Stack Exchange Network

Stack Exchange network consists of 183 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

What is the difference between concept class and hypothesis

Formal definition that I have seen of concept class is

class of all true functions

mathematically :

$f:X \rightarrow\{0,1\}$

and that of hypothesis is:

$h:X \rightarrow\{0,1\}$

But most of the times they are used together. For example in definition of PAC

A concept class 𝐶 is PAC learnable by a learner 𝐿 using hypothesis space 𝐻 if for all concepts 𝑐∈𝐶, distributions over 𝑋, true error probability 0≤𝜖≤1/2, failure probability 0≤𝛿≤1/2, learner 𝐿 outputs a hypothesis ℎ∈𝐻 such that True error less than or equal to 𝜖 Computational time is polynomial in 1/𝜖,1/𝛿, representation size of data object, and representation size of concept

What is the difference?

  • machine-learning

Community's user avatar

  • $\begingroup$ take a look at here $\endgroup$ –  Green Falcon Commented Jan 9, 2018 at 14:33

2 Answers 2

A concept class C is a set of true functions f . Hypothesis class H is the set of candidates to formulate as the final output of a learning algorithm to well approximate the true function f . Hypothesis class H is chosen before seeing the data (training process). C and H can be either same or not and we can treat them independently.

LUSAQX's user avatar

If one requires that $H = C$, then this is called the "proper PAC" framework compared to "PAC prediction" where we don't care about the representation of $h$ as long as the prediction error is small enough (i.e. we allow $H$ to be the class of all time-polynomial programs).

You can think of a concept as the set of inputs that produce the same label (e.g. all the images that show a chair form the concept "chair" or all the points in the same half space form the concept "true/false").

oW_'s user avatar

Your Answer

Sign up or log in, post as a guest.

Required, but never shown

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy .

Not the answer you're looking for? Browse other questions tagged machine-learning or ask your own question .

  • The Overflow Blog
  • Detecting errors in AI-generated code
  • Featured on Meta
  • User activation: Learnings and opportunities
  • Preventing unauthorized automated access to the network

Hot Network Questions

  • Why is China's Tiangong space station inaccessible from Russia's launch sites?
  • Would all disagreements vanish if everyone had access to the same information and followed the same reasoning process?
  • Can we have reliable deterministic reasoning processes if our universe is fundamentally non-deterministic?
  • What is this contraption off the wing of a US Navy DHC-6?
  • Is "spell me" not US idiom? Or perhaps archaic now?
  • how to make the latex support traditional-Chinese characters
  • Pnemautic lift cabinet door won't stay open
  • What to consider as reviewer before dooming a paper
  • Did Microsoft actually release a “Critical Update Notification Tool”?
  • Does Newton's third law violate the law of energy conservation?
  • Can't the electric current returning from the neutral end of the electrical cables be used again?
  • Why aren't some "conditions" officially a condition? (Burning, Bloodied)
  • Figure out which of your friends reveals confidential information to the media!
  • Could a civilisation develop spaceflight by artillery before developing orbit-capable rockets?
  • How to Create a Gradient Selection Along a Curved Mesh Object in Geometry Nodes?
  • Firefox isn't upgraded on Debian: its ESR has 1.5 years old, ensuring it being discarded. How to ask a global upgrade from Debian or Mozilla team?
  • How to interpret GAMs with multiple vs single variables?
  • the rank of the zero module over the zero ring is 1 or 0 or undefined?
  • Using earphones as a dipole antenna
  • How to properly overlay a stacked barplot with the line graph?
  • Where did the baseball term "lace" come from?
  • 2007 Lemond Poprad crank set replacement
  • Can Inductors be thought of as storing voltage?
  • Is there a way to have my iPhone register my car which doesn't have carplay, only for the "Car is parked at"-feature?

hypothesis and class

  • School Guide
  • Mathematics
  • Number System and Arithmetic
  • Trigonometry
  • Probability
  • Mensuration
  • Maths Formulas
  • Class 8 Maths Notes
  • Class 9 Maths Notes
  • Class 10 Maths Notes
  • Class 11 Maths Notes
  • Class 12 Maths Notes

Hypothesis | Definition, Meaning and Examples

Hypothesis is a hypothesis is fundamental concept in the world of research and statistics. It is a testable statement that explains what is happening or observed. It proposes the relation between the various participating variables.

Hypothesis is also called Theory, Thesis, Guess, Assumption, or Suggestion . Hypothesis creates a structure that guides the search for knowledge.

In this article, we will learn what hypothesis is, its characteristics, types, and examples. We will also learn how hypothesis helps in scientific research.

Table of Content

What is Hypothesis?

Characteristics of hypothesis, sources of hypothesis, types of hypothesis, functions of hypothesis, how hypothesis help in scientific research.

Hypothesis is a suggested idea or an educated guess or a proposed explanation made based on limited evidence, serving as a starting point for further study. They are meant to lead to more investigation.

It’s mainly a smart guess or suggested answer to a problem that can be checked through study and trial. In science work, we make guesses called hypotheses to try and figure out what will happen in tests or watching. These are not sure things but rather ideas that can be proved or disproved based on real-life proofs. A good theory is clear and can be tested and found wrong if the proof doesn’t support it.

Hypothesis

Hypothesis Meaning

A hypothesis is a proposed statement that is testable and is given for something that happens or observed.
  • It is made using what we already know and have seen, and it’s the basis for scientific research.
  • A clear guess tells us what we think will happen in an experiment or study.
  • It’s a testable clue that can be proven true or wrong with real-life facts and checking it out carefully.
  • It usually looks like a “if-then” rule, showing the expected cause and effect relationship between what’s being studied.

Here are some key characteristics of a hypothesis:

  • Testable: An idea (hypothesis) should be made so it can be tested and proven true through doing experiments or watching. It should show a clear connection between things.
  • Specific: It needs to be easy and on target, talking about a certain part or connection between things in a study.
  • Falsifiable: A good guess should be able to show it’s wrong. This means there must be a chance for proof or seeing something that goes against the guess.
  • Logical and Rational: It should be based on things we know now or have seen, giving a reasonable reason that fits with what we already know.
  • Predictive: A guess often tells what to expect from an experiment or observation. It gives a guide for what someone might see if the guess is right.
  • Concise: It should be short and clear, showing the suggested link or explanation simply without extra confusion.
  • Grounded in Research: A guess is usually made from before studies, ideas or watching things. It comes from a deep understanding of what is already known in that area.
  • Flexible: A guess helps in the research but it needs to change or fix when new information comes up.
  • Relevant: It should be related to the question or problem being studied, helping to direct what the research is about.
  • Empirical: Hypotheses come from observations and can be tested using methods based on real-world experiences.

Hypotheses can come from different places based on what you’re studying and the kind of research. Here are some common sources from which hypotheses may originate:

  • Existing Theories: Often, guesses come from well-known science ideas. These ideas may show connections between things or occurrences that scientists can look into more.
  • Observation and Experience: Watching something happen or having personal experiences can lead to guesses. We notice odd things or repeat events in everyday life and experiments. This can make us think of guesses called hypotheses.
  • Previous Research: Using old studies or discoveries can help come up with new ideas. Scientists might try to expand or question current findings, making guesses that further study old results.
  • Literature Review: Looking at books and research in a subject can help make guesses. Noticing missing parts or mismatches in previous studies might make researchers think up guesses to deal with these spots.
  • Problem Statement or Research Question: Often, ideas come from questions or problems in the study. Making clear what needs to be looked into can help create ideas that tackle certain parts of the issue.
  • Analogies or Comparisons: Making comparisons between similar things or finding connections from related areas can lead to theories. Understanding from other fields could create new guesses in a different situation.
  • Hunches and Speculation: Sometimes, scientists might get a gut feeling or make guesses that help create ideas to test. Though these may not have proof at first, they can be a beginning for looking deeper.
  • Technology and Innovations: New technology or tools might make guesses by letting us look at things that were hard to study before.
  • Personal Interest and Curiosity: People’s curiosity and personal interests in a topic can help create guesses. Scientists could make guesses based on their own likes or love for a subject.

Here are some common types of hypotheses:

Simple Hypothesis

Complex hypothesis, directional hypothesis.

  • Non-directional Hypothesis

Null Hypothesis (H0)

Alternative hypothesis (h1 or ha), statistical hypothesis, research hypothesis, associative hypothesis, causal hypothesis.

Simple Hypothesis guesses a connection between two things. It says that there is a connection or difference between variables, but it doesn’t tell us which way the relationship goes. Example: Studying more can help you do better on tests. Getting more sun makes people have higher amounts of vitamin D.
Complex Hypothesis tells us what will happen when more than two things are connected. It looks at how different things interact and may be linked together. Example: How rich you are, how easy it is to get education and healthcare greatly affects the number of years people live. A new medicine’s success relies on the amount used, how old a person is who takes it and their genes.
Directional Hypothesis says how one thing is related to another. For example, it guesses that one thing will help or hurt another thing. Example: Drinking more sweet drinks is linked to a higher body weight score. Too much stress makes people less productive at work.

Non-Directional Hypothesis

Non-Directional Hypothesis are the one that don’t say how the relationship between things will be. They just say that there is a connection, without telling which way it goes. Example: Drinking caffeine can affect how well you sleep. People often like different kinds of music based on their gender.
Null hypothesis is a statement that says there’s no connection or difference between different things. It implies that any seen impacts are because of luck or random changes in the information. Example: The average test scores of Group A and Group B are not much different. There is no connection between using a certain fertilizer and how much it helps crops grow.
Alternative Hypothesis is different from the null hypothesis and shows that there’s a big connection or gap between variables. Scientists want to say no to the null hypothesis and choose the alternative one. Example: Patients on Diet A have much different cholesterol levels than those following Diet B. Exposure to a certain type of light can change how plants grow compared to normal sunlight.
Statistical Hypothesis are used in math testing and include making ideas about what groups or bits of them look like. You aim to get information or test certain things using these top-level, common words only. Example: The average smarts score of kids in a certain school area is 100. The usual time it takes to finish a job using Method A is the same as with Method B.
Research Hypothesis comes from the research question and tells what link is expected between things or factors. It leads the study and chooses where to look more closely. Example: Having more kids go to early learning classes helps them do better in school when they get older. Using specific ways of talking affects how much customers get involved in marketing activities.
Associative Hypothesis guesses that there is a link or connection between things without really saying it caused them. It means that when one thing changes, it is connected to another thing changing. Example: Regular exercise helps to lower the chances of heart disease. Going to school more can help people make more money.
Causal Hypothesis are different from other ideas because they say that one thing causes another. This means there’s a cause and effect relationship between variables involved in the situation. They say that when one thing changes, it directly makes another thing change. Example: Playing violent video games makes teens more likely to act aggressively. Less clean air directly impacts breathing health in city populations.

Hypotheses have many important jobs in the process of scientific research. Here are the key functions of hypotheses:

  • Guiding Research: Hypotheses give a clear and exact way for research. They act like guides, showing the predicted connections or results that scientists want to study.
  • Formulating Research Questions: Research questions often create guesses. They assist in changing big questions into particular, checkable things. They guide what the study should be focused on.
  • Setting Clear Objectives: Hypotheses set the goals of a study by saying what connections between variables should be found. They set the targets that scientists try to reach with their studies.
  • Testing Predictions: Theories guess what will happen in experiments or observations. By doing tests in a planned way, scientists can check if what they see matches the guesses made by their ideas.
  • Providing Structure: Theories give structure to the study process by arranging thoughts and ideas. They aid scientists in thinking about connections between things and plan experiments to match.
  • Focusing Investigations: Hypotheses help scientists focus on certain parts of their study question by clearly saying what they expect links or results to be. This focus makes the study work better.
  • Facilitating Communication: Theories help scientists talk to each other effectively. Clearly made guesses help scientists to tell others what they plan, how they will do it and the results expected. This explains things well with colleagues in a wide range of audiences.
  • Generating Testable Statements: A good guess can be checked, which means it can be looked at carefully or tested by doing experiments. This feature makes sure that guesses add to the real information used in science knowledge.
  • Promoting Objectivity: Guesses give a clear reason for study that helps guide the process while reducing personal bias. They motivate scientists to use facts and data as proofs or disprovals for their proposed answers.
  • Driving Scientific Progress: Making, trying out and adjusting ideas is a cycle. Even if a guess is proven right or wrong, the information learned helps to grow knowledge in one specific area.

Researchers use hypotheses to put down their thoughts directing how the experiment would take place. Following are the steps that are involved in the scientific method:

  • Initiating Investigations: Hypotheses are the beginning of science research. They come from watching, knowing what’s already known or asking questions. This makes scientists make certain explanations that need to be checked with tests.
  • Formulating Research Questions: Ideas usually come from bigger questions in study. They help scientists make these questions more exact and testable, guiding the study’s main point.
  • Setting Clear Objectives: Hypotheses set the goals of a study by stating what we think will happen between different things. They set the goals that scientists want to reach by doing their studies.
  • Designing Experiments and Studies: Assumptions help plan experiments and watchful studies. They assist scientists in knowing what factors to measure, the techniques they will use and gather data for a proposed reason.
  • Testing Predictions: Ideas guess what will happen in experiments or observations. By checking these guesses carefully, scientists can see if the seen results match up with what was predicted in each hypothesis.
  • Analysis and Interpretation of Data: Hypotheses give us a way to study and make sense of information. Researchers look at what they found and see if it matches the guesses made in their theories. They decide if the proof backs up or disagrees with these suggested reasons why things are happening as expected.
  • Encouraging Objectivity: Hypotheses help make things fair by making sure scientists use facts and information to either agree or disagree with their suggested reasons. They lessen personal preferences by needing proof from experience.
  • Iterative Process: People either agree or disagree with guesses, but they still help the ongoing process of science. Findings from testing ideas make us ask new questions, improve those ideas and do more tests. It keeps going on in the work of science to keep learning things.

People Also View:

Mathematics Maths Formulas Branches of Mathematics

Hypothesis is a testable statement serving as an initial explanation for phenomena, based on observations, theories, or existing knowledge . It acts as a guiding light for scientific research, proposing potential relationships between variables that can be empirically tested through experiments and observations.

The hypothesis must be specific, testable, falsifiable, and grounded in prior research or observation, laying out a predictive, if-then scenario that details a cause-and-effect relationship. It originates from various sources including existing theories, observations, previous research, and even personal curiosity, leading to different types, such as simple, complex, directional, non-directional, null, and alternative hypotheses, each serving distinct roles in research methodology .

The hypothesis not only guides the research process by shaping objectives and designing experiments but also facilitates objective analysis and interpretation of data , ultimately driving scientific progress through a cycle of testing, validation, and refinement.

Hypothesis – FAQs

What is a hypothesis.

A guess is a possible explanation or forecast that can be checked by doing research and experiments.

What are Components of a Hypothesis?

The components of a Hypothesis are Independent Variable, Dependent Variable, Relationship between Variables, Directionality etc.

What makes a Good Hypothesis?

Testability, Falsifiability, Clarity and Precision, Relevance are some parameters that makes a Good Hypothesis

Can a Hypothesis be Proven True?

You cannot prove conclusively that most hypotheses are true because it’s generally impossible to examine all possible cases for exceptions that would disprove them.

How are Hypotheses Tested?

Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data

Can Hypotheses change during Research?

Yes, you can change or improve your ideas based on new information discovered during the research process.

What is the Role of a Hypothesis in Scientific Research?

Hypotheses are used to support scientific research and bring about advancements in knowledge.

author

Please Login to comment...

Similar reads.

  • Geeks Premier League
  • School Learning
  • Geeks Premier League 2023
  • Maths-Class-12
  • How to Underline in Discord
  • How to Block Someone on Discord
  • How to Report Someone on Discord
  • How to add Bots to Discord Servers
  • GeeksforGeeks Practice - Leading Online Coding Platform

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Stack Exchange Network

Stack Exchange network consists of 183 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

What is the difference between hypothesis space and representational capacity?

I am reading Goodfellow et al Deeplearning Book . I found it difficult to understand the difference between the definition of the hypothesis space and representation capacity of a model.

In Chapter 5 , it is written about hypothesis space:

One way to control the capacity of a learning algorithm is by choosing its hypothesis space, the set of functions that the learning algorithm is allowed to select as being the solution.

And about representational capacity:

The model specifies which family of functions the learning algorithm can choose from when varying the parameters in order to reduce a training objective. This is called the representational capacity of the model.

If we take the linear regression model as an example and allow our output $y$ to takes polynomial inputs, I understand the hypothesis space as the ensemble of quadratic functions taking input $x$ , i.e $y = a_0 + a_1x + a_2x^2$ .

How is it different from the definition of the representational capacity, where parameters are $a_0$ , $a_1$ and $a_2$ ?

  • machine-learning
  • terminology
  • computational-learning-theory
  • hypothesis-class

nbro's user avatar

3 Answers 3

Consider a target function $f: x \mapsto f(x)$ .

A hypothesis refers to an approximation of $f$ . A hypothesis space refers to the set of possible approximations that an algorithm can create for $f$ . The hypothesis space consists of the set of functions the model is limited to learn. For instance, linear regression can be limited to linear functions as its hypothesis space, or it can be expanded to learn polynomials.

The representational capacity of a model determines the flexibility of it, its ability to fit a variety of functions (i.e. which functions the model is able to learn), at the same. It specifies the family of functions the learning algorithm can choose from.

Saurav Joshi's user avatar

  • 1 $\begingroup$ Does it mean that the set of functions described by the representational capacity is strictly included in the hypothesis space ? By definition, is it possible to have functions in the hypothesis space NOT described in the representational capacity ? $\endgroup$ –  Qwarzix Commented Aug 23, 2018 at 8:43
  • $\begingroup$ It's still pretty confusing to me. Most sources say that a "model" is an instance (after execution/training on data) of a "learning algorithm". How, then, can a model specify the family of functions the learning algorithm can choose from? It doesn't make sense to me. The authors of the book should've explained these concepts in more depth. $\endgroup$ –  Talendar Commented Oct 9, 2020 at 13:09

A hypothesis space is defined as the set of functions $\mathcal H$ that can be chosen by a learning algorithm to minimize loss (in general).

$$\mathcal H = \{h_1, h_2,....h_n\}$$

The hypothesis class can be finite or infinite, for example a discrete set of shapes to encircle certain portion of the input space is a finite hypothesis space, whereas hpyothesis space of parametrized functions like neural nets and linear regressors are infinite.

Although the term representational capacity is not in the vogue a rough definition woukd be: The representational capacity of a model, is the ability of its hypothesis space to approximate a complex function, with 0 error, which can only be approximated by infinitely many hypothesis spaces whose representational capacity is equal to or exceed the representational capacity required to approximate the complex function.

The most popular measure of representational capacity is the $\mathcal V$ $\mathcal C$ Dimension of a model. The upper bound for VC dimension ( $d$ ) of a model is: $$d \leq \log_2| \mathcal H|$$ where $|H|$ is the cardinality of the set of hypothesis space.

A hypothesis space/class is the set of functions that the learning algorithm considers when picking one function to minimize some risk/loss functional.

The capacity of a hypothesis space is a number or bound that quantifies the size (or richness) of the hypothesis space, i.e. the number (and type) of functions that can be represented by the hypothesis space. So a hypothesis space has a capacity. The two most famous measures of capacity are VC dimension and Rademacher complexity.

In other words, the hypothesis class is the object and the capacity is a property (that can be measured or quantified) of this object, but there is not a big difference between hypothesis class and its capacity, in the sense that a hypothesis class naturally defines a capacity, but two (different) hypothesis classes could have the same capacity.

Note that representational capacity (not capacity , which is common!) is not a standard term in computational learning theory, while hypothesis space/class is commonly used. For example, this famous book on machine learning and learning theory uses the term hypothesis class in many places, but it never uses the term representational capacity .

Your book's definition of representational capacity is bad , in my opinion, if representational capacity is supposed to be a synonym for capacity , given that that definition also coincides with the definition of hypothesis class, so your confusion is understandable.

  • 1 $\begingroup$ I agree with you. The authors of the book should've explained these concepts in more depth. Most sources say that a "model" is an instance (after execution/training on data) of a "learning algorithm". How, then, can a model specify the family of functions the learning algorithm can choose from? Also, as you pointed out, the definition of the terms "hypothesis space" and "representational capacity" given by the authors are practically the same, although they use the terms as if they represent different concepts. $\endgroup$ –  Talendar Commented Oct 9, 2020 at 13:18

You must log in to answer this question.

Not the answer you're looking for browse other questions tagged machine-learning terminology computational-learning-theory hypothesis-class capacity ..

  • Featured on Meta
  • Preventing unauthorized automated access to the network
  • User activation: Learnings and opportunities
  • Join Stack Overflow’s CEO and me for the first Stack IRL Community Event in...

Hot Network Questions

  • Crime and poverty: Correlation or causation?
  • Where did the baseball term "lace" come from?
  • Why is the upgrade from 23.04 to 24.04.1 failing with "install all available updates"?
  • Fundamental group of the smooth locus of a normal algebraic surface is a quotient of that of a Zariski open subset
  • How to export SVG without anti-aliasing?
  • Pnemautic lift cabinet door won't stay open
  • Dropdown enum not changing
  • Expecting ad hominem criticism in a thesis defense: How to prepare well for this?
  • Can I increase the wattage of my landcruiser plug?
  • Enhancing my RSA implement in Python
  • 2007 Lemond Poprad crank set replacement
  • "Main sequence" period and habitability of brown dwarf systems
  • Power Over Ethernet (POE) switch to run multiple cameras on a single Ethernet cable?
  • How to properly overlay a stacked barplot with the line graph?
  • Why doesn't Spacex use a normal blast trench like Saturn V?
  • If I was ever deported, would it only be to my country of citizenship? Or can I arrange something else?
  • How can the doctor measure out a dose (dissolved in water) of exactly 10% of a tablet?
  • The goal of this ear training (voice leading) material
  • The King takes a stroll
  • Would all disagreements vanish if everyone had access to the same information and followed the same reasoning process?
  • Looking for a book where a boy is transported to another world by a beam of light
  • the rank of the zero module over the zero ring is 1 or 0 or undefined?
  • How to define relative orientation in terms of (co)homology?
  • Pulling myself up with a pulley attached to myself

hypothesis and class

home

Machine Learning

  • Machine Learning Tutorial
  • Machine Learning Applications
  • Life cycle of Machine Learning
  • Install Anaconda & Python
  • AI vs Machine Learning
  • How to Get Datasets
  • Data Preprocessing
  • Supervised Machine Learning
  • Unsupervised Machine Learning
  • Supervised vs Unsupervised Learning

Supervised Learning

  • Regression Analysis
  • Linear Regression
  • Simple Linear Regression
  • Multiple Linear Regression
  • Backward Elimination
  • Polynomial Regression

Classification

  • Classification Algorithm
  • Logistic Regression
  • K-NN Algorithm
  • Support Vector Machine Algorithm
  • Na�ve Bayes Classifier

Miscellaneous

  • Classification vs Regression
  • Linear Regression vs Logistic Regression
  • Decision Tree Classification Algorithm
  • Random Forest Algorithm
  • Clustering in Machine Learning
  • Hierarchical Clustering in Machine Learning
  • K-Means Clustering Algorithm
  • Apriori Algorithm in Machine Learning
  • Association Rule Learning
  • Confusion Matrix
  • Cross-Validation
  • Data Science vs Machine Learning
  • Machine Learning vs Deep Learning
  • Dimensionality Reduction Technique
  • Machine Learning Algorithms
  • Overfitting & Underfitting
  • Principal Component Analysis
  • What is P-Value
  • Regularization in Machine Learning
  • Examples of Machine Learning
  • Semi-Supervised Learning
  • Essential Mathematics for Machine Learning
  • Overfitting in Machine Learning
  • Types of Encoding Techniques
  • Feature Selection Techniques in Machine Learning
  • Bias and Variance in Machine Learning
  • Machine Learning Tools
  • Prerequisites for Machine Learning
  • Gradient Descent in Machine Learning
  • Machine Learning Experts Salary in India
  • Machine Learning Models
  • Machine Learning Books
  • Linear Algebra for Machine learning
  • Types of Machine Learning
  • Feature Engineering for Machine Learning
  • Top 10 Machine Learning Courses in 2021
  • Epoch in Machine Learning
  • Machine Learning with Anomaly Detection
  • What is Epoch
  • Cost Function in Machine Learning
  • Bayes Theorem in Machine learning
  • Perceptron in Machine Learning
  • Entropy in Machine Learning
  • Issues in Machine Learning
  • Precision and Recall in Machine Learning
  • Genetic Algorithm in Machine Learning
  • Normalization in Machine Learning
  • Adversarial Machine Learning
  • Basic Concepts in Machine Learning
  • Machine Learning Techniques
  • Demystifying Machine Learning
  • Challenges of Machine Learning
  • Model Parameter vs Hyperparameter
  • Hyperparameters in Machine Learning
  • Importance of Machine Learning
  • Machine Learning and Cloud Computing
  • Anti-Money Laundering using Machine Learning
  • Data Science Vs. Machine Learning Vs. Big Data
  • Popular Machine Learning Platforms
  • Deep learning vs. Machine learning vs. Artificial Intelligence
  • Machine Learning Application in Defense/Military
  • Machine Learning Applications in Media
  • How can Machine Learning be used with Blockchain
  • Prerequisites to Learn Artificial Intelligence and Machine Learning
  • List of Machine Learning Companies in India
  • Mathematics Courses for Machine Learning
  • Probability and Statistics Books for Machine Learning
  • Risks of Machine Learning
  • Best Laptops for Machine Learning
  • Machine Learning in Finance
  • Lead Generation using Machine Learning
  • Machine Learning and Data Science Certification
  • What is Big Data and Machine Learning
  • How to Save a Machine Learning Model
  • Machine Learning Model with Teachable Machine
  • Data Structure for Machine Learning
  • Hypothesis in Machine Learning
  • Gaussian Discriminant Analysis
  • How Machine Learning is used by Famous Companies
  • Introduction to Transfer Learning in ML
  • LDA in Machine Learning
  • Stacking in Machine Learning
  • CNB Algorithm
  • Deploy a Machine Learning Model using Streamlit Library
  • Different Types of Methods for Clustering Algorithms in ML
  • EM Algorithm in Machine Learning
  • Machine Learning Pipeline
  • Exploitation and Exploration in Machine Learning
  • Machine Learning for Trading
  • Data Augmentation: A Tactic to Improve the Performance of ML
  • Difference Between Coding in Data Science and Machine Learning
  • Data Labelling in Machine Learning
  • Impact of Deep Learning on Personalization
  • Major Business Applications of Convolutional Neural Network
  • Mini Batch K-means clustering algorithm
  • What is Multilevel Modelling
  • GBM in Machine Learning
  • Back Propagation through time - RNN
  • Data Preparation in Machine Learning
  • Predictive Maintenance Using Machine Learning
  • NLP Analysis of Restaurant Reviews
  • What are LSTM Networks
  • Performance Metrics in Machine Learning
  • Optimization using Hopfield Network
  • Data Leakage in Machine Learning
  • Generative Adversarial Network
  • Machine Learning for Data Management
  • Tensor Processing Units
  • Train and Test datasets in Machine Learning
  • How to Start with Machine Learning
  • AUC-ROC Curve in Machine Learning
  • Targeted Advertising using Machine Learning
  • Top 10 Machine Learning Projects for Beginners using Python
  • What is Human-in-the-Loop Machine Learning
  • What is MLOps
  • K-Medoids clustering-Theoretical Explanation
  • Machine Learning Or Software Development: Which is Better
  • How does Machine Learning Work
  • How to learn Machine Learning from Scratch
  • Is Machine Learning Hard
  • Face Recognition in Machine Learning
  • Product Recommendation Machine Learning
  • Designing a Learning System in Machine Learning
  • Recommendation System - Machine Learning
  • Customer Segmentation Using Machine Learning
  • Detecting Phishing Websites using Machine Learning
  • Hidden Markov Model in Machine Learning
  • Sales Prediction Using Machine Learning
  • Crop Yield Prediction Using Machine Learning
  • Data Visualization in Machine Learning
  • ELM in Machine Learning
  • Probabilistic Model in Machine Learning
  • Survival Analysis Using Machine Learning
  • Traffic Prediction Using Machine Learning
  • t-SNE in Machine Learning
  • BERT Language Model
  • Federated Learning in Machine Learning
  • Deep Parametric Continuous Convolutional Neural Network
  • Depth-wise Separable Convolutional Neural Networks
  • Need for Data Structures and Algorithms for Deep Learning and Machine Learning
  • Geometric Model in Machine Learning
  • Machine Learning Prediction
  • Scalable Machine Learning
  • Credit Score Prediction using Machine Learning
  • Extrapolation in Machine Learning
  • Image Forgery Detection Using Machine Learning
  • Insurance Fraud Detection -Machine Learning
  • NPS in Machine Learning
  • Sequence Classification- Machine Learning
  • EfficientNet: A Breakthrough in Machine Learning Model Architecture
  • focl algorithm in Machine Learning
  • Gini Index in Machine Learning
  • Rainfall Prediction using ML
  • Major Kernel Functions in Support Vector Machine
  • Bagging Machine Learning
  • BERT Applications
  • Xtreme: MultiLingual Neural Network
  • History of Machine Learning
  • Multimodal Transformer Models
  • Pruning in Machine Learning
  • ResNet: Residual Network
  • Gold Price Prediction using Machine Learning
  • Dog Breed Classification using Transfer Learning
  • Cataract Detection Using Machine Learning
  • Placement Prediction Using Machine Learning
  • Stock Market prediction using Machine Learning
  • How to Check the Accuracy of your Machine Learning Model
  • Interpretability and Explainability: Transformer Models
  • Pattern Recognition in Machine Learning
  • Zillow Home Value (Zestimate) Prediction in ML
  • Fake News Detection Using Machine Learning
  • Genetic Programming VS Machine Learning
  • IPL Prediction Using Machine Learning
  • Document Classification Using Machine Learning
  • Heart Disease Prediction Using Machine Learning
  • OCR with Machine Learning
  • Air Pollution Prediction Using Machine Learning
  • Customer Churn Prediction Using Machine Learning
  • Earthquake Prediction Using Machine Learning
  • Factor Analysis in Machine Learning
  • Locally Weighted Linear Regression
  • Machine Learning in Restaurant Industry
  • Machine Learning Methods for Data-Driven Turbulence Modeling
  • Predicting Student Dropout Using Machine Learning
  • Image Processing Using Machine Learning
  • Machine Learning in Banking
  • Machine Learning in Education
  • Machine Learning in Healthcare
  • Machine Learning in Robotics
  • Cloud Computing for Machine Learning and Cognitive Applications
  • Credit Card Approval Using Machine Learning
  • Liver Disease Prediction Using Machine Learning
  • Majority Voting Algorithm in Machine Learning
  • Data Augmentation in Machine Learning
  • Decision Tree Classifier in Machine Learning
  • Machine Learning in Design
  • Digit Recognition Using Machine Learning
  • Electricity Consumption Prediction Using Machine Learning
  • Data Analytics vs. Machine Learning
  • Injury Prediction in Competitive Runners Using Machine Learning
  • Protein Folding Using Machine Learning
  • Sentiment Analysis Using Machine Learning
  • Network Intrusion Detection System Using Machine Learning
  • Titanic- Machine Learning From Disaster
  • Adenovirus Disease Prediction for Child Healthcare Using Machine Learning
  • RNN for Sequence Labelling
  • CatBoost in Machine Learning
  • Cloud Computing Future Trends
  • Histogram of Oriented Gradients (HOG)
  • Implementation of neural network from scratch using NumPy
  • Introduction to SIFT( Scale Invariant Feature Transform)
  • Introduction to SURF (Speeded-Up Robust Features)
  • Kubernetes - load balancing service
  • Kubernetes Resource Model (KRM) and How to Make Use of YAML
  • Are Robots Self-Learning
  • Variational Autoencoders
  • What are the Security and Privacy Risks of VR and AR
  • What is a Large Language Model (LLM)
  • Privacy-preserving Machine Learning
  • Continual Learning in Machine Learning
  • Quantum Machine Learning (QML)
  • Split Single Column into Multiple Columns in PySpark DataFrame
  • Why should we use AutoML
  • Evaluation Metrics for Object Detection and Recognition
  • Mean Intersection over Union (mIoU) for image segmentation
  • YOLOV5-Object-Tracker-In-Videos
  • Predicting Salaries with Machine Learning
  • Fine-tuning Large Language Models
  • AutoML Workflow
  • Build Chatbot Webapp with LangChain
  • Building a Machine Learning Classification Model with PyCaret
  • Continuous Bag of Words (CBOW) in NLP
  • Deploying Scrapy Spider on ScrapingHub
  • Dynamic Pricing Using Machine Learning
  • How to Improve Neural Networks by Using Complex Numbers
  • Introduction to Bayesian Deep Learning
  • LiDAR: Light Detection and Ranging for 3D Reconstruction
  • Meta-Learning in Machine Learning
  • Object Recognition in Medical Imaging
  • Region-level Evaluation Metrics for Image Segmentation
  • Sarcasm Detection Using Neural Networks
  • SARSA Reinforcement Learning
  • Single Shot MultiBox Detector (SSD) using Neural Networking Approach
  • Stepwise Predictive Analysis in Machine Learning
  • Vision Transformers vs. Convolutional Neural Networks
  • V-Net in Image Segmentation
  • Forest Cover Type Prediction Using Machine Learning
  • Ada Boost algorithm in Machine Learning
  • Continuous Value Prediction
  • Bayesian Regression
  • Least Angle Regression
  • Linear Models
  • DNN Machine Learning
  • Why do we need to learn Machine Learning
  • Roles in Machine Learning
  • Clustering Performance Evaluation
  • Spectral Co-clustering
  • 7 Best R Packages for Machine Learning
  • Calculate Kurtosis
  • Machine Learning for Data Analysis
  • What are the benefits of 5G Technology for the Internet of Things
  • What is the Role of Machine Learning in IoT
  • Human Activity Recognition Using Machine Learning
  • Components of GIS
  • Attention Mechanism
  • Backpropagation- Algorithm
  • VGGNet-16 Architecture
  • Independent Component Analysis
  • Nonnegative Matrix Factorization
  • Sparse Inverse Covariance
  • Accuracy, Precision, Recall or F1
  • L1 and L2 Regularization
  • Maximum Likelihood Estimation
  • Kernel Principal Component Analysis (KPCA)
  • Latent Semantic Analysis
  • Overview of outlier detection methods
  • Robust Covariance Estimation
  • Spectral Bi-Clustering
  • Drift in Machine Learning
  • Credit Card Fraud Detection Using Machine Learning
  • KL-Divergence
  • Transformers Architecture
  • Novelty Detection with Local Outlier Factor
  • Novelty Detection
  • Introduction to Bayesian Linear Regression
  • Firefly Algorithm
  • Keras: Attention and Seq2Seq
  • A Guide Towards a Successful Machine Learning Project
  • ACF and PCF
  • Bayesian Hyperparameter Optimization for Machine Learning
  • Random Forest Hyperparameter tuning in python
  • Simulated Annealing
  • Top Benefits of Machine Learning in FinTech
  • Weight Initialisation
  • Density Estimation
  • Overlay Network
  • Micro, Macro Weighted Averages of F1 Score
  • Assumptions of Linear Regression
  • Evaluation Metrics for Clustering Algorithms
  • Frog Leap Algorithm
  • Isolation Forest
  • McNemar Test
  • Stochastic Optimization
  • Geomagnetic Field Using Machine Learning
  • Image Generation Using Machine Learning
  • Confidence Intervals
  • Facebook Prophet
  • Understanding Optimization Algorithms in Machine Learning
  • What Are Probabilistic Models in Machine Learning
  • How to choose the best Linear Regression model
  • How to Remove Non-Stationarity From Time Series
  • AutoEncoders
  • Cat Classification Using Machine Learning
  • AIC and BIC
  • Inception Model
  • Architecture of Machine Learning
  • Business Intelligence Vs Machine Learning
  • Guide to Cluster Analysis: Applications, Best Practices
  • Linear Regression using Gradient Descent
  • Text Clustering with K-Means
  • The Significance and Applications of Covariance Matrix
  • Stationarity Tests in Time Series
  • Graph Machine Learning
  • Introduction to XGBoost Algorithm in Machine Learning
  • Bahdanau Attention
  • Greedy Layer Wise Pre-Training
  • OneVsRestClassifier
  • Best Program for Machine Learning
  • Deep Boltzmann machines (DBMs) in machine learning
  • Find Patterns in Data Using Machine Learning
  • Generalized Linear Models
  • How to Implement Gradient Descent Optimization from Scratch
  • Interpreting Correlation Coefficients
  • Image Captioning Using Machine Learning
  • fit() vs predict() vs fit_predict() in Python scikit-learn
  • CNN Filters
  • Shannon Entropy
  • Time Series -Exponential Smoothing
  • AUC ROC Curve in Machine Learning
  • Vector Norms in Machine Learning
  • Swarm Intelligence
  • L1 and L2 Regularization Methods in Machine Learning
  • ML Approaches for Time Series
  • MSE and Bias-Variance Decomposition
  • Simple Exponential Smoothing
  • How to Optimise Machine Learning Model
  • Multiclass logistic regression from scratch
  • Lightbm Multilabel Classification
  • Monte Carlo Methods
  • What is Inverse Reinforcement learning
  • Content-Based Recommender System
  • Context-Awareness Recommender System
  • Predicting Flights Using Machine Learning
  • NTLK Corpus
  • Traditional Feature Engineering Models
  • Concept Drift and Model Decay in Machine Learning
  • Hierarchical Reinforcement Learning
  • What is Feature Scaling and Why is it Important in Machine Learning
  • Difference between Statistical Model and Machine Learning
  • Introduction to Ranking Algorithms in Machine Learning
  • Multicollinearity: Causes, Effects and Detection
  • Bag of N-Grams Model
  • TF-IDF Model

Related Tutorials

  • Tensorflow Tutorial
  • PyTorch Tutorial
  • Data Science Tutorial
  • AI Tutorial
  • NLP Tutorial
  • Reinforcement Learning

Interview Questions

  • Machine learning Interview

The hypothesis is a common term in Machine Learning and data science projects. As we know, machine learning is one of the most powerful technologies across the world, which helps us to predict results based on past experiences. Moreover, data scientists and ML professionals conduct experiments that aim to solve a problem. These ML professionals and data scientists make an initial assumption for the solution of the problem.

This assumption in Machine learning is known as Hypothesis. In Machine Learning, at various times, Hypothesis and Model are used interchangeably. However, a Hypothesis is an assumption made by scientists, whereas a model is a mathematical representation that is used to test the hypothesis. In this topic, "Hypothesis in Machine Learning," we will discuss a few important concepts related to a hypothesis in machine learning and their importance. So, let's start with a quick introduction to Hypothesis.

It is just a guess based on some known facts but has not yet been proven. A good hypothesis is testable, which results in either true or false.

: Let's understand the hypothesis with a common example. Some scientist claims that ultraviolet (UV) light can damage the eyes then it may also cause blindness.

In this example, a scientist just claims that UV rays are harmful to the eyes, but we assume they may cause blindness. However, it may or may not be possible. Hence, these types of assumptions are called a hypothesis.

The hypothesis is one of the commonly used concepts of statistics in Machine Learning. It is specifically used in Supervised Machine learning, where an ML model learns a function that best maps the input to corresponding outputs with the help of an available dataset.

There are some common methods given to find out the possible hypothesis from the Hypothesis space, where hypothesis space is represented by and hypothesis by Th ese are defined as follows:

It is used by supervised machine learning algorithms to determine the best possible hypothesis to describe the target function or best maps input to output.

It is often constrained by choice of the framing of the problem, the choice of model, and the choice of model configuration.

. It is primarily based on data as well as bias and restrictions applied to data.

Hence hypothesis (h) can be concluded as a single hypothesis that maps input to proper output and can be evaluated as well as used to make predictions.

The hypothesis (h) can be formulated in machine learning as follows:

Where,

Y: Range

m: Slope of the line which divided test data or changes in y divided by change in x.

x: domain

c: intercept (constant)

: Let's understand the hypothesis (h) and hypothesis space (H) with a two-dimensional coordinate plane showing the distribution of data as follows:

Hypothesis space (H) is the composition of all legal best possible ways to divide the coordinate plane so that it best maps input to proper output.

Further, each individual best possible way is called a hypothesis (h). Hence, the hypothesis and hypothesis space would be like this:

Similar to the hypothesis in machine learning, it is also considered an assumption of the output. However, it is falsifiable, which means it can be failed in the presence of sufficient evidence.

Unlike machine learning, we cannot accept any hypothesis in statistics because it is just an imaginary result and based on probability. Before start working on an experiment, we must be aware of two important types of hypotheses as follows:

A null hypothesis is a type of statistical hypothesis which tells that there is no statistically significant effect exists in the given set of observations. It is also known as conjecture and is used in quantitative analysis to test theories about markets, investment, and finance to decide whether an idea is true or false. An alternative hypothesis is a direct contradiction of the null hypothesis, which means if one of the two hypotheses is true, then the other must be false. In other words, an alternative hypothesis is a type of statistical hypothesis which tells that there is some significant effect that exists in the given set of observations.

The significance level is the primary thing that must be set before starting an experiment. It is useful to define the tolerance of error and the level at which effect can be considered significantly. During the testing process in an experiment, a 95% significance level is accepted, and the remaining 5% can be neglected. The significance level also tells the critical or threshold value. For e.g., in an experiment, if the significance level is set to 98%, then the critical value is 0.02%.

The p-value in statistics is defined as the evidence against a null hypothesis. In other words, P-value is the probability that a random chance generated the data or something else that is equal or rarer under the null hypothesis condition.

If the p-value is smaller, the evidence will be stronger, and vice-versa which means the null hypothesis can be rejected in testing. It is always represented in a decimal form, such as 0.035.

Whenever a statistical test is carried out on the population and sample to find out P-value, then it always depends upon the critical value. If the p-value is less than the critical value, then it shows the effect is significant, and the null hypothesis can be rejected. Further, if it is higher than the critical value, it shows that there is no significant effect and hence fails to reject the Null Hypothesis.

In the series of mapping instances of inputs to outputs in supervised machine learning, the hypothesis is a very useful concept that helps to approximate a target function in machine learning. It is available in all analytics domains and is also considered one of the important factors to check whether a change should be introduced or not. It covers the entire training data sets to efficiency as well as the performance of the models.

Hence, in this topic, we have covered various important concepts related to the hypothesis in machine learning and statistics and some important parameters such as p-value, significance level, etc., to understand hypothesis concepts in a better way.





Latest Courses

Python

We provides tutorials and interview questions of all technology like java tutorial, android, java frameworks

Contact info

G-13, 2nd Floor, Sec-3, Noida, UP, 201301, India

[email protected] .

Facebook

Online Compiler

What’s a Hypothesis Space?

Last updated: March 18, 2024

hypothesis and class

  • Math and Logic

announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode , for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

1. Introduction

Machine-learning algorithms come with implicit or explicit assumptions about the actual patterns in the data. Mathematically, this means that each algorithm can learn a specific family of models, and that family goes by the name of the hypothesis space.

In this tutorial, we’ll talk about hypothesis spaces and how to choose the right one for the data at hand.

2. Hypothesis Spaces

Let’s say that we have a binary classification task and that the data are two-dimensional. Our goal is to find a model that classifies objects as positive or negative. Applying Logistic Regression , we can get the models of the form:

which estimate the probability that the object at hand is positive.

2.1. Hypotheses and Assumptions

The underlying assumption of hypotheses ( 1 ) is that the boundary separating the positive from negative objects is a straight line. So, every hypothesis from this space corresponds to a straight line in a 2D plane. For instance:

Two Classification Hypotheses

2.2. Regression

3. expressivity of a hypothesis space.

We could informally say that one hypothesis space is more expressive than another if its hypotheses are more diverse and complex.

We may underfit the data if our algorithm’s hypothesis space isn’t expressive enough. For instance, linear hypotheses aren’t particularly good options if the actual data are extremely non-linear:

Non-linear Data

So, training an algorithm that has a very expressive space increases the chance of completely capturing the patterns in the data. However, it also increases the risk of overfitting. For instance, a space containing the hypotheses of the form:

would start modelling the noise, which we see from its decision boundary:

A too complex hypothesis

Such models would generalize poorly to unseen data.

3.1. Expressivity vs. Interpretability

Additionally, even if a complex hypothesis has a good generalization capability, it may be unusable in practice because it’s too complicated to understand or compute. What’s more, intricated hypotheses offer limited insight into the real-world process that generated the data. For example, a quadratic model:

4. How to Choose the Hypothesis Space?

We need to find the right balance between expressivity and simplicity. Unfortunately, that’s easier said than done. Most of the time, we need to rely on our intuition about the data.

So, we should start by exploring the dataset, using visualizations as much as possible. For instance, we can conclude that a straight line isn’t likely to be an adequate boundary for the above classification data. However, a high-order curve would probably be too complex even though it might split the dataset into two classes without an error.

A second-degree curve might be the compromise we seek, but we aren’t sure. So, we start with the space of quadratic hypotheses:

We get a model whose decision boundary appears to be a good fit even though it misclassifies some objects:

An adequate hypothesis

Since we’re satisfied with the model, we can stop here. If that hadn’t been the case, we could have tried a space of cubic models. The idea would be to iteratively try incrementally complex families until finding a model that both performs well and is easy to understand.

4. Conclusion

In this article, we talked about hypotheses spaces in machine learning. An algorithm’s hypothesis space contains all the models it can learn from any dataset.

The algorithms with too expressive spaces can generalize poorly to unseen data and be too complex to understand, whereas those with overly simple hypotheses may underfit the data. So, when applying machine-learning algorithms in practice, we need to find the right balance between expressivity and simplicity.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Figures in Research Paper

Figures in Research Paper – Examples and Guide

Literature Review

Literature Review – Types Writing Guide and...

Research Paper

Research Paper – Structure, Examples and Writing...

Research Topic

Research Topics – Ideas and Examples

Research Contribution

Research Contribution – Thesis Guide

Research Findings

Research Findings – Types Examples and Writing...

helpful professor logo

13 Different Types of Hypothesis

13 Different Types of Hypothesis

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

hypothesis definition and example, explained below

There are 13 different types of hypothesis. These include simple, complex, null, alternative, composite, directional, non-directional, logical, empirical, statistical, associative, exact, and inexact.

A hypothesis can be categorized into one or more of these types. However, some are mutually exclusive and opposites. Simple and complex hypotheses are mutually exclusive, as are direction and non-direction, and null and alternative hypotheses.

Below I explain each hypothesis in simple terms for absolute beginners. These definitions may be too simple for some, but they’re designed to be clear introductions to the terms to help people wrap their heads around the concepts early on in their education about research methods .

Types of Hypothesis

Before you Proceed: Dependent vs Independent Variables

A research study and its hypotheses generally examine the relationships between independent and dependent variables – so you need to know these two concepts:

  • The independent variable is the variable that is causing a change.
  • The dependent variable is the variable the is affected by the change. This is the variable being tested.

Read my full article on dependent vs independent variables for more examples.

Example: Eating carrots (independent variable) improves eyesight (dependent variable).

1. Simple Hypothesis

A simple hypothesis is a hypothesis that predicts a correlation between two test variables: an independent and a dependent variable.

This is the easiest and most straightforward type of hypothesis. You simply need to state an expected correlation between the dependant variable and the independent variable.

You do not need to predict causation (see: directional hypothesis). All you would need to do is prove that the two variables are linked.

Simple Hypothesis Examples

QuestionSimple Hypothesis
Do people over 50 like Coca-Cola more than people under 50?On average, people over 50 like Coca-Cola more than people under 50.
According to national registries of car accident data, are Canadians better drivers than Americans?Canadians are better drivers than Americans.
Are carpenters more liberal than plumbers?Carpenters are more liberal than plumbers.
Do guitarists live longer than pianists?Guitarists do live longer than pianists.
Do dogs eat more in summer than winter?Dogs do eat more in summer than winter.

2. Complex Hypothesis

A complex hypothesis is a hypothesis that contains multiple variables, making the hypothesis more specific but also harder to prove.

You can have multiple independent and dependant variables in this hypothesis.

Complex Hypothesis Example

QuestionComplex Hypothesis
Do (1) age and (2) weight affect chances of getting (3) diabetes and (4) heart disease?(1) Age and (2) weight increase your chances of getting (3) diabetes and (4) heart disease.

In the above example, we have multiple independent and dependent variables:

  • Independent variables: Age and weight.
  • Dependent variables: diabetes and heart disease.

Because there are multiple variables, this study is a lot more complex than a simple hypothesis. It quickly gets much more difficult to prove these hypotheses. This is why undergraduate and first-time researchers are usually encouraged to use simple hypotheses.

3. Null Hypothesis

A null hypothesis will predict that there will be no significant relationship between the two test variables.

For example, you can say that “The study will show that there is no correlation between marriage and happiness.”

A good way to think about a null hypothesis is to think of it in the same way as “innocent until proven guilty”[1]. Unless you can come up with evidence otherwise, your null hypothesis will stand.

A null hypothesis may also highlight that a correlation will be inconclusive . This means that you can predict that the study will not be able to confirm your results one way or the other. For example, you can say “It is predicted that the study will be unable to confirm a correlation between the two variables due to foreseeable interference by a third variable .”

Beware that an inconclusive null hypothesis may be questioned by your teacher. Why would you conduct a test that you predict will not provide a clear result? Perhaps you should take a closer look at your methodology and re-examine it. Nevertheless, inconclusive null hypotheses can sometimes have merit.

Null Hypothesis Examples

QuestionNull Hypothesis (H )
Do people over 50 like Coca-Cola more than people under 50?Age has no effect on preference for Coca-Cola.
Are Canadians better drivers than Americans?Nationality has no effect on driving ability.
Are carpenters more liberal than plumbers?There is no statistically significant difference in political views between carpenters and plumbers.
Do guitarists live longer than pianists?There is no statistically significant difference in life expectancy between guitarists and pianists.
Do dogs eat more in summer than winter?Time of year has no effect on dogs’ appetites.

4. Alternative Hypothesis

An alternative hypothesis is a hypothesis that is anything other than the null hypothesis. It will disprove the null hypothesis.

We use the symbol H A or H 1 to denote an alternative hypothesis.

The null and alternative hypotheses are usually used together. We will say the null hypothesis is the case where a relationship between two variables is non-existent. The alternative hypothesis is the case where there is a relationship between those two variables.

The following statement is always true: H 0 ≠ H A .

Let’s take the example of the hypothesis: “Does eating oatmeal before an exam impact test scores?”

We can have two hypotheses here:

  • Null hypothesis (H 0 ): “Eating oatmeal before an exam does not impact test scores.”
  • Alternative hypothesis (H A ): “Eating oatmeal before an exam does impact test scores.”

For the alternative hypothesis to be true, all we have to do is disprove the null hypothesis for the alternative hypothesis to be true. We do not need an exact prediction of how much oatmeal will impact the test scores or even if the impact is positive or negative. So long as the null hypothesis is proven to be false, then the alternative hypothesis is proven to be true.

5. Composite Hypothesis

A composite hypothesis is a hypothesis that does not predict the exact parameters, distribution, or range of the dependent variable.

Often, we would predict an exact outcome. For example: “23 year old men are on average 189cm tall.” Here, we are giving an exact parameter. So, the hypothesis is not composite.

But, often, we cannot exactly hypothesize something. We assume that something will happen, but we’re not exactly sure what. In these cases, we might say: “23 year old men are not on average 189cm tall.”

We haven’t set a distribution range or exact parameters of the average height of 23 year old men. So, we’ve introduced a composite hypothesis as opposed to an exact hypothesis.

Generally, an alternative hypothesis (discussed above) is composite because it is defined as anything except the null hypothesis. This ‘anything except’ does not define parameters or distribution, and therefore it’s an example of a composite hypothesis.

6. Directional Hypothesis

A directional hypothesis makes a prediction about the positivity or negativity of the effect of an intervention prior to the test being conducted.

Instead of being agnostic about whether the effect will be positive or negative, it nominates the effect’s directionality.

We often call this a one-tailed hypothesis (in contrast to a two-tailed or non-directional hypothesis) because, looking at a distribution graph, we’re hypothesizing that the results will lean toward one particular tail on the graph – either the positive or negative.

Directional Hypothesis Examples

QuestionDirectional Hypothesis
Does adding a 10c charge to plastic bags at grocery stores lead to changes in uptake of reusable bags?Adding a 10c charge to plastic bags in grocery stores will lead to an in uptake of reusable bags.
Does a Universal Basic Income influence retail worker wages?Universal Basic Income retail worker wages.
Does rainy weather impact the amount of moderate to high intensity exercise people do per week in the city of Vancouver?Rainy weather the amount of moderate to high intensity exercise people do per week in the city of Vancouver.
Does introducing fluoride to the water system in the city of Austin impact number of dental visits per capita per year?Introducing fluoride to the water system in the city of Austin the number of dental visits per capita per year?
Does giving children chocolate rewards during study time for positive answers impact standardized test scores?Giving children chocolate rewards during study time for positive answers standardized test scores.

7. Non-Directional Hypothesis

A non-directional hypothesis does not specify the predicted direction (e.g. positivity or negativity) of the effect of the independent variable on the dependent variable.

These hypotheses predict an effect, but stop short of saying what that effect will be.

A non-directional hypothesis is similar to composite and alternative hypotheses. All three types of hypothesis tend to make predictions without defining a direction. In a composite hypothesis, a specific prediction is not made (although a general direction may be indicated, so the overlap is not complete). For an alternative hypothesis, you often predict that the even will be anything but the null hypothesis, which means it could be more or less than H 0 (or in other words, non-directional).

Let’s turn the above directional hypotheses into non-directional hypotheses.

Non-Directional Hypothesis Examples

QuestionNon-Directional Hypothesis
Does adding a 10c charge to plastic bags at grocery stores lead to changes in uptake of reusable bags?Adding a 10c charge to plastic bags in grocery stores will lead to a in uptake of reusable bags.
Does a Universal Basic Income influence retail worker wages?Universal Basic Income retail worker wages.
Does rainy weather impact the amount of moderate to high intensity exercise people do per week in the city of Vancouver?Rainy weather the amount of moderate to high intensity exercise people do per week in the city of Vancouver.
Does introducing fluoride to the water system in the city of Austin impact number of dental visits per capita per year?Introducing fluoride to the water system in the city of Austin the number of dental visits per capita per year?
Does giving children chocolate rewards during study time for positive answers impact standardized test scores?Giving children chocolate rewards during study time for positive answers standardized test scores.

8. Logical Hypothesis

A logical hypothesis is a hypothesis that cannot be tested, but has some logical basis underpinning our assumptions.

These are most commonly used in philosophy because philosophical questions are often untestable and therefore we must rely on our logic to formulate logical theories.

Usually, we would want to turn a logical hypothesis into an empirical one through testing if we got the chance. Unfortunately, we don’t always have this opportunity because the test is too complex, expensive, or simply unrealistic.

Here are some examples:

  • Before the 1980s, it was hypothesized that the Titanic came to its resting place at 41° N and 49° W, based on the time the ship sank and the ship’s presumed path across the Atlantic Ocean. However, due to the depth of the ocean, it was impossible to test. Thus, the hypothesis was simply a logical hypothesis.
  • Dinosaurs closely related to Aligators probably had green scales because Aligators have green scales. However, as they are all extinct, we can only rely on logic and not empirical data.

9. Empirical Hypothesis

An empirical hypothesis is the opposite of a logical hypothesis. It is a hypothesis that is currently being tested using scientific analysis. We can also call this a ‘working hypothesis’.

We can to separate research into two types: theoretical and empirical. Theoretical research relies on logic and thought experiments. Empirical research relies on tests that can be verified by observation and measurement.

So, an empirical hypothesis is a hypothesis that can and will be tested.

  • Raising the wage of restaurant servers increases staff retention.
  • Adding 1 lb of corn per day to cows’ diets decreases their lifespan.
  • Mushrooms grow faster at 22 degrees Celsius than 27 degrees Celsius.

Each of the above hypotheses can be tested, making them empirical rather than just logical (aka theoretical).

10. Statistical Hypothesis

A statistical hypothesis utilizes representative statistical models to draw conclusions about broader populations.

It requires the use of datasets or carefully selected representative samples so that statistical inference can be drawn across a larger dataset.

This type of research is necessary when it is impossible to assess every single possible case. Imagine, for example, if you wanted to determine if men are taller than women. You would be unable to measure the height of every man and woman on the planet. But, by conducting sufficient random samples, you would be able to predict with high probability that the results of your study would remain stable across the whole population.

You would be right in guessing that almost all quantitative research studies conducted in academic settings today involve statistical hypotheses.

Statistical Hypothesis Examples

  • Human Sex Ratio. The most famous statistical hypothesis example is that of John Arbuthnot’s sex at birth case study in 1710. Arbuthnot used birth data to determine with high statistical probability that there are more male births than female births. He called this divine providence, and to this day, his findings remain true: more men are born than women.
  • Lady Testing Tea. A 1935 study by Ronald Fisher involved testing a woman who believed she could tell whether milk was added before or after water to a cup of tea. Fisher gave her 4 cups in which one randomly had milk placed before the tea. He repeated the test 8 times. The lady was correct each time. Fisher found that she had a 1 in 70 chance of getting all 8 test correct, which is a statistically significant result.

11. Associative Hypothesis

An associative hypothesis predicts that two variables are linked but does not explore whether one variable directly impacts upon the other variable.

We commonly refer to this as “ correlation does not mean causation ”. Just because there are a lot of sick people in a hospital, it doesn’t mean that the hospital made the people sick. There is something going on there that’s causing the issue (sick people are flocking to the hospital).

So, in an associative hypothesis, you note correlation between an independent and dependent variable but do not make a prediction about how the two interact. You stop short of saying one thing causes another thing.

Associative Hypothesis Examples

  • Sick people in hospital. You could conduct a study hypothesizing that hospitals have more sick people in them than other institutions in society. However, you don’t hypothesize that the hospitals caused the sickness.
  • Lice make you healthy. In the Middle Ages, it was observed that sick people didn’t tend to have lice in their hair. The inaccurate conclusion was that lice was not only a sign of health, but that they made people healthy. In reality, there was an association here, but not causation. The fact was that lice were sensitive to body temperature and fled bodies that had fevers.

12. Causal Hypothesis

A causal hypothesis predicts that two variables are not only associated, but that changes in one variable will cause changes in another.

A causal hypothesis is harder to prove than an associative hypothesis because the cause needs to be definitively proven. This will often require repeating tests in controlled environments with the researchers making manipulations to the independent variable, or the use of control groups and placebo effects .

If we were to take the above example of lice in the hair of sick people, researchers would have to put lice in sick people’s hair and see if it made those people healthier. Researchers would likely observe that the lice would flee the hair, but the sickness would remain, leading to a finding of association but not causation.

Causal Hypothesis Examples

QuestionCausation HypothesisCorrelation Hypothesis
Does marriage cause baldness among men?Marriage causes stress which leads to hair loss.Marriage occurs at an age when men naturally start balding.
What is the relationship between recreational drugs and psychosis?Recreational drugs cause psychosis.People with psychosis take drugs to self-medicate.
Do ice cream sales lead to increase drownings?Ice cream sales cause increased drownings.Ice cream sales peak during summer, when more people are swimming and therefore more drownings are occurring.

13. Exact vs. Inexact Hypothesis

For brevity’s sake, I have paired these two hypotheses into the one point. The reality is that we’ve already seen both of these types of hypotheses at play already.

An exact hypothesis (also known as a point hypothesis) specifies a specific prediction whereas an inexact hypothesis assumes a range of possible values without giving an exact outcome. As Helwig [2] argues:

“An “exact” hypothesis specifies the exact value(s) of the parameter(s) of interest, whereas an “inexact” hypothesis specifies a range of possible values for the parameter(s) of interest.”

Generally, a null hypothesis is an exact hypothesis whereas alternative, composite, directional, and non-directional hypotheses are all inexact.

See Next: 15 Hypothesis Examples

This is introductory information that is basic and indeed quite simplified for absolute beginners. It’s worth doing further independent research to get deeper knowledge of research methods and how to conduct an effective research study. And if you’re in education studies, don’t miss out on my list of the best education studies dissertation ideas .

[1] https://jnnp.bmj.com/content/91/6/571.abstract

[2] http://users.stat.umn.edu/~helwig/notes/SignificanceTesting.pdf

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples

2 thoughts on “13 Different Types of Hypothesis”

' src=

Wow! This introductionary materials are very helpful. I teach the begginers in research for the first time in my career. The given tips and materials are very helpful. Chris, thank you so much! Excellent materials!

' src=

You’re more than welcome! If you want a pdf version of this article to provide for your students to use as a weekly reading on in-class discussion prompt for seminars, just drop me an email in the Contact form and I’ll get one sent out to you.

When I’ve taught this seminar, I’ve put my students into groups, cut these definitions into strips, and handed them out to the groups. Then I get them to try to come up with hypotheses that fit into each ‘type’. You can either just rotate hypothesis types so they get a chance at creating a hypothesis of each type, or get them to “teach” their hypothesis type and examples to the class at the end of the seminar.

Cheers, Chris

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Stack Exchange Network

Stack Exchange network consists of 183 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

What is a hypothesis class in SVM?

This is a followup to the answers here and here . I have not seen this term in any textbooks I have or many online resources. It is not, for example, present on the SVM wikipedia page .

What is a hypothesis class in the context of SVM? How do the support vectors relate to the hypothesis class(es)?

Community's user avatar

In classification in general, the hypothesis class is the set of possible classification functions you're considering; the learning algorithm picks a function from the hypothesis class.

For a decision tree learner, the hypothesis class would just be the set of all possible decision trees.

For a primal SVM, this is the set of functions $$\mathsf H_d =\left\{ f(x) = \operatorname{sign}\left( w^T x + b \right) \mid w \in \mathbb R^d, b \in \mathbb R \right\}.$$ The SVM learning process involves choosing a $w$ and $b$, i.e. choosing a function from this class.

For a kernelized SVM, we have some feature function $\varphi : \mathcal X \to \mathcal H$ corresponding to the kernel by $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal H}$; here the hypothesis class becomes $$\mathsf H_k = \{ f(x) = \operatorname{sign}\left( \langle w, \varphi(x) \rangle_{\mathcal H} + b \right) \mid w \in \mathcal H, b \in \mathbb R \}.$$

Now, since $\mathcal H$ is often infinite-dimensional, we don't want to explicitly represent a $w \in \mathcal H$. But the representer theorem tells us that the $w$ which optimizes our SVM loss for a given training set $X = \{ x_i \}_{i=1}^n$ will be of the form $w = \sum_{i=1}^n \alpha_i \varphi(x_i)$. Noting that $$ \langle w, \varphi(x) \rangle_{\mathcal H} = \left\langle \sum_{i=1}^n \alpha_i \varphi(x_i), \varphi(x) \right\rangle_{\mathcal H} = \sum_{i=1}^n \alpha_i \left\langle \varphi(x_i), \varphi(x) \right\rangle_{\mathcal H} = \sum_{i=1}^n \alpha_i k(x_i, x),$$ we can thus consider only the restricted set of functions $$\mathsf H_k^X = \left\{ f(x) = \operatorname{sign}\left( \sum_{i=1}^n \alpha_i k(x_i, x) + b \right) \mid \alpha \in \mathbb R^n, b \in \mathbb R \right\}.$$ Note that $\mathsf H_k^X \subset \mathsf H_k$, but we know that the hypothesis the SVM algorithm would pick from $\mathsf H_k$ is in $\mathsf H_k^X$, so that's okay.

The support vectors specifically are the points with $\alpha_i \ne 0$. Which points are support vectors or not depends on the regularization constant and so on, so I wouldn't necessarily say that they're integrally related to the hypothesis class; but the set of possible support vectors, i.e. the training set $X$, of course defines $\mathsf H_k^X$ (along with the kernel $k$).

Danica's user avatar

Your Answer

Sign up or log in, post as a guest.

Required, but never shown

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy .

Not the answer you're looking for? Browse other questions tagged svm or ask your own question .

  • Featured on Meta
  • Preventing unauthorized automated access to the network
  • User activation: Learnings and opportunities
  • Join Stack Overflow’s CEO and me for the first Stack IRL Community Event in...

Hot Network Questions

  • How much total energy is available in/on the Earth?
  • The King takes a stroll
  • Inverse Gaussian with small mean has unreliable sample mean
  • Load center and main breaker sharing same lugs at service entrance
  • Can you algebraically prove that a hexagon with glued opposite edges is a torus?
  • Expecting ad hominem criticism in a thesis defense: How to prepare well for this?
  • Sorting rows in ascending order by multiple fields in QGIS
  • Could a Project like Orion be built today with non nuclear weapons?
  • How can I have my paper reviewed?
  • Replacing Lithium-ion battery with a different part number
  • How to adjust the water amount when soaking rice before cooking?
  • the rank of the zero module over the zero ring is 1 or 0 or undefined?
  • How do I link a heading containing spaces in Markdown?
  • Is it even possible to build a beacon to announce we exist?
  • Why is China's Tiangong space station inaccessible from Russia's launch sites?
  • Why is append returning a string?
  • "Main sequence" period and habitability of brown dwarf systems
  • "immer noch" meaning "still"
  • Why do you even need a heatshield - why not just cool the re-entry surfaces from inside?
  • Is ext4 and xfs only for usage with internal file systems?
  • How to find all local minima in a range for a complicated function quickly?
  • Does Newton's third law violate the law of energy conservation?
  • Threshold percentage for power ratings of resistors?
  • Which tool has been used to make this puzzle?

hypothesis and class

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

hypothesis and class

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved September 22, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Hypothesis Examples

Hypothesis Examples

A hypothesis is a prediction of the outcome of a test. It forms the basis for designing an experiment in the scientific method . A good hypothesis is testable, meaning it makes a prediction you can check with observation or experimentation. Here are different hypothesis examples.

Null Hypothesis Examples

The null hypothesis (H 0 ) is also known as the zero-difference or no-difference hypothesis. It predicts that changing one variable ( independent variable ) will have no effect on the variable being measured ( dependent variable ). Here are null hypothesis examples:

  • Plant growth is unaffected by temperature.
  • If you increase temperature, then solubility of salt will increase.
  • Incidence of skin cancer is unrelated to ultraviolet light exposure.
  • All brands of light bulb last equally long.
  • Cats have no preference for the color of cat food.
  • All daisies have the same number of petals.

Sometimes the null hypothesis shows there is a suspected correlation between two variables. For example, if you think plant growth is affected by temperature, you state the null hypothesis: “Plant growth is not affected by temperature.” Why do you do this, rather than say “If you change temperature, plant growth will be affected”? The answer is because it’s easier applying a statistical test that shows, with a high level of confidence, a null hypothesis is correct or incorrect.

Research Hypothesis Examples

A research hypothesis (H 1 ) is a type of hypothesis used to design an experiment. This type of hypothesis is often written as an if-then statement because it’s easy identifying the independent and dependent variables and seeing how one affects the other. If-then statements explore cause and effect. In other cases, the hypothesis shows a correlation between two variables. Here are some research hypothesis examples:

  • If you leave the lights on, then it takes longer for people to fall asleep.
  • If you refrigerate apples, they last longer before going bad.
  • If you keep the curtains closed, then you need less electricity to heat or cool the house (the electric bill is lower).
  • If you leave a bucket of water uncovered, then it evaporates more quickly.
  • Goldfish lose their color if they are not exposed to light.
  • Workers who take vacations are more productive than those who never take time off.

Is It Okay to Disprove a Hypothesis?

Yes! You may even choose to write your hypothesis in such a way that it can be disproved because it’s easier to prove a statement is wrong than to prove it is right. In other cases, if your prediction is incorrect, that doesn’t mean the science is bad. Revising a hypothesis is common. It demonstrates you learned something you did not know before you conducted the experiment.

Test yourself with a Scientific Method Quiz .

  • Mellenbergh, G.J. (2008). Chapter 8: Research designs: Testing of research hypotheses. In H.J. Adèr & G.J. Mellenbergh (eds.), Advising on Research Methods: A Consultant’s Companion . Huizen, The Netherlands: Johannes van Kessel Publishing.
  • Popper, Karl R. (1959). The Logic of Scientific Discovery . Hutchinson & Co. ISBN 3-1614-8410-X.
  • Schick, Theodore; Vaughn, Lewis (2002). How to think about weird things: critical thinking for a New Age . Boston: McGraw-Hill Higher Education. ISBN 0-7674-2048-9.
  • Tobi, Hilde; Kampen, Jarl K. (2018). “Research design: the methodology for interdisciplinary research framework”. Quality & Quantity . 52 (3): 1209–1225. doi: 10.1007/s11135-017-0513-8

Related Posts

What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What's her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Humans have long been a 'geophysical force on a planetary scale,' says philosopher Timothy Morton. That's neither good nor bad.

Drinking wastewater, building an island from scratch and creating an urban forest: 3 bold ways cities are already adapting to climate change

2,700-year-old shields and helmet from ancient kingdom unearthed at castle in Turkey

Most Popular

  • 2 James Webb Telescope goes 'extreme' and spots baby stars at the edge of the Milky Way (image)
  • 3 Why can't you suffocate by holding your breath?
  • 4 Space photo of the week: Entangled galaxies form cosmic smiley face in new James Webb telescope image
  • 5 Did Roman gladiators really fight to the death?

hypothesis and class

What Is a Hypothesis? (Science)

If...,Then...

Angela Lumsden/Getty Images

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject.

In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

In the study of logic, a hypothesis is an if-then proposition, typically written in the form, "If X , then Y ."

In common usage, a hypothesis is simply a proposed explanation or prediction, which may or may not be tested.

Writing a Hypothesis

Most scientific hypotheses are proposed in the if-then format because it's easy to design an experiment to see whether or not a cause and effect relationship exists between the independent variable and the dependent variable . The hypothesis is written as a prediction of the outcome of the experiment.

Null Hypothesis and Alternative Hypothesis

Statistically, it's easier to show there is no relationship between two variables than to support their connection. So, scientists often propose the null hypothesis . The null hypothesis assumes changing the independent variable will have no effect on the dependent variable.

In contrast, the alternative hypothesis suggests changing the independent variable will have an effect on the dependent variable. Designing an experiment to test this hypothesis can be trickier because there are many ways to state an alternative hypothesis.

For example, consider a possible relationship between getting a good night's sleep and getting good grades. The null hypothesis might be stated: "The number of hours of sleep students get is unrelated to their grades" or "There is no correlation between hours of sleep and grades."

An experiment to test this hypothesis might involve collecting data, recording average hours of sleep for each student and grades. If a student who gets eight hours of sleep generally does better than students who get four hours of sleep or 10 hours of sleep, the hypothesis might be rejected.

But the alternative hypothesis is harder to propose and test. The most general statement would be: "The amount of sleep students get affects their grades." The hypothesis might also be stated as "If you get more sleep, your grades will improve" or "Students who get nine hours of sleep have better grades than those who get more or less sleep."

In an experiment, you can collect the same data, but the statistical analysis is less likely to give you a high confidence limit.

Usually, a scientist starts out with the null hypothesis. From there, it may be possible to propose and test an alternative hypothesis, to narrow down the relationship between the variables.

Example of a Hypothesis

Examples of a hypothesis include:

  • If you drop a rock and a feather, (then) they will fall at the same rate.
  • Plants need sunlight in order to live. (if sunlight, then life)
  • Eating sugar gives you energy. (if sugar, then energy)
  • White, Jay D.  Research in Public Administration . Conn., 1998.
  • Schick, Theodore, and Lewis Vaughn.  How to Think about Weird Things: Critical Thinking for a New Age . McGraw-Hill Higher Education, 2002.
  • Scientific Method Flow Chart
  • Six Steps of the Scientific Method
  • What Are the Elements of a Good Hypothesis?
  • What Are Examples of a Hypothesis?
  • What Is a Testable Hypothesis?
  • Null Hypothesis Examples
  • Scientific Hypothesis Examples
  • Scientific Variable
  • Scientific Method Vocabulary Terms
  • Understanding Simple vs Controlled Experiments
  • What Is an Experimental Constant?
  • What Is a Controlled Experiment?
  • What Is the Difference Between a Control Variable and Control Group?
  • DRY MIX Experiment Variables Acronym
  • Random Error vs. Systematic Error
  • The Role of a Controlled Variable in an Experiment

Hypothesis vs. Theory

A hypothesis is either a suggested explanation for an observable phenomenon, or a reasoned prediction of a possible causal correlation among multiple phenomena. In science , a theory is a tested, well-substantiated, unifying explanation for a set of verified, proven factors. A theory is always backed by evidence; a hypothesis is only a suggested possible outcome, and is testable and falsifiable.

Comparison chart

Hypothesis versus Theory comparison chart
HypothesisTheory
Definition A suggested explanation for an observable phenomenon or prediction of a possible causal correlation among multiple phenomena. In , a theory is a well-substantiated, unifying explanation for a set of verified, proven hypotheses.
Based on Suggestion, possibility, projection or prediction, but the result is uncertain. Evidence, verification, repeated testing, wide scientific consensus
Testable Yes Yes
Falsifiable Yes Yes
Is well-substantiated? No Yes
Is well-tested? No Yes
Data Usually based on very limited data Based on a very wide set of data tested under various circumstances.
Instance Specific: Hypothesis is usually based on a very specific observation and is limited to that instance. General: A theory is the establishment of a general principle through multiple tests and experiments, and this principle may apply to various specific instances.
Purpose To present an uncertain possibility that can be explored further through experiments and observations. To explain why a large set of observations are consistently made.

Examples of Theory and Hypothesis

Theory: Einstein's theory of relativity is a theory because it has been tested and verified innumerable times, with results consistently verifying Einstein's conclusion. However, simply because Einstein's conclusion has become a theory does not mean testing of this theory has stopped; all science is ongoing. See also the Big Bang theory , germ theory , and climate change .

Hypothesis: One might think that a prisoner who learns a work skill while in prison will be less likely to commit a crime when released. This is a hypothesis, an "educated guess." The scientific method can be used to test this hypothesis, to either prove it is false or prove that it warrants further study. (Note: Simply because a hypothesis is not found to be false does not mean it is true all or even most of the time. If it is consistently true after considerable time and research, it may be on its way to becoming a theory.)

This video further explains the difference between a theory and a hypothesis:

Common Misconception

People often tend to say "theory" when what they're actually talking about is a hypothesis. For instance, "Migraines are caused by drinking coffee after 2 p.m. — well, it's just a theory, not a rule."

This is actually a logically reasoned proposal based on an observation — say 2 instances of drinking coffee after 2 p.m. caused a migraine — but even if this were true, the migraine could have actually been caused by some other factors.

Because this observation is merely a reasoned possibility, it is testable and can be falsified — which makes it a hypothesis, not a theory.

  • What is a Scientific Hypothesis? - LiveScience
  • Wikipedia:Scientific theory

Related Comparisons

Accuracy vs Precision

Share this comparison via:

If you read this far, you should follow us:

"Hypothesis vs Theory." Diffen.com. Diffen LLC, n.d. Web. 3 Jul 2024. < >

Comments: Hypothesis vs Theory

Anonymous comments (2).

October 11, 2013, 1:11pm "In science, a theory is a well-substantiated, unifying explanation for a set of verified, proven hypotheses." But there's no such thing as "proven hypotheses". Hypotheses can be tested/falsified, they can't be "proven". That's just not how science works. Logical deductions based on axioms can be proven, but not scientific hypotheses. On top of that I find it somewhat strange to claim that a theory doesn't have to be testable, if it's built up from hypotheses, which DO have to be testable... — 80.✗.✗.139
May 6, 2014, 11:45pm "Evolution is a theory, not a fact, regarding the origin of living things." this statement is poorly formed because it implies that a thing is a theory until it gets proven and then it is somehow promoted to fact. this is just a misunderstanding of what the words mean, and of how science progresses generally. to say that a theory is inherently dubious because "it isn't a fact" is pretty much a meaningless statement. no expression which qualified as a mere fact could do a very good job of explaining the complicated process by which species have arisen on Earth over the last billion years. in fact, if you claimed that you could come up with such a single fact, now THAT would be dubious! everything we observe in nature supports the theory of evolution, and nothing we observe contradicts it. when you can say this about a theory, it's a pretty fair bet that the theory is correct. — 71.✗.✗.151
  • Accuracy vs Precision
  • Deductive vs Inductive
  • Subjective vs Objective
  • Subconscious vs Unconscious mind
  • Qualitative vs Quantitative
  • Creationism vs Evolution

Edit or create new comparisons in your area of expertise.

Stay connected

© All rights reserved.

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

What Is a Hypothesis and How Do I Write One?

author image

General Education

body-glowing-question-mark

Think about something strange and unexplainable in your life. Maybe you get a headache right before it rains, or maybe you think your favorite sports team wins when you wear a certain color. If you wanted to see whether these are just coincidences or scientific fact, you would form a hypothesis, then create an experiment to see whether that hypothesis is true or not.

But what is a hypothesis, anyway? If you’re not sure about what a hypothesis is--or how to test for one!--you’re in the right place. This article will teach you everything you need to know about hypotheses, including: 

  • Defining the term “hypothesis” 
  • Providing hypothesis examples 
  • Giving you tips for how to write your own hypothesis

So let’s get started!

body-picture-ask-sign

What Is a Hypothesis?

Merriam Webster defines a hypothesis as “an assumption or concession made for the sake of argument.” In other words, a hypothesis is an educated guess . Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it’s true or not. Keep in mind that in science, a hypothesis should be testable. You have to be able to design an experiment that tests your hypothesis in order for it to be valid. 

As you could assume from that statement, it’s easy to make a bad hypothesis. But when you’re holding an experiment, it’s even more important that your guesses be good...after all, you’re spending time (and maybe money!) to figure out more about your observation. That’s why we refer to a hypothesis as an educated guess--good hypotheses are based on existing data and research to make them as sound as possible.

Hypotheses are one part of what’s called the scientific method .  Every (good) experiment or study is based in the scientific method. The scientific method gives order and structure to experiments and ensures that interference from scientists or outside influences does not skew the results. It’s important that you understand the concepts of the scientific method before holding your own experiment. Though it may vary among scientists, the scientific method is generally made up of six steps (in order):

  • Observation
  • Asking questions
  • Forming a hypothesis
  • Analyze the data
  • Communicate your results

You’ll notice that the hypothesis comes pretty early on when conducting an experiment. That’s because experiments work best when they’re trying to answer one specific question. And you can’t conduct an experiment until you know what you’re trying to prove!

Independent and Dependent Variables 

After doing your research, you’re ready for another important step in forming your hypothesis: identifying variables. Variables are basically any factor that could influence the outcome of your experiment . Variables have to be measurable and related to the topic being studied.

There are two types of variables:  independent variables and dependent variables. I ndependent variables remain constant . For example, age is an independent variable; it will stay the same, and researchers can look at different ages to see if it has an effect on the dependent variable. 

Speaking of dependent variables... dependent variables are subject to the influence of the independent variable , meaning that they are not constant. Let’s say you want to test whether a person’s age affects how much sleep they need. In that case, the independent variable is age (like we mentioned above), and the dependent variable is how much sleep a person gets. 

Variables will be crucial in writing your hypothesis. You need to be able to identify which variable is which, as both the independent and dependent variables will be written into your hypothesis. For instance, in a study about exercise, the independent variable might be the speed at which the respondents walk for thirty minutes, and the dependent variable would be their heart rate. In your study and in your hypothesis, you’re trying to understand the relationship between the two variables.

Elements of a Good Hypothesis

The best hypotheses start by asking the right questions . For instance, if you’ve observed that the grass is greener when it rains twice a week, you could ask what kind of grass it is, what elevation it’s at, and if the grass across the street responds to rain in the same way. Any of these questions could become the backbone of experiments to test why the grass gets greener when it rains fairly frequently.

As you’re asking more questions about your first observation, make sure you’re also making more observations . If it doesn’t rain for two weeks and the grass still looks green, that’s an important observation that could influence your hypothesis. You'll continue observing all throughout your experiment, but until the hypothesis is finalized, every observation should be noted.

Finally, you should consult secondary research before writing your hypothesis . Secondary research is comprised of results found and published by other people. You can usually find this information online or at your library. Additionally, m ake sure the research you find is credible and related to your topic. If you’re studying the correlation between rain and grass growth, it would help you to research rain patterns over the past twenty years for your county, published by a local agricultural association. You should also research the types of grass common in your area, the type of grass in your lawn, and whether anyone else has conducted experiments about your hypothesis. Also be sure you’re checking the quality of your research . Research done by a middle school student about what minerals can be found in rainwater would be less useful than an article published by a local university.

body-pencil-notebook-writing

Writing Your Hypothesis

Once you’ve considered all of the factors above, you’re ready to start writing your hypothesis. Hypotheses usually take a certain form when they’re written out in a research report.

When you boil down your hypothesis statement, you are writing down your best guess and not the question at hand . This means that your statement should be written as if it is fact already, even though you are simply testing it.

The reason for this is that, after you have completed your study, you'll either accept or reject your if-then or your null hypothesis. All hypothesis testing examples should be measurable and able to be confirmed or denied. You cannot confirm a question, only a statement! 

In fact, you come up with hypothesis examples all the time! For instance, when you guess on the outcome of a basketball game, you don’t say, “Will the Miami Heat beat the Boston Celtics?” but instead, “I think the Miami Heat will beat the Boston Celtics.” You state it as if it is already true, even if it turns out you’re wrong. You do the same thing when writing your hypothesis.

Additionally, keep in mind that hypotheses can range from very specific to very broad.  These hypotheses can be specific, but if your hypothesis testing examples involve a broad range of causes and effects, your hypothesis can also be broad.  

body-hand-number-two

The Two Types of Hypotheses

Now that you understand what goes into a hypothesis, it’s time to look more closely at the two most common types of hypothesis: the if-then hypothesis and the null hypothesis.

#1: If-Then Hypotheses

First of all, if-then hypotheses typically follow this formula:

If ____ happens, then ____ will happen.

The goal of this type of hypothesis is to test the causal relationship between the independent and dependent variable. It’s fairly simple, and each hypothesis can vary in how detailed it can be. We create if-then hypotheses all the time with our daily predictions. Here are some examples of hypotheses that use an if-then structure from daily life: 

  • If I get enough sleep, I’ll be able to get more work done tomorrow.
  • If the bus is on time, I can make it to my friend’s birthday party. 
  • If I study every night this week, I’ll get a better grade on my exam. 

In each of these situations, you’re making a guess on how an independent variable (sleep, time, or studying) will affect a dependent variable (the amount of work you can do, making it to a party on time, or getting better grades). 

You may still be asking, “What is an example of a hypothesis used in scientific research?” Take one of the hypothesis examples from a real-world study on whether using technology before bed affects children’s sleep patterns. The hypothesis read s:

“We hypothesized that increased hours of tablet- and phone-based screen time at bedtime would be inversely correlated with sleep quality and child attention.”

It might not look like it, but this is an if-then statement. The researchers basically said, “If children have more screen usage at bedtime, then their quality of sleep and attention will be worse.” The sleep quality and attention are the dependent variables and the screen usage is the independent variable. (Usually, the independent variable comes after the “if” and the dependent variable comes after the “then,” as it is the independent variable that affects the dependent variable.) This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of “if-then” and the independent and dependent variables are present.

#2: Null Hypotheses

Your if-then hypothesis is not the only one needed to complete a successful experiment, however. You also need a null hypothesis to test it against. In its most basic form, the null hypothesis is the opposite of your if-then hypothesis . When you write your null hypothesis, you are writing a hypothesis that suggests that your guess is not true, and that the independent and dependent variables have no relationship .

One null hypothesis for the cell phone and sleep study from the last section might say: 

“If children have more screen usage at bedtime, their quality of sleep and attention will not be worse.” 

In this case, this is a null hypothesis because it’s asking the opposite of the original thesis! 

Conversely, if your if-then hypothesis suggests that your two variables have no relationship, then your null hypothesis would suggest that there is one. So, pretend that there is a study that is asking the question, “Does the amount of followers on Instagram influence how long people spend on the app?” The independent variable is the amount of followers, and the dependent variable is the time spent. But if you, as the researcher, don’t think there is a relationship between the number of followers and time spent, you might write an if-then hypothesis that reads:

“If people have many followers on Instagram, they will not spend more time on the app than people who have less.”

In this case, the if-then suggests there isn’t a relationship between the variables. In that case, one of the null hypothesis examples might say:

“If people have many followers on Instagram, they will spend more time on the app than people who have less.”

You then test both the if-then and the null hypothesis to gauge if there is a relationship between the variables, and if so, how much of a relationship. 

feature_tips

4 Tips to Write the Best Hypothesis

If you’re going to take the time to hold an experiment, whether in school or by yourself, you’re also going to want to take the time to make sure your hypothesis is a good one. The best hypotheses have four major elements in common: plausibility, defined concepts, observability, and general explanation.

#1: Plausibility

At first glance, this quality of a hypothesis might seem obvious. When your hypothesis is plausible, that means it’s possible given what we know about science and general common sense. However, improbable hypotheses are more common than you might think. 

Imagine you’re studying weight gain and television watching habits. If you hypothesize that people who watch more than  twenty hours of television a week will gain two hundred pounds or more over the course of a year, this might be improbable (though it’s potentially possible). Consequently, c ommon sense can tell us the results of the study before the study even begins.

Improbable hypotheses generally go against  science, as well. Take this hypothesis example: 

“If a person smokes one cigarette a day, then they will have lungs just as healthy as the average person’s.” 

This hypothesis is obviously untrue, as studies have shown again and again that cigarettes negatively affect lung health. You must be careful that your hypotheses do not reflect your own personal opinion more than they do scientifically-supported findings. This plausibility points to the necessity of research before the hypothesis is written to make sure that your hypothesis has not already been disproven.

#2: Defined Concepts

The more advanced you are in your studies, the more likely that the terms you’re using in your hypothesis are specific to a limited set of knowledge. One of the hypothesis testing examples might include the readability of printed text in newspapers, where you might use words like “kerning” and “x-height.” Unless your readers have a background in graphic design, it’s likely that they won’t know what you mean by these terms. Thus, it’s important to either write what they mean in the hypothesis itself or in the report before the hypothesis.

Here’s what we mean. Which of the following sentences makes more sense to the common person?

If the kerning is greater than average, more words will be read per minute.

If the space between letters is greater than average, more words will be read per minute.

For people reading your report that are not experts in typography, simply adding a few more words will be helpful in clarifying exactly what the experiment is all about. It’s always a good idea to make your research and findings as accessible as possible. 

body-blue-eye

Good hypotheses ensure that you can observe the results. 

#3: Observability

In order to measure the truth or falsity of your hypothesis, you must be able to see your variables and the way they interact. For instance, if your hypothesis is that the flight patterns of satellites affect the strength of certain television signals, yet you don’t have a telescope to view the satellites or a television to monitor the signal strength, you cannot properly observe your hypothesis and thus cannot continue your study.

Some variables may seem easy to observe, but if you do not have a system of measurement in place, you cannot observe your hypothesis properly. Here’s an example: if you’re experimenting on the effect of healthy food on overall happiness, but you don’t have a way to monitor and measure what “overall happiness” means, your results will not reflect the truth. Monitoring how often someone smiles for a whole day is not reasonably observable, but having the participants state how happy they feel on a scale of one to ten is more observable. 

In writing your hypothesis, always keep in mind how you'll execute the experiment.

#4: Generalizability 

Perhaps you’d like to study what color your best friend wears the most often by observing and documenting the colors she wears each day of the week. This might be fun information for her and you to know, but beyond you two, there aren’t many people who could benefit from this experiment. When you start an experiment, you should note how generalizable your findings may be if they are confirmed. Generalizability is basically how common a particular phenomenon is to other people’s everyday life.

Let’s say you’re asking a question about the health benefits of eating an apple for one day only, you need to realize that the experiment may be too specific to be helpful. It does not help to explain a phenomenon that many people experience. If you find yourself with too specific of a hypothesis, go back to asking the big question: what is it that you want to know, and what do you think will happen between your two variables?

body-experiment-chemistry

Hypothesis Testing Examples

We know it can be hard to write a good hypothesis unless you’ve seen some good hypothesis examples. We’ve included four hypothesis examples based on some made-up experiments. Use these as templates or launch pads for coming up with your own hypotheses.

Experiment #1: Students Studying Outside (Writing a Hypothesis)

You are a student at PrepScholar University. When you walk around campus, you notice that, when the temperature is above 60 degrees, more students study in the quad. You want to know when your fellow students are more likely to study outside. With this information, how do you make the best hypothesis possible?

You must remember to make additional observations and do secondary research before writing your hypothesis. In doing so, you notice that no one studies outside when it’s 75 degrees and raining, so this should be included in your experiment. Also, studies done on the topic beforehand suggested that students are more likely to study in temperatures less than 85 degrees. With this in mind, you feel confident that you can identify your variables and write your hypotheses:

If-then: “If the temperature in Fahrenheit is less than 60 degrees, significantly fewer students will study outside.”

Null: “If the temperature in Fahrenheit is less than 60 degrees, the same number of students will study outside as when it is more than 60 degrees.”

These hypotheses are plausible, as the temperatures are reasonably within the bounds of what is possible. The number of people in the quad is also easily observable. It is also not a phenomenon specific to only one person or at one time, but instead can explain a phenomenon for a broader group of people.

To complete this experiment, you pick the month of October to observe the quad. Every day (except on the days where it’s raining)from 3 to 4 PM, when most classes have released for the day, you observe how many people are on the quad. You measure how many people come  and how many leave. You also write down the temperature on the hour. 

After writing down all of your observations and putting them on a graph, you find that the most students study on the quad when it is 70 degrees outside, and that the number of students drops a lot once the temperature reaches 60 degrees or below. In this case, your research report would state that you accept or “failed to reject” your first hypothesis with your findings.

Experiment #2: The Cupcake Store (Forming a Simple Experiment)

Let’s say that you work at a bakery. You specialize in cupcakes, and you make only two colors of frosting: yellow and purple. You want to know what kind of customers are more likely to buy what kind of cupcake, so you set up an experiment. Your independent variable is the customer’s gender, and the dependent variable is the color of the frosting. What is an example of a hypothesis that might answer the question of this study?

Here’s what your hypotheses might look like: 

If-then: “If customers’ gender is female, then they will buy more yellow cupcakes than purple cupcakes.”

Null: “If customers’ gender is female, then they will be just as likely to buy purple cupcakes as yellow cupcakes.”

This is a pretty simple experiment! It passes the test of plausibility (there could easily be a difference), defined concepts (there’s nothing complicated about cupcakes!), observability (both color and gender can be easily observed), and general explanation ( this would potentially help you make better business decisions ).

body-bird-feeder

Experiment #3: Backyard Bird Feeders (Integrating Multiple Variables and Rejecting the If-Then Hypothesis)

While watching your backyard bird feeder, you realized that different birds come on the days when you change the types of seeds. You decide that you want to see more cardinals in your backyard, so you decide to see what type of food they like the best and set up an experiment. 

However, one morning, you notice that, while some cardinals are present, blue jays are eating out of your backyard feeder filled with millet. You decide that, of all of the other birds, you would like to see the blue jays the least. This means you'll have more than one variable in your hypothesis. Your new hypotheses might look like this: 

If-then: “If sunflower seeds are placed in the bird feeders, then more cardinals will come than blue jays. If millet is placed in the bird feeders, then more blue jays will come than cardinals.”

Null: “If either sunflower seeds or millet are placed in the bird, equal numbers of cardinals and blue jays will come.”

Through simple observation, you actually find that cardinals come as often as blue jays when sunflower seeds or millet is in the bird feeder. In this case, you would reject your “if-then” hypothesis and “fail to reject” your null hypothesis . You cannot accept your first hypothesis, because it’s clearly not true. Instead you found that there was actually no relation between your different variables. Consequently, you would need to run more experiments with different variables to see if the new variables impact the results.

Experiment #4: In-Class Survey (Including an Alternative Hypothesis)

You’re about to give a speech in one of your classes about the importance of paying attention. You want to take this opportunity to test a hypothesis you’ve had for a while: 

If-then: If students sit in the first two rows of the classroom, then they will listen better than students who do not.

Null: If students sit in the first two rows of the classroom, then they will not listen better or worse than students who do not.

You give your speech and then ask your teacher if you can hand out a short survey to the class. On the survey, you’ve included questions about some of the topics you talked about. When you get back the results, you’re surprised to see that not only do the students in the first two rows not pay better attention, but they also scored worse than students in other parts of the classroom! Here, both your if-then and your null hypotheses are not representative of your findings. What do you do?

This is when you reject both your if-then and null hypotheses and instead create an alternative hypothesis . This type of hypothesis is used in the rare circumstance that neither of your hypotheses is able to capture your findings . Now you can use what you’ve learned to draft new hypotheses and test again! 

Key Takeaways: Hypothesis Writing

The more comfortable you become with writing hypotheses, the better they will become. The structure of hypotheses is flexible and may need to be changed depending on what topic you are studying. The most important thing to remember is the purpose of your hypothesis and the difference between the if-then and the null . From there, in forming your hypothesis, you should constantly be asking questions, making observations, doing secondary research, and considering your variables. After you have written your hypothesis, be sure to edit it so that it is plausible, clearly defined, observable, and helpful in explaining a general phenomenon.

Writing a hypothesis is something that everyone, from elementary school children competing in a science fair to professional scientists in a lab, needs to know how to do. Hypotheses are vital in experiments and in properly executing the scientific method . When done correctly, hypotheses will set up your studies for success and help you to understand the world a little better, one experiment at a time.

body-whats-next-post-it-note

What’s Next?

If you’re studying for the science portion of the ACT, there’s definitely a lot you need to know. We’ve got the tools to help, though! Start by checking out our ultimate study guide for the ACT Science subject test. Once you read through that, be sure to download our recommended ACT Science practice tests , since they’re one of the most foolproof ways to improve your score. (And don’t forget to check out our expert guide book , too.)

If you love science and want to major in a scientific field, you should start preparing in high school . Here are the science classes you should take to set yourself up for success.

If you’re trying to think of science experiments you can do for class (or for a science fair!), here’s a list of 37 awesome science experiments you can do at home

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Ashley Sufflé Robinson has a Ph.D. in 19th Century English Literature. As a content writer for PrepScholar, Ashley is passionate about giving college-bound students the in-depth information they need to get into the school of their dreams.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

IMAGES

  1. 13 Different Types of Hypothesis (2024)

    hypothesis and class

  2. How to Write a Strong Hypothesis in 6 Simple Steps

    hypothesis and class

  3. How to Write a Research Hypothesis: A Comprehensive Step-by-Step Guide

    hypothesis and class

  4. What is an Hypothesis

    hypothesis and class

  5. Research Hypothesis: Definition, Types, Examples and Quick Tips (2022)

    hypothesis and class

  6. How to Write a Hypothesis

    hypothesis and class

VIDEO

  1. T test Test of hypothesis class 1

  2. test of hypothesis class 4

  3. Concept of Hypothesis

  4. Strategies for Using Hypothesis to Make Your In-class Discussions More Engaging

  5. Test of hypothesis class 5

  6. test of hypothesis class lecture 1 || 2- 8- 2024 || 1:11: 41 PM

COMMENTS

  1. Hypothesis in Machine Learning

    A hypothesis is a function that best describes the target in supervised machine learning. The hypothesis that an algorithm would come up depends upon the data and also depends upon the restrictions and bias that we have imposed on the data. The Hypothesis can be calculated as: y = mx + b y =mx+b. Where, y = range. m = slope of the lines.

  2. Newbie: What is the difference between hypothesis class and models?

    Hypothesis classes also don't have to consist of only simple functions. If you manage to search over all piecewise-$\tanh^2$ functions, then those functions are what your hypothesis class includes. The big tradeoff is that the larger your hypothesis class, the better the best hypothesis models the underlying true function, but the harder it is ...

  3. What is the difference between concept class and hypothesis

    A concept class C is a set of true functions f.Hypothesis class H is the set of candidates to formulate as the final output of a learning algorithm to well approximate the true function f.Hypothesis class H is chosen before seeing the data (training process).C and H can be either same or not and we can treat them independently.

  4. What is a Hypothesis in Machine Learning?

    A hypothesis is an explanation for something. It is a provisional idea, an educated guess that requires some evaluation. A good hypothesis is testable; it can be either true or false. In science, a hypothesis must be falsifiable, meaning that there exists a test whose outcome could mean that the hypothesis is not true.

  5. What is Hypothesis

    Hypothesis is a hypothesis is fundamental concept in the world of research and statistics. It is a testable statement that explains what is happening or observed. It proposes the relation between the various participating variables. Hypothesis is also called Theory, Thesis, Guess, Assumption, or Suggestion. Hypothesis creates a structure that ...

  6. machine learning

    A hypothesis space/class is the set of functions that the learning algorithm considers when picking one function to minimize some risk/loss functional.. The capacity of a hypothesis space is a number or bound that quantifies the size (or richness) of the hypothesis space, i.e. the number (and type) of functions that can be represented by the hypothesis space.

  7. Hypothesis in Machine Learning

    The hypothesis is one of the commonly used concepts of statistics in Machine Learning. It is specifically used in Supervised Machine learning, where an ML model learns a function that best maps the input to corresponding outputs with the help of an available dataset. In supervised learning techniques, the main aim is to determine the possible ...

  8. T-test and Hypothesis Testing (Explained Simply)

    Perform the test, comparing class A to class B, and record whether the null hypothesis was rejected; Repeat steps 1-2 many times and find the rejection rate — this is the estimated power. Calculating the power is only one step in the calculation of expected losses.

  9. Theory vs. Hypothesis: Basics of the Scientific Method

    Theory vs. Hypothesis: Basics of the Scientific Method. Written by MasterClass. Last updated: Jun 7, 2021 • 2 min read. Though you may hear the terms "theory" and "hypothesis" used interchangeably, these two scientific terms have drastically different meanings in the world of science.

  10. What's a Hypothesis Space?

    Our goal is to find a model that classifies objects as positive or negative. Applying Logistic Regression, we can get the models of the form: (1) which estimate the probability that the object at hand is positive. Each such model is called a hypothesis, while the set of all the hypotheses an algorithm can learn is known as its hypothesis space ...

  11. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  12. PDF Computational Learning Theory

    Using just these two lemmas, we will be able to prove some of the deepest and most important results in learning theory. Finite Hypothesis Space. Infinite Hypothesis Space. Many hypothesis class, including any parameterized by real numbers (like linear classification) actually contain an infinite number of functions.

  13. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  14. 13 Different Types of Hypothesis (2024)

    Written by Chris Drew (PhD) | July 16, 2024. There are 13 different types of hypothesis. These include simple, complex, null, alternative, composite, directional, non-directional, logical, empirical, statistical, associative, exact, and inexact. A hypothesis can be categorized into one or more of these types.

  15. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  16. What is a hypothesis class in SVM?

    7. In classification in general, the hypothesis class is the set of possible classification functions you're considering; the learning algorithm picks a function from the hypothesis class. For a decision tree learner, the hypothesis class would just be the set of all possible decision trees. For a primal SVM, this is the set of functions.

  17. Hypothesis Testing

    There are 5 main steps in hypothesis testing: State your research hypothesis as a null hypothesis and alternate hypothesis (H o) and (H a or H 1). Collect data in a way designed to test the hypothesis. Perform an appropriate statistical test. Decide whether to reject or fail to reject your null hypothesis. Present the findings in your results ...

  18. Hypothesis Examples

    A hypothesis proposes a relationship between the independent and dependent variable. A hypothesis is a prediction of the outcome of a test. It forms the basis for designing an experiment in the scientific method.A good hypothesis is testable, meaning it makes a prediction you can check with observation or experimentation.

  19. What is a scientific hypothesis?

    A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method. Many describe it as an "educated guess ...

  20. What Is a Hypothesis? The Scientific Method

    A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

  21. Hypothesis vs Theory

    A hypothesis is either a suggested explanation for an observable phenomenon, or a reasoned prediction of a possible causal correlation among multiple phenomena. In science, a theory is a tested, well-substantiated, unifying explanation for a set of verified, proven factors. A theory is always backed by evidence; a hypothesis is only a suggested possible outcome, and is testable and falsifiable.

  22. What Is a Hypothesis and How Do I Write One? · PrepScholar

    Merriam Webster defines a hypothesis as "an assumption or concession made for the sake of argument.". In other words, a hypothesis is an educated guess. Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it's true or not.