Your browser is not supported

Sorry but it looks as if your browser is out of date. To get the best experience using our site we recommend that you upgrade or switch browsers.

Find a solution

  • Skip to main content
  • Skip to navigation

blue bottle experiment reaktionsgleichung

  • Back to parent navigation item
  • Primary teacher
  • Secondary/FE teacher
  • Early career or student teacher
  • Higher education
  • Curriculum support
  • Literacy in science teaching
  • Periodic table
  • Interactive periodic table
  • Climate change and sustainability
  • Resources shop
  • Collections
  • Remote teaching support
  • Starters for ten
  • Screen experiments
  • Assessment for learning
  • Microscale chemistry
  • Faces of chemistry
  • Classic chemistry experiments
  • Nuffield practical collection
  • Anecdotes for chemistry teachers
  • On this day in chemistry
  • Global experiments
  • PhET interactive simulations
  • Chemistry vignettes
  • Context and problem based learning
  • Journal of the month
  • Chemistry and art
  • Art analysis
  • Pigments and colours
  • Ancient art: today's technology
  • Psychology and art theory
  • Art and archaeology
  • Artists as chemists
  • The physics of restoration and conservation
  • Ancient Egyptian art
  • Ancient Greek art
  • Ancient Roman art
  • Classic chemistry demonstrations
  • In search of solutions
  • In search of more solutions
  • Creative problem-solving in chemistry
  • Solar spark
  • Chemistry for non-specialists
  • Health and safety in higher education
  • Analytical chemistry introductions
  • Exhibition chemistry
  • Introductory maths for higher education
  • Commercial skills for chemists
  • Kitchen chemistry
  • Journals how to guides
  • Chemistry in health
  • Chemistry in sport
  • Chemistry in your cupboard
  • Chocolate chemistry
  • Adnoddau addysgu cemeg Cymraeg
  • The chemistry of fireworks
  • Festive chemistry
  • Education in Chemistry
  • Teach Chemistry
  • On-demand online
  • Live online
  • Selected PD articles
  • PD for primary teachers
  • PD for secondary teachers
  • What we offer
  • Chartered Science Teacher (CSciTeach)
  • Teacher mentoring
  • UK Chemistry Olympiad
  • Who can enter?
  • How does it work?
  • Resources and past papers
  • Top of the Bench
  • Schools' Analyst
  • Regional support
  • Education coordinators
  • RSC Yusuf Hamied Inspirational Science Programme
  • RSC Education News
  • Supporting teacher training
  • Interest groups

A primary school child raises their hand in a classroom

  • More navigation items

The ‘blue bottle’ experiment

In association with Nuffield Foundation

  • Four out of five

Transform methylthioninium chloride (Methylene blue) from blue to colourless and back again by mixing it with glucose and shaking the solution, then letting it settle

An alkaline solution of glucose acts as a reducing agent and reduces added methylene blue from a blue to a colourless form. Shaking the solution raises the concentration of oxygen in the mixture and this oxidises the methylene blue back to its blue form. When the dissolved oxygen has been consumed, the methylene blue is slowly reduced back to its colourless form by the remaining glucose, and the cycle can be repeated many times by further shaking.

Image - Exhibition chemistry - main

Source: Colin Baker

The reactions involved are not generally part of the curriculum, but this experiment has a number of features that make it ideal for investigating reaction kinetics - it is very quick, the chemicals are relatively cheap and safe, and the measurements are straightforward. It also has great visual impact and so is a good way of stimulating interest in chemistry, perhaps via an open day.

The demonstration lasts 3–5 minutes, but 15–20 minutes is needed for the preparation beforehand.

  • Eye protection: goggles should be worn when preparing the solution
  • Conical flask (1 dm 3 )
  • Stopper or bung, to fit flask
  • Potassium hydroxide (CORROSIVE, IRRITANT), 8 g
  • Glucose (dextrose), 10 g
  • Methylene blue (HARMFUL), 0.05 g
  • Ethanol (IDA – Industrial Denatured Alcohol) (HIGHLY FLAMMABLE, HARMFUL), 50 cm 3
  • Access to a nitrogen cylinder (optional)

Health, safety and technical notes

  • Read our standard health and safety guidance
  • Eye protection. Wear goggles when preparing the solution.
  • Potassium hydroxide, KOH(s), (CORROSIVE, IRRITANT) – see CLEAPSS Hazcard HC091b .
  • Glucose (dextrose), C 6 H 12 O 6 (s) – see CLEAPSS Hazcard HC040c .
  • Methylene blue (HARMFUL) – see CLEAPSS Hazcard HC032 .
  • Ethanol (IDA – Industrial Denatured Alcohol), C 2 H 5 OH(l), (HIGHLY FLAMMABLE, HARMFUL) – see CLEAPSS Hazcard HC040a .

Before the demonstration

Less than 20 minutes beforehand, preferably.

  • Make a solution of 0.05 g of methylene blue in 50 cm 3  of ethanol (0.1%).
  • Weigh 8 g of potassium hydroxide into the 1 dm 3  conical flask.
  • Add 300 cm 3  of water and 10 g of glucose and swirl until the solids are dissolved.
  • Add 5 cm 3  of the methylene blue solution. The exact quantity used is not critical.
  • The resulting blue solution will turn colourless after about one minute. Stopper the flask and label it IRRITANT (due to the potassium hydroxide present).

The demonstration

  • Holding the stopper securely in place, shake the flask vigorously so that air dissolves in the solution.
  • The colour will change to blue and will fade back to colourless over about 30 seconds.
  • The more shaking, the longer the blue colour will take to fade.
  • The process can be repeated for over 20 cycles.
  • After some hours, the solution will turn yellow and the colour changes will fail to occur.

Go beyond …

Beyond the ’blue bottle’ offers another spectacular colour-change-in-a-bottle demonstration, using indigo carmine to produce a range of stunning colours.

To confirm that oxygen is responsible for the colour change, nitrogen can be bubbled through the solution for a couple of minutes to displace air from the solution and the flask. If the stopper is now replaced and the bottle shaken, no colour change will occur. Reintroducing the air by pouring the solution into another flask and shaking will restore the system. Natural gas can be used (in a fume cupboard) if nitrogen is not available.

Some teachers may wish to present this experiment as a magic trick . The colour change can be brought about by simply pouring the solution from a sufficient height into a large beaker.

  • A white background helps to make the colour changes more vivid. A white laboratory coat is ideal.
  • On a cold day it may be necessary to warm the solution to at least 20°C, otherwise the changes are very slow.
  • This experiment can be a popular open day activity. If visitors are to be allowed to shake the bottle themselves it might be wise to use a plastic screw-top pop bottle to eliminate the risk of the stopper coming off or the bottle being dropped and broken. The solution does not appear to interact with the plastic over a period of a day but it would be sensible to try out the bottle you intend to use beforehand.

Teaching notes

Methylene blue is a redox indicator and is colourless under reducing conditions but regains its blue colour when oxidised.

The removal of the blue colour is caused by the glucose which, under alkaline conditions, is reducing the methylene blue to a colourless form. Shaking the solution admits oxygen, which re-oxidises the methylene blue back to the blue form.

This experiment could be used to determine the kinetics of the reaction and thus the mechanism.  

The reaction is first order with respect to the hydroxide ion, methylene blue and glucose but zero-order with respect to oxygen. The rate law can be found by measuring how long it takes for a solution of known concentration to go colourless.  

The activation energy can be calculated using a normal Arrhenius plot - natural logarithm of the decolouration time (ln t ) against the reciprocal of absolute temperature (1/ T ). Campbell 2  explains this can be done because the rate of the slow step is independent of the oxygen concentration, and thus the time,  t , which is required for the total oxygen to disappear, is directly related to the rate constant,  k . A straight line is obtained from the plot of ln t  against 1/ T . The rate law for the reaction is: 3

Rate =  k [Dox][CH][OH-] 

where Dox is the oxidised (blue) form of methylene blue and CH is the carbohydrate, glucose. A simple mechanism for the reaction is: 

CH + OH- ⇌ C- + H2O

O2 + D → Dox (Fast)

Dox + C- → D + X- (Slow) 

where D is the reduced (colourless) form of methylene blue and X- represents the oxidation products from glucose (arabinoic, formic, oxalic and erythronic acids). The enthalpy of the reaction has been reported as 23 kJ mol-1. 

Using other redox indicators

Redox indicators other than methylene blue can be used to present other colours and make the demonstration really striking. In each case add the stated amount of indicator to the basic recipe of 10 g of glucose and 8 g of potassium hydroxide in 300 cm 3  of water. Mixtures of the dyes can also be used.

Phenosafranine  

This is red when oxidised and colourless when reduced. Use about 6 drops of a 0.2% solution in water for a bottle that goes pink on shaking and colourless on standing. The initial pink colour takes some time to turn colourless at first. A mixture of phenosafranine (6 drops) and methylene blue (about 20 drops of the 0.1% solution in ethanol) gives a bottle which will turn pink on gentle shaking through purple with more shaking and eventually blue. It will reverse the sequence on standing.

Indigo carmine  

Use 4 cm 3  of a 1% solution in water. The mixture will turn from yellow to red-brown with gentle shaking and to pale green with more vigorous shaking. The changes reverse on standing. These colours are those of traffic lights. Find the full equipment list and procedure for the Traffic light demonstration in the Colour chemistry activities. 

Resazurin  

IRRITANT – see CLEAPSS Hazcard HC032. Use about 4 drops of a 1% solution in water. This goes from pale blue to a purple-pink colour on shaking and reverses on standing. On first adding the dye, the solution is dark blue. This fades after about one minute.

More resources

Inspire learners and discover more ways chemists are making a difference to our world with our video job profiles .

Additional information

This is a resource from the  Practical Chemistry project , developed by the Nuffield Foundation and the Royal Society of Chemistry.

Practical Chemistry activities accompany  Practical Physics  and  Practical Biology . 

The experiment is also part of the Royal Society of Chemistry’s Continuing Professional Development course: Chemistry for non-specialists .

© Nuffield Foundation and the Royal Society of Chemistry

  • 11-14 years
  • 14-16 years
  • 16-18 years
  • Demonstrations
  • Redox chemistry
  • Biological chemistry

Specification

  • Many chemical reactions are reversible.
  • 1. know that many reactions are readily reversible and that they can reach a state of dynamic equilibrium in which: the rate of the forward reaction is equal to the rate of the backward reaction; the concentrations of reactants and products remain…
  • In some chemical reactions, the products of the reaction can react to produce the original reactants. Such reactions are called reversible reactions and are represented: A + B ⇌ C + D.
  • Recall that some reactions may be reversed by altering the reaction conditions.
  • 4.13 Recall that chemical reactions are reversible, the use of the symbol ⇌ in equations and that the direction of some reversible reactions can be altered by changing the reaction conditions
  • C6.3.1 recall that some reactions may be reversed by altering the reaction conditions including: reversible reactions are shown by the symbol ; reversible reactions (in closed systems) do not reach 100% yield
  • C6.3.1 recall that some reactions may be reversed by altering the reaction conditions including: reversible reactions are shown by the symbol ⇌; reversible reactions (in closed systems) do not reach 100% yield
  • C5.2a recall that some reactions may be reversed by altering the reaction conditions
  • C5.3a recall that some reactions may be reversed by altering the reaction conditions
  • A reaction or process that releases heat energy is described as exothermic.
  • Choice of indicator.
  • Introduction to oxidation and reduction: simple examples only, e.g. Na with Cl₂, Mg with O₂, Zn with Cu²⁺.
  • Oxidising and reducing agents.

Related articles

A shiny new chain and a rusty one

4 ways to teach redox in terms of electrons

2024-07-03T05:06:00Z By Kristy Turner

Use these teacher-tested approaches to help learners gain a deeper understanding of redox reactions

A dog playing in a field of narcissus daffodil flowers

Why are some plants poisonous to you and your pets?

2024-05-22T08:16:00Z By Kit Chapman

Dig up the toxic secrets of nature’s blooms

A drawing the the equipment needed for a titration including a clamp and stand, burette, white tile, volumetric pipette, burette filler, volumetric flask, funnel, dropping bottle and a wash bottle of distilled water.

Mastering titration apparatus

2024-05-07T08:38:00Z By Kristy Turner

Use this poster, fact sheet and classroom activity to show learners the names and uses of equipment they’ll encounter in this practical 

1 Reader's comment

Only registered users can comment on this article., more experiments.

Image showing a one page from the technician notes, teacher notes, student sheet and integrated instructions that make up this resource, plus two bags of chocolate coins

‘Gold’ coins on a microscale | 14–16 years

By Dorothy Warren and Sandrine Bouchelkia

Practical experiment where learners produce ‘gold’ coins by electroplating a copper coin with zinc, includes follow-up worksheet

potion labels

Practical potions microscale | 11–14 years

By Kirsty Patterson

Observe chemical changes in this microscale experiment with a spooky twist.

An image showing the pages available in the downloads with a water bottle in the shape of a 6 in the foreground.

Antibacterial properties of the halogens | 14–18 years

By Kristy Turner

Use this practical to investigate how solutions of the halogens inhibit the growth of bacteria and which is most effective

  • Contributors
  • Email alerts

Site powered by Webvision Cloud

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Blue Bottle Chemistry Demonstration

blue bottle experiment reaktionsgleichung

The blue bottle reaction is a classic color change chemistry demonstration. It interests students in chemistry, introduces the scientific method , and illustrates oxidation and reduction (redox reactions) and chemical kinetics. The reaction starts as a blue liquid which becomes colorless and returns to its blue color.

The usual materials for the Blue Bottle chem demo are:

  • 8 grams potassium hydroxide (KOH)
  • 10 grams dextrose
  • Methylene blue solution (0.25 g methylene blue in 1000 mL water)
  • 500-mL flask with stopper

You can make substitutions for the chemicals. In place of potassium hydroxide, you can use another strong base, such as sodium hydroxide (NaOH). Glucose may be used in place of dextrose. Several redox indicator dyes can be used instead of methylene blue. These include indigo carmine (green-red-green or green-yellow-red ), resazurin ( Vanishing Valentine ), thionine (purple), or FDC Blue #1 ( Gatorade and drain cleaner Blue Bottle demo).

The base solution (NaOH or KOH) can be prepared in advance, but it’s best to add the sugar and methylene blue just prior to the demonstration.

  • In the flask, dissolve 8 grams potassium hydroxide in about 300 mL of water.
  • After the solution has cooled, add 10 grams of dextrose.
  • Add about 1 mL of methylene blue solution to the flask and stopper it. The ideal volume produces a solution that turns colorless upon standing, but becomes blue when the flask is shaken. If necessary, add more dye dropwise to achieve the desired effect.
  • For the demonstration, shake the flask so that the solution is blue. Allow it to rest to turn colorless.

Exploring Chemical Kinetics

The Blue Bottle demonstration may be used to explore chemical kinetics. One variation on the demo is two use two 500-mL flasks, one with 2.5 g NaOH or KOH, 2.5 g glucose or dextrose, and 1 mL methylene blue and the other with 5.0 g NaOH or KOH, 5.0 g glucose or dextrose, and 1 mL methylene blue. Stopper and shake the flasks to start the reaction and compare the effect of concentration on the rate of the chemical reaction. Temperature also affects rate of reaction. KOH or NaOH solutions may be placed in hot and cold water baths before adding the sugar and methylene blue.

How It Works

Blue Bottle chemical reaction

Students can appreciate the blue bottle reaction and make predictions about its behavior if temperature or reactant concentrations change without understanding the chemistry. However, the reaction is well-studied. Dissolved oxygen oxidizes glucose to form gluconic acid. The sodium hydroxide converts gluconic acid into sodium gluconate. Methylene blue acts as an indicator, but also speeds the reaction by serving as an oxygen transfer agent. As it oxidizes glucose, methylene blue is reduced to form colorless leucomethylene blue. Shaking the stoppered bottle introduces fresh oxygen into the solution and reoxidizes methylene blue, returning it to its blue form. While the color change is reversible and the demonstration may be performed many times, eventually the solution turns yellow or brown.

Safety and Disposal

Avoid contact with the strong base and its solutions. Sodium and potassium hydroxide are caustic chemicals, capable of producing a chemical burn. As always, it’s best to wear safety goggles, gloves, and a lab coat (or similar forms of protective gear). The reaction neutralizes the base, so it’s safe to pour the solution down the drain. If you want, you can neutralize any excess base using a weak acid (e.g., vinegar) before disposal.

  • Dutton, F. B. (1960). “Methylene Blue – Reduction and Oxidation”. Journal of Chemical Education . 37 (12): A799. doi: 10.1021/ed037pA799.1
  • Engerer, Steven C.; Cook, A. Gilbert (1999). “The Blue Bottle Reaction as a General Chemistry Experiment on Reaction Mechanisms”. Journal of Chemical Education . 76 (11): 1519–1520. doi: 10.1021/ed076p1519
  • Limpanuparb, Taweetham; Areekul, Cherprang; Montriwat, Punchalee; Rajchakit, Urawadee (2017). “Blue Bottle Experiment: Learning Chemistry without Knowing the Chemicals”. Journal of Chemical Education . 94 (6): 730. doi: 10.1021/acs.jchemed.6b00844

Related Posts

The Blue Bottle Chemistry Demonstration

When you shake it, the blue liquid turns clear and then back to blue

  • Projects & Experiments
  • Chemical Laws
  • Periodic Table
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

In this chemistry experiment , a blue solution gradually becomes clear. When the flask of liquid is swirled around, the solution reverts to blue. The blue bottle reaction is easy to perform and uses readily available materials. Here are instructions for performing the demonstration, explanations of the chemistry involved, and options for performing the experiment with other colors:

Materials Needed

  • Two 1-liter Erlenmeyer flasks , with stoppers
  • 7.5 g glucose (2.5 g for one flask; 5 g for the other)
  • 7.5 g sodium hydroxide NaOH (2.5 g for one flask; 5 g for the other)
  • 0.1% solution of methylene blue (1 ml for each flask)

Performing the Blue Bottle Demonstration

  • Half-fill two one-liter Erlenmeyer flasks with tap water.
  • Dissolve 2.5 g of glucose in one of the flasks (flask A) and 5 g of glucose in the other flask (flask B).
  • Dissolve 2.5 g of sodium hydroxide (NaOH) in flask A and 5 g of NaOH in flask B.
  • Add ~1 ml of 0.1% methylene blue to each flask.
  • Stopper the flasks and shake them to dissolve the dye. The resulting solution will be blue.
  • Set the flasks aside. (This is a good time to explain the chemistry of the demonstration.) The liquid will gradually become colorless as glucose is oxidized by the dissolved dioxygen . The effect of concentration on reaction rate should be obvious. The flask with twice the concentration uses the dissolved oxygen in about half the time as the other solution. Since oxygen remains available via diffusion, a thin blue boundary can be expected to remain at the solution-air interface.
  • The blue color of the solutions can be restored by swirling or shaking the contents of the flasks.
  • The reaction can be repeated several times.

Safety and Cleanup

Avoid skin contact with the solutions, which contain caustic chemicals. The reaction neutralizes the solution, so it can be disposed of by simply pouring it down the drain.

Chemical Reactions

In this reaction, glucose (an aldehyde) in an alkaline solution is slowly oxidized by dioxygen to form gluconic acid:

CH 2 OH–CHOH–CHOH–CHOH–CHOH–CHO + 1/2 O 2 --> CH 2 OH–CHOH–CHOH–CHOH–CHOH–COOH

Gluconic acid is converted to sodium gluconate in the presence of sodium hydroxide. Methylene blue speeds up this reaction by acting as an oxygen transfer agent. By oxidizing glucose, methylene blue is itself reduced (forming leucomethylene blue) and becomes colorless.

If there is sufficient available oxygen (from the air), leucomethylene blue is re-oxidized and the blue color of the solution can be restored. Upon standing, glucose reduces the methylene blue dye and the color of the solution disappears. In dilute solutions, the reaction takes place at 40 degrees to 60 degrees Celcius, or at room temperature (described here) for more concentrated solutions.

Other Colors

DragonImages / Getty Images

In addition to the blue/clear/blue of the methylene blue reaction, other indicators can be used for different color-change reactions. For example, resazurin (7-hydroxy-3H-phenoxazin-3-one-10-oxide, sodium salt) produces a red/clear/red reaction when substituted for methylene blue in the demonstration. The indigo carmine reaction is even more eye-catching, with its green/red-yellow/green color change.

Performing the Indigo Carmine Color Change Reaction

  • Prepare a 750 ml aqueous solution with 15 g glucose (solution A) and a 250 ml aqueous solution with 7.5 g sodium hydroxide (solution B).
  • Warm solution A to body temperature (98-100 degrees F). Warming the solution is important.
  • Add a pinch of indigo carmine, the disodium salt of indigo-5,5’-disulphonic acid, to solution A. Use a quantity sufficient to make solution A visibly blue.
  • Pour solution B into solution A. This will change the color from blue to green. Over time, this color will change from green to red/golden yellow.
  • Pour this solution into an empty beaker, from a height of ~60 cm. Vigorous pouring from a height is essential to dissolve dioxygen from the air into the solution. This should return the color to green.
  • Once again, the color will return to red/golden yellow. The demonstration may be repeated several times.
  • 10 Cool Chemistry Demonstrations for Educators
  • Color Change Chemistry Experiments
  • 10 Fun Chemistry Demonstrations and Experiments
  • Egg in a Bottle Demonstration
  • Elephant Toothpaste Chemistry Demonstration
  • 10 Cool Chemistry Experiments
  • Take Your Volcano Science Project to the Next Level
  • Create a Magic Genie in a Bottle Effect (Chemistry)
  • How to Do the Color Change Chameleon Chemistry Demonstration
  • Interesting High School Chemistry Demonstrations
  • How to Do the Barking Dog Chemistry Demonstration
  • Halloween Reaction or Old Nassau Reaction
  • Valentine's Day Chemistry
  • Make Potassium Chlorate from Bleach and Salt Substitute
  • Briggs-Rauscher Oscillating Color Change Reaction
  • 18 Fun Christmas Chemistry Projects

Blue bottle experiment

Experimental procedure, a) experiment with glucose, naoh, and methylene blue, b) experiment with glucose, cuso 4 and naoh, copy short link.

Blue-Bottle-Experiment

  • Chemische Reaktion
  • Chemisches Experiment

Unter dem Blue-Bottle-Experiment versteht man ein klassisches Schauexperiment der Chemie . In einem geschlossenen Gefäß befindet sich eine farblose Flüssigkeit und etwas Luft. Schüttelt man das Gefäß, so färbt sich die Flüssigkeit blau. Nach kurzer Zeit verschwindet die Farbe jedoch wieder. Je länger man schüttelt, desto länger bleibt die Färbung erhalten.

Chemisch gesehen ist dieser Versuch auch als Modellversuch für eine Redoxsystem verwandt mit NAD + /NADH 2 möglich. Außerdem ist die Schüttelzeit proportional zur Färbungszeit ( Reaktion 1. Ordnung ).

Die Reaktion zur Entfärbung beruht auf der Reduktion einer Methylenblau -Lösung zur Leuko-Form durch Glucose , die dabei zu Gluconsäure oxidiert wird.

Beim Schütteln wird das Leuko-Methylenblau durch Sauerstoff aus der Luft wieder zu farbigem Methylenblau oxidiert.

  • ausführliche Versuchsanleitung mit verschiedenen Videos

Click to download Document.

  • Mailing List
  • Terms and Conditions
  • © Copyright Notice

Chem-Page.de ... die freundliche Seite der Chemie

  • Home Zurück zur Startseite
  • News Was gibt es für Neuigkeiten?
  • Wir über uns Mehr erfahren über das Projekt-Team
  • Autorenrichtlinie Die Autorenrichtlinie von Chem-Page.de
  • Manfred Seidl Kontaktformular von Projektleiter Manfred Seidl
  • Franziska Jassen Kontaktformular der stellv. Projektleiterin Franziska Jassen
  • Melwin Fiedrich Kontaktformular von Melwin Fiedrich (Autor)
  • Monika Gumpendobler Kontaktformular von Monika Gumpendobler (Autorin)
  • Christopher Lebeau Kontaktformular von Christopher Lebeau (Autor)
  • Sascha Spannich Kontaktformular von Sascha Spannich (Autor)
  • Statistik Statistik von Chem-Page.de
  • Experimente

Blue Bottle

Showexperimente

Methylenblau wird mit einer Glucoselösung reduziert und in die farblose Leukoform überführt. Die Leukomethylenblau-Lösung wird mit Sauerstoff versetzt und geschüttelt, wobei der Farbstoff wieder oxidiert wird.

Verwendete Chemikalien

Chemikalie

5 g NaOH – 40.00 g/mol

Ätznatron

CAS-Nr.: 1310-73-2 – EG-Nr.: 215-185-5

Met. Corr. 1, Skin Corr. 1A, Eye Dam. 1, WGK 1

H290 Kann gegenüber Metallen korrosiv sein. H314 Verursacht schwere Verätzungen der Haut und schwere Augenschäden. P234 Nur in Originalverpackung aufbewahren. P260 Staub/Rauch/Gas/Nebel/Dampf/Aerosol nicht einatmen. P280 Schutzhandschuhe/Schutzkleidung/Augenschutz/Gesichtsschutz/Gehörschutz tragen. P301 + P330 + P331 BEI VERSCHLUCKEN: Mund ausspülen. KEIN Erbrechen herbeiführen. P303 + P361 + P353 BEI BERÜHRUNG MIT DER HAUT (oder dem Haar): Alle kontaminierten Kleidungsstücke sofort ausziehen. Haut mit Wasser abwaschen. P305 + P351 + P338 BEI KONTAKT MIT DEN AUGEN: Einige Minuten lang behutsam mit Wasser ausspülen. Eventuell vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weiter ausspülen.

Sigma-Aldrich, 306576, SDB vom 29.07.2021

 

40 g -(+)-Glucose, H O – 180.16 g/mol

Hexose (IUPAC), Traubenzucker, Dextrose

CAS-Nr.: 50-99-7 – EG-Nr.: 200-075-1

WGK 1

Sigma-Aldrich, G5767, SDB vom 21.01.2021

0.02 g H ClN S · x H O – 319.85 g/mol

3,7-Bis(dimethylamino)phenothiazin-5-iumchlorid (IUPAC), , , ′, ′-Tetramethylthioninchlorid, Methyl(en)thioniniumchlorid, C.I. 52015, C.I. Basic Blue 9

CAS-Nr.: 61-73-4 – EG-Nr.: 200-515-2

Acute Tox. 4 (oral), WGK 3

H302 Gesundheitsschädlich bei Verschlucken. P264 Nach Gebrauch exponierte Haut gründlich waschen. P270 Bei Gebrauch nicht essen, trinken oder rauchen. P301 + P312 BEI VERSCHLUCKEN: Bei Unwohlsein GIFTINFORMATIONSZENTRUM/Arzt anrufen. P501 Inhalt/Behälter einer anerkannten Abfallentsorgungsanlage zuführen.

Sigma-Aldrich, M9140, SDB vom 18.02.2021

Verwendete Geräte, Versuchsaufbau

500-ml-Standzylinder mit Schliff

Versuchsdurchführung

In einem 500-ml-Standzylinder werden in 400 mL Wasser, 5 g Natriumhydroxid und 40 g Glucose gelöst. Nun werden noch 0.02 g Methylenblau zugegeben. Das Methylenblau muss sich entfärben. Der Schliff des Standzylinders wird geöffnet und kurz hineingeblasen. Es wird wieder verschlossen und kräftig geschüttelt.

Reaktionsgleichung

Das Methylenblau (Oxidationsmittel) wird durch die alkalische Glucoselösung zu Leukomethylenblau (Leukoform des Methylenblaus) reduziert. Die Glucose (Reduktionsmittel) wird dabei zu Gluconsäure oxidiert. Wird das Reaktionsgefäß geschüttelt, geht der Luftsauerstoff in Lösung und reoxidiert das Leukomethylenblau zu Methylenblau. Die Lösung färbt sich blau. Lässt man die Lösung stehen, bildet sich wieder die Leukoform des Methylenblaus und die Lösung ist wieder farblos. Dieser Vorgang lässt sich so lange wiederholen, bis alle Glucosemoleküle oxidiert sind oder kein Luftsauerstoff mehr vorhanden ist. Es handelt sich um eine Redoxreaktion, da Oxidation und Reduktion stattfinden.

Abb. 3 – eine Mischung aus Natronlauge, Glucose und Methylenblau.

Quellenangaben

logo

  • Redox-Reaktion
  • Blitze unter Wasser
  • Brennender Schneeball
  • Analytik Experimente aus der Analytik
  • DNA Experimente mit DNA
  • Farbe Experimente die eine Färbung oder einen Farbumschlag zeigen
  • Feuer Experimente die eine Feuererscheinung verursachen
  • Polyaddition Experimente mit einer Polyaddition
  • Polykondensation Experimente mit einer Polykondensation
  • Lösungsmittel Eigenschaften von Lösungsmitteln
  • Chemolumineszenz Experimente die eine Chemolumineszenz erzeugen
  • Fluoreszenz Experimente mit Fluoreszenz
  • Kristallolumineszenz Experimente mit Leuchterscheinung beim Kristallisieren
  • Tribolumineszenz Experimente mit Leuchterscheinung bei mechanischer Beanspruchung
  • Legierung Experimente mit leichtschmelzenden Legierungen
  • Nanopartikel Experimente mit Nanopartikeln
  • Oszillation Experimente, bei denen eine Oszillation auftritt
  • Redox-Reaktion Experimente mit Reduktions- und Oxidationsvorgang
  • Sprengstoff Experimente mit kleinen Sprengstoffmengen
  • Wärme Experimente mit Wärmetönung
  • Zeitreaktion Experimente mit zeitlicher Verzögerung
  • Biologie Experimente für Kinder, aus der Biologie
  • Chemie Experimente für Kinder, aus der Chemie
  • Physik Experimente für Kinder, aus der Physik
  • Anorganische Chemie Synthesen aus der anorganischen Chemie
  • Organische Chemie
  • Farbstoff Synthesen von Farbstoffen
  • Polymerisation Synthesen von Kunststoffen, durch Polymerisation.
  • Chemolumineszenz Synthesen von Stoffen, für Chemolumineszenzexperimente
  • Kristallolumineszenz Synthesen von Stoffen, für Kristallolumineszenzexperimente
  • Tribolumineszenz Synthesen von Stoffen, für Tribolumineszenzexperimente
  • Luminophor Synthesen von Luminophoren
  • Metallkomplex Synthesen von Metallkomplexen
  • Chemolumineszenz der Oxalsäureester Chemolumineszenz der Oxalsäureester unter besonderer Berücksichtigung substituierter kondensierter benzoider Aromaten und ihre Wirkung als Luminophore
  • Gaschromatographie Was ist eigentlich Gaschromatographie (GC)?
  • Geschichte der Sprengstoffe Vom griechischen Feuer zum modernen Sprengstoff
  • HPLC Was ist eigentlich HPLC (High Pressure Liquid Chromatographie)?
  • Luminophore Farbstoffe für die Chemolumineszenz
  • Grundregeln für sicheres Experimentieren Gebote der Sicherheit
  • GHS – Global Harmonisiertes System Das Global Harmonisierte System im Überblick
  • H- / EUH- / P-Sätze H- / EUH- und P-Sätze im Überblick
  • R- & S-Sätze Die veralteten R- & S-Sätze
  • Chemikaliendatenbank Chemikalien mit Kennzeichnung nach GHS
  • Grundlagen Grundlegendes zum Periodensystem
  • Elemente Übersicht der Elemente
  • Showexperimente / Vorträge Wo gibt es Showexperimente und Vorträge zu sehen?
  • Verwandte Seiten Webseiten mit ähnlichem Inhalt.
  • Foren Deutschsprachige Chemie-Foren.
  • Chemie allgemein Links zur Chemie im Allgemeinen.
  • Pyrotechnik Links zum Thema Pyrotechnik.
  • Gefahrstoffdatenbanken / Sicherheitsdatenblätter Links zu Gefahrstoffdatenbanken und Sicherheitsdatenblättern.
  • Software Software zum Zeichnen von Strukturen und deren Nomenklatur.
  • Stoff- und Struktursuche Links zum Thema Stoff- und Struktursuche.
  • Nano- und Biotechnologie Links zum Thema Nano- und Biotechnologie.
  • Chemiker-Rätsel Welcher Chemiker ist gesucht? – Versuchen Sie Ihr Glück!
  • Download Download von Versuchsanleitungen, Etiketten und mehr
  • Literatur Bücher für chemische Experimente & interessante Artikel
  • FAQ FAQ – Häufig gestellte Fragen
  • Tutorials Tutorials zu verschiedenen Themen
  • Zeitschriften Zeitschriften und ihre Abkürzungen
  • Experimente Bildergalerie der Experimente
  • Synthesen Bildergalerie der Synthesen
  • Chemievortrag Chemievortrag von Franziska Jassen & Manfred Seidl
  • Pyrotechnik
  • Anekdoten Anekdoten über Wissenschaftler & Persönlichkeiten
  • Zitate Zitate von/über Wissenschaftler und andere Persönlichkeiten
  • Fehlerhafte Konzentrationsangabe
  • Aktualisierung der Versuchsvorschrift von Acetonperoxid
  • Fehlerhafte Reaktionsgleichungen
  • Überarbeitete Vorschrift »Oszillierende Chemolumineszenz mit Luminol«
  • »Typografie in der Chemie« wurde erweitert
  • Neue Versuchsvorschrift zur Kristallo- und Tribolumineszenz
  • Zitierstil für Chemie in unserer Zeit
  • Autorenrichtline & eigener Zitierstil
  • Naturwissenschaft für Kinder
  • Chem-Page.de & Terra X

Neue Tutorials

  • Typografie in der Chemie – wie man Fehler vermeidet
  • ChemSketch-Dateien in SVG konvertieren
  • Bildergalerie mit fester Bildbreite erstellen (Papyrus Autor)
  • Farbige Textboxen mit Papyrus
  • Molekülanimationen mit POV-Ray

Neue Experimente & Synthesen

  • Eutektische Legierung aus Gallium, Indium und Zinn (Galinstan)
  • Eutektische Legierung aus Gallium und Indium (EGaIn)
  • Elektrochemisches Schreiben mit Fluorescein
  • Chemolumineszenz mit Alginatbällchen (Bubble-Tea)
  • Wunderkerzen (öko- und toxikologisch unbedenklich)
  • Violett Bottle
  • Ampel Bottle
  • Red Bottle 2
  • Brombeerindikator als Ersatz von Phenolphthalein
  • Redoxspringbrunnen mit Lugolscher-Lösung

Neu in der Datenbank

  • Gallium–Indium–Zinn Legierung
  • Gallium–Indium Eutektikum
  • Pentanitroanilin
  • Hydroxytyrosol
  • Nutzungsbedingungen
  • Datenschutzerklärung

chemie.de

my.chemie.de

Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.

  • Meine Merkliste
  • Meine gespeicherte Suche
  • Meine gespeicherten Themen
  • Meine Newsletter

Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.

  • Blue-Bottle-Experiment

blue bottle experiment reaktionsgleichung

Über chemie.de

Lesen Sie alles Wissenswerte über unser Fachportal chemie.de.

mehr erfahren >

Über LUMITOS

Erfahren Sie mehr über das Unternehmen LUMITOS und unser Team.

Werben bei LUMITOS

Erfahren Sie, wie LUMITOS Sie beim Online-Marketing unterstützt.

blue bottle experiment reaktionsgleichung

© 1997-2024 LUMITOS AG, All rights reserved

  • Datenschutz

Folgen Sie uns:

https://www.chemie.de/lexikon/Blue-Bottle-Experiment.html

© 1997-2024 LUMITOS AG

Batterie Zyklisierer für die Zellcharakterisierung

  • Start-up-Newsletter
  • Marktübersicht Massenspektrometer
  • Marktübersicht HPLC-Anlagen
  • Marktübersicht NIR-Spektrometer
  • Marktübersicht Partikelanalysatoren
  • Marktübersicht UV/Vis-Spektrometer
  • Marktübersicht Elementaranalysatoren
  • Marktübersicht FT/IR-Spektrometer
  • Marktübersicht Gaschromatographen
  • WEBINAR-BIBLIOTHEK
  • White Papers
  • q&more Artikel
  • Chemie-Lexikon
  • Infografiken
  • Forschungsinstitute
  • Stellenangebote
  • Stellenanzeige schalten
  • Themenwelt Massenspektrometrie
  • Themenwelt Partikelanalyse
  • Themenwelt Chromatographie
  • Themenwelt Lebensmittelanalytik
  • Themenwelt Spektroskopie
  • Themenwelt Batterietechnik
  • analytica-Vorschau 2024
  • ACHEMA-Vorschau 2024
  • Messewelt POWTECH
  • Messewelt Ilmac
  • Themenwelt UV/Vis-Spektroskopie
  • Themenwelt Rheologie
  • Themenwelt Wägen
  • Themenwelt Titration
  • Themenwelt HPLC
  • Themenwelt Gaschromatographie
  • Themenwelt Pipettieren
  • Themenwelt Synthese
  • Themenwelt Extraktion
  • Themenwelt Sensortechnik
  • Themenwelt Photometrie
  • Themenwelt Elementaranalyse
  • Themenwelt Aufschluss
  • Publications
  • Homepage >
  • Resources >
  • Chemistry Resources >
  • Chemistry Resource List >

Blue Bottle Reaction

(d) the classic redox reaction. solution goes blue when shaken and then goes clear again on standing (cfe level 3, h).

A classic demonstration of a redox reaction.

Methylene blue is blue when oxidised but its reduced form is colourless. Glucose, in alkaline conditions, is a reducing agent. A bottle or flask is filled 2/3 or so full of a methylene blue – glucose – sodium hydroxide solution and the top sealed.

In a few minutes the solution goes clear. If it is shaken, however, oxygen from the airspace in the bottle gets into the solution and re-oxidised the dye to its blue form. on standing, it goes colourless again. And so on.

Blue Bottle

Blue Bottle – Risk Assessment

SSERC is a Company Limited by Guarantee and a registered educational charity.

Headquarters 1-3 Pitreavie Court, South Pitreavie Business Park, Dunfermline, KY11 8UU

Registered Office 5th Floor, Quartermile Two, 2 Lister Square, Edinburgh EH3 9GL.

Material on this website, including text and images, is protected by copyright. It may not be copied, reproduced, republished, downloaded, posted, broadcast or transmitted in any way except for your own personal, non-commercial use, or for educational use. Prior written consent of the copyright holder must be obtained for any other use of material. Copyright in all materials and/or works comprising or contained within this website remains with SSERC and other copyright owner(s) as specified. No part of this site or sub-domains of this site may be distributed or copied for any commercial purpose.

blue bottle experiment reaktionsgleichung

We use cookies and similar methods to recognize visitors and remember their preferences. To learn more about these methods, including how to disable them, view our Privacy Policy .



versteht man eines der klassischen Show-Experimente in der . In einem geschlossenen Gefäß befindet sich eine farblose Flüssigkeit und etwas Luft. Schüttelt man das Gefäß, so färbt sich die Flüssigkeit blau; die Farbe verschwindet aber wieder. Je länger man schüttelt, desto länger bleibt die Färbung erhalten.

Chemisch gesehen ist dieser Versuch auch als Modellversuch für eine verwandt mit /NADH möglich. Außerdem ist die Schüttelzeit proportional zur Färbungszeit ( ).

Man benötigt:

mit Schliff und Stopfen (500 ml) -Plätzchen

Zuerst stellt man sich 50 ml einer durchscheinenden -Lösung her, es werden 0,1 g auf 50 ml dest. Wasser aufgelöst. Dabei ist darauf zu achten, dass die nicht zu hoch ist, da sonst die Reaktion sehr lange zur Regeneration benötigt.

Nun gibt man 400 ml dest. Wasser in einen Rundkolben und löst darin 5 g NaOH-Plätzchen auf. (Vorsicht: Erwärmung!)

Anschließend gibt man 40 g und von der vorhin hergestellten Methylenlösung 5 ml hinzu.

Nach kurzer Zeit verschwindet die Farbe des Methylenblaus, denn dieses ist durch Reduktion in seine Leuko-Form übergegangen. Als fungiert dabei die Glucose, welche zur oxidiert wird.

Wenn man nun den Rundkolben schüttelt, wird das Leuko-Methylenblau durch den Luftsauerstoff wieder zu Methylenblau oxidiert und die Lösung färbt sich wieder blau.

Nach kurzem Stehenlassen tritt wieder Entfärbung ein. Durch erneutes Schütteln kann dieser Vorgang mehrfach wiederholt werden.


:

aus der freien Enzyklopädie und steht unter der . In der Wikipedia ist eine verfügbar.

Blue Bottle

Das von Heinrich Caro im Jahr 1876 erstmals hergestellte Methylenblau (3,7-Bis(dimethylamino)-phenothiaziniumchlorid, N,N,N',N'-Tetramethylthioniumchlorid, Methylthioniumchlorid) ist der wichtigste Vertreter der kationischen Phenothiazin-Farbstoffe (Thiazin-Farbstoffe). Als reiner Farbstoff erscheint Methylenblau als dunkelgr�nes Pulver, bzw. in Form dunkelgr�ner Kristalle. Das meist gehandelte Zinkchlorid-Doppelsalz des Methylenblaus ist ein braunes, metallgl�nzendes, kristallines Pulver. Methylenblau wird als Redoxindikator benutzt. Es ist ein guter Wasserstoff-Akzeptor, der Alkohole in Gegenwart von Platin zu Aldehyden oxidiert und dabei entf�rbt wird. Dieser Versuch l�sst sich auch mit Glucose und Luftsauerstoff als "Blue-Bottle-Experiment" durchf�hren.

Methylenblau f�rbt die mit Tannin gebeizte Baumwolle ziemlich echt blau. �berraschend hohe Lichtechtheit zeigen mit Methylenblau gef�rbte Polyacrylnitril-Fasern, weshalb es bis in neuere Zeit zum F�rben und Drucken, auch von Papieren, kosmetischen Artikel, als Lackfarbstoff sowie in der Medizin und Mikroskopie verwendet wird. In der Histologie wird es zuerst durch Paul Ehrlich zur F�rbung bestimmter Gewebearten (besonders Nerven) verwendet. Weiterhin wurde Methylenblau fr�her als Antiseptikum bei Malaria und Allgemeininfektionen, als Antirheumatikum und zu Diagnosezwecken eingesetzt. Methylenblau diente �brigens lange Zeit in der biochemischen Forschung als Modellsubstanz f�r NAD . Im Gemisch mit Methylrot dient Methylenblau als Mischindikator. [1]

Es handelt sich bei der Blue-Bottle-Reaktion um eine durch Methylenblau katalysierte Oxidation der Glucose. Oxidationsmittel ist der Luftsauerstoff.

Methylenblau bildet dabei in reversibler Reaktion eine farblose Leukoform (Leukomethylenblau), in der das vorher vorhandene chinoide, mesomerie-stabilisierte System des Methylenblaus unterbrochen ist. Die farblose Stufe des Leukomethylenblaus kann als Beispiel f�r eine aktive �bergangsverbindung eines Katalysators angesehen werden.

Bei der Oxidation von Glucose wird der Sauerstoff nicht durch den Luftsauerstoff, sondern durch Reaktion mit Wasser eingef�gt. Dabei entstehen formal Protonen, die eine weitere Reaktion verhindern w�rden. Entsprechend werden die Protonen mit der Lauge abgefangen. D-Glucose geht in der vorliegenden alkalischen Natriumhydroxid-L�sung zu Gluconat �ber.

Beim Sch�tteln der Fl�ssigkeit gelangt Sauerstoff aus der Luft in die L�sung, der das Leukomethylenblau wieder zu Methylenblau oxidiert. Beim Stehen lassen beginnt die Reduktion des Methylenblaus erneut. Der Zeitpunkt, bei dem die durch Sch�tteln hervorgerufene Farbe wieder verschwindet, ist von der NaOH-Konzentration abh�ngig. Bei hoher NaOH-Konzentration erfolgt der Farbumschlag von blau nach farblos schneller, bei niedriger Konzentration langsamer.

Vorg�nge beim Sch�tteln

  • Falbe, J., Regitz, M.: R�mpp Chemie Lexikon, 9. Aufl., Georg Thieme Verlag, Stuttgart, New York, 1991, S. 2749
  • http://dc2.uni-bielefeld.de/dc2/katalyse/bluebott.htm , Stand 27.01.06
  • http://ch10.tiho-hannover.de/chemie/OrgPrak/OrgPrak5Ueb.htm#9.%20Oxidation% 20und%20Reduktion%20von%20Methylenblau , Stand 27.01.06

� Walter.Wagner �t uni-bayreuth.de, Stand: 20.09.10

Blue Bottle (Blaues Wunder)

Experiment: Versuch: Blue Bottle-Versuch (Blaues Wunder)

Es handelt sich bei der Blue Bottle-Reaktion um eine durch Methylenblau (Mb + ) katalysierte Oxidation der Glucose. Oxidationsmittel ist letztlich der Luftsauerstoff.

Die Mitwirkung des Methylenblaus erkennt man an seiner Entf�rbung. Die farblose Stufe MbH kann als Beispiel f�r eine aktive �bergangsverbindung eines Katalysators angesehen werden. Methylenblau diente �brigens lange Zeit in der biochemischen Forschung als Modellsubstanz f�r NAD + .

Wof�r ist beim Experiment das alkalische Milieu n�tig? Bei der Oxidation von Glucose wird der Sauerstoff nicht durch Luftsauerstoff, sondern durch Reaktion mit Wasser eingef�gt. Dabei entstehen formal Protonen, die die weitere Reaktion verhindern.

Die Protonen f�ngt man mit der Lauge ab. Damit verschiebt man das Oxidationsgleichgewicht der Glucose in Richtung auf das Produkt.

Weitere Texte zum Thema �Katalyse�

Diese Seite ist Teil eines gro�en Webseitenangebots mit weiteren Texten und Experimentiervorschriften auf Prof. Blumes Bildungsserver f�r Chemie. Letzte �berarbeitung: 29. Mai 2014, Dagmar Wiechoczek

  • Earth Science

Physical Science

  • Social Science
  • Medical Science
  • Mathematics
  • Paleontology

The Blue Bottle Experiment Explained

The famous blue bottle experiment a visually dramatic way to teach reduction-oxidation (redox) chemistry. Students from grade school to grad school find this reaction memorable and it is considered a classic staple in chemical demonstration shows. A half-full bottle of colorless liquid turns blue when shaken, and when the bottle is allowed to sit still, the color fades. Shaking the bottle again causes the color to reappear like magic! What’s going on?

On the molecular level, the blue bottle experiment is a complex system composed of ethanol, the simple sugar glucose, the dye methylene blue, the hydroxide ion, and oxygen from the atmosphere. The color change occurs do to a pair of competing reduction-oxidation reactions. Hence, the blue bottle experiment is a wonderful tool for introducing the key concepts of reduction and oxidation.

All redox reactions involve electrons being transferred from one compound, the reducing agent, to another compound, the oxidizing agent. The term “reduction” means “gain of electrons”. This seems like an odd choice of terminology since “gain” and “reduce” are usually considered antonyms. However, because the electron has an electrical charge of negative one, gaining electrons will reduce the charge of a species. The term “oxidation” means “loss of electrons” and often, but not always, involves reaction with oxygen. A common mnemonic is the phrase OIL RIG, which stands for “Oxidation Is Loss, Reduction Is Gain”.

In first stage of the blue bottle experiment, the methylene blue dye acts an oxidizing agent and the glucose acts as a reducing agent. The methylene blue oxidizes the glucose to gluconic acid and the glucose reduces the methylene blue to its colorless form. The result is a bottle of colorless solution.

When the bottle is shaken, the surface are of the liquid temporarily increases, causing more oxygen to dissolve in the ethanol. The additional oxygen acts as an oxidizing agent and changes methylene blue to its blue, oxidized form. The result is a dramatic color change from colorless to blue.

When the shaking is stopped, the oxygen levels in solution begin to drop. With less oxygen present, the methylene blue once again is reduced to its colorless form by the glucose, and observers will see the color fade and disappear. The color change can be repeated many times simply by shaking the bottle to induce the blue color and then allowing it to sit still in order to make it disappear.

Related posts:

| | | | | |
( )
1200 points by | | | |


|
| |

>

| | |
be compatible with newer versions of TypeScript.

Ask me how I know. ;)

| | |
| | | |
| | |
has been relatively stable for more versions of Typescript than it was unstable. You had to reach all the way back to 1.5 in part because it's been very stable since about 2.x. The last major shift in syntax was probably Conditional Types in 2.8 adding the ternary if operator in type positions. (The type if you were to try to typecheck rather than just type-strip has changed a lot since 2.x, but syntax has been generally stable. That's where most of Typescript's innovation has been in the type model/type inferencing rather than in syntax.)

It's still just (early in the process) Stage 1, but the majority of Typescript's type syntax, for the purposes of type stripping (not type checking), attempting to be somewhat standardized:

| | |
add a new keyword, satisfies, in 5.4. That would be a breaking change if you can’t upgrade the type stripper separately.
| | |
(I think not using `as` is a better fit semantically but this could be a trade-off to make for better type stripping backwards compatibility)
| | |
Any solution I can come up with suffers from at least one of these issues:

- "ignore rest of line" will either fail or lead to incorrect results - "find matching parenthesis" would have to parse comments inside types (probably doable, but could break with future TS additions) - "try finding end of non-JS code" will inevitably trip up in some situations, and can get very expensive

I'd love a rough outline or links/pointers, if you can find the time!

[0] TS Playground link:

| | |
| | |
| | |
| | | |

[2]

| | | |
| | |
?
| | |
etc.
| | | |
Without knowing about the new wobble syntax this would be parsed as `x as wobble; T` and desugar to `x; T`

With the new wobble syntax it would be parsed as `x as (wobble T);` according to JS semicolon insertion rules because the expression wobble is incomplete, and desugar to `x`

| | |
| | |
Here T is “a”|”b”, no automatic semicolon is inserted after `keyof`. While I don’t personally write code like this, I’m sure that does. It’s perfectly within the rules, after all.

While it’s true that TS doesn’t have to follow JS rules for semicolon insertion in type expressions, it always has done, and probably always should do.

| | |
| | |
| | |
| | | |
do is stabilize the grammar, and release new versions of TypeScript using the same grammar. Maybe you need a flag to use LTS grammar in your tsconfig.json file.
| | |
too easily -- it puts everyone who uses it on an upgrade treadmill, so it should be done judiciously. But even I wouldn't argue that TS 1 should have been its final form.
| | | |
| | | |
| | | |
| | |
take a type parameter.

True, but TypeScript has a rule against type-dependent emit - it’s not allowed. Code must always do the same thing regardless of what the types are. And in any case JavaScript does allow indexing on functions, since functions are just objects.

| |
| |
| | |
):

Could you explain how this isn't the type system accepting types "different to what has been declared"? Kinda looks like TypeScript is happy to type check this, despite `s` being a `number` at runtime.

| | |
, and TypeScript very intentionally documents that they do this and are just trying to make a "best effort" pass because JavaScript has 0 types, and crappy types are better than no types, and we can't wait for perfect types to replace the crappy types.
| | | |
way whatsoever), an exception is thrown. See

This is very much the same thing (or remotely analogous) to what we have in my TypeScript example. There, the code fails at runtime when I attempt to call `toLowerCase`, yes; what's worse is the slightly different scenario where we succeed in calling something we shouldn't:

It is not possible to write an analogous example in Haskell using `head`.

| | | |
| | |
so that they could compile Flutter apps AOT. This didn't require anyone to make their code resemble what you'd do in a theorem prover — it just means that, for example, all casts are checked, so that they throw if the value doesn't turn out to have the type the cast wants to return.

TypeScript is unsound because when you have an expression with a type, that tells you nothing at all for sure about what the value of the expression can be — it might be of that type, or it might be anything else. It's still valuable because you can maintain a codebase where the types are accurate, and that's enough to help a lot in reading and maintaining the code.

| | |
| | |
| | | |
| | | |
a statement about the (static) type system in isolation: it’s tied to the language’s dynamic semantics.

The tricky part, of course, is defining “type error”. In theoretical contexts, it’s common to just not define any evaluation rules at all for outwardly ill-typed things (negating a list, say), thus the common phrasing that no well-typed program must get stuck (unable to evaluate further). In practical statically-typed languages, there are on occasion cases that are defined not to be type errors essentially by fiat, such as null pointer accesses in Java, or escape hatches, such as unsafeCoerce in practical implementations of Haskell.

Of course, ECMAScript just defines behaviour for (except violating invariants in proxy handlers, in which case, lol, good luck), so arguably every static type system for it is sound, even one that allows var foo: string = 42. Obviously that’s not a helpful point of view. I think it’s reasonable to say that whatever we count as erroneous situations must at the very least include all occurrences of ReferenceError and TypeError.

TypeScript prevents most of them, which is good enough for its linting use case, when the worst possible result is that a buggy program crashes. It would definitely not be good enough for Closure Compiler’s minification use case, when the worst possible result is that a correct program gets silently miscompiled (misminified?).

[1]

| | |

I wonder how widely used that option is. As I said in that other comment, it feels to me like the sort of thing that would produce errors all over the place, and would therefore be a real pain to migrate to. (It'd be just fine if the language semantics were that out-of-bounds array access throws, but that's not the semantics JS has.) I don't have a real empirical sense of that, though.

| | | |
has worked for me, but it might affect library objects or browser built-ins that I definitely don't want it to, but I've not gotten the version of it to work.
| | | |
within a more modern codebase!
| | |

I happen to know this because we have some old projects that depend on this and are working hard to get rid of the dependency.

I wish Google either updates it or just mark the whole thing deprecated -- the world has already moved on anyway. Relating this to Google's recent cost cutting, and seeing some other Google's open source projects more or less getting abandoned, I have to say that today's Google is definitely not the same company from two decades ago.

| | |

There was: (2013).

Summary: /

| | | |
easy to get started with back in the day. It allows for incremental correctness, has good docs, and good tooling. On top of that a lot of beginner React tutorials started out with TypeScript, which onboarded a lot of new engineers to the TS ecosystem, and got them used to the niceties of TS (e.g. import syntax).
| | | |
| | |
| | |
| | |
For me, typescript is a pretty good balance.
| | |
| | |
but if you read the whole section, it ends up also acknowledging that it's not entirely sound.
| | | |

Compare these two programs.

| | | |
| | |
to be `undefined`. The throw only happens later when the value is treated as the wrong type.

I don't consider a runtime error to be a failure of the type system for OOB array access. But in javascript, it's explicitly allowed by specification. It's a failure of any type system that fails to account for this specified behavior in the language.

| | |
> It's a failure of any type system that fails to account for this specified behavior in the language.

Haskell has the ability to handle the error.

How do you recommend a compiler to detect out-of-bounds at compile time? It can certainly do this for our trivial example, but that example will also be immediately evident the first time you run the code too, so it's probably not worth the effort. What about the infinite number of more subtle variants?

| | | |

Soundness is valuable because it makes it possible to look at the types and reason about the program using them. An unsound type-checker like TypeScript or Flow can still be very useful to human readers if of the types in a codebase are accurate, but you always have to keep that asterisk in the back of your head.

One very concrete consequence of soundness that it makes it possible to compile the code to fast native code. That's what motivated Dart a few years ago to migrate from an unsound type system to a sound one: so that it could AOT-compile Flutter apps for speed.

[flagged] | | |
| | |
to do so and import it in JSDoc, but as mentioned before it’s a huge PITA on top of the PITA that writing types can already be (e.g. function/callbacks/generics)
| | |

Ah yes, autocomplete is another benefit of machine-readable type hints. OTOH there's an argument that another IDE feature, informational pop-ups, would be better if they paid more attention to comments and less to type hints:

| | |

I think this should be part of the language spec.

| | | |
making Typescript official.

They just can't have browsers doing the actual type checking because there isn't a specification for how to do that, and writing one would be extremely complicated, and I'm not sure what the point would be anyway.

| | |
types.
| | |
types.

I agree - but the type systems of both Python and TypeScript are unsound, so all type hints can potentially be wrong. That's one reason why I still mostly use untyped Python - I don't think it's worth the effort of writing type annotations if they're just going to sit there and tell lies.

Or maybe the unsoundness is just a theoretical issue - are incorrect type hints much of a problem in practice?

| | |
necessarily abide the semantics of the language:

`strings` is declared as a `Array<string>`, but TypeScript is happy to insert a `number` into it. This is a contradiction, and an example of unsoundness.

`s` is declared as `string`, but TypeScript is happy to assign a `number` to it. This is a contradiction, and an example of unsoundness.

This code eventually fails at runtime when we try to call `s.toLowerCase()`, as `number` has no such function.

What we're seeing here is that TypeScript will readily accept programs which violate its own rules. Any language that does this, whether nominally typed or structurally typed, is unsound.

| | |
| | |
add the new properties. That's just a good practice in the general case: an intermediate type that fully described the data wouldn't have saved you from overwriting it unless you actually looked closely at the type signature.

And yes, TypeScript types are "at least these properties" and not "exactly these properties". That is by design and is frankly one reason why I TypeScript over Java/C#/Kotlin.

I'd be very interested to know what you'd do to change the type system here to catch this. Are you proposing that types be exact bounds rather than lower bounds on what an object contains?

| | |
. An intermediate type signature with `updatedAt` as a key will produce a type error regardless of the type of the corresponding value.

> I'd be very interested to know what you'd do to change the type system here to catch this.

Like the other commenter said, extensible records. Ideally extensible types, with records, unions, heterogeneous lists, and so on as interpretations, but that seems very unlikely.

| | | |
| | | |
But once you’re aware of the caveat it’s something you can deal with, and it certainly doesn’t negate the many massive benefits that TS confers over vanilla JS.
| | | |
| | | |
Or, given there's no need for the type hints to be checker-friendly, do you make them more human-friendly, e.g:

| | |

Yeah, until this discussion I thought the main benefit of type hints was earlier detection of bugs via static checking. Now though, I'm getting the impression that the bigger benefit is enabling IDE features such as autocomplete.

That helps me understand better why I haven't found type hints as useful as others seem to - I don't use an IDE. My use of Python is limited to small scripts which I write in a simple text editor.

| |
would very much prefer if NPM modules that have their original code in TS and are currently transpiling would stop shipping dist/ .ts files we could just remove those transpiling steps without ever noticing it... so what's stopping NPM publishers from publishing js/d.ts files without noticing they broke anything?
| | |

>

I'm not sure I follow you there. I did continue shipping ESM.

>

Oh, I didn't know about that, cool! Once it becomes un-flagged I might consider dropping CJS.

| | | |
also never intentionally written anything directly in CJS. I learned enough in the AMD days to avoid CJS like a plague.)
| | |

>

It might seem like a small amount of work, but for a library one must to multiply that small amount of work by the number of users who will have to repeat it. It can be a quite large amount in aggregate. And, for what benefit? So I can drop one line from my CI config? It just seems like a huge waste of everyone's time.

Also, as a library user, I would (and occasionally do) get annoyed by seemingly unnecessary work foisted on my by a library author. It makes me consider whether or not I want to actually depend on that library, and sometimes the answer is no.

| |
Which is basically reinventing what typescript is already doing.
| | |

[1]

| | |

I believe modular implicits and modular typeclasses are similar and aim to solve the same issues, but they are not quite the same.

| | |
| | |
Looks reasonably typical, but when we use it:

As you can see, getting bad performance is shockingly easy and if these calls were across five different files, they look similar enough that you'd have a hard time realizing things were slow.

Union/intersection aren't directly evil. Unions of a single type (eg, a union of strings) is actually great as it offers more specificity while not increasing function complexity. Even if they are a union of different primitive types, that is sometimes necessary and the cost you are paying is visible (though most JS devs are oblivious to the cost).

Optionals are somewhat more evil because they somewhat hide the price you are paying.

[key:string] is potentially evil. If you are using it as a kind of `any`, then it is probably evil, but if you are using it to indicate a map of strings to a type, then it's perfectly fine.

keyof is great for narrowing the possible until you start passing those keys around the type system.

Template unions are also great for pumping out a giant string enum (though there is a definite people issue of making sure you're only allowing what you want to allow), but if they get passed around the type system for use, they are probably evil.

Interface merging is evil. It allows your interface to spread across multiple places making it hard to follow and even harder to decide if it will make your code slow.

Overloads are evil. They pretend you have two different functions, but then just union everything together.

Conditional types are evil. They only exist for creating even more complex types and those types are basically guaranteed to be both impossible to fully understand and allow very slow code.

Mapped types are evil. As with conditional types, they exist to make complex an incomprehensible types that allow slow code.

Generics are the mother of all that is evil in TS. When you use a generic, you are allowing basically anything to be inserted which means your type is instantly megamorphic. If a piece of code uses generics, you should simply assume it is as slow as possible.

As an aside, overloads were a missed opportunity. In theory, TS could speed everything up by dynamically generating all those different function variants at compile time. In practice, the widespread use of generic everything means your 5mb of code would instantly bloat into 5gb of code. Overloads would be a great syntax to specify that you care enough about the performance of that specific function that you want to make multiple versions and link to the right one at compile time. Libraries like React that make most of their user-facing functions megamorphic could probably see a decent performance boost from this in projects that used TS (they already try to do this manually by using the megamorphic function to dispatch to a bunch of monomorphic functions).

| | |
the runtime code will see that just as a plain string.
| |
be required. It's not possible to do path searches over the network like you can on local disk, and network-attached VMs, like browsers, are a very, very important runtime for JavaScript.
| | |
than all-or-none bundles can, sure the trade-off is network requests but we are in a good place to take that trade-off), we're at an exciting point where there is almost never a need to bundle in development environments, and it is increasingly an option to not bundle in production either. It is benchmarking today (I can't tell you what your profiler tools will tell you) if you are really gaining as much from production bundles as you think you are. Not enough people are running those benchmarks, but some of them may already be surprised.

The Developer Experience of unbundled ESM is . Of course you do need to do things like always use file extensions. But those aren't hard changes to make, worth it for the better Developer Experience, and if it can help us start to wean off of mega-bundler tools as required production compile time steps.

| | |
| | |
| | |

IMAGES

  1. The Blue Bottle Chemistry Demonstration

    blue bottle experiment reaktionsgleichung

  2. Blue bottle

    blue bottle experiment reaktionsgleichung

  3. Blue Bottle

    blue bottle experiment reaktionsgleichung

  4. Blue Bottle Reaction

    blue bottle experiment reaktionsgleichung

  5. How Does the Blue Bottle Magic Work?

    blue bottle experiment reaktionsgleichung

  6. Your Ultimate Guide to The 'Blue Bottle' Experiment

    blue bottle experiment reaktionsgleichung

VIDEO

  1. Blue bottle experiment. #stem #chemistry

  2. ALKOHOLATBILDUNG

  3. Expo deaf 2024. blue bottle experiment. science colors change magic

  4. Das blaue Wunder (The blue bottle) Experiment

  5. Blue bottle experiment on Blue Peter 🔵 #science #experiment #chemistry

  6. Balloon in a bottle

COMMENTS

  1. PDF Blue Bottle Versuch

    Reaktionsmechanismus der Blue-Bottle-Reaktion: 1. Reduktion von Methylenblau zu Leukomethylenblau: 2. Oxidation der Glucose: 3 Reoxidation des Leukomethylenblau durch den Luftsauerstoff: Entsorgung: Die Reaktionslösung als anorganische, halogenfreie Lösungsmi ttel-Abfälle entsorgen. 2 H.

  2. Blue bottle experiment

    The blue bottle experiment is a color-changing redox chemical reaction. An aqueous solution containing glucose, sodium hydroxide, methylene blue is prepared in a closed bottle containing some air. Upon standing, it spontaneously turns from blue to colorless due to reduction of methylene blue by the alkaline glucose solution. However, shaking ...

  3. The 'blue bottle' experiment

    Before the demonstration. Less than 20 minutes beforehand, preferably. Make a solution of 0.05 g of methylene blue in 50 cm 3 of ethanol (0.1%). Weigh 8 g of potassium hydroxide into the 1 dm 3 conical flask. Add 300 cm 3 of water and 10 g of glucose and swirl until the solids are dissolved. Add 5 cm 3 of the methylene blue solution.

  4. PDF 1 Schülerversuch V1 Blue Bottle Das blaue Wunder

    blau wird zu einer farblosen Leukoform reduziert. Wird die Lösung geschüttelt, reagiert das Leuko-Methylenblau mit dem in der Lösung gelösten Luftsauerstoff und übertr. gt die Protonen darauf, so dass Wasser entsteht. Methylenblau befindet sich nun wieder im Ausgangszustand u. nsschema des Blue Bottle-ExperimentesEntsorgung:Die Lösung.

  5. Blue Bottle Chemistry Demonstration

    The reaction starts as a blue liquid which becomes colorless and returns to its blue color. Materials. The usual materials for the Blue Bottle chem demo are: 8 grams potassium hydroxide (KOH) 10 grams dextrose; Methylene blue solution (0.25 g methylene blue in 1000 mL water) Water; 500-mL flask with stopper; You can make substitutions for the ...

  6. Blue-Bottle-Experiment

    Blue-Bottle-Experiment. Unter dem Blue-Bottle-Experiment versteht man ein klassisches Schauexperiment der Chemie. In einem geschlossenen Gefäß befindet sich eine farblose Flüssigkeit und etwas Luft. ... Die Reaktion zur Entfärbung beruht auf der Reduktion einer Methylenblau-Lösung zur Leuko-Form durch Glucose, die dabei zu Gluconsäure ...

  7. PDF Blue Bottle Experiment

    Procedure. 1) Give the colorless solution in the flask a few quick shakes, until a color change is visible. 2) The blue color that appears will then slowly fade. The time required for the color to fade depends on how much the flask is shaken. 3) The regeneration and fading of the blue color may be repeated a number of times by shaking the flask ...

  8. The Blue-Bottle Experiment

    The Blue-Bottle Experiment. Description: A bottle half-full of a colorless liquid is shaken and turns blue. On standing undisturbed, the blue color fades. The cycle may be repeated several times. Other colors can be produced by substituting other indicators for the methylene blue commonly used. Rating: Source: Shakhashiri, B.Z. Chemical ...

  9. The Blue Bottle Chemistry Demonstration

    Performing the Blue Bottle Demonstration. Half-fill two one-liter Erlenmeyer flasks with tap water. Dissolve 2.5 g of glucose in one of the flasks (flask A) and 5 g of glucose in the other flask (flask B). Add ~1 ml of 0.1% methylene blue to each flask. Stopper the flasks and shake them to dissolve the dye.

  10. Blue bottle experiment

    A) Experiment with glucose, NaOH, and methylene blue. Add 50 mL of water to the glass flask or beaker. Add 1 teaspoon of glucose powder to the water and stir with a stirring rod until the glucose is dissolved. Add 2 mL of methylene blue solution to the flask or beaker and stir. The solution should turn blue.

  11. Blue-Bottle-Experiment

    Unter dem Blue-Bottle-Experiment versteht man ein klassisches Schauexperiment der Chemie. In einem geschlossenen Gefäß befindet sich eine farblose Flüssigkeit und etwas Luft. ... (Reaktion 1. Ordnung). Reaktion. Die Reaktion zur Entfärbung beruht auf der Reduktion einer Methylenblau-Lösung zur Leuko-Form durch Glucose, die dabei zu ...

  12. PP095

    The blue bottle reaction is a simple demonstration of a redox reaction, with obvious colour changes. It can also be used as an introduction to reaction kinetics, including the role of temperature on rate of reaction.This procedure details how to perform the eponymous blue bottle reaction, and how different colour changes can be achieved.

  13. Blue Bottle

    Blue Bottle Einleitung. Methylenblau wird mit einer Glucoselösung reduziert und in die farblose Leukoform überführt. Die Leukomethylenblau-Lösung wird mit Sauerstoff versetzt und geschüttelt, wobei der Farbstoff wieder oxidiert wird. ... Redox-Reaktion Experimente mit Reduktions- und Oxidationsvorgang; Sprengstoff Experimente mit kleinen ...

  14. Blue-Bottle-Experiment

    Blue-Bottle-Experiment Unter dem Blue-Bottle-Experiment versteht man eines der klassischen Show-Experimente in der Chemie. ... Dabei ist darauf zu achten, dass die Konzentration nicht zu hoch ist, da sonst die Reaktion sehr lange zur Regeneration benötigt. Nun gibt man 400 ml dest. Wasser in einen Rundkolben und löst darin 5 g NaOH-Plätzchen ...

  15. Blue Bottle Experiment

    HOL DIR JETZT DIE SIMPLECLUB APP FÜR BESSERE NOTEN! 😎⤵️https://simpleclub.com/unlimited-yt?variant=pay92hzc7n3&utm_source=youtube_organic&utm_medium=youtube...

  16. SSERC

    A classic demonstration of a redox reaction. Methylene blue is blue when oxidised but its reduced form is colourless. Glucose, in alkaline conditions, is a reducing agent. A bottle or flask is filled 2/3 or so full of a methylene blue - glucose - sodium hydroxide solution and the top sealed. In a few minutes the solution goes clear.

  17. Effektexperimente: Blue Bottle

    Zum Versuch. Es handelt sich bei der Blue-Bottle-Reaktion um eine durch Methylenblau katalysierte Oxidation der Glucose. Oxidationsmittel ist der Luftsauerstoff. Methylenblau bildet dabei in reversibler Reaktion eine farblose Leukoform (Leukomethylenblau), in der das vorher vorhandene chinoide, mesomerie-stabilisierte System des Methylenblaus ...

  18. Prof. Blumes Medienangebot: Katalysatoren und Enzyme

    Experiment: Versuch: Blue Bottle-Versuch (Blaues Wunder) Es handelt sich bei der Blue Bottle-Reaktion um eine durch Methylenblau (Mb +) katalysierte Oxidation der Glucose. Oxidationsmittel ist letztlich der Luftsauerstoff. Die Mitwirkung des Methylenblaus erkennt man an seiner Entfärbung. Die farblose Stufe MbH kann als Beispiel für eine ...

  19. The Blue Bottle Experiment Explained

    The famous blue bottle experiment a visually dramatic way to teach reduction-oxidation (redox) chemistry. Students from grade school to grad school find this reaction memorable and it is considered a classic staple in chemical demonstration shows. A half-full bottle of colorless liquid turns blue when shaken, and when the bottle is allowed to ...

  20. The Blue Bottle Experiment Revisited: How Blue? How Sweet?

    A DFT investigation of the blue bottle experiment: E ∘ half-cell analysis of autoxidation catalysed by redox indicators. Royal Society Open Science 2017 , 4 (11) , 170708.

  21. Blue Bottle Experiment

    Das hier ist der Versuch mit dem Namen "Blue Bottle". Er wird im Schulunterricht gerne, als Beispiel für Redox-Reaktionen genommen.This experiment is called ...

  22. Node.js adds experimental support for TypeScript

    My favorite deno feature is coming to node directly. Awesome! Maybe this means I don't always have to install esbuild to strip types - very excited how this will make writing scripts in TypeScript that much easier to use.