the treatments on outcomes (dependent variables) are observed. The unique strength of experimental research is its internal validity (causality) due to its ability to link cause and effect through treatment manipulation, while controlling for the spurious effect of extraneous variable.

Experimental research is best suited for explanatory research—rather than for descriptive or exploratory research—where the goal of the study is to examine cause-effect relationships. It also works well for research that involves a relatively limited and well-defined set of independent variables that can either be manipulated or controlled. Experimental research can be conducted in laboratory or field settings. Laboratory experiments , conducted in laboratory (artificial) settings, tend to be high in internal validity, but this comes at the cost of low external validity (generalisability), because the artificial (laboratory) setting in which the study is conducted may not reflect the real world. Field experiments are conducted in field settings such as in a real organisation, and are high in both internal and external validity. But such experiments are relatively rare, because of the difficulties associated with manipulating treatments and controlling for extraneous effects in a field setting.

Experimental research can be grouped into two broad categories: true experimental designs and quasi-experimental designs. Both designs require treatment manipulation, but while true experiments also require random assignment, quasi-experiments do not. Sometimes, we also refer to non-experimental research, which is not really a research design, but an all-inclusive term that includes all types of research that do not employ treatment manipulation or random assignment, such as survey research, observational research, and correlational studies.

Basic concepts

Treatment and control groups. In experimental research, some subjects are administered one or more experimental stimulus called a treatment (the treatment group ) while other subjects are not given such a stimulus (the control group ). The treatment may be considered successful if subjects in the treatment group rate more favourably on outcome variables than control group subjects. Multiple levels of experimental stimulus may be administered, in which case, there may be more than one treatment group. For example, in order to test the effects of a new drug intended to treat a certain medical condition like dementia, if a sample of dementia patients is randomly divided into three groups, with the first group receiving a high dosage of the drug, the second group receiving a low dosage, and the third group receiving a placebo such as a sugar pill (control group), then the first two groups are experimental groups and the third group is a control group. After administering the drug for a period of time, if the condition of the experimental group subjects improved significantly more than the control group subjects, we can say that the drug is effective. We can also compare the conditions of the high and low dosage experimental groups to determine if the high dose is more effective than the low dose.

Treatment manipulation. Treatments are the unique feature of experimental research that sets this design apart from all other research methods. Treatment manipulation helps control for the ‘cause’ in cause-effect relationships. Naturally, the validity of experimental research depends on how well the treatment was manipulated. Treatment manipulation must be checked using pretests and pilot tests prior to the experimental study. Any measurements conducted before the treatment is administered are called pretest measures , while those conducted after the treatment are posttest measures .

Random selection and assignment. Random selection is the process of randomly drawing a sample from a population or a sampling frame. This approach is typically employed in survey research, and ensures that each unit in the population has a positive chance of being selected into the sample. Random assignment, however, is a process of randomly assigning subjects to experimental or control groups. This is a standard practice in true experimental research to ensure that treatment groups are similar (equivalent) to each other and to the control group prior to treatment administration. Random selection is related to sampling, and is therefore more closely related to the external validity (generalisability) of findings. However, random assignment is related to design, and is therefore most related to internal validity. It is possible to have both random selection and random assignment in well-designed experimental research, but quasi-experimental research involves neither random selection nor random assignment.

Threats to internal validity. Although experimental designs are considered more rigorous than other research methods in terms of the internal validity of their inferences (by virtue of their ability to control causes through treatment manipulation), they are not immune to internal validity threats. Some of these threats to internal validity are described below, within the context of a study of the impact of a special remedial math tutoring program for improving the math abilities of high school students.

History threat is the possibility that the observed effects (dependent variables) are caused by extraneous or historical events rather than by the experimental treatment. For instance, students’ post-remedial math score improvement may have been caused by their preparation for a math exam at their school, rather than the remedial math program.

Maturation threat refers to the possibility that observed effects are caused by natural maturation of subjects (e.g., a general improvement in their intellectual ability to understand complex concepts) rather than the experimental treatment.

Testing threat is a threat in pre-post designs where subjects’ posttest responses are conditioned by their pretest responses. For instance, if students remember their answers from the pretest evaluation, they may tend to repeat them in the posttest exam.

Not conducting a pretest can help avoid this threat.

Instrumentation threat , which also occurs in pre-post designs, refers to the possibility that the difference between pretest and posttest scores is not due to the remedial math program, but due to changes in the administered test, such as the posttest having a higher or lower degree of difficulty than the pretest.

Mortality threat refers to the possibility that subjects may be dropping out of the study at differential rates between the treatment and control groups due to a systematic reason, such that the dropouts were mostly students who scored low on the pretest. If the low-performing students drop out, the results of the posttest will be artificially inflated by the preponderance of high-performing students.

Regression threat —also called a regression to the mean—refers to the statistical tendency of a group’s overall performance to regress toward the mean during a posttest rather than in the anticipated direction. For instance, if subjects scored high on a pretest, they will have a tendency to score lower on the posttest (closer to the mean) because their high scores (away from the mean) during the pretest were possibly a statistical aberration. This problem tends to be more prevalent in non-random samples and when the two measures are imperfectly correlated.

Two-group experimental designs

R

Pretest-posttest control group design . In this design, subjects are randomly assigned to treatment and control groups, subjected to an initial (pretest) measurement of the dependent variables of interest, the treatment group is administered a treatment (representing the independent variable of interest), and the dependent variables measured again (posttest). The notation of this design is shown in Figure 10.1.

Pretest-posttest control group design

Statistical analysis of this design involves a simple analysis of variance (ANOVA) between the treatment and control groups. The pretest-posttest design handles several threats to internal validity, such as maturation, testing, and regression, since these threats can be expected to influence both treatment and control groups in a similar (random) manner. The selection threat is controlled via random assignment. However, additional threats to internal validity may exist. For instance, mortality can be a problem if there are differential dropout rates between the two groups, and the pretest measurement may bias the posttest measurement—especially if the pretest introduces unusual topics or content.

Posttest -only control group design . This design is a simpler version of the pretest-posttest design where pretest measurements are omitted. The design notation is shown in Figure 10.2.

Posttest-only control group design

The treatment effect is measured simply as the difference in the posttest scores between the two groups:

\[E = (O_{1} - O_{2})\,.\]

The appropriate statistical analysis of this design is also a two-group analysis of variance (ANOVA). The simplicity of this design makes it more attractive than the pretest-posttest design in terms of internal validity. This design controls for maturation, testing, regression, selection, and pretest-posttest interaction, though the mortality threat may continue to exist.

C

Because the pretest measure is not a measurement of the dependent variable, but rather a covariate, the treatment effect is measured as the difference in the posttest scores between the treatment and control groups as:

Due to the presence of covariates, the right statistical analysis of this design is a two-group analysis of covariance (ANCOVA). This design has all the advantages of posttest-only design, but with internal validity due to the controlling of covariates. Covariance designs can also be extended to pretest-posttest control group design.

Factorial designs

Two-group designs are inadequate if your research requires manipulation of two or more independent variables (treatments). In such cases, you would need four or higher-group designs. Such designs, quite popular in experimental research, are commonly called factorial designs. Each independent variable in this design is called a factor , and each subdivision of a factor is called a level . Factorial designs enable the researcher to examine not only the individual effect of each treatment on the dependent variables (called main effects), but also their joint effect (called interaction effects).

2 \times 2

In a factorial design, a main effect is said to exist if the dependent variable shows a significant difference between multiple levels of one factor, at all levels of other factors. No change in the dependent variable across factor levels is the null case (baseline), from which main effects are evaluated. In the above example, you may see a main effect of instructional type, instructional time, or both on learning outcomes. An interaction effect exists when the effect of differences in one factor depends upon the level of a second factor. In our example, if the effect of instructional type on learning outcomes is greater for three hours/week of instructional time than for one and a half hours/week, then we can say that there is an interaction effect between instructional type and instructional time on learning outcomes. Note that the presence of interaction effects dominate and make main effects irrelevant, and it is not meaningful to interpret main effects if interaction effects are significant.

Hybrid experimental designs

Hybrid designs are those that are formed by combining features of more established designs. Three such hybrid designs are randomised bocks design, Solomon four-group design, and switched replications design.

Randomised block design. This is a variation of the posttest-only or pretest-posttest control group design where the subject population can be grouped into relatively homogeneous subgroups (called blocks ) within which the experiment is replicated. For instance, if you want to replicate the same posttest-only design among university students and full-time working professionals (two homogeneous blocks), subjects in both blocks are randomly split between the treatment group (receiving the same treatment) and the control group (see Figure 10.5). The purpose of this design is to reduce the ‘noise’ or variance in data that may be attributable to differences between the blocks so that the actual effect of interest can be detected more accurately.

Randomised blocks design

Solomon four-group design . In this design, the sample is divided into two treatment groups and two control groups. One treatment group and one control group receive the pretest, and the other two groups do not. This design represents a combination of posttest-only and pretest-posttest control group design, and is intended to test for the potential biasing effect of pretest measurement on posttest measures that tends to occur in pretest-posttest designs, but not in posttest-only designs. The design notation is shown in Figure 10.6.

Solomon four-group design

Switched replication design . This is a two-group design implemented in two phases with three waves of measurement. The treatment group in the first phase serves as the control group in the second phase, and the control group in the first phase becomes the treatment group in the second phase, as illustrated in Figure 10.7. In other words, the original design is repeated or replicated temporally with treatment/control roles switched between the two groups. By the end of the study, all participants will have received the treatment either during the first or the second phase. This design is most feasible in organisational contexts where organisational programs (e.g., employee training) are implemented in a phased manner or are repeated at regular intervals.

Switched replication design

Quasi-experimental designs

Quasi-experimental designs are almost identical to true experimental designs, but lacking one key ingredient: random assignment. For instance, one entire class section or one organisation is used as the treatment group, while another section of the same class or a different organisation in the same industry is used as the control group. This lack of random assignment potentially results in groups that are non-equivalent, such as one group possessing greater mastery of certain content than the other group, say by virtue of having a better teacher in a previous semester, which introduces the possibility of selection bias . Quasi-experimental designs are therefore inferior to true experimental designs in interval validity due to the presence of a variety of selection related threats such as selection-maturation threat (the treatment and control groups maturing at different rates), selection-history threat (the treatment and control groups being differentially impacted by extraneous or historical events), selection-regression threat (the treatment and control groups regressing toward the mean between pretest and posttest at different rates), selection-instrumentation threat (the treatment and control groups responding differently to the measurement), selection-testing (the treatment and control groups responding differently to the pretest), and selection-mortality (the treatment and control groups demonstrating differential dropout rates). Given these selection threats, it is generally preferable to avoid quasi-experimental designs to the greatest extent possible.

N

In addition, there are quite a few unique non-equivalent designs without corresponding true experimental design cousins. Some of the more useful of these designs are discussed next.

Regression discontinuity (RD) design . This is a non-equivalent pretest-posttest design where subjects are assigned to the treatment or control group based on a cut-off score on a preprogram measure. For instance, patients who are severely ill may be assigned to a treatment group to test the efficacy of a new drug or treatment protocol and those who are mildly ill are assigned to the control group. In another example, students who are lagging behind on standardised test scores may be selected for a remedial curriculum program intended to improve their performance, while those who score high on such tests are not selected from the remedial program.

RD design

Because of the use of a cut-off score, it is possible that the observed results may be a function of the cut-off score rather than the treatment, which introduces a new threat to internal validity. However, using the cut-off score also ensures that limited or costly resources are distributed to people who need them the most, rather than randomly across a population, while simultaneously allowing a quasi-experimental treatment. The control group scores in the RD design do not serve as a benchmark for comparing treatment group scores, given the systematic non-equivalence between the two groups. Rather, if there is no discontinuity between pretest and posttest scores in the control group, but such a discontinuity persists in the treatment group, then this discontinuity is viewed as evidence of the treatment effect.

Proxy pretest design . This design, shown in Figure 10.11, looks very similar to the standard NEGD (pretest-posttest) design, with one critical difference: the pretest score is collected after the treatment is administered. A typical application of this design is when a researcher is brought in to test the efficacy of a program (e.g., an educational program) after the program has already started and pretest data is not available. Under such circumstances, the best option for the researcher is often to use a different prerecorded measure, such as students’ grade point average before the start of the program, as a proxy for pretest data. A variation of the proxy pretest design is to use subjects’ posttest recollection of pretest data, which may be subject to recall bias, but nevertheless may provide a measure of perceived gain or change in the dependent variable.

Proxy pretest design

Separate pretest-posttest samples design . This design is useful if it is not possible to collect pretest and posttest data from the same subjects for some reason. As shown in Figure 10.12, there are four groups in this design, but two groups come from a single non-equivalent group, while the other two groups come from a different non-equivalent group. For instance, say you want to test customer satisfaction with a new online service that is implemented in one city but not in another. In this case, customers in the first city serve as the treatment group and those in the second city constitute the control group. If it is not possible to obtain pretest and posttest measures from the same customers, you can measure customer satisfaction at one point in time, implement the new service program, and measure customer satisfaction (with a different set of customers) after the program is implemented. Customer satisfaction is also measured in the control group at the same times as in the treatment group, but without the new program implementation. The design is not particularly strong, because you cannot examine the changes in any specific customer’s satisfaction score before and after the implementation, but you can only examine average customer satisfaction scores. Despite the lower internal validity, this design may still be a useful way of collecting quasi-experimental data when pretest and posttest data is not available from the same subjects.

Separate pretest-posttest samples design

An interesting variation of the NEDV design is a pattern-matching NEDV design , which employs multiple outcome variables and a theory that explains how much each variable will be affected by the treatment. The researcher can then examine if the theoretical prediction is matched in actual observations. This pattern-matching technique—based on the degree of correspondence between theoretical and observed patterns—is a powerful way of alleviating internal validity concerns in the original NEDV design.

NEDV design

Perils of experimental research

Experimental research is one of the most difficult of research designs, and should not be taken lightly. This type of research is often best with a multitude of methodological problems. First, though experimental research requires theories for framing hypotheses for testing, much of current experimental research is atheoretical. Without theories, the hypotheses being tested tend to be ad hoc, possibly illogical, and meaningless. Second, many of the measurement instruments used in experimental research are not tested for reliability and validity, and are incomparable across studies. Consequently, results generated using such instruments are also incomparable. Third, often experimental research uses inappropriate research designs, such as irrelevant dependent variables, no interaction effects, no experimental controls, and non-equivalent stimulus across treatment groups. Findings from such studies tend to lack internal validity and are highly suspect. Fourth, the treatments (tasks) used in experimental research may be diverse, incomparable, and inconsistent across studies, and sometimes inappropriate for the subject population. For instance, undergraduate student subjects are often asked to pretend that they are marketing managers and asked to perform a complex budget allocation task in which they have no experience or expertise. The use of such inappropriate tasks, introduces new threats to internal validity (i.e., subject’s performance may be an artefact of the content or difficulty of the task setting), generates findings that are non-interpretable and meaningless, and makes integration of findings across studies impossible.

The design of proper experimental treatments is a very important task in experimental design, because the treatment is the raison d’etre of the experimental method, and must never be rushed or neglected. To design an adequate and appropriate task, researchers should use prevalidated tasks if available, conduct treatment manipulation checks to check for the adequacy of such tasks (by debriefing subjects after performing the assigned task), conduct pilot tests (repeatedly, if necessary), and if in doubt, use tasks that are simple and familiar for the respondent sample rather than tasks that are complex or unfamiliar.

In summary, this chapter introduced key concepts in the experimental design research method and introduced a variety of true experimental and quasi-experimental designs. Although these designs vary widely in internal validity, designs with less internal validity should not be overlooked and may sometimes be useful under specific circumstances and empirical contingencies.

Social Science Research: Principles, Methods and Practices (Revised edition) Copyright © 2019 by Anol Bhattacherjee is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

experimental research parts

Home Market Research

Experimental Research: What it is + Types of designs

Experimental Research Design

Any research conducted under scientifically acceptable conditions uses experimental methods. The success of experimental studies hinges on researchers confirming the change of a variable is based solely on the manipulation of the constant variable. The research should establish a notable cause and effect.

What is Experimental Research?

Experimental research is a study conducted with a scientific approach using two sets of variables. The first set acts as a constant, which you use to measure the differences of the second set. Quantitative research methods , for example, are experimental.

If you don’t have enough data to support your decisions, you must first determine the facts. This research gathers the data necessary to help you make better decisions.

You can conduct experimental research in the following situations:

  • Time is a vital factor in establishing a relationship between cause and effect.
  • Invariable behavior between cause and effect.
  • You wish to understand the importance of cause and effect.

Experimental Research Design Types

The classic experimental design definition is: “The methods used to collect data in experimental studies.”

There are three primary types of experimental design:

  • Pre-experimental research design
  • True experimental research design
  • Quasi-experimental research design

The way you classify research subjects based on conditions or groups determines the type of research design  you should use.

0 1. Pre-Experimental Design

A group, or various groups, are kept under observation after implementing cause and effect factors. You’ll conduct this research to understand whether further investigation is necessary for these particular groups.

You can break down pre-experimental research further into three types:

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

0 2. True Experimental Design

It relies on statistical analysis to prove or disprove a hypothesis, making it the most accurate form of research. Of the types of experimental design, only true design can establish a cause-effect relationship within a group. In a true experiment, three factors need to be satisfied:

  • There is a Control Group, which won’t be subject to changes, and an Experimental Group, which will experience the changed variables.
  • A variable that can be manipulated by the researcher
  • Random distribution

This experimental research method commonly occurs in the physical sciences.

0 3. Quasi-Experimental Design

The word “Quasi” indicates similarity. A quasi-experimental design is similar to an experimental one, but it is not the same. The difference between the two is the assignment of a control group. In this research, an independent variable is manipulated, but the participants of a group are not randomly assigned. Quasi-research is used in field settings where random assignment is either irrelevant or not required.

Importance of Experimental Design

Experimental research is a powerful tool for understanding cause-and-effect relationships. It allows us to manipulate variables and observe the effects, which is crucial for understanding how different factors influence the outcome of a study.

But the importance of experimental research goes beyond that. It’s a critical method for many scientific and academic studies. It allows us to test theories, develop new products, and make groundbreaking discoveries.

For example, this research is essential for developing new drugs and medical treatments. Researchers can understand how a new drug works by manipulating dosage and administration variables and identifying potential side effects.

Similarly, experimental research is used in the field of psychology to test theories and understand human behavior. By manipulating variables such as stimuli, researchers can gain insights into how the brain works and identify new treatment options for mental health disorders.

It is also widely used in the field of education. It allows educators to test new teaching methods and identify what works best. By manipulating variables such as class size, teaching style, and curriculum, researchers can understand how students learn and identify new ways to improve educational outcomes.

In addition, experimental research is a powerful tool for businesses and organizations. By manipulating variables such as marketing strategies, product design, and customer service, companies can understand what works best and identify new opportunities for growth.

Advantages of Experimental Research

When talking about this research, we can think of human life. Babies do their own rudimentary experiments (such as putting objects in their mouths) to learn about the world around them, while older children and teens do experiments at school to learn more about science.

Ancient scientists used this research to prove that their hypotheses were correct. For example, Galileo Galilei and Antoine Lavoisier conducted various experiments to discover key concepts in physics and chemistry. The same is true of modern experts, who use this scientific method to see if new drugs are effective, discover treatments for diseases, and create new electronic devices (among others).

It’s vital to test new ideas or theories. Why put time, effort, and funding into something that may not work?

This research allows you to test your idea in a controlled environment before marketing. It also provides the best method to test your theory thanks to the following advantages:

Advantages of experimental research

  • Researchers have a stronger hold over variables to obtain desired results.
  • The subject or industry does not impact the effectiveness of experimental research. Any industry can implement it for research purposes.
  • The results are specific.
  • After analyzing the results, you can apply your findings to similar ideas or situations.
  • You can identify the cause and effect of a hypothesis. Researchers can further analyze this relationship to determine more in-depth ideas.
  • Experimental research makes an ideal starting point. The data you collect is a foundation for building more ideas and conducting more action research .

Whether you want to know how the public will react to a new product or if a certain food increases the chance of disease, experimental research is the best place to start. Begin your research by finding subjects using  QuestionPro Audience  and other tools today.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

experimental research parts

QuestionPro: Leading the Charge in Customer Journey Management and Voice of the Customer Platforms

Sep 17, 2024

Driver analysis

What is Driver Analysis? Importance and Best Practices

experimental research parts

Was The Experience Memorable? (Part II) — Tuesday CX Thoughts

data discovery

Data Discovery: What it is, Importance, Process + Use Cases

Sep 16, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence
  • Experimental Research Designs: Types, Examples & Methods

busayo.longe

Experimental research is the most familiar type of research design for individuals in the physical sciences and a host of other fields. This is mainly because experimental research is a classical scientific experiment, similar to those performed in high school science classes.

Imagine taking 2 samples of the same plant and exposing one of them to sunlight, while the other is kept away from sunlight. Let the plant exposed to sunlight be called sample A, while the latter is called sample B.

If after the duration of the research, we find out that sample A grows and sample B dies, even though they are both regularly wetted and given the same treatment. Therefore, we can conclude that sunlight will aid growth in all similar plants.

What is Experimental Research?

Experimental research is a scientific approach to research, where one or more independent variables are manipulated and applied to one or more dependent variables to measure their effect on the latter. The effect of the independent variables on the dependent variables is usually observed and recorded over some time, to aid researchers in drawing a reasonable conclusion regarding the relationship between these 2 variable types.

The experimental research method is widely used in physical and social sciences, psychology, and education. It is based on the comparison between two or more groups with a straightforward logic, which may, however, be difficult to execute.

Mostly related to a laboratory test procedure, experimental research designs involve collecting quantitative data and performing statistical analysis on them during research. Therefore, making it an example of quantitative research method .

What are The Types of Experimental Research Design?

The types of experimental research design are determined by the way the researcher assigns subjects to different conditions and groups. They are of 3 types, namely; pre-experimental, quasi-experimental, and true experimental research.

Pre-experimental Research Design

In pre-experimental research design, either a group or various dependent groups are observed for the effect of the application of an independent variable which is presumed to cause change. It is the simplest form of experimental research design and is treated with no control group.

Although very practical, experimental research is lacking in several areas of the true-experimental criteria. The pre-experimental research design is further divided into three types

  • One-shot Case Study Research Design

In this type of experimental study, only one dependent group or variable is considered. The study is carried out after some treatment which was presumed to cause change, making it a posttest study.

  • One-group Pretest-posttest Research Design: 

This research design combines both posttest and pretest study by carrying out a test on a single group before the treatment is administered and after the treatment is administered. With the former being administered at the beginning of treatment and later at the end.

  • Static-group Comparison: 

In a static-group comparison study, 2 or more groups are placed under observation, where only one of the groups is subjected to some treatment while the other groups are held static. All the groups are post-tested, and the observed differences between the groups are assumed to be a result of the treatment.

Quasi-experimental Research Design

  The word “quasi” means partial, half, or pseudo. Therefore, the quasi-experimental research bearing a resemblance to the true experimental research, but not the same.  In quasi-experiments, the participants are not randomly assigned, and as such, they are used in settings where randomization is difficult or impossible.

 This is very common in educational research, where administrators are unwilling to allow the random selection of students for experimental samples.

Some examples of quasi-experimental research design include; the time series, no equivalent control group design, and the counterbalanced design.

True Experimental Research Design

The true experimental research design relies on statistical analysis to approve or disprove a hypothesis. It is the most accurate type of experimental design and may be carried out with or without a pretest on at least 2 randomly assigned dependent subjects.

The true experimental research design must contain a control group, a variable that can be manipulated by the researcher, and the distribution must be random. The classification of true experimental design include:

  • The posttest-only Control Group Design: In this design, subjects are randomly selected and assigned to the 2 groups (control and experimental), and only the experimental group is treated. After close observation, both groups are post-tested, and a conclusion is drawn from the difference between these groups.
  • The pretest-posttest Control Group Design: For this control group design, subjects are randomly assigned to the 2 groups, both are presented, but only the experimental group is treated. After close observation, both groups are post-tested to measure the degree of change in each group.
  • Solomon four-group Design: This is the combination of the pretest-only and the pretest-posttest control groups. In this case, the randomly selected subjects are placed into 4 groups.

The first two of these groups are tested using the posttest-only method, while the other two are tested using the pretest-posttest method.

Examples of Experimental Research

Experimental research examples are different, depending on the type of experimental research design that is being considered. The most basic example of experimental research is laboratory experiments, which may differ in nature depending on the subject of research.

Administering Exams After The End of Semester

During the semester, students in a class are lectured on particular courses and an exam is administered at the end of the semester. In this case, the students are the subjects or dependent variables while the lectures are the independent variables treated on the subjects.

Only one group of carefully selected subjects are considered in this research, making it a pre-experimental research design example. We will also notice that tests are only carried out at the end of the semester, and not at the beginning.

Further making it easy for us to conclude that it is a one-shot case study research. 

Employee Skill Evaluation

Before employing a job seeker, organizations conduct tests that are used to screen out less qualified candidates from the pool of qualified applicants. This way, organizations can determine an employee’s skill set at the point of employment.

In the course of employment, organizations also carry out employee training to improve employee productivity and generally grow the organization. Further evaluation is carried out at the end of each training to test the impact of the training on employee skills, and test for improvement.

Here, the subject is the employee, while the treatment is the training conducted. This is a pretest-posttest control group experimental research example.

Evaluation of Teaching Method

Let us consider an academic institution that wants to evaluate the teaching method of 2 teachers to determine which is best. Imagine a case whereby the students assigned to each teacher is carefully selected probably due to personal request by parents or due to stubbornness and smartness.

This is a no equivalent group design example because the samples are not equal. By evaluating the effectiveness of each teacher’s teaching method this way, we may conclude after a post-test has been carried out.

However, this may be influenced by factors like the natural sweetness of a student. For example, a very smart student will grab more easily than his or her peers irrespective of the method of teaching.

What are the Characteristics of Experimental Research?  

Experimental research contains dependent, independent and extraneous variables. The dependent variables are the variables being treated or manipulated and are sometimes called the subject of the research.

The independent variables are the experimental treatment being exerted on the dependent variables. Extraneous variables, on the other hand, are other factors affecting the experiment that may also contribute to the change.

The setting is where the experiment is carried out. Many experiments are carried out in the laboratory, where control can be exerted on the extraneous variables, thereby eliminating them.

Other experiments are carried out in a less controllable setting. The choice of setting used in research depends on the nature of the experiment being carried out.

  • Multivariable

Experimental research may include multiple independent variables, e.g. time, skills, test scores, etc.

Why Use Experimental Research Design?  

Experimental research design can be majorly used in physical sciences, social sciences, education, and psychology. It is used to make predictions and draw conclusions on a subject matter. 

Some uses of experimental research design are highlighted below.

  • Medicine: Experimental research is used to provide the proper treatment for diseases. In most cases, rather than directly using patients as the research subject, researchers take a sample of the bacteria from the patient’s body and are treated with the developed antibacterial

The changes observed during this period are recorded and evaluated to determine its effectiveness. This process can be carried out using different experimental research methods.

  • Education: Asides from science subjects like Chemistry and Physics which involves teaching students how to perform experimental research, it can also be used in improving the standard of an academic institution. This includes testing students’ knowledge on different topics, coming up with better teaching methods, and the implementation of other programs that will aid student learning.
  • Human Behavior: Social scientists are the ones who mostly use experimental research to test human behaviour. For example, consider 2 people randomly chosen to be the subject of the social interaction research where one person is placed in a room without human interaction for 1 year.

The other person is placed in a room with a few other people, enjoying human interaction. There will be a difference in their behaviour at the end of the experiment.

  • UI/UX: During the product development phase, one of the major aims of the product team is to create a great user experience with the product. Therefore, before launching the final product design, potential are brought in to interact with the product.

For example, when finding it difficult to choose how to position a button or feature on the app interface, a random sample of product testers are allowed to test the 2 samples and how the button positioning influences the user interaction is recorded.

What are the Disadvantages of Experimental Research?  

  • It is highly prone to human error due to its dependency on variable control which may not be properly implemented. These errors could eliminate the validity of the experiment and the research being conducted.
  • Exerting control of extraneous variables may create unrealistic situations. Eliminating real-life variables will result in inaccurate conclusions. This may also result in researchers controlling the variables to suit his or her personal preferences.
  • It is a time-consuming process. So much time is spent on testing dependent variables and waiting for the effect of the manipulation of dependent variables to manifest.
  • It is expensive.
  • It is very risky and may have ethical complications that cannot be ignored. This is common in medical research, where failed trials may lead to a patient’s death or a deteriorating health condition.
  • Experimental research results are not descriptive.
  • Response bias can also be supplied by the subject of the conversation.
  • Human responses in experimental research can be difficult to measure.

What are the Data Collection Methods in Experimental Research?  

Data collection methods in experimental research are the different ways in which data can be collected for experimental research. They are used in different cases, depending on the type of research being carried out.

1. Observational Study

This type of study is carried out over a long period. It measures and observes the variables of interest without changing existing conditions.

When researching the effect of social interaction on human behavior, the subjects who are placed in 2 different environments are observed throughout the research. No matter the kind of absurd behavior that is exhibited by the subject during this period, its condition will not be changed.

This may be a very risky thing to do in medical cases because it may lead to death or worse medical conditions.

2. Simulations

This procedure uses mathematical, physical, or computer models to replicate a real-life process or situation. It is frequently used when the actual situation is too expensive, dangerous, or impractical to replicate in real life.

This method is commonly used in engineering and operational research for learning purposes and sometimes as a tool to estimate possible outcomes of real research. Some common situation software are Simulink, MATLAB, and Simul8.

Not all kinds of experimental research can be carried out using simulation as a data collection tool . It is very impractical for a lot of laboratory-based research that involves chemical processes.

A survey is a tool used to gather relevant data about the characteristics of a population and is one of the most common data collection tools. A survey consists of a group of questions prepared by the researcher, to be answered by the research subject.

Surveys can be shared with the respondents both physically and electronically. When collecting data through surveys, the kind of data collected depends on the respondent, and researchers have limited control over it.

Formplus is the best tool for collecting experimental data using survey s. It has relevant features that will aid the data collection process and can also be used in other aspects of experimental research.

Differences between Experimental and Non-Experimental Research 

1. In experimental research, the researcher can control and manipulate the environment of the research, including the predictor variable which can be changed. On the other hand, non-experimental research cannot be controlled or manipulated by the researcher at will.

This is because it takes place in a real-life setting, where extraneous variables cannot be eliminated. Therefore, it is more difficult to conclude non-experimental studies, even though they are much more flexible and allow for a greater range of study fields.

2. The relationship between cause and effect cannot be established in non-experimental research, while it can be established in experimental research. This may be because many extraneous variables also influence the changes in the research subject, making it difficult to point at a particular variable as the cause of a particular change

3. Independent variables are not introduced, withdrawn, or manipulated in non-experimental designs, but the same may not be said about experimental research.

Experimental Research vs. Alternatives and When to Use Them

1. experimental research vs causal comparative.

Experimental research enables you to control variables and identify how the independent variable affects the dependent variable. Causal-comparative find out the cause-and-effect relationship between the variables by comparing already existing groups that are affected differently by the independent variable.

For example, in an experiment to see how K-12 education affects children and teenager development. An experimental research would split the children into groups, some would get formal K-12 education, while others won’t. This is not ethically right because every child has the right to education. So, what we do instead would be to compare already existing groups of children who are getting formal education with those who due to some circumstances can not.

Pros and Cons of Experimental vs Causal-Comparative Research

  • Causal-Comparative:   Strengths:  More realistic than experiments, can be conducted in real-world settings.  Weaknesses:  Establishing causality can be weaker due to the lack of manipulation.

2. Experimental Research vs Correlational Research

When experimenting, you are trying to establish a cause-and-effect relationship between different variables. For example, you are trying to establish the effect of heat on water, the temperature keeps changing (independent variable) and you see how it affects the water (dependent variable).

For correlational research, you are not necessarily interested in the why or the cause-and-effect relationship between the variables, you are focusing on the relationship. Using the same water and temperature example, you are only interested in the fact that they change, you are not investigating which of the variables or other variables causes them to change.

Pros and Cons of Experimental vs Correlational Research

3. experimental research vs descriptive research.

With experimental research, you alter the independent variable to see how it affects the dependent variable, but with descriptive research you are simply studying the characteristics of the variable you are studying.

So, in an experiment to see how blown glass reacts to temperature, experimental research would keep altering the temperature to varying levels of high and low to see how it affects the dependent variable (glass). But descriptive research would investigate the glass properties.

Pros and Cons of Experimental vs Descriptive Research

4. experimental research vs action research.

Experimental research tests for causal relationships by focusing on one independent variable vs the dependent variable and keeps other variables constant. So, you are testing hypotheses and using the information from the research to contribute to knowledge.

However, with action research, you are using a real-world setting which means you are not controlling variables. You are also performing the research to solve actual problems and improve already established practices.

For example, if you are testing for how long commutes affect workers’ productivity. With experimental research, you would vary the length of commute to see how the time affects work. But with action research, you would account for other factors such as weather, commute route, nutrition, etc. Also, experimental research helps know the relationship between commute time and productivity, while action research helps you look for ways to improve productivity

Pros and Cons of Experimental vs Action Research

Conclusion  .

Experimental research designs are often considered to be the standard in research designs. This is partly due to the common misconception that research is equivalent to scientific experiments—a component of experimental research design.

In this research design, one or more subjects or dependent variables are randomly assigned to different treatments (i.e. independent variables manipulated by the researcher) and the results are observed to conclude. One of the uniqueness of experimental research is in its ability to control the effect of extraneous variables.

Experimental research is suitable for research whose goal is to examine cause-effect relationships, e.g. explanatory research. It can be conducted in the laboratory or field settings, depending on the aim of the research that is being carried out. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • examples of experimental research
  • experimental research methods
  • types of experimental research
  • busayo.longe

Formplus

You may also like:

What is Experimenter Bias? Definition, Types & Mitigation

In this article, we will look into the concept of experimental bias and how it can be identified in your research

experimental research parts

Response vs Explanatory Variables: Definition & Examples

In this article, we’ll be comparing the two types of variables, what they both mean and see some of their real-life applications in research

Experimental Vs Non-Experimental Research: 15 Key Differences

Differences between experimental and non experimental research on definitions, types, examples, data collection tools, uses, advantages etc.

Simpson’s Paradox & How to Avoid it in Experimental Research

In this article, we are going to look at Simpson’s Paradox from its historical point and later, we’ll consider its effect in...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

Experimental Design: Types, Examples & Methods

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Experimental design refers to how participants are allocated to different groups in an experiment. Types of design include repeated measures, independent groups, and matched pairs designs.

Probably the most common way to design an experiment in psychology is to divide the participants into two groups, the experimental group and the control group, and then introduce a change to the experimental group, not the control group.

The researcher must decide how he/she will allocate their sample to the different experimental groups.  For example, if there are 10 participants, will all 10 participants participate in both groups (e.g., repeated measures), or will the participants be split in half and take part in only one group each?

Three types of experimental designs are commonly used:

1. Independent Measures

Independent measures design, also known as between-groups , is an experimental design where different participants are used in each condition of the independent variable.  This means that each condition of the experiment includes a different group of participants.

This should be done by random allocation, ensuring that each participant has an equal chance of being assigned to one group.

Independent measures involve using two separate groups of participants, one in each condition. For example:

Independent Measures Design 2

  • Con : More people are needed than with the repeated measures design (i.e., more time-consuming).
  • Pro : Avoids order effects (such as practice or fatigue) as people participate in one condition only.  If a person is involved in several conditions, they may become bored, tired, and fed up by the time they come to the second condition or become wise to the requirements of the experiment!
  • Con : Differences between participants in the groups may affect results, for example, variations in age, gender, or social background.  These differences are known as participant variables (i.e., a type of extraneous variable ).
  • Control : After the participants have been recruited, they should be randomly assigned to their groups. This should ensure the groups are similar, on average (reducing participant variables).

2. Repeated Measures Design

Repeated Measures design is an experimental design where the same participants participate in each independent variable condition.  This means that each experiment condition includes the same group of participants.

Repeated Measures design is also known as within-groups or within-subjects design .

  • Pro : As the same participants are used in each condition, participant variables (i.e., individual differences) are reduced.
  • Con : There may be order effects. Order effects refer to the order of the conditions affecting the participants’ behavior.  Performance in the second condition may be better because the participants know what to do (i.e., practice effect).  Or their performance might be worse in the second condition because they are tired (i.e., fatigue effect). This limitation can be controlled using counterbalancing.
  • Pro : Fewer people are needed as they participate in all conditions (i.e., saves time).
  • Control : To combat order effects, the researcher counter-balances the order of the conditions for the participants.  Alternating the order in which participants perform in different conditions of an experiment.

Counterbalancing

Suppose we used a repeated measures design in which all of the participants first learned words in “loud noise” and then learned them in “no noise.”

We expect the participants to learn better in “no noise” because of order effects, such as practice. However, a researcher can control for order effects using counterbalancing.

The sample would be split into two groups: experimental (A) and control (B).  For example, group 1 does ‘A’ then ‘B,’ and group 2 does ‘B’ then ‘A.’ This is to eliminate order effects.

Although order effects occur for each participant, they balance each other out in the results because they occur equally in both groups.

counter balancing

3. Matched Pairs Design

A matched pairs design is an experimental design where pairs of participants are matched in terms of key variables, such as age or socioeconomic status. One member of each pair is then placed into the experimental group and the other member into the control group .

One member of each matched pair must be randomly assigned to the experimental group and the other to the control group.

matched pairs design

  • Con : If one participant drops out, you lose 2 PPs’ data.
  • Pro : Reduces participant variables because the researcher has tried to pair up the participants so that each condition has people with similar abilities and characteristics.
  • Con : Very time-consuming trying to find closely matched pairs.
  • Pro : It avoids order effects, so counterbalancing is not necessary.
  • Con : Impossible to match people exactly unless they are identical twins!
  • Control : Members of each pair should be randomly assigned to conditions. However, this does not solve all these problems.

Experimental design refers to how participants are allocated to an experiment’s different conditions (or IV levels). There are three types:

1. Independent measures / between-groups : Different participants are used in each condition of the independent variable.

2. Repeated measures /within groups : The same participants take part in each condition of the independent variable.

3. Matched pairs : Each condition uses different participants, but they are matched in terms of important characteristics, e.g., gender, age, intelligence, etc.

Learning Check

Read about each of the experiments below. For each experiment, identify (1) which experimental design was used; and (2) why the researcher might have used that design.

1 . To compare the effectiveness of two different types of therapy for depression, depressed patients were assigned to receive either cognitive therapy or behavior therapy for a 12-week period.

The researchers attempted to ensure that the patients in the two groups had similar severity of depressed symptoms by administering a standardized test of depression to each participant, then pairing them according to the severity of their symptoms.

2 . To assess the difference in reading comprehension between 7 and 9-year-olds, a researcher recruited each group from a local primary school. They were given the same passage of text to read and then asked a series of questions to assess their understanding.

3 . To assess the effectiveness of two different ways of teaching reading, a group of 5-year-olds was recruited from a primary school. Their level of reading ability was assessed, and then they were taught using scheme one for 20 weeks.

At the end of this period, their reading was reassessed, and a reading improvement score was calculated. They were then taught using scheme two for a further 20 weeks, and another reading improvement score for this period was calculated. The reading improvement scores for each child were then compared.

4 . To assess the effect of the organization on recall, a researcher randomly assigned student volunteers to two conditions.

Condition one attempted to recall a list of words that were organized into meaningful categories; condition two attempted to recall the same words, randomly grouped on the page.

Experiment Terminology

Ecological validity.

The degree to which an investigation represents real-life experiences.

Experimenter effects

These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.

Demand characteristics

The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).

Independent variable (IV)

The variable the experimenter manipulates (i.e., changes) is assumed to have a direct effect on the dependent variable.

Dependent variable (DV)

Variable the experimenter measures. This is the outcome (i.e., the result) of a study.

Extraneous variables (EV)

All variables which are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.

Confounding variables

Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.

Random Allocation

Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of taking part in each condition.

The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.

Order effects

Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:

(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;

(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.

Print Friendly, PDF & Email

  • Privacy Policy

Research Method

Home » Experimental Design – Types, Methods, Guide

Experimental Design – Types, Methods, Guide

Table of Contents

Experimental Research Design

Experimental Design

Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results.

Experimental design typically includes identifying the variables that will be manipulated or measured, defining the sample or population to be studied, selecting an appropriate method of sampling, choosing a method for data collection and analysis, and determining the appropriate statistical tests to use.

Types of Experimental Design

Here are the different types of experimental design:

Completely Randomized Design

In this design, participants are randomly assigned to one of two or more groups, and each group is exposed to a different treatment or condition.

Randomized Block Design

This design involves dividing participants into blocks based on a specific characteristic, such as age or gender, and then randomly assigning participants within each block to one of two or more treatment groups.

Factorial Design

In a factorial design, participants are randomly assigned to one of several groups, each of which receives a different combination of two or more independent variables.

Repeated Measures Design

In this design, each participant is exposed to all of the different treatments or conditions, either in a random order or in a predetermined order.

Crossover Design

This design involves randomly assigning participants to one of two or more treatment groups, with each group receiving one treatment during the first phase of the study and then switching to a different treatment during the second phase.

Split-plot Design

In this design, the researcher manipulates one or more variables at different levels and uses a randomized block design to control for other variables.

Nested Design

This design involves grouping participants within larger units, such as schools or households, and then randomly assigning these units to different treatment groups.

Laboratory Experiment

Laboratory experiments are conducted under controlled conditions, which allows for greater precision and accuracy. However, because laboratory conditions are not always representative of real-world conditions, the results of these experiments may not be generalizable to the population at large.

Field Experiment

Field experiments are conducted in naturalistic settings and allow for more realistic observations. However, because field experiments are not as controlled as laboratory experiments, they may be subject to more sources of error.

Experimental Design Methods

Experimental design methods refer to the techniques and procedures used to design and conduct experiments in scientific research. Here are some common experimental design methods:

Randomization

This involves randomly assigning participants to different groups or treatments to ensure that any observed differences between groups are due to the treatment and not to other factors.

Control Group

The use of a control group is an important experimental design method that involves having a group of participants that do not receive the treatment or intervention being studied. The control group is used as a baseline to compare the effects of the treatment group.

Blinding involves keeping participants, researchers, or both unaware of which treatment group participants are in, in order to reduce the risk of bias in the results.

Counterbalancing

This involves systematically varying the order in which participants receive treatments or interventions in order to control for order effects.

Replication

Replication involves conducting the same experiment with different samples or under different conditions to increase the reliability and validity of the results.

This experimental design method involves manipulating multiple independent variables simultaneously to investigate their combined effects on the dependent variable.

This involves dividing participants into subgroups or blocks based on specific characteristics, such as age or gender, in order to reduce the risk of confounding variables.

Data Collection Method

Experimental design data collection methods are techniques and procedures used to collect data in experimental research. Here are some common experimental design data collection methods:

Direct Observation

This method involves observing and recording the behavior or phenomenon of interest in real time. It may involve the use of structured or unstructured observation, and may be conducted in a laboratory or naturalistic setting.

Self-report Measures

Self-report measures involve asking participants to report their thoughts, feelings, or behaviors using questionnaires, surveys, or interviews. These measures may be administered in person or online.

Behavioral Measures

Behavioral measures involve measuring participants’ behavior directly, such as through reaction time tasks or performance tests. These measures may be administered using specialized equipment or software.

Physiological Measures

Physiological measures involve measuring participants’ physiological responses, such as heart rate, blood pressure, or brain activity, using specialized equipment. These measures may be invasive or non-invasive, and may be administered in a laboratory or clinical setting.

Archival Data

Archival data involves using existing records or data, such as medical records, administrative records, or historical documents, as a source of information. These data may be collected from public or private sources.

Computerized Measures

Computerized measures involve using software or computer programs to collect data on participants’ behavior or responses. These measures may include reaction time tasks, cognitive tests, or other types of computer-based assessments.

Video Recording

Video recording involves recording participants’ behavior or interactions using cameras or other recording equipment. This method can be used to capture detailed information about participants’ behavior or to analyze social interactions.

Data Analysis Method

Experimental design data analysis methods refer to the statistical techniques and procedures used to analyze data collected in experimental research. Here are some common experimental design data analysis methods:

Descriptive Statistics

Descriptive statistics are used to summarize and describe the data collected in the study. This includes measures such as mean, median, mode, range, and standard deviation.

Inferential Statistics

Inferential statistics are used to make inferences or generalizations about a larger population based on the data collected in the study. This includes hypothesis testing and estimation.

Analysis of Variance (ANOVA)

ANOVA is a statistical technique used to compare means across two or more groups in order to determine whether there are significant differences between the groups. There are several types of ANOVA, including one-way ANOVA, two-way ANOVA, and repeated measures ANOVA.

Regression Analysis

Regression analysis is used to model the relationship between two or more variables in order to determine the strength and direction of the relationship. There are several types of regression analysis, including linear regression, logistic regression, and multiple regression.

Factor Analysis

Factor analysis is used to identify underlying factors or dimensions in a set of variables. This can be used to reduce the complexity of the data and identify patterns in the data.

Structural Equation Modeling (SEM)

SEM is a statistical technique used to model complex relationships between variables. It can be used to test complex theories and models of causality.

Cluster Analysis

Cluster analysis is used to group similar cases or observations together based on similarities or differences in their characteristics.

Time Series Analysis

Time series analysis is used to analyze data collected over time in order to identify trends, patterns, or changes in the data.

Multilevel Modeling

Multilevel modeling is used to analyze data that is nested within multiple levels, such as students nested within schools or employees nested within companies.

Applications of Experimental Design 

Experimental design is a versatile research methodology that can be applied in many fields. Here are some applications of experimental design:

  • Medical Research: Experimental design is commonly used to test new treatments or medications for various medical conditions. This includes clinical trials to evaluate the safety and effectiveness of new drugs or medical devices.
  • Agriculture : Experimental design is used to test new crop varieties, fertilizers, and other agricultural practices. This includes randomized field trials to evaluate the effects of different treatments on crop yield, quality, and pest resistance.
  • Environmental science: Experimental design is used to study the effects of environmental factors, such as pollution or climate change, on ecosystems and wildlife. This includes controlled experiments to study the effects of pollutants on plant growth or animal behavior.
  • Psychology : Experimental design is used to study human behavior and cognitive processes. This includes experiments to test the effects of different interventions, such as therapy or medication, on mental health outcomes.
  • Engineering : Experimental design is used to test new materials, designs, and manufacturing processes in engineering applications. This includes laboratory experiments to test the strength and durability of new materials, or field experiments to test the performance of new technologies.
  • Education : Experimental design is used to evaluate the effectiveness of teaching methods, educational interventions, and programs. This includes randomized controlled trials to compare different teaching methods or evaluate the impact of educational programs on student outcomes.
  • Marketing : Experimental design is used to test the effectiveness of marketing campaigns, pricing strategies, and product designs. This includes experiments to test the impact of different marketing messages or pricing schemes on consumer behavior.

Examples of Experimental Design 

Here are some examples of experimental design in different fields:

  • Example in Medical research : A study that investigates the effectiveness of a new drug treatment for a particular condition. Patients are randomly assigned to either a treatment group or a control group, with the treatment group receiving the new drug and the control group receiving a placebo. The outcomes, such as improvement in symptoms or side effects, are measured and compared between the two groups.
  • Example in Education research: A study that examines the impact of a new teaching method on student learning outcomes. Students are randomly assigned to either a group that receives the new teaching method or a group that receives the traditional teaching method. Student achievement is measured before and after the intervention, and the results are compared between the two groups.
  • Example in Environmental science: A study that tests the effectiveness of a new method for reducing pollution in a river. Two sections of the river are selected, with one section treated with the new method and the other section left untreated. The water quality is measured before and after the intervention, and the results are compared between the two sections.
  • Example in Marketing research: A study that investigates the impact of a new advertising campaign on consumer behavior. Participants are randomly assigned to either a group that is exposed to the new campaign or a group that is not. Their behavior, such as purchasing or product awareness, is measured and compared between the two groups.
  • Example in Social psychology: A study that examines the effect of a new social intervention on reducing prejudice towards a marginalized group. Participants are randomly assigned to either a group that receives the intervention or a control group that does not. Their attitudes and behavior towards the marginalized group are measured before and after the intervention, and the results are compared between the two groups.

When to use Experimental Research Design 

Experimental research design should be used when a researcher wants to establish a cause-and-effect relationship between variables. It is particularly useful when studying the impact of an intervention or treatment on a particular outcome.

Here are some situations where experimental research design may be appropriate:

  • When studying the effects of a new drug or medical treatment: Experimental research design is commonly used in medical research to test the effectiveness and safety of new drugs or medical treatments. By randomly assigning patients to treatment and control groups, researchers can determine whether the treatment is effective in improving health outcomes.
  • When evaluating the effectiveness of an educational intervention: An experimental research design can be used to evaluate the impact of a new teaching method or educational program on student learning outcomes. By randomly assigning students to treatment and control groups, researchers can determine whether the intervention is effective in improving academic performance.
  • When testing the effectiveness of a marketing campaign: An experimental research design can be used to test the effectiveness of different marketing messages or strategies. By randomly assigning participants to treatment and control groups, researchers can determine whether the marketing campaign is effective in changing consumer behavior.
  • When studying the effects of an environmental intervention: Experimental research design can be used to study the impact of environmental interventions, such as pollution reduction programs or conservation efforts. By randomly assigning locations or areas to treatment and control groups, researchers can determine whether the intervention is effective in improving environmental outcomes.
  • When testing the effects of a new technology: An experimental research design can be used to test the effectiveness and safety of new technologies or engineering designs. By randomly assigning participants or locations to treatment and control groups, researchers can determine whether the new technology is effective in achieving its intended purpose.

How to Conduct Experimental Research

Here are the steps to conduct Experimental Research:

  • Identify a Research Question : Start by identifying a research question that you want to answer through the experiment. The question should be clear, specific, and testable.
  • Develop a Hypothesis: Based on your research question, develop a hypothesis that predicts the relationship between the independent and dependent variables. The hypothesis should be clear and testable.
  • Design the Experiment : Determine the type of experimental design you will use, such as a between-subjects design or a within-subjects design. Also, decide on the experimental conditions, such as the number of independent variables, the levels of the independent variable, and the dependent variable to be measured.
  • Select Participants: Select the participants who will take part in the experiment. They should be representative of the population you are interested in studying.
  • Randomly Assign Participants to Groups: If you are using a between-subjects design, randomly assign participants to groups to control for individual differences.
  • Conduct the Experiment : Conduct the experiment by manipulating the independent variable(s) and measuring the dependent variable(s) across the different conditions.
  • Analyze the Data: Analyze the data using appropriate statistical methods to determine if there is a significant effect of the independent variable(s) on the dependent variable(s).
  • Draw Conclusions: Based on the data analysis, draw conclusions about the relationship between the independent and dependent variables. If the results support the hypothesis, then it is accepted. If the results do not support the hypothesis, then it is rejected.
  • Communicate the Results: Finally, communicate the results of the experiment through a research report or presentation. Include the purpose of the study, the methods used, the results obtained, and the conclusions drawn.

Purpose of Experimental Design 

The purpose of experimental design is to control and manipulate one or more independent variables to determine their effect on a dependent variable. Experimental design allows researchers to systematically investigate causal relationships between variables, and to establish cause-and-effect relationships between the independent and dependent variables. Through experimental design, researchers can test hypotheses and make inferences about the population from which the sample was drawn.

Experimental design provides a structured approach to designing and conducting experiments, ensuring that the results are reliable and valid. By carefully controlling for extraneous variables that may affect the outcome of the study, experimental design allows researchers to isolate the effect of the independent variable(s) on the dependent variable(s), and to minimize the influence of other factors that may confound the results.

Experimental design also allows researchers to generalize their findings to the larger population from which the sample was drawn. By randomly selecting participants and using statistical techniques to analyze the data, researchers can make inferences about the larger population with a high degree of confidence.

Overall, the purpose of experimental design is to provide a rigorous, systematic, and scientific method for testing hypotheses and establishing cause-and-effect relationships between variables. Experimental design is a powerful tool for advancing scientific knowledge and informing evidence-based practice in various fields, including psychology, biology, medicine, engineering, and social sciences.

Advantages of Experimental Design 

Experimental design offers several advantages in research. Here are some of the main advantages:

  • Control over extraneous variables: Experimental design allows researchers to control for extraneous variables that may affect the outcome of the study. By manipulating the independent variable and holding all other variables constant, researchers can isolate the effect of the independent variable on the dependent variable.
  • Establishing causality: Experimental design allows researchers to establish causality by manipulating the independent variable and observing its effect on the dependent variable. This allows researchers to determine whether changes in the independent variable cause changes in the dependent variable.
  • Replication : Experimental design allows researchers to replicate their experiments to ensure that the findings are consistent and reliable. Replication is important for establishing the validity and generalizability of the findings.
  • Random assignment: Experimental design often involves randomly assigning participants to conditions. This helps to ensure that individual differences between participants are evenly distributed across conditions, which increases the internal validity of the study.
  • Precision : Experimental design allows researchers to measure variables with precision, which can increase the accuracy and reliability of the data.
  • Generalizability : If the study is well-designed, experimental design can increase the generalizability of the findings. By controlling for extraneous variables and using random assignment, researchers can increase the likelihood that the findings will apply to other populations and contexts.

Limitations of Experimental Design

Experimental design has some limitations that researchers should be aware of. Here are some of the main limitations:

  • Artificiality : Experimental design often involves creating artificial situations that may not reflect real-world situations. This can limit the external validity of the findings, or the extent to which the findings can be generalized to real-world settings.
  • Ethical concerns: Some experimental designs may raise ethical concerns, particularly if they involve manipulating variables that could cause harm to participants or if they involve deception.
  • Participant bias : Participants in experimental studies may modify their behavior in response to the experiment, which can lead to participant bias.
  • Limited generalizability: The conditions of the experiment may not reflect the complexities of real-world situations. As a result, the findings may not be applicable to all populations and contexts.
  • Cost and time : Experimental design can be expensive and time-consuming, particularly if the experiment requires specialized equipment or if the sample size is large.
  • Researcher bias : Researchers may unintentionally bias the results of the experiment if they have expectations or preferences for certain outcomes.
  • Lack of feasibility : Experimental design may not be feasible in some cases, particularly if the research question involves variables that cannot be manipulated or controlled.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Applied Research

Applied Research – Types, Methods and Examples

Exploratory Research

Exploratory Research – Types, Methods and...

Observational Research

Observational Research – Methods and Guide

Descriptive Research Design

Descriptive Research Design – Types, Methods and...

Quantitative Research

Quantitative Research – Methods, Types and...

Ethnographic Research

Ethnographic Research -Types, Methods and Guide

Banner

Writing Center: Experimental Research Papers

  • How to Set Up an Appointment Online
  • Documentation Styles
  • Parts of Speech
  • Types of Clauses
  • Punctuation
  • Spelling & Mechanics
  • Usage & Styles
  • Resources for ESL Students
  • How to Set up an APA Paper
  • How to Set up an MLA Paper
  • Adapt to Academic Learning
  • Audience Awareness
  • Learn Touch Typing
  • Getting Started
  • Thesis Statement
  • The First Draft
  • Proofreading
  • Writing Introductions
  • Writing Conclusions
  • Chicago / Turabian Style
  • CSE / CBE Style
  • Avoiding Plagiarism
  • Cross-Cultural Understanding
  • Writing Resources
  • Research Paper - General Guidelines
  • Annotated Bibliographies
  • History Papers
  • Science Papers
  • Experimental Research Papers
  • Exegetical Papers
  • FAQs About Creative Writing
  • Tips For Creative Writing
  • Exercises To Develop Creative Writing Skills
  • Checklist For Creative Writing
  • Additional Resources For Creative Writing
  • FAQs About Creating PowerPoints
  • Tips For Creating PowerPoints
  • Exercises to Improve PowerPoint Skills
  • Checklist For PowerPoints
  • Structure For GRE Essay
  • Additional Resources For PowerPoints
  • Additional Resources For GRE Essay Writing
  • FAQs About Multimodal Assignments
  • Tips For Creating Multimodal Assignments
  • Checklist For Multimodal Assignments
  • Additional Resources For Multimodal Assignments
  • GRE Essay Writing FAQ
  • Tips for GRE Essay Writing
  • Sample GRE Essay Prompts
  • Checklist For GRE Essays
  • Cover Letter
  • Personal Statements
  • Resources for Tutors
  • Chapter 2: Theoretical Perspectives on Learning a Second Language
  • Chapter 4: Reading an ESL Writer's Text
  • Chapter 5: Avoiding Appropriation
  • Chapter 6: 'Earth Aches by Midnight': Helping ESL Writers Clarify Their Intended Meaning
  • Chapter 7: Looking at the Whole Text
  • Chapter 8: Meeting in the Middle: Bridging the Construction of Meaning with Generation 1.5 Learners
  • Chapter 9: A(n)/The/Ø Article About Articles
  • Chapter 10: Editing Line by Line
  • Chapter 14: Writing Activities for ESL Writers
  • Resources for Faculty
  • Writing Center Newsletter
  • Writing Center Survey

FAQs About Experimental Research Papers (APA)

What is a research paper? 

A researcher uses a research paper to explain how they conducted a research study to answer a question or test a hypothesis. They explain why they conducted the study, the research question or hypothesis they tested, how they conducted the study, the results of their study, and the implications of these results. 

What is the purpose of an experimental research paper? 

A research paper is intended to inform others about advancement in a particular field of study. The researcher who wrote the paper identified a gap in the research in a field of study and used their research to help fill this gap. The researcher uses their paper to inform others about the knowledge that the results of their study contribute. 

What sections are included in an experimental research paper?

A typical research paper contains a Title Page, Abstract, Introduction, Methods, Results, Discussion, and References section. Some also contain a Table and Figures section and Appendix section. 

What citation style is used for experimental research papers? 

APA (American Psychological Association) style is most commonly used for research papers. 

Structure Of Experimental Research Papers (APA)

  • Answers the question of “What is this paper about and who wrote it?”
  • Located on the first page of the paper 
  • The author’s note acknowledges any support that the authors received from others
  • A student paper also includes the course number and name, instructor’s name, and assignment due date
  • Contains a title that summarizes the purpose and content of the research study and engages the audience 
  • No longer than 250 words
  • Summarizes important background information, the research questions and/or hypothesis, methods, key findings, and implications of the findings
  • Explains what the topic of the research is and why the topic is worth studying
  • Summarizes and discusses prior research conducted on the topic 
  • Identifies unresolved issues and gaps in past research that the current research will address
  • Ends with an overview of the current research study, including how the independent and dependent variables, the research questions or hypotheses, and the objective of the research 
  • Explains how the research study was conducted 
  • Typically includes 3 sections: Participants, Materials, and Procedure
  • Includes characteristics of the subjects, how the subjects were selected and recruited, how their anonymity was protected, and what feedback was provided to the participants
  • Describes any equipment, surveys, tests, questionnaires, informed consent forms, and observational techniques 
  • Describes the independent and dependent variables, the type of research design, and how the data was collected
  • Explains what results were found in the research study 
  • Describes the data that was collected and the results of statistical tests 
  • Explains the significance of the results 
  • Accepts or denies the hypotheses 
  • Details the implications of these findings 
  • Addresses the limitations of the study and areas for future research 
  • Includes all sources that were mentioned in the research study 
  • Adheres to APA citation styles
  • Includes all tables and/or figures that were used in the research study 
  • Each table and figure is placed on a separate page 
  • Tables are included before figures
  • Begins with a bolded, centered header such as “ Table 1 ”
  • Appends all forms, surveys, tests, etc. that were used in the study 
  • Only includes documents that were referenced in the Methods section 
  • Each entry is placed on a separate page 
  • Begins with a bolded, centered header such as “ Appendix A ”

Tips For Experimental Research Papers (APA)

  • Initial interest will motivate you to complete your study 
  • Your entire study will be centered around this question or statement 
  • Use only verifiable sources that provide accurate information about your topic 
  • You need to thoroughly understand the field of study your topic is on to help you recognize the gap your research will fill and the significance of your results
  • This will help you identify what you should study and what the significance of your study will be 
  • Create an outline before you begin writing to help organize your thoughts and direct you in your writing 
  • This will prevent you from losing the source or forgetting to cite the source 
  • Work on one section at a time, rather than trying to complete multiple sections at once
  • This information can be easily referred to as your write your various sections 
  • When conducting your research, working general to specific will help you narrow your topic and fully understand the field your topic is in 
  • When writing your literature review, writing from general to specific will help the audience understand your overall topic and the narrow focus of your research 
  • This will prevent you from losing sources you may need later 
  • Incorporate correct APA formatting as you write, rather than changing the formatting at the end of the writing process 

Checklist For Experimental Research Papers (APA)

  • If the paper is a student paper, it contains the title of the project, the author’s name(s), the instructor's name, course number and name, and assignment due date
  • If the paper is a professional paper, it includes the title of the paper, the author’s name(s), the institutional affiliation, and the author note
  • Begins on the first page of the paper
  • The title is typed in upper and lowercase letters, four spaces below the top of the paper, and written in boldface 
  • Other information is separated by a space from the title

Title (found on title page)

  • Informs the audience about the purpose of the paper 
  • Captures the attention of the audience 
  • Accurately reflects the purpose and content of the research paper 

Abstract 

  • Labeled as “ Abstract ”
  • Begins on the second page 
  • Provides a short, concise summary of the content of the research paper 
  • Includes background information necessary to understand the topic 
  • Background information demonstrates the purpose of the paper
  • Contains the hypothesis and/or research questions addressed in the paper
  • Has a brief description of the methods used 
  • Details the key findings and significance of the results
  • Illustrates the implications of the research study 
  • Contains less than 250 words

Introduction 

  • Starts on the third page 
  • Includes the title of the paper in bold at the top of the page
  • Contains a clear statement of the problem that the paper sets out to address 
  • Places the research paper within the context of previous research on the topic 
  • Explains the purpose of the research study and what you hope to find
  • Describes the significance of the study 
  • Details what new insights the research will contribute
  • Concludes with a brief description of what information will be mentioned in the literature review

Literature Review

  • Labeled as “ Literature Review”
  • Presents a general description of the problem area 
  • Defines any necessary terms 
  • Discusses and summarizes prior research on the selected topic 
  • Identifies any unresolved issues or gaps in research that the current research plans to address
  • Concludes with a summary of the current research study, including the independent and dependent variables, the research questions or hypotheses, and the objective of the research  
  • Labeled as “ Methods ”
  • Efficiently explains how the research study was conducted 
  • Appropriately divided into sections
  • Describes the characteristics of the participants 
  • Explains how the participants were selected 
  • Details how the anonymity of the participants was protected 
  • Notes what feedback the participants will be provided 
  • Describes all materials and instruments that were used 
  • Mentions how the procedure was conducted and data collected
  • Notes the independent and dependent variables 
  • Includes enough information that another researcher could duplicate the research 

Results 

  • Labeled as “ Results ”
  • Describes the data was collected
  • Explains the results of statistical tests that were performed
  • Omits any analysis or discussion of the implications of the study 

Discussion 

  • Labeled as “ Discussion ”
  • Describes the significance of the results 
  • Relates the results to the research questions and/or hypotheses
  • States whether the hypotheses should be rejected or accepted 
  • Addresses limitations of the study, including potential bias, confounds, imprecision of measures, and limits to generalizability
  • Explains how the study adds to the knowledge base and expands upon past research
  • Labeled as “ References ”
  • Correctly cites sources according to APA formatting 
  • Orders sources alphabetically
  • All sources included in the study are cited in the reference section 

Table and Figures (optional)

  •  Each table and each figure is placed on a separate page 
  • Tables and figures are included after the reference page
  • Tables and figures are correctly labeled
  • Each table and figure begins with a bolded, centered header such as “ Table 1 ,” “ Table 2 ,”

Appendix (optional) 

  • Any forms, surveys, tests, etc. are placed in the Appendix
  • All appendix entries are mentioned in the Methods section 
  • Each appendix begins on a new page
  • Each appendix begins with a bolded, centered header such as “ Appendix A, ” “ Appendix B ”

Additional Resources For Experimental Research Papers (APA)

  • https://www.mcwritingcenterblog.org/single-post/how-to-conduct-research-using-the-library-s-resources
  • https://www.mcwritingcenterblog.org/single-post/how-to-read-academic-articles
  • https://researchguides.ben.edu/source-evaluation   
  • https://researchguides.library.brocku.ca/external-analysis/evaluating-sources
  • https://writing.wisc.edu/handbook/assignments/planresearchpaper/
  • https://nmu.edu/writingcenter/tips-writing-research-paper
  • https://writingcenter.gmu.edu/guides/how-to-write-a-research-question
  • https://www.unr.edu/writing-speaking-center/student-resources/writing-speaking-resources/guide-to-writing-research-papers
  • https://drive.google.com/drive/folders/1F4DFWf85zEH4aZvm10i8Ahm_3xnAekal?usp=sharing
  • https://owl.purdue.edu/owl/research_and_citation/apa_style/apa_formatting_and_style_guide/general_format.html
  • https://libguides.elmira.edu/research
  • https://www.nhcc.edu/academics/library/doing-library-research/basic-steps-research-process
  • https://libguides.wustl.edu/research
  • << Previous: Science Papers
  • Next: Exegetical Papers >>
  • Last Updated: Aug 27, 2024 2:34 PM
  • URL: https://mc.libguides.com/writingcenter
  • How it works

researchprospect post subheader

A Complete Guide to Experimental Research

Published by Carmen Troy at August 14th, 2021 , Revised On August 25, 2023

A Quick Guide to Experimental Research

Experimental research refers to the experiments conducted in the laboratory or observation under controlled conditions. Researchers try to find out the cause-and-effect relationship between two or more variables. 

The subjects/participants in the experiment are selected and observed. They receive treatments such as changes in room temperature, diet, atmosphere, or given a new drug to observe the changes. Experiments can vary from personal and informal natural comparisons. It includes three  types of variables ;

  • Independent variable
  • Dependent variable
  • Controlled variable

Before conducting experimental research, you need to have a clear understanding of the experimental design. A true experimental design includes  identifying a problem , formulating a  hypothesis , determining the number of variables, selecting and assigning the participants,  types of research designs , meeting ethical values, etc.

There are many  types of research  methods that can be classified based on:

  • The nature of the problem to be studied
  • Number of participants (individual or groups)
  • Number of groups involved (Single group or multiple groups)
  • Types of data collection methods (Qualitative/Quantitative/Mixed methods)
  • Number of variables (single independent variable/ factorial two independent variables)
  • The experimental design

Types of Experimental Research

Types of Experimental Research

Laboratory Experiment  

It is also called experimental research. This type of research is conducted in the laboratory. A researcher can manipulate and control the variables of the experiment.

Example: Milgram’s experiment on obedience.

Pros Cons
The researcher has control over variables. Easy to establish the relationship between cause and effect. Inexpensive and convenient. Easy to replicate. The artificial environment may impact the behaviour of the participants. Inaccurate results The short duration of the lab experiment may not be enough to get the desired results.

Field Experiment

Field experiments are conducted in the participants’ open field and the environment by incorporating a few artificial changes. Researchers do not have control over variables under measurement. Participants know that they are taking part in the experiment.

Pros Cons
Participants are observed in the natural environment. Participants are more likely to behave naturally. Useful to study complex social issues. It doesn’t allow control over the variables. It may raise ethical issues. Lack of internal validity

Natural Experiments

The experiment is conducted in the natural environment of the participants. The participants are generally not informed about the experiment being conducted on them.

Examples: Estimating the health condition of the population. Did the increase in tobacco prices decrease the sale of tobacco? Did the usage of helmets decrease the number of head injuries of the bikers?

Pros Cons
The source of variation is clear.  It’s carried out in a natural setting. There is no restriction on the number of participants. The results obtained may be questionable. It does not find out the external validity. The researcher does not have control over the variables.

Quasi-Experiments

A quasi-experiment is an experiment that takes advantage of natural occurrences. Researchers cannot assign random participants to groups.

Example: Comparing the academic performance of the two schools.

Pros Cons
Quasi-experiments are widely conducted as they are convenient and practical for a large sample size. It is suitable for real-world natural settings rather than true experimental research design. A researcher can analyse the effect of independent variables occurring in natural conditions. It cannot the influence of independent variables on the dependent variables. Due to the absence of a control group, it becomes difficult to establish the relationship between dependent and independent variables.

Does your Research Methodology Have the Following?

  • Great Research/Sources
  • Perfect Language
  • Accurate Sources

If not, we can help. Our panel of experts makes sure to keep the 3 pillars of Research Methodology strong.

Research-Methodology-ads

How to Conduct Experimental Research?

Step 1. identify and define the problem.

You need to identify a problem as per your field of study and describe your  research question .

Example: You want to know about the effects of social media on the behavior of youngsters. It would help if you found out how much time students spend on the internet daily.

Example: You want to find out the adverse effects of junk food on human health. It would help if you found out how junk food frequent consumption can affect an individual’s health.

Step 2. Determine the Number of Levels of Variables

You need to determine the number of  variables . The independent variable is the predictor and manipulated by the researcher. At the same time, the dependent variable is the result of the independent variable.

Independent variables Dependent variables Confounding Variable
The number of hours youngsters spend on social media daily. The overuse of social media among the youngsters and negative impact on their behaviour. Measure the difference between youngsters’ behaviour with the minimum social media usage and maximum social media utilisation. You can control and minimise the number of hours of using the social media of the participants.
The overconsumption of junk food. Adverse effects of junk food on human health like obesity, indigestion, constipation, high cholesterol, etc. Identify the difference between people’s health with a healthy diet and people eating junk food regularly. You can divide the participants into two groups, one with a healthy diet and one with junk food.

In the first example, we predicted that increased social media usage negatively correlates with youngsters’ negative behaviour.

In the second example, we predicted the positive correlation between a balanced diet and a good healthy and negative relationship between junk food consumption and multiple health issues.

Step 3. Formulate the Hypothesis

One of the essential aspects of experimental research is formulating a hypothesis . A researcher studies the cause and effect between the independent and dependent variables and eliminates the confounding variables. A  null hypothesis is when there is no significant relationship between the dependent variable and the participants’ independent variables. A researcher aims to disprove the theory. H0 denotes it.  The  Alternative hypothesis  is the theory that a researcher seeks to prove.  H1or HA denotes it. 

Null hypothesis 
The usage of social media does not correlate with the negative behaviour of youngsters. Over-usage of social media affects the behaviour of youngsters adversely.
There is no relationship between the consumption of junk food and the health issues of the people. The over-consumption of junk food leads to multiple health issues.

Why should you use a Plagiarism Detector for your Paper?

It ensures:

  • Original work
  • Structure and Clarity
  • Zero Spelling Errors
  • No Punctuation Faults

Plagiarism Detector for your Paper

Step 4. Selection and Assignment of the Subjects

It’s an essential feature that differentiates the experimental design from other research designs . You need to select the number of participants based on the requirements of your experiment. Then the participants are assigned to the treatment group. There should be a control group without any treatment to study the outcomes without applying any changes compared to the experimental group.

Randomisation:  The participants are selected randomly and assigned to the experimental group. It is known as probability sampling. If the selection is not random, it’s considered non-probability sampling.

Stratified sampling : It’s a type of random selection of the participants by dividing them into strata and randomly selecting them from each level. 

Randomisation Stratified sampling
Participants are randomly selected and assigned a specific number of hours to spend on social media. Participants are divided into groups as per their age and then assigned a specific number of hours to spend on social media.
Participants are randomly selected and assigned a balanced diet. Participants are divided into various groups based on their age, gender, and health conditions and assigned to each group’s treatment group.

Matching:   Even though participants are selected randomly, they can be assigned to the various comparison groups. Another procedure for selecting the participants is ‘matching.’ The participants are selected from the controlled group to match the experimental groups’ participants in all aspects based on the dependent variables.  

What is Replicability?

When a researcher uses the same methodology  and subject groups to carry out the experiments, it’s called ‘replicability.’ The  results will be similar each time. Researchers usually replicate their own work to strengthen external validity.

Step 5. Select a Research Design

You need to select a  research design  according to the requirements of your experiment. There are many types of experimental designs as follows.

Type of Research Design Definition
Two-group Post-test only It includes a control group and an experimental group selected randomly or through matching. This experimental design is used when the sample of subjects is large. It is carried out outside the laboratory. Group’s dependent variables are compared after the experiment.
Two-group pre-test post-test only. It includes two groups selected randomly. It involves pre-test and post-test measurements in both groups. It is conducted in a controlled environment.
Soloman 4 group design It includes both post-test-only group and pre-test-post-test control group design with good internal and external validity.
Factorial design Factorial design involves studying the effects of two or more factors with various possible values or levels.
Example: Factorial design applied in optimisation technique.
Randomised block design It is one of the most widely used experimental designs in forestry research. It aims to decrease the experimental error by using blocks and excluding the known sources of variation among the experimental group.
Cross over design In this type of experimental design, the subjects receive various treatments during various periods.
Repeated measures design The same group of participants is measured for one dependant variable at various times or for various dependant variables. Each individual receives experimental treatment consistently. It needs a minimum number of participants. It uses counterbalancing (randomising and reversing the order of subjects and treatment) and increases the treatments/measurements’ time interval.

Step 6. Meet Ethical and Legal Requirements

  • Participants of the research should not be harmed.
  • The dignity and confidentiality of the research should be maintained.
  • The consent of the participants should be taken before experimenting.
  • The privacy of the participants should be ensured.
  • Research data should remain confidential.
  • The anonymity of the participants should be ensured.
  • The rules and objectives of the experiments should be followed strictly.
  • Any wrong information or data should be avoided.

Tips for Meeting the Ethical Considerations

To meet the ethical considerations, you need to ensure that.

  • Participants have the right to withdraw from the experiment.
  • They should be aware of the required information about the experiment.
  • It would help if you avoided offensive or unacceptable language while framing the questions of interviews, questionnaires, or Focus groups.
  • You should ensure the privacy and anonymity of the participants.
  • You should acknowledge the sources and authors in your dissertation using any referencing styles such as APA/MLA/Harvard referencing style.

Step 7. Collect and Analyse Data.

Collect the data  by using suitable data collection according to your experiment’s requirement, such as observations,  case studies ,  surveys ,  interviews , questionnaires, etc. Analyse the obtained information.

Step 8. Present and Conclude the Findings of the Study.

Write the report of your research. Present, conclude, and explain the outcomes of your study .  

Frequently Asked Questions

What is the first step in conducting an experimental research.

The first step in conducting experimental research is to define your research question or hypothesis. Clearly outline the purpose and expectations of your experiment to guide the entire research process.

You May Also Like

You can transcribe an interview by converting a conversation into a written format including question-answer recording sessions between two or more people.

A confounding variable can potentially affect both the suspected cause and the suspected effect. Here is all you need to know about accounting for confounding variables in research.

Textual analysis is the method of analysing and understanding the text. We need to look carefully at the text to identify the writer’s context and message.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Department of Health & Human Services

Module 2: Research Design - Section 2

Module 1

  • Section 1 Discussion
  • Section 2 Discussion

Section 2: Experimental Studies

Unlike a descriptive study, an experiment is a study in which a treatment, procedure, or program is intentionally introduced and a result or outcome is observed. The American Heritage Dictionary of the English Language defines an experiment as "A test under controlled conditions that is made to demonstrate a known truth, to examine the validity of a hypothesis, or to determine the efficacy of something previously untried."

Manipulation, Control, Random Assignment, Random Selection

This means that no matter who the participant is, he/she has an equal chance of getting into all of the groups or treatments in an experiment. This process helps to ensure that the groups or treatments are similar at the beginning of the study so that there is more confidence that the manipulation (group or treatment) "caused" the outcome. More information about random assignment may be found in section Random assignment.

Definition : An experiment is a study in which a treatment, procedure, or program is intentionally introduced and a result or outcome is observed.

Case Example for Experimental Study

Experimental studies — example 1.

Teacher

Experimental Studies — Example 2

A fitness instructor wants to test the effectiveness of a performance-enhancing herbal supplement on students in her exercise class. To create experimental groups that are similar at the beginning of the study, the students are assigned into two groups at random (they can not choose which group they are in). Students in both groups are given a pill to take every day, but they do not know whether the pill is a placebo (sugar pill) or the herbal supplement. The instructor gives Group A the herbal supplement and Group B receives the placebo (sugar pill). The students' fitness level is compared before and after six weeks of consuming the supplement or the sugar pill. No differences in performance ability were found between the two groups suggesting that the herbal supplement was not effective.

PDF

Email Updates

Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more: https://www.cambridge.org/universitypress/about-us/news-and-blogs/cambridge-university-press-publishing-update-following-technical-disruption

We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings .

Login Alert

  • > Research Methods for Science
  • > Overview of experimental analysis and design

experimental research parts

Book contents

  • Frontmatter
  • 1 Curiosity and research
  • 2 Overview of experimental analysis and design
  • 3 Statistics
  • 4 Mathematical models
  • 5 Scientific information
  • Appendix A Spreadsheets for basic scientific computation
  • Appendix B Extract from Galileo's Two New Sciences
  • Appendix C Safety in the laboratory
  • Appendix D Grading rubrics

2 - Overview of experimental analysis and design

Published online by Cambridge University Press:  05 June 2012

Hypothesis-driven experiments

Null and alternative hypotheses

The basic outlines of hypothesis-driven research were provided in Section 1.3.1, but when setting out to create an experiment to test a hypothesis, there is much more to consider.

Your experiment should have at least one control or independent variable , and at least one response or dependent variable. The independent variable is something you are sure will change during the course of experimental measurements. The dependent variable is what you will measure, although you may not be sure if it will change. Indeed the point of the experiment may be to determine if it does or does not change. In laboratory experiments it is common to call the independent variable a control variable because you decide upon its value and control it. For example, in an experiment concerning the effect of fertilizer doses on size of tomatoes, you control the concentration of fertilizer given to each plant. In observational research, the independent variable may be something you cannot control. For example, you might conduct a study of tomatoes grown outside and investigate whether they grow faster on hot days than on cool days. In this case, nature will bring you the hot and cold days; you cannot control when they will happen, but you can still study their effects. Experiments are usually better when the investigator controls the independent variable, but this is not always possible.

Access options

Save book to kindle.

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle .

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service .

  • Overview of experimental analysis and design
  • Michael P. Marder , University of Texas, Austin
  • Book: Research Methods for Science
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139035118.003

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox .

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive .

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

experimental research parts

Experimental Research

Experimental Research

Experimental research is commonly used in sciences such as sociology and psychology, physics, chemistry, biology and medicine etc.

This article is a part of the guide:

  • Pretest-Posttest
  • Third Variable
  • Research Bias
  • Independent Variable
  • Between Subjects

Browse Full Outline

  • 1 Experimental Research
  • 2.1 Independent Variable
  • 2.2 Dependent Variable
  • 2.3 Controlled Variables
  • 2.4 Third Variable
  • 3.1 Control Group
  • 3.2 Research Bias
  • 3.3.1 Placebo Effect
  • 3.3.2 Double Blind Method
  • 4.1 Randomized Controlled Trials
  • 4.2 Pretest-Posttest
  • 4.3 Solomon Four Group
  • 4.4 Between Subjects
  • 4.5 Within Subject
  • 4.6 Repeated Measures
  • 4.7 Counterbalanced Measures
  • 4.8 Matched Subjects

It is a collection of research designs which use manipulation and controlled testing to understand causal processes. Generally, one or more variables are manipulated to determine their effect on a dependent variable.

The experimental method is a systematic and scientific approach to research in which the researcher manipulates one or more variables, and controls and measures any change in other variables.

Experimental Research is often used where:

  • There is time priority in a causal relationship ( cause precedes effect )
  • There is consistency in a causal relationship (a cause will always lead to the same effect)
  • The magnitude of the correlation is great.

(Reference: en.wikipedia.org)

The word experimental research has a range of definitions. In the strict sense, experimental research is what we call a true experiment .

This is an experiment where the researcher manipulates one variable, and control/randomizes the rest of the variables. It has a control group , the subjects have been randomly assigned between the groups, and the researcher only tests one effect at a time. It is also important to know what variable(s) you want to test and measure.

A very wide definition of experimental research, or a quasi experiment , is research where the scientist actively influences something to observe the consequences. Most experiments tend to fall in between the strict and the wide definition.

A rule of thumb is that physical sciences, such as physics, chemistry and geology tend to define experiments more narrowly than social sciences, such as sociology and psychology, which conduct experiments closer to the wider definition.

experimental research parts

Aims of Experimental Research

Experiments are conducted to be able to predict phenomenons. Typically, an experiment is constructed to be able to explain some kind of causation . Experimental research is important to society - it helps us to improve our everyday lives.

experimental research parts

Identifying the Research Problem

After deciding the topic of interest, the researcher tries to define the research problem . This helps the researcher to focus on a more narrow research area to be able to study it appropriately.  Defining the research problem helps you to formulate a  research hypothesis , which is tested against the  null hypothesis .

The research problem is often operationalizationed , to define how to measure the research problem. The results will depend on the exact measurements that the researcher chooses and may be operationalized differently in another study to test the main conclusions of the study.

An ad hoc analysis is a hypothesis invented after testing is done, to try to explain why the contrary evidence. A poor ad hoc analysis may be seen as the researcher's inability to accept that his/her hypothesis is wrong, while a great ad hoc analysis may lead to more testing and possibly a significant discovery.

Constructing the Experiment

There are various aspects to remember when constructing an experiment. Planning ahead ensures that the experiment is carried out properly and that the results reflect the real world, in the best possible way.

Sampling Groups to Study

Sampling groups correctly is especially important when we have more than one condition in the experiment. One sample group often serves as a control group , whilst others are tested under the experimental conditions.

Deciding the sample groups can be done in using many different sampling techniques. Population sampling may chosen by a number of methods, such as randomization , "quasi-randomization" and pairing.

Reducing sampling errors is vital for getting valid results from experiments. Researchers often adjust the sample size to minimize chances of random errors .

Here are some common sampling techniques :

  • probability sampling
  • non-probability sampling
  • simple random sampling
  • convenience sampling
  • stratified sampling
  • systematic sampling
  • cluster sampling
  • sequential sampling
  • disproportional sampling
  • judgmental sampling
  • snowball sampling
  • quota sampling

Creating the Design

The research design is chosen based on a range of factors. Important factors when choosing the design are feasibility, time, cost, ethics, measurement problems and what you would like to test. The design of the experiment is critical for the validity of the results.

Typical Designs and Features in Experimental Design

  • Pretest-Posttest Design Check whether the groups are different before the manipulation starts and the effect of the manipulation. Pretests sometimes influence the effect.
  • Control Group Control groups are designed to measure research bias and measurement effects, such as the Hawthorne Effect or the Placebo Effect . A control group is a group not receiving the same manipulation as the experimental group. Experiments frequently have 2 conditions, but rarely more than 3 conditions at the same time.
  • Randomized Controlled Trials Randomized Sampling, comparison between an Experimental Group and a Control Group and strict control/randomization of all other variables
  • Solomon Four-Group Design With two control groups and two experimental groups. Half the groups have a pretest and half do not have a pretest. This to test both the effect itself and the effect of the pretest.
  • Between Subjects Design Grouping Participants to Different Conditions
  • Within Subject Design Participants Take Part in the Different Conditions - See also: Repeated Measures Design
  • Counterbalanced Measures Design Testing the effect of the order of treatments when no control group is available/ethical
  • Matched Subjects Design Matching Participants to Create Similar Experimental- and Control-Groups
  • Double-Blind Experiment Neither the researcher, nor the participants, know which is the control group. The results can be affected if the researcher or participants know this.
  • Bayesian Probability Using bayesian probability to "interact" with participants is a more "advanced" experimental design. It can be used for settings were there are many variables which are hard to isolate. The researcher starts with a set of initial beliefs, and tries to adjust them to how participants have responded

Pilot Study

It may be wise to first conduct a pilot-study or two before you do the real experiment. This ensures that the experiment measures what it should, and that everything is set up right.

Minor errors, which could potentially destroy the experiment, are often found during this process. With a pilot study, you can get information about errors and problems, and improve the design, before putting a lot of effort into the real experiment.

If the experiments involve humans, a common strategy is to first have a pilot study with someone involved in the research, but not too closely, and then arrange a pilot with a person who resembles the subject(s) . Those two different pilots are likely to give the researcher good information about any problems in the experiment.

Conducting the Experiment

An experiment is typically carried out by manipulating a variable, called the independent variable , affecting the experimental group. The effect that the researcher is interested in, the dependent variable(s) , is measured.

Identifying and controlling non-experimental factors which the researcher does not want to influence the effects, is crucial to drawing a valid conclusion. This is often done by controlling variables , if possible, or randomizing variables to minimize effects that can be traced back to third variables . Researchers only want to measure the effect of the independent variable(s) when conducting an experiment , allowing them to conclude that this was the reason for the effect.

Analysis and Conclusions

In quantitative research , the amount of data measured can be enormous. Data not prepared to be analyzed is called "raw data". The raw data is often summarized as something called "output data", which typically consists of one line per subject (or item). A cell of the output data is, for example, an average of an effect in many trials for a subject. The output data is used for statistical analysis, e.g. significance tests, to see if there really is an effect.

The aim of an analysis is to draw a conclusion , together with other observations. The researcher might generalize the results to a wider phenomenon, if there is no indication of confounding variables "polluting" the results.

If the researcher suspects that the effect stems from a different variable than the independent variable, further investigation is needed to gauge the validity of the results. An experiment is often conducted because the scientist wants to know if the independent variable is having any effect upon the dependent variable. Variables correlating are not proof that there is causation .

Experiments are more often of quantitative nature than qualitative nature, although it happens.

Examples of Experiments

This website contains many examples of experiments. Some are not true experiments , but involve some kind of manipulation to investigate a phenomenon. Others fulfill most or all criteria of true experiments.

Here are some examples of scientific experiments:

Social Psychology

  • Stanley Milgram Experiment - Will people obey orders, even if clearly dangerous?
  • Asch Experiment - Will people conform to group behavior?
  • Stanford Prison Experiment - How do people react to roles? Will you behave differently?
  • Good Samaritan Experiment - Would You Help a Stranger? - Explaining Helping Behavior
  • Law Of Segregation - The Mendel Pea Plant Experiment
  • Transforming Principle - Griffith's Experiment about Genetics
  • Ben Franklin Kite Experiment - Struck by Lightning
  • J J Thomson Cathode Ray Experiment
  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Oskar Blakstad (Jul 10, 2008). Experimental Research. Retrieved Sep 19, 2024 from Explorable.com: https://explorable.com/experimental-research

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Get all these articles in 1 guide.

Want the full version to study at home, take to school or just scribble on?

Whether you are an academic novice, or you simply want to brush up your skills, this book will take your academic writing skills to the next level.

experimental research parts

Download electronic versions: - Epub for mobiles and tablets - For Kindle here - For iBooks here - PDF version here

Save this course for later

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

experimental research parts

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative to broader populations. .
Quantitative .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary . methods.
Secondary

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive . .
Experimental

Prevent plagiarism. Run a free check.

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

Research methods for analyzing data
Research method Qualitative or quantitative? When to use
Quantitative To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyze the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyze data collected from interviews, , or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyze large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

experimental research parts

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

What is your plagiarism score?

Experimental Research

  • First Online: 25 February 2021

Cite this chapter

experimental research parts

  • C. George Thomas 2  

5040 Accesses

Experiments are part of the scientific method that helps to decide the fate of two or more competing hypotheses or explanations on a phenomenon. The term ‘experiment’ arises from Latin, Experiri, which means, ‘to try’. The knowledge accrues from experiments differs from other types of knowledge in that it is always shaped upon observation or experience. In other words, experiments generate empirical knowledge. In fact, the emphasis on experimentation in the sixteenth and seventeenth centuries for establishing causal relationships for various phenomena happening in nature heralded the resurgence of modern science from its roots in ancient philosophy spearheaded by great Greek philosophers such as Aristotle.

The strongest arguments prove nothing so long as the conclusions are not verified by experience. Experimental science is the queen of sciences and the goal of all speculation . Roger Bacon (1214–1294)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Best, J.W. and Kahn, J.V. 1993. Research in Education (7th Ed., Indian Reprint, 2004). Prentice–Hall of India, New Delhi, 435p.

Google Scholar  

Campbell, D. and Stanley, J. 1963. Experimental and quasi-experimental designs for research. In: Gage, N.L., Handbook of Research on Teaching. Rand McNally, Chicago, pp. 171–247.

Chandel, S.R.S. 1991. A Handbook of Agricultural Statistics. Achal Prakashan Mandir, Kanpur, 560p.

Cox, D.R. 1958. Planning of Experiments. John Wiley & Sons, New York, 308p.

Fathalla, M.F. and Fathalla, M.M.F. 2004. A Practical Guide for Health Researchers. WHO Regional Publications Eastern Mediterranean Series 30. World Health Organization Regional Office for the Eastern Mediterranean, Cairo, 232p.

Fowkes, F.G.R., and Fulton, P.M. 1991. Critical appraisal of published research: Introductory guidelines. Br. Med. J. 302: 1136–1140.

Gall, M.D., Borg, W.R., and Gall, J.P. 1996. Education Research: An Introduction (6th Ed.). Longman, New York, 788p.

Gomez, K.A. 1972. Techniques for Field Experiments with Rice. International Rice Research Institute, Manila, Philippines, 46p.

Gomez, K.A. and Gomez, A.A. 1984. Statistical Procedures for Agricultural Research (2nd Ed.). John Wiley & Sons, New York, 680p.

Hill, A.B. 1971. Principles of Medical Statistics (9th Ed.). Oxford University Press, New York, 390p.

Holmes, D., Moody, P., and Dine, D. 2010. Research Methods for the Bioscience (2nd Ed.). Oxford University Press, Oxford, 457p.

Kerlinger, F.N. 1986. Foundations of Behavioural Research (3rd Ed.). Holt, Rinehart and Winston, USA. 667p.

Kirk, R.E. 2012. Experimental Design: Procedures for the Behavioural Sciences (4th Ed.). Sage Publications, 1072p.

Kothari, C.R. 2004. Research Methodology: Methods and Techniques (2nd Ed.). New Age International, New Delhi, 401p.

Kumar, R. 2011. Research Methodology: A Step-by step Guide for Beginners (3rd Ed.). Sage Publications India, New Delhi, 415p.

Leedy, P.D. and Ormrod, J.L. 2010. Practical Research: Planning and Design (9th Ed.), Pearson Education, New Jersey, 360p.

Marder, M.P. 2011. Research Methods for Science. Cambridge University Press, 227p.

Panse, V.G. and Sukhatme, P.V. 1985. Statistical Methods for Agricultural Workers (4th Ed., revised: Sukhatme, P.V. and Amble, V. N.). ICAR, New Delhi, 359p.

Ross, S.M. and Morrison, G.R. 2004. Experimental research methods. In: Jonassen, D.H. (ed.), Handbook of Research for Educational Communications and Technology (2nd Ed.). Lawrence Erlbaum Associates, New Jersey, pp. 10211043.

Snedecor, G.W. and Cochran, W.G. 1980. Statistical Methods (7th Ed.). Iowa State University Press, Ames, Iowa, 507p.

Download references

Author information

Authors and affiliations.

Kerala Agricultural University, Thrissur, Kerala, India

C. George Thomas

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to C. George Thomas .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this chapter

Thomas, C.G. (2021). Experimental Research. In: Research Methodology and Scientific Writing . Springer, Cham. https://doi.org/10.1007/978-3-030-64865-7_5

Download citation

DOI : https://doi.org/10.1007/978-3-030-64865-7_5

Published : 25 February 2021

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-64864-0

Online ISBN : 978-3-030-64865-7

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. PPT

    experimental research parts

  2. Experimental Study Design: Research, Types of Design, Methods and

    experimental research parts

  3. Video 2_Scientific Method and Parts of an Experiment Tutorial

    experimental research parts

  4. PPT

    experimental research parts

  5. PPT

    experimental research parts

  6. Experimental research design.revised

    experimental research parts

VIDEO

  1. Research Methodology for Life Science Projects (4 Minutes)

  2. How to use research parts in Dredge

  3. Parts of Thesis

  4. How to Farm Research Parts Dredge

  5. Lid-driven cavity flow experiment

  6. the three inseparable research parts/ሶሰቱ የማይነጣጠሉ የሪሰርች ክፍሎች/

COMMENTS

  1. Guide to Experimental Design

    Table of contents. Step 1: Define your variables. Step 2: Write your hypothesis. Step 3: Design your experimental treatments. Step 4: Assign your subjects to treatment groups. Step 5: Measure your dependent variable. Other interesting articles. Frequently asked questions about experiments.

  2. Experimental Research Designs: Types, Examples & Advantages

    Pre-experimental research is of three types —. One-shot Case Study Research Design. One-group Pretest-posttest Research Design. Static-group Comparison. 2. True Experimental Research Design. A true experimental research design relies on statistical analysis to prove or disprove a researcher's hypothesis.

  3. Experimental Reports 1

    Experimental reports (also known as "lab reports") are reports of empirical research conducted by their authors. You should think of an experimental report as a "story" of your research in which you lead your readers through your experiment. As you are telling this story, you are crafting an argument about both the validity and reliability of ...

  4. Exploring Experimental Research: Methodologies, Designs, and

    Experimental research serves as a fundamental scientific method aimed at unraveling cause-and-effect relationships between variables across various disciplines. This paper delineates the key ...

  5. Experimental research

    10 Experimental research. 10. Experimental research. Experimental research—often considered to be the 'gold standard' in research designs—is one of the most rigorous of all research designs. In this design, one or more independent variables are manipulated by the researcher (as treatments), subjects are randomly assigned to different ...

  6. Experimental Research: What it is + Types of designs

    The classic experimental design definition is: "The methods used to collect data in experimental studies.". There are three primary types of experimental design: The way you classify research subjects based on conditions or groups determines the type of research design you should use. 01. Pre-Experimental Design.

  7. Experimental Research Designs: Types, Examples & Methods

    The pre-experimental research design is further divided into three types. One-shot Case Study Research Design. In this type of experimental study, only one dependent group or variable is considered. The study is carried out after some treatment which was presumed to cause change, making it a posttest study.

  8. Experimental Design: Types, Examples & Methods

    Three types of experimental designs are commonly used: 1. Independent Measures. Independent measures design, also known as between-groups, is an experimental design where different participants are used in each condition of the independent variable. This means that each condition of the experiment includes a different group of participants.

  9. Experimental Design

    Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results. Experimental design typically includes identifying the variables that ...

  10. Writing Center: Experimental Research Papers

    Explains what the topic of the research is and why the topic is worth studying; Contains a clear statement of the problem that the paper sets out to address ; Places the research paper within the context of previous research on the topic ; Explains the purpose of the research study and what you hope to find; Describes the significance of the study

  11. An Introduction to Experimental Design Research

    As discussed above, experimental design research encapsulates a wide range of research designs, sharing fundamental design conventions (see Part I, Chap. 3). Table 1.1 gives an overview of the basic types of experimental study, which are further elaborated with respect to design research in Chap. 12.

  12. Experimental Research

    Experimental science is the queen of sciences and the goal of all speculation. Roger Bacon (1214-1294) Download chapter PDF. Experiments are part of the scientific method that helps to decide the fate of two or more competing hypotheses or explanations on a phenomenon. The term 'experiment' arises from Latin, Experiri, which means, 'to ...

  13. PDF Chapter 9: Experimental Research

    First, in research reports, researchers give the name of a standard design instead of describing it. When reading reports, you will be able to understand the design of the experiment if you know the standard designs. Second, the standard designs illustrate common ways to combine design parts.

  14. A Complete Guide to Experimental Research

    Collect the data by using suitable data collection according to your experiment's requirement, such as observations, case studies, surveys, interviews, questionnaires, etc. Analyse the obtained information. Step 8. Present and Conclude the Findings of the Study. Write the report of your research.

  15. Module 2: Research Design

    Experimental Studies — Example 2. A fitness instructor wants to test the effectiveness of a performance-enhancing herbal supplement on students in her exercise class. To create experimental groups that are similar at the beginning of the study, the students are assigned into two groups at random (they can not choose which group they are in).

  16. Overview of experimental analysis and design (Chapter 2)

    Null and alternative hypotheses. The basic outlines of hypothesis-driven research were provided in Section 1.3.1, but when setting out to create an experiment to test a hypothesis, there is much more to consider. Your experiment should have at least one control or independent variable, and at least one response or dependent variable.

  17. Four steps to complete an experimental research design

    Step 1: establish your question and set variables. In the first stage, establish your research question, and use it to distinguish between dependent and independent variables. Independent vs. dependent variables. Follow these steps to apply experimental research design to your surveys to gain more insight and make them more actionable.

  18. Experimental Research

    Experimental research is commonly used in sciences such as sociology and psychology, physics, chemistry, biology and medicine etc. It is a collection of research designs which use manipulation and controlled testing to understand causal processes. Generally, one or more variables are manipulated to determine their effect on a dependent variable ...

  19. Types of Research Designs Compared

    Types of Research Designs Compared | Guide & Examples. Published on June 20, 2019 by Shona McCombes.Revised on June 22, 2023. When you start planning a research project, developing research questions and creating a research design, you will have to make various decisions about the type of research you want to do.. There are many ways to categorize different types of research.

  20. PDF CHAPTER III RESEARCH METHODOLOGY

    CHAPTER IIIRESEARCH METHODOLOGYChapter three presents the method. logy in conducting the research. This chapter provides four main parts of the investigation: research design, data collection technique, research procedu. technique.3. 1 Research DesignThe research employed quantitative method in the form of quasi experimental des.

  21. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  22. Experimental Research: Definition, Types and Examples

    The three main types of experimental research design are: 1. Pre-experimental research. A pre-experimental research study is an observational approach to performing an experiment. It's the most basic style of experimental research. Free experimental research can occur in one of these design structures: One-shot case study research design: In ...

  23. PDF Chapter 5 Experimental Research

    The strongest arguments prove nothing so long as the conclusions are not verified by experience. Experimental science is the queen of sciences and the goal of all speculation. Roger Bacon (1214-1294) Experiments are part of the scientific method that helps to decide the fate of two or more competing hypotheses or explanations on a phenomenon.