• Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • Why students love us
  • Rebels Blog
  • Why we are different
  • All Products
  • Coming Soon

Identifying a Research Problem: A Step-by-Step Guide

Identifying a Research Problem: A Step-by-Step Guide

The first and perhaps most important step in the research process is identifying a research problem. This step sets the foundation for all subsequent research activities and largely determines the success of your scholarly work.

This guide provides a comprehensive overview of the steps involved in identifying a research problem, from understanding its essence to employing advanced strategies for refinement.

Key Takeaways

  • Remember: Grasping the definition and importance of a research problem isn't just a step—it's crucial for your academic success.
  • Exploring various sources, like literature reviews and expert consultations, can guide you in formulating a solid research problem.
  • A clear problem statement, aligned research objectives, and well-defined questions are crucial for a focused study.
  • Evaluating the feasibility and potential impact of a research problem ensures its relevance and scope.
  • Advanced strategies, including interdisciplinary approaches and technology utilization, can enhance the identification and refinement of research problems.

Understanding the Essence of Identifying a Research Problem

Defining the research problem.

A research problem is the focal point of any academic inquiry. It is a concise and well-defined statement that outlines the specific issue or question that the research aims to address. This research problem usually sets the tone for the entire study and provides you, the researcher, with a clear purpose and a clear direction on how to go about conducting your research.

Importance in Academic Research

It also demonstrates the significance of your research and its potential to contribute new knowledge to the existing body of literature in the world. A compelling research problem not only captivates the attention of your peers but also lays the foundation for impactful and meaningful research outcomes.

Initial Steps to Identification

To identify a research problem, you need a systematic approach and a deep understanding of the subject area. Below are some steps to guide you in this process:

  • Conduct a thorough literature review to understand what has been studied before.
  • Identify gaps in the existing research that could form the basis of your study.
  • Consult with academic mentors to refine your ideas and approach.

Exploring Sources for Research Problem Identification

Literature review.

When you embark on the journey of identifying a research problem, a thorough literature review is indispensable. This process involves scrutinizing existing research to find literature gaps and unexplored areas that could form the basis of your research. It's crucial to analyze recent studies, seminal works, and review articles to ensure a comprehensive understanding of the topic.

Existing Theories and Frameworks

The exploration of existing theories and frameworks provides a solid foundation for developing a research problem. By understanding the established models and theories, you can identify inconsistencies or areas lacking in depth which might offer fruitful avenues for research.

Consultation with Academic Mentors

Engaging with academic mentors is vital in shaping a well-defined research problem. Their expertise can guide you through the complexities of your field, offering insights into feasible research questions and helping you refine your focus. This interaction often leads to the identification of unique and significant research opportunities that align with current academic and industry trends.

Formulating the Research Problem

Crafting a clear problem statement.

To effectively address your research problem, start by crafting a clear problem statement . This involves succinctly describing who is affected by the problem, why it is important, and how your research will contribute to solving it. Ensure your problem statement is concise and specific to guide the entire research process.

Setting Research Objectives

Setting clear research objectives is crucial for maintaining focus throughout your study. These objectives should directly align with the problem statement and guide your research activities. Consider using a bulleted list to outline your main objectives:

  • Understand the underlying factors contributing to the problem
  • Explore potential solutions
  • Evaluate the effectiveness of proposed solutions

Determining Research Questions

The formulation of precise research questions is a pivotal step in defining the scope and direction of your study. These questions should be directly derived from your research objectives and designed to be answerable through your chosen research methods. Crafting well-defined research questions will help you maintain a clear focus and avoid common pitfalls in the research process.

How to Evaluate the Scope and Relevance of Your Research Problem

Feasibility assessment.

Before you finalize a research problem, it is crucial to assess its feasibility. Consider the availability of resources, time, and expertise required to conduct the research. Evaluate potential constraints and determine if the research problem can be realistically tackled within the given limitations.

Significance to the Field

Ask yourself: Does my research problem have a clear and direct impact on my field? How will it contribute to advancing knowledge? It should aim to contribute to existing knowledge and address a real-world issue that is relevant to your academic discipline.

Potential Impact on Existing Knowledge

The potential impact of your research problem on existing knowledge cannot be understated. It should challenge, extend, or refine current understanding in a meaningful way. Consider how your research can add value to the existing body of work and potentially lead to significant advancements in your field.

Techniques for Refining the Research Problem

Narrowing down the focus.

To effectively refine your research problem, start by narrowing down the focus . This involves pinpointing the specific aspects of your topic that are most significant and ensuring that your research problem is not too broad. This targeted approach helps in identifying knowledge gaps and formulating more precise research questions.

Incorporating Feedback

Feedback is crucial in the refinement process. Engage with academic mentors, peers, and experts in your field to gather insights and suggestions. This collaborative feedback can lead to significant improvements in your research problem, making it more robust and relevant.

Iterative Refinement Process

Refinement should be seen as an iterative process, where you continuously refine and revise your research problem based on new information and feedback. This approach ensures that your research problem remains aligned with current trends and academic standards, ultimately enhancing its feasibility and relevance.

Challenges in Identifying a Research Problem

Common pitfalls and how to avoid them.

Identifying a research problem can be fraught with common pitfalls such as selecting a topic that is too broad or too narrow. To avoid these, you should conduct a thorough literature review and seek feedback from peers and mentors. This proactive approach ensures that your research question is both relevant and manageable.

Dealing with Ambiguity

Ambiguity in defining the research problem can lead to significant challenges down the line. Ensure clarity by operationalizing variables and explicitly stating the research objectives. This clarity will guide your entire research process, making it more structured and focused.

Balancing Novelty and Practicality

While it's important to address a novel issue in your research, practicality should not be overlooked. A research problem should not only contribute new knowledge but also be feasible and have clear implications. Balancing these aspects often requires iterative refinement and consultation with academic mentors to align your research with real-world applications.

Advanced Strategies for Identifying a Research Problem

Interdisciplinary approaches.

Embrace the power of interdisciplinary approaches to uncover unique and comprehensive research problems. By integrating knowledge from various disciplines, you can address complex issues that single-field studies might overlook. This method not only broadens the scope of your research but also enhances its applicability and depth.

Utilizing Technology and Data Analytics

Leverage technology and data analytics to refine and identify research problems with precision. Advanced tools like machine learning and big data analysis can reveal patterns and insights that traditional methods might miss. This approach is particularly useful in fields where large datasets are involved, or where real-time data integration can lead to more dynamic research outcomes.

Engaging with Industry and Community Needs

Focus on the needs of industry and community to ensure your research is not only academically sound but also practically relevant. Engaging with real-world problems can provide a rich source of research questions that are directly applicable and beneficial to society. This strategy not only enhances the relevance of your research but also increases its potential for impact.

Dive into the world of academic success with our 'Advanced Strategies for Identifying a Research Problem' at Research Rebels. Our expertly crafted guides and action plans are designed to simplify your thesis journey, transforming complex academic challenges into manageable tasks. Don't wait to take control of your academic future. Visit our website now to learn more and claim your special offer! 

Struggling to Navigate the Complexities of Identifying a Research Problem?

  • Quickly identify valuable research gaps.
  • Develop clear and impactful problem statements.
  • Align your research objectives with precise, answerable questions.
  • Streamline your research planning process, saving time and reducing stress.

Ready to take control of your research journey? Get the Research Proposal Compass now and lay the groundwork for academic success. 

In conclusion, identifying a research problem is a foundational step in the academic research process that requires careful consideration and systematic approach. This guide has outlined the essential steps involved, from understanding the context and reviewing existing literature to formulating clear research questions. By adhering to these guidelines, researchers can ensure that their studies are grounded in a well-defined problem, enhancing the relevance and impact of their findings. It is crucial for scholars to approach this task with rigor and critical thinking to contribute meaningfully to the body of knowledge in their respective fields. 

Frequently Asked Questions

What is a research problem.

A research problem is a specific issue, inconsistency, or gap in knowledge that needs to be addressed through scientific inquiry. It forms the foundation of a research study, guiding the research questions, methodology, and analysis.

Why is identifying a research problem important?

Identifying a research problem is crucial as it determines the direction and scope of the study. It helps researchers focus their inquiry, formulate hypotheses, and contribute to the existing body of knowledge.

How do I identify a suitable research problem?

To identify a suitable research problem, start with a thorough literature review to understand existing research and identify gaps. Consult with academic mentors, and consider relevance, feasibility, and your own interests.

What are some common pitfalls in identifying a research problem?

Common pitfalls include choosing a problem that is too broad or too narrow, not aligning with existing literature, lack of originality, and failing to consider the practical implications and feasibility of the study.

Can technology help in identifying a research problem?

Yes, technology and data analytics can aid in identifying research problems by providing access to a vast amount of data, revealing patterns and trends that might not be visible otherwise. Tools like digital libraries and research databases are particularly useful.

How can I refine my research problem?

Refine your research problem by narrowing its focus, seeking feedback from peers and mentors, and continually reviewing and adjusting the problem statement based on new information and insights gained during preliminary research.

Maximizing Impact: Creative Approaches to Your Marketing Final Project

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Discovering Statistics Using SAS: A Comprehensive Review

Discovering Statistics Using SAS: A Comprehensive Review

Understanding the Difference Between Research Objectives and Research Questions

Understanding the Difference Between Research Objectives and Research Questions

Transitioning Beyond Academia: Life After Completing Your Thesis

Transitioning Beyond Academia: Life After Completing Your Thesis

Trending Topics for Your Thesis: What's Hot in 2024

Trending Topics for Your Thesis: What's Hot in 2024

Thesis Action Plan

Thesis Action Plan

Research Proposal Compass

  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • How to Define a Research Problem | Ideas & Examples

How to Define a Research Problem | Ideas & Examples

Published on November 2, 2022 by Shona McCombes and Tegan George. Revised on May 31, 2023.

A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge.

Some research will do both of these things, but usually the research problem focuses on one or the other. The type of research problem you choose depends on your broad topic of interest and the type of research you think will fit best.

This article helps you identify and refine a research problem. When writing your research proposal or introduction , formulate it as a problem statement and/or research questions .

Table of contents

Why is the research problem important, step 1: identify a broad problem area, step 2: learn more about the problem, other interesting articles, frequently asked questions about research problems.

Having an interesting topic isn’t a strong enough basis for academic research. Without a well-defined research problem, you are likely to end up with an unfocused and unmanageable project.

You might end up repeating what other people have already said, trying to say too much, or doing research without a clear purpose and justification. You need a clear problem in order to do research that contributes new and relevant insights.

Whether you’re planning your thesis , starting a research paper , or writing a research proposal , the research problem is the first step towards knowing exactly what you’ll do and why.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

what methods are adequate for defining the research problem

As you read about your topic, look for under-explored aspects or areas of concern, conflict, or controversy. Your goal is to find a gap that your research project can fill.

Practical research problems

If you are doing practical research, you can identify a problem by reading reports, following up on previous research, or talking to people who work in the relevant field or organization. You might look for:

  • Issues with performance or efficiency
  • Processes that could be improved
  • Areas of concern among practitioners
  • Difficulties faced by specific groups of people

Examples of practical research problems

Voter turnout in New England has been decreasing, in contrast to the rest of the country.

The HR department of a local chain of restaurants has a high staff turnover rate.

A non-profit organization faces a funding gap that means some of its programs will have to be cut.

Theoretical research problems

If you are doing theoretical research, you can identify a research problem by reading existing research, theory, and debates on your topic to find a gap in what is currently known about it. You might look for:

  • A phenomenon or context that has not been closely studied
  • A contradiction between two or more perspectives
  • A situation or relationship that is not well understood
  • A troubling question that has yet to be resolved

Examples of theoretical research problems

The effects of long-term Vitamin D deficiency on cardiovascular health are not well understood.

The relationship between gender, race, and income inequality has yet to be closely studied in the context of the millennial gig economy.

Historians of Scottish nationalism disagree about the role of the British Empire in the development of Scotland’s national identity.

Next, you have to find out what is already known about the problem, and pinpoint the exact aspect that your research will address.

Context and background

  • Who does the problem affect?
  • Is it a newly-discovered problem, or a well-established one?
  • What research has already been done?
  • What, if any, solutions have been proposed?
  • What are the current debates about the problem? What is missing from these debates?

Specificity and relevance

  • What particular place, time, and/or group of people will you focus on?
  • What aspects will you not be able to tackle?
  • What will the consequences be if the problem is not resolved?

Example of a specific research problem

A local non-profit organization focused on alleviating food insecurity has always fundraised from its existing support base. It lacks understanding of how best to target potential new donors. To be able to continue its work, the organization requires research into more effective fundraising strategies.

Once you have narrowed down your research problem, the next step is to formulate a problem statement , as well as your research questions or hypotheses .

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

All research questions should be:

  • Focused on a single problem or issue
  • Researchable using primary and/or secondary sources
  • Feasible to answer within the timeframe and practical constraints
  • Specific enough to answer thoroughly
  • Complex enough to develop the answer over the space of a paper or thesis
  • Relevant to your field of study and/or society more broadly

Writing Strong Research Questions

Research questions anchor your whole project, so it’s important to spend some time refining them.

In general, they should be:

  • Focused and researchable
  • Answerable using credible sources
  • Complex and arguable
  • Feasible and specific
  • Relevant and original

Your research objectives indicate how you’ll try to address your research problem and should be specific:

A research aim is a broad statement indicating the general purpose of your research project. It should appear in your introduction at the end of your problem statement , before your research objectives.

Research objectives are more specific than your research aim. They indicate the specific ways you’ll address the overarching aim.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. & George, T. (2023, May 31). How to Define a Research Problem | Ideas & Examples. Scribbr. Retrieved September 13, 2024, from https://www.scribbr.com/research-process/research-problem/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a problem statement | guide & examples, writing strong research questions | criteria & examples, how to write a strong hypothesis | steps & examples, what is your plagiarism score.

  • Privacy Policy

Research Method

Home » Research Problem – Examples, Types and Guide

Research Problem – Examples, Types and Guide

Table of Contents

Research Problem

Research Problem

Definition:

Research problem is a specific and well-defined issue or question that a researcher seeks to investigate through research. It is the starting point of any research project, as it sets the direction, scope, and purpose of the study.

Types of Research Problems

Types of Research Problems are as follows:

Descriptive problems

These problems involve describing or documenting a particular phenomenon, event, or situation. For example, a researcher might investigate the demographics of a particular population, such as their age, gender, income, and education.

Exploratory problems

These problems are designed to explore a particular topic or issue in depth, often with the goal of generating new ideas or hypotheses. For example, a researcher might explore the factors that contribute to job satisfaction among employees in a particular industry.

Explanatory Problems

These problems seek to explain why a particular phenomenon or event occurs, and they typically involve testing hypotheses or theories. For example, a researcher might investigate the relationship between exercise and mental health, with the goal of determining whether exercise has a causal effect on mental health.

Predictive Problems

These problems involve making predictions or forecasts about future events or trends. For example, a researcher might investigate the factors that predict future success in a particular field or industry.

Evaluative Problems

These problems involve assessing the effectiveness of a particular intervention, program, or policy. For example, a researcher might evaluate the impact of a new teaching method on student learning outcomes.

How to Define a Research Problem

Defining a research problem involves identifying a specific question or issue that a researcher seeks to address through a research study. Here are the steps to follow when defining a research problem:

  • Identify a broad research topic : Start by identifying a broad topic that you are interested in researching. This could be based on your personal interests, observations, or gaps in the existing literature.
  • Conduct a literature review : Once you have identified a broad topic, conduct a thorough literature review to identify the current state of knowledge in the field. This will help you identify gaps or inconsistencies in the existing research that can be addressed through your study.
  • Refine the research question: Based on the gaps or inconsistencies identified in the literature review, refine your research question to a specific, clear, and well-defined problem statement. Your research question should be feasible, relevant, and important to the field of study.
  • Develop a hypothesis: Based on the research question, develop a hypothesis that states the expected relationship between variables.
  • Define the scope and limitations: Clearly define the scope and limitations of your research problem. This will help you focus your study and ensure that your research objectives are achievable.
  • Get feedback: Get feedback from your advisor or colleagues to ensure that your research problem is clear, feasible, and relevant to the field of study.

Components of a Research Problem

The components of a research problem typically include the following:

  • Topic : The general subject or area of interest that the research will explore.
  • Research Question : A clear and specific question that the research seeks to answer or investigate.
  • Objective : A statement that describes the purpose of the research, what it aims to achieve, and the expected outcomes.
  • Hypothesis : An educated guess or prediction about the relationship between variables, which is tested during the research.
  • Variables : The factors or elements that are being studied, measured, or manipulated in the research.
  • Methodology : The overall approach and methods that will be used to conduct the research.
  • Scope and Limitations : A description of the boundaries and parameters of the research, including what will be included and excluded, and any potential constraints or limitations.
  • Significance: A statement that explains the potential value or impact of the research, its contribution to the field of study, and how it will add to the existing knowledge.

Research Problem Examples

Following are some Research Problem Examples:

Research Problem Examples in Psychology are as follows:

  • Exploring the impact of social media on adolescent mental health.
  • Investigating the effectiveness of cognitive-behavioral therapy for treating anxiety disorders.
  • Studying the impact of prenatal stress on child development outcomes.
  • Analyzing the factors that contribute to addiction and relapse in substance abuse treatment.
  • Examining the impact of personality traits on romantic relationships.

Research Problem Examples in Sociology are as follows:

  • Investigating the relationship between social support and mental health outcomes in marginalized communities.
  • Studying the impact of globalization on labor markets and employment opportunities.
  • Analyzing the causes and consequences of gentrification in urban neighborhoods.
  • Investigating the impact of family structure on social mobility and economic outcomes.
  • Examining the effects of social capital on community development and resilience.

Research Problem Examples in Economics are as follows:

  • Studying the effects of trade policies on economic growth and development.
  • Analyzing the impact of automation and artificial intelligence on labor markets and employment opportunities.
  • Investigating the factors that contribute to economic inequality and poverty.
  • Examining the impact of fiscal and monetary policies on inflation and economic stability.
  • Studying the relationship between education and economic outcomes, such as income and employment.

Political Science

Research Problem Examples in Political Science are as follows:

  • Analyzing the causes and consequences of political polarization and partisan behavior.
  • Investigating the impact of social movements on political change and policymaking.
  • Studying the role of media and communication in shaping public opinion and political discourse.
  • Examining the effectiveness of electoral systems in promoting democratic governance and representation.
  • Investigating the impact of international organizations and agreements on global governance and security.

Environmental Science

Research Problem Examples in Environmental Science are as follows:

  • Studying the impact of air pollution on human health and well-being.
  • Investigating the effects of deforestation on climate change and biodiversity loss.
  • Analyzing the impact of ocean acidification on marine ecosystems and food webs.
  • Studying the relationship between urban development and ecological resilience.
  • Examining the effectiveness of environmental policies and regulations in promoting sustainability and conservation.

Research Problem Examples in Education are as follows:

  • Investigating the impact of teacher training and professional development on student learning outcomes.
  • Studying the effectiveness of technology-enhanced learning in promoting student engagement and achievement.
  • Analyzing the factors that contribute to achievement gaps and educational inequality.
  • Examining the impact of parental involvement on student motivation and achievement.
  • Studying the effectiveness of alternative educational models, such as homeschooling and online learning.

Research Problem Examples in History are as follows:

  • Analyzing the social and economic factors that contributed to the rise and fall of ancient civilizations.
  • Investigating the impact of colonialism on indigenous societies and cultures.
  • Studying the role of religion in shaping political and social movements throughout history.
  • Analyzing the impact of the Industrial Revolution on economic and social structures.
  • Examining the causes and consequences of global conflicts, such as World War I and II.

Research Problem Examples in Business are as follows:

  • Studying the impact of corporate social responsibility on brand reputation and consumer behavior.
  • Investigating the effectiveness of leadership development programs in improving organizational performance and employee satisfaction.
  • Analyzing the factors that contribute to successful entrepreneurship and small business development.
  • Examining the impact of mergers and acquisitions on market competition and consumer welfare.
  • Studying the effectiveness of marketing strategies and advertising campaigns in promoting brand awareness and sales.

Research Problem Example for Students

An Example of a Research Problem for Students could be:

“How does social media usage affect the academic performance of high school students?”

This research problem is specific, measurable, and relevant. It is specific because it focuses on a particular area of interest, which is the impact of social media on academic performance. It is measurable because the researcher can collect data on social media usage and academic performance to evaluate the relationship between the two variables. It is relevant because it addresses a current and important issue that affects high school students.

To conduct research on this problem, the researcher could use various methods, such as surveys, interviews, and statistical analysis of academic records. The results of the study could provide insights into the relationship between social media usage and academic performance, which could help educators and parents develop effective strategies for managing social media use among students.

Another example of a research problem for students:

“Does participation in extracurricular activities impact the academic performance of middle school students?”

This research problem is also specific, measurable, and relevant. It is specific because it focuses on a particular type of activity, extracurricular activities, and its impact on academic performance. It is measurable because the researcher can collect data on students’ participation in extracurricular activities and their academic performance to evaluate the relationship between the two variables. It is relevant because extracurricular activities are an essential part of the middle school experience, and their impact on academic performance is a topic of interest to educators and parents.

To conduct research on this problem, the researcher could use surveys, interviews, and academic records analysis. The results of the study could provide insights into the relationship between extracurricular activities and academic performance, which could help educators and parents make informed decisions about the types of activities that are most beneficial for middle school students.

Applications of Research Problem

Applications of Research Problem are as follows:

  • Academic research: Research problems are used to guide academic research in various fields, including social sciences, natural sciences, humanities, and engineering. Researchers use research problems to identify gaps in knowledge, address theoretical or practical problems, and explore new areas of study.
  • Business research : Research problems are used to guide business research, including market research, consumer behavior research, and organizational research. Researchers use research problems to identify business challenges, explore opportunities, and develop strategies for business growth and success.
  • Healthcare research : Research problems are used to guide healthcare research, including medical research, clinical research, and health services research. Researchers use research problems to identify healthcare challenges, develop new treatments and interventions, and improve healthcare delivery and outcomes.
  • Public policy research : Research problems are used to guide public policy research, including policy analysis, program evaluation, and policy development. Researchers use research problems to identify social issues, assess the effectiveness of existing policies and programs, and develop new policies and programs to address societal challenges.
  • Environmental research : Research problems are used to guide environmental research, including environmental science, ecology, and environmental management. Researchers use research problems to identify environmental challenges, assess the impact of human activities on the environment, and develop sustainable solutions to protect the environment.

Purpose of Research Problems

The purpose of research problems is to identify an area of study that requires further investigation and to formulate a clear, concise and specific research question. A research problem defines the specific issue or problem that needs to be addressed and serves as the foundation for the research project.

Identifying a research problem is important because it helps to establish the direction of the research and sets the stage for the research design, methods, and analysis. It also ensures that the research is relevant and contributes to the existing body of knowledge in the field.

A well-formulated research problem should:

  • Clearly define the specific issue or problem that needs to be investigated
  • Be specific and narrow enough to be manageable in terms of time, resources, and scope
  • Be relevant to the field of study and contribute to the existing body of knowledge
  • Be feasible and realistic in terms of available data, resources, and research methods
  • Be interesting and intellectually stimulating for the researcher and potential readers or audiences.

Characteristics of Research Problem

The characteristics of a research problem refer to the specific features that a problem must possess to qualify as a suitable research topic. Some of the key characteristics of a research problem are:

  • Clarity : A research problem should be clearly defined and stated in a way that it is easily understood by the researcher and other readers. The problem should be specific, unambiguous, and easy to comprehend.
  • Relevance : A research problem should be relevant to the field of study, and it should contribute to the existing body of knowledge. The problem should address a gap in knowledge, a theoretical or practical problem, or a real-world issue that requires further investigation.
  • Feasibility : A research problem should be feasible in terms of the availability of data, resources, and research methods. It should be realistic and practical to conduct the study within the available time, budget, and resources.
  • Novelty : A research problem should be novel or original in some way. It should represent a new or innovative perspective on an existing problem, or it should explore a new area of study or apply an existing theory to a new context.
  • Importance : A research problem should be important or significant in terms of its potential impact on the field or society. It should have the potential to produce new knowledge, advance existing theories, or address a pressing societal issue.
  • Manageability : A research problem should be manageable in terms of its scope and complexity. It should be specific enough to be investigated within the available time and resources, and it should be broad enough to provide meaningful results.

Advantages of Research Problem

The advantages of a well-defined research problem are as follows:

  • Focus : A research problem provides a clear and focused direction for the research study. It ensures that the study stays on track and does not deviate from the research question.
  • Clarity : A research problem provides clarity and specificity to the research question. It ensures that the research is not too broad or too narrow and that the research objectives are clearly defined.
  • Relevance : A research problem ensures that the research study is relevant to the field of study and contributes to the existing body of knowledge. It addresses gaps in knowledge, theoretical or practical problems, or real-world issues that require further investigation.
  • Feasibility : A research problem ensures that the research study is feasible in terms of the availability of data, resources, and research methods. It ensures that the research is realistic and practical to conduct within the available time, budget, and resources.
  • Novelty : A research problem ensures that the research study is original and innovative. It represents a new or unique perspective on an existing problem, explores a new area of study, or applies an existing theory to a new context.
  • Importance : A research problem ensures that the research study is important and significant in terms of its potential impact on the field or society. It has the potential to produce new knowledge, advance existing theories, or address a pressing societal issue.
  • Rigor : A research problem ensures that the research study is rigorous and follows established research methods and practices. It ensures that the research is conducted in a systematic, objective, and unbiased manner.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Appendices

Appendices – Writing Guide, Types and Examples

Research Paper

Research Paper – Structure, Examples and Writing...

Implications in Research

Implications in Research – Types, Examples and...

Theoretical Framework

Theoretical Framework – Types, Examples and...

Data Verification

Data Verification – Process, Types and Examples

Research Contribution

Research Contribution – Thesis Guide

Educational resources and simple solutions for your research journey

research problems

What is a Research Problem? Characteristics, Types, and Examples

What is a Research Problem? Characteristics, Types, and Examples

A research problem is a gap in existing knowledge, a contradiction in an established theory, or a real-world challenge that a researcher aims to address in their research. It is at the heart of any scientific inquiry, directing the trajectory of an investigation. The statement of a problem orients the reader to the importance of the topic, sets the problem into a particular context, and defines the relevant parameters, providing the framework for reporting the findings. Therein lies the importance of research problem s.  

The formulation of well-defined research questions is central to addressing a research problem . A research question is a statement made in a question form to provide focus, clarity, and structure to the research endeavor. This helps the researcher design methodologies, collect data, and analyze results in a systematic and coherent manner. A study may have one or more research questions depending on the nature of the study.   

what methods are adequate for defining the research problem

Identifying and addressing a research problem is very important. By starting with a pertinent problem , a scholar can contribute to the accumulation of evidence-based insights, solutions, and scientific progress, thereby advancing the frontier of research. Moreover, the process of formulating research problems and posing pertinent research questions cultivates critical thinking and hones problem-solving skills.   

Table of Contents

What is a Research Problem ?  

Before you conceive of your project, you need to ask yourself “ What is a research problem ?” A research problem definition can be broadly put forward as the primary statement of a knowledge gap or a fundamental challenge in a field, which forms the foundation for research. Conversely, the findings from a research investigation provide solutions to the problem .  

A research problem guides the selection of approaches and methodologies, data collection, and interpretation of results to find answers or solutions. A well-defined problem determines the generation of valuable insights and contributions to the broader intellectual discourse.  

Characteristics of a Research Problem  

Knowing the characteristics of a research problem is instrumental in formulating a research inquiry; take a look at the five key characteristics below:  

Novel : An ideal research problem introduces a fresh perspective, offering something new to the existing body of knowledge. It should contribute original insights and address unresolved matters or essential knowledge.   

Significant : A problem should hold significance in terms of its potential impact on theory, practice, policy, or the understanding of a particular phenomenon. It should be relevant to the field of study, addressing a gap in knowledge, a practical concern, or a theoretical dilemma that holds significance.  

Feasible: A practical research problem allows for the formulation of hypotheses and the design of research methodologies. A feasible research problem is one that can realistically be investigated given the available resources, time, and expertise. It should not be too broad or too narrow to explore effectively, and should be measurable in terms of its variables and outcomes. It should be amenable to investigation through empirical research methods, such as data collection and analysis, to arrive at meaningful conclusions A practical research problem considers budgetary and time constraints, as well as limitations of the problem . These limitations may arise due to constraints in methodology, resources, or the complexity of the problem.  

Clear and specific : A well-defined research problem is clear and specific, leaving no room for ambiguity; it should be easily understandable and precisely articulated. Ensuring specificity in the problem ensures that it is focused, addresses a distinct aspect of the broader topic and is not vague.  

Rooted in evidence: A good research problem leans on trustworthy evidence and data, while dismissing unverifiable information. It must also consider ethical guidelines, ensuring the well-being and rights of any individuals or groups involved in the study.

what methods are adequate for defining the research problem

Types of Research Problems  

Across fields and disciplines, there are different types of research problems . We can broadly categorize them into three types.  

  • Theoretical research problems

Theoretical research problems deal with conceptual and intellectual inquiries that may not involve empirical data collection but instead seek to advance our understanding of complex concepts, theories, and phenomena within their respective disciplines. For example, in the social sciences, research problem s may be casuist (relating to the determination of right and wrong in questions of conduct or conscience), difference (comparing or contrasting two or more phenomena), descriptive (aims to describe a situation or state), or relational (investigating characteristics that are related in some way).  

Here are some theoretical research problem examples :   

  • Ethical frameworks that can provide coherent justifications for artificial intelligence and machine learning algorithms, especially in contexts involving autonomous decision-making and moral agency.  
  • Determining how mathematical models can elucidate the gradual development of complex traits, such as intricate anatomical structures or elaborate behaviors, through successive generations.  
  • Applied research problems

Applied or practical research problems focus on addressing real-world challenges and generating practical solutions to improve various aspects of society, technology, health, and the environment.  

Here are some applied research problem examples :   

  • Studying the use of precision agriculture techniques to optimize crop yield and minimize resource waste.  
  • Designing a more energy-efficient and sustainable transportation system for a city to reduce carbon emissions.  
  • Action research problems

Action research problems aim to create positive change within specific contexts by involving stakeholders, implementing interventions, and evaluating outcomes in a collaborative manner.  

Here are some action research problem examples :   

  • Partnering with healthcare professionals to identify barriers to patient adherence to medication regimens and devising interventions to address them.  
  • Collaborating with a nonprofit organization to evaluate the effectiveness of their programs aimed at providing job training for underserved populations.  

These different types of research problems may give you some ideas when you plan on developing your own.  

How to Define a Research Problem  

You might now ask “ How to define a research problem ?” These are the general steps to follow:   

  • Look for a broad problem area: Identify under-explored aspects or areas of concern, or a controversy in your topic of interest. Evaluate the significance of addressing the problem in terms of its potential contribution to the field, practical applications, or theoretical insights.
  • Learn more about the problem: Read the literature, starting from historical aspects to the current status and latest updates. Rely on reputable evidence and data. Be sure to consult researchers who work in the relevant field, mentors, and peers. Do not ignore the gray literature on the subject.
  • Identify the relevant variables and how they are related: Consider which variables are most important to the study and will help answer the research question. Once this is done, you will need to determine the relationships between these variables and how these relationships affect the research problem . 
  • Think of practical aspects : Deliberate on ways that your study can be practical and feasible in terms of time and resources. Discuss practical aspects with researchers in the field and be open to revising the problem based on feedback. Refine the scope of the research problem to make it manageable and specific; consider the resources available, time constraints, and feasibility.
  • Formulate the problem statement: Craft a concise problem statement that outlines the specific issue, its relevance, and why it needs further investigation.
  • Stick to plans, but be flexible: When defining the problem , plan ahead but adhere to your budget and timeline. At the same time, consider all possibilities and ensure that the problem and question can be modified if needed.

what methods are adequate for defining the research problem

Key Takeaways  

  • A research problem concerns an area of interest, a situation necessitating improvement, an obstacle requiring eradication, or a challenge in theory or practical applications.   
  • The importance of research problem is that it guides the research and helps advance human understanding and the development of practical solutions.  
  • Research problem definition begins with identifying a broad problem area, followed by learning more about the problem, identifying the variables and how they are related, considering practical aspects, and finally developing the problem statement.  
  • Different types of research problems include theoretical, applied, and action research problems , and these depend on the discipline and nature of the study.  
  • An ideal problem is original, important, feasible, specific, and based on evidence.  

Frequently Asked Questions  

Why is it important to define a research problem?  

Identifying potential issues and gaps as research problems is important for choosing a relevant topic and for determining a well-defined course of one’s research. Pinpointing a problem and formulating research questions can help researchers build their critical thinking, curiosity, and problem-solving abilities.   

How do I identify a research problem?  

Identifying a research problem involves recognizing gaps in existing knowledge, exploring areas of uncertainty, and assessing the significance of addressing these gaps within a specific field of study. This process often involves thorough literature review, discussions with experts, and considering practical implications.  

Can a research problem change during the research process?  

Yes, a research problem can change during the research process. During the course of an investigation a researcher might discover new perspectives, complexities, or insights that prompt a reevaluation of the initial problem. The scope of the problem, unforeseen or unexpected issues, or other limitations might prompt some tweaks. You should be able to adjust the problem to ensure that the study remains relevant and aligned with the evolving understanding of the subject matter.

How does a research problem relate to research questions or hypotheses?  

A research problem sets the stage for the study. Next, research questions refine the direction of investigation by breaking down the broader research problem into manageable components. Research questions are formulated based on the problem , guiding the investigation’s scope and objectives. The hypothesis provides a testable statement to validate or refute within the research process. All three elements are interconnected and work together to guide the research.  

R Discovery is a literature search and research reading platform that accelerates your research discovery journey by keeping you updated on the latest, most relevant scholarly content. With 250M+ research articles sourced from trusted aggregators like CrossRef, Unpaywall, PubMed, PubMed Central, Open Alex and top publishing houses like Springer Nature, JAMA, IOP, Taylor & Francis, NEJM, BMJ, Karger, SAGE, Emerald Publishing and more, R Discovery puts a world of research at your fingertips.  

Try R Discovery Prime FREE for 1 week or upgrade at just US$72 a year to access premium features that let you listen to research on the go, read in your language, collaborate with peers, auto sync with reference managers, and much more. Choose a simpler, smarter way to find and read research – Download the app and start your free 7-day trial today !  

Related Posts

trends in science communication

What is Research Impact: Types and Tips for Academics

Research in Shorts

Research in Shorts: R Discovery’s New Feature Helps Academics Assess Relevant Papers in 2mins 

what methods are adequate for defining the research problem

The Research Problem & Statement

What they are & how to write them (with examples)

By: Derek Jansen (MBA) | Expert Reviewed By: Eunice Rautenbach (DTech) | March 2023

If you’re new to academic research, you’re bound to encounter the concept of a “ research problem ” or “ problem statement ” fairly early in your learning journey. Having a good research problem is essential, as it provides a foundation for developing high-quality research, from relatively small research papers to a full-length PhD dissertations and theses.

In this post, we’ll unpack what a research problem is and how it’s related to a problem statement . We’ll also share some examples and provide a step-by-step process you can follow to identify and evaluate study-worthy research problems for your own project.

Overview: Research Problem 101

What is a research problem.

  • What is a problem statement?

Where do research problems come from?

  • How to find a suitable research problem
  • Key takeaways

A research problem is, at the simplest level, the core issue that a study will try to solve or (at least) examine. In other words, it’s an explicit declaration about the problem that your dissertation, thesis or research paper will address. More technically, it identifies the research gap that the study will attempt to fill (more on that later).

Let’s look at an example to make the research problem a little more tangible.

To justify a hypothetical study, you might argue that there’s currently a lack of research regarding the challenges experienced by first-generation college students when writing their dissertations [ PROBLEM ] . As a result, these students struggle to successfully complete their dissertations, leading to higher-than-average dropout rates [ CONSEQUENCE ]. Therefore, your study will aim to address this lack of research – i.e., this research problem [ SOLUTION ].

A research problem can be theoretical in nature, focusing on an area of academic research that is lacking in some way. Alternatively, a research problem can be more applied in nature, focused on finding a practical solution to an established problem within an industry or an organisation. In other words, theoretical research problems are motivated by the desire to grow the overall body of knowledge , while applied research problems are motivated by the need to find practical solutions to current real-world problems (such as the one in the example above).

As you can probably see, the research problem acts as the driving force behind any study , as it directly shapes the research aims, objectives and research questions , as well as the research approach. Therefore, it’s really important to develop a very clearly articulated research problem before you even start your research proposal . A vague research problem will lead to unfocused, potentially conflicting research aims, objectives and research questions .

Free Webinar: How To Find A Dissertation Research Topic

What is a research problem statement?

As the name suggests, a problem statement (within a research context, at least) is an explicit statement that clearly and concisely articulates the specific research problem your study will address. While your research problem can span over multiple paragraphs, your problem statement should be brief , ideally no longer than one paragraph . Importantly, it must clearly state what the problem is (whether theoretical or practical in nature) and how the study will address it.

Here’s an example of a statement of the problem in a research context:

Rural communities across Ghana lack access to clean water, leading to high rates of waterborne illnesses and infant mortality. Despite this, there is little research investigating the effectiveness of community-led water supply projects within the Ghanaian context. Therefore, this study aims to investigate the effectiveness of such projects in improving access to clean water and reducing rates of waterborne illnesses in these communities.

As you can see, this problem statement clearly and concisely identifies the issue that needs to be addressed (i.e., a lack of research regarding the effectiveness of community-led water supply projects) and the research question that the study aims to answer (i.e., are community-led water supply projects effective in reducing waterborne illnesses?), all within one short paragraph.

Need a helping hand?

what methods are adequate for defining the research problem

Wherever there is a lack of well-established and agreed-upon academic literature , there is an opportunity for research problems to arise, since there is a paucity of (credible) knowledge. In other words, research problems are derived from research gaps . These gaps can arise from various sources, including the emergence of new frontiers or new contexts, as well as disagreements within the existing research.

Let’s look at each of these scenarios:

New frontiers – new technologies, discoveries or breakthroughs can open up entirely new frontiers where there is very little existing research, thereby creating fresh research gaps. For example, as generative AI technology became accessible to the general public in 2023, the full implications and knock-on effects of this were (or perhaps, still are) largely unknown and therefore present multiple avenues for researchers to explore.

New contexts – very often, existing research tends to be concentrated on specific contexts and geographies. Therefore, even within well-studied fields, there is often a lack of research within niche contexts. For example, just because a study finds certain results within a western context doesn’t mean that it would necessarily find the same within an eastern context. If there’s reason to believe that results may vary across these geographies, a potential research gap emerges.

Disagreements – within many areas of existing research, there are (quite naturally) conflicting views between researchers, where each side presents strong points that pull in opposing directions. In such cases, it’s still somewhat uncertain as to which viewpoint (if any) is more accurate. As a result, there is room for further research in an attempt to “settle” the debate.

Of course, many other potential scenarios can give rise to research gaps, and consequently, research problems, but these common ones are a useful starting point. If you’re interested in research gaps, you can learn more here .

How to find a research problem

Given that research problems flow from research gaps , finding a strong research problem for your research project means that you’ll need to first identify a clear research gap. Below, we’ll present a four-step process to help you find and evaluate potential research problems.

If you’ve read our other articles about finding a research topic , you’ll find the process below very familiar as the research problem is the foundation of any study . In other words, finding a research problem is much the same as finding a research topic.

Step 1 – Identify your area of interest

Naturally, the starting point is to first identify a general area of interest . Chances are you already have something in mind, but if not, have a look at past dissertations and theses within your institution to get some inspiration. These present a goldmine of information as they’ll not only give you ideas for your own research, but they’ll also help you see exactly what the norms and expectations are for these types of projects.

At this stage, you don’t need to get super specific. The objective is simply to identify a couple of potential research areas that interest you. For example, if you’re undertaking research as part of a business degree, you may be interested in social media marketing strategies for small businesses, leadership strategies for multinational companies, etc.

Depending on the type of project you’re undertaking, there may also be restrictions or requirements regarding what topic areas you’re allowed to investigate, what type of methodology you can utilise, etc. So, be sure to first familiarise yourself with your institution’s specific requirements and keep these front of mind as you explore potential research ideas.

Step 2 – Review the literature and develop a shortlist

Once you’ve decided on an area that interests you, it’s time to sink your teeth into the literature . In other words, you’ll need to familiarise yourself with the existing research regarding your interest area. Google Scholar is a good starting point for this, as you can simply enter a few keywords and quickly get a feel for what’s out there. Keep an eye out for recent literature reviews and systematic review-type journal articles, as these will provide a good overview of the current state of research.

At this stage, you don’t need to read every journal article from start to finish . A good strategy is to pay attention to the abstract, intro and conclusion , as together these provide a snapshot of the key takeaways. As you work your way through the literature, keep an eye out for what’s missing – in other words, what questions does the current research not answer adequately (or at all)? Importantly, pay attention to the section titled “ further research is needed ”, typically found towards the very end of each journal article. This section will specifically outline potential research gaps that you can explore, based on the current state of knowledge (provided the article you’re looking at is recent).

Take the time to engage with the literature and develop a big-picture understanding of the current state of knowledge. Reviewing the literature takes time and is an iterative process , but it’s an essential part of the research process, so don’t cut corners at this stage.

As you work through the review process, take note of any potential research gaps that are of interest to you. From there, develop a shortlist of potential research gaps (and resultant research problems) – ideally 3 – 5 options that interest you.

The relationship between the research problem and research gap

Step 3 – Evaluate your potential options

Once you’ve developed your shortlist, you’ll need to evaluate your options to identify a winner. There are many potential evaluation criteria that you can use, but we’ll outline three common ones here: value, practicality and personal appeal.

Value – a good research problem needs to create value when successfully addressed. Ask yourself:

  • Who will this study benefit (e.g., practitioners, researchers, academia)?
  • How will it benefit them specifically?
  • How much will it benefit them?

Practicality – a good research problem needs to be manageable in light of your resources. Ask yourself:

  • What data will I need access to?
  • What knowledge and skills will I need to undertake the analysis?
  • What equipment or software will I need to process and/or analyse the data?
  • How much time will I need?
  • What costs might I incur?

Personal appeal – a research project is a commitment, so the research problem that you choose needs to be genuinely attractive and interesting to you. Ask yourself:

  • How appealing is the prospect of solving this research problem (on a scale of 1 – 10)?
  • Why, specifically, is it attractive (or unattractive) to me?
  • Does the research align with my longer-term goals (e.g., career goals, educational path, etc)?

Depending on how many potential options you have, you may want to consider creating a spreadsheet where you numerically rate each of the options in terms of these criteria. Remember to also include any criteria specified by your institution . From there, tally up the numbers and pick a winner.

Step 4 – Craft your problem statement

Once you’ve selected your research problem, the final step is to craft a problem statement. Remember, your problem statement needs to be a concise outline of what the core issue is and how your study will address it. Aim to fit this within one paragraph – don’t waffle on. Have a look at the problem statement example we mentioned earlier if you need some inspiration.

Key Takeaways

We’ve covered a lot of ground. Let’s do a quick recap of the key takeaways:

  • A research problem is an explanation of the issue that your study will try to solve. This explanation needs to highlight the problem , the consequence and the solution or response.
  • A problem statement is a clear and concise summary of the research problem , typically contained within one paragraph.
  • Research problems emerge from research gaps , which themselves can emerge from multiple potential sources, including new frontiers, new contexts or disagreements within the existing literature.
  • To find a research problem, you need to first identify your area of interest , then review the literature and develop a shortlist, after which you’ll evaluate your options, select a winner and craft a problem statement .

what methods are adequate for defining the research problem

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

Mahmood Abdulrahman Chiroma

I APPRECIATE YOUR CONCISE AND MIND-CAPTIVATING INSIGHTS ON THE STATEMENT OF PROBLEMS. PLEASE I STILL NEED SOME SAMPLES RELATED TO SUICIDES.

Poonam

Very pleased and appreciate clear information.

Tabatha Cotto

Your videos and information have been a life saver for me throughout my dissertation journey. I wish I’d discovered them sooner. Thank you!

Esther Yateesa

Very interesting. Thank you. Please I need a PhD topic in climate change in relation to health.

BEATRIZ VALLEJO MAESTRE

Your posts have provided a clear, easy to understand, motivating literature, mainly when these topics tend to be considered “boring” in some careers.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

what methods are adequate for defining the research problem

  • Print Friendly
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 6. The Methodology
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The methods section describes actions taken to investigate a research problem and the rationale for the application of specific procedures or techniques used to identify, select, process, and analyze information applied to understanding the problem, thereby, allowing the reader to critically evaluate a study’s overall validity and reliability. The methodology section of a research paper answers two main questions: How was the data collected or generated? And, how was it analyzed? The writing should be direct and precise and always written in the past tense.

Kallet, Richard H. "How to Write the Methods Section of a Research Paper." Respiratory Care 49 (October 2004): 1229-1232.

Importance of a Good Methodology Section

You must explain how you obtained and analyzed your results for the following reasons:

  • Readers need to know how the data was obtained because the method you chose affects the results and, by extension, how you interpreted their significance in the discussion section of your paper.
  • Methodology is crucial for any branch of scholarship because an unreliable method produces unreliable results and, as a consequence, undermines the value of your analysis of the findings.
  • In most cases, there are a variety of different methods you can choose to investigate a research problem. The methodology section of your paper should clearly articulate the reasons why you have chosen a particular procedure or technique.
  • The reader wants to know that the data was collected or generated in a way that is consistent with accepted practice in the field of study. For example, if you are using a multiple choice questionnaire, readers need to know that it offered your respondents a reasonable range of answers to choose from.
  • The method must be appropriate to fulfilling the overall aims of the study. For example, you need to ensure that you have a large enough sample size to be able to generalize and make recommendations based upon the findings.
  • The methodology should discuss the problems that were anticipated and the steps you took to prevent them from occurring. For any problems that do arise, you must describe the ways in which they were minimized or why these problems do not impact in any meaningful way your interpretation of the findings.
  • In the social and behavioral sciences, it is important to always provide sufficient information to allow other researchers to adopt or replicate your methodology. This information is particularly important when a new method has been developed or an innovative use of an existing method is utilized.

Bem, Daryl J. Writing the Empirical Journal Article. Psychology Writing Center. University of Washington; Denscombe, Martyn. The Good Research Guide: For Small-Scale Social Research Projects . 5th edition. Buckingham, UK: Open University Press, 2014; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008.

Structure and Writing Style

I.  Groups of Research Methods

There are two main groups of research methods in the social sciences:

  • The e mpirical-analytical group approaches the study of social sciences in a similar manner that researchers study the natural sciences . This type of research focuses on objective knowledge, research questions that can be answered yes or no, and operational definitions of variables to be measured. The empirical-analytical group employs deductive reasoning that uses existing theory as a foundation for formulating hypotheses that need to be tested. This approach is focused on explanation.
  • The i nterpretative group of methods is focused on understanding phenomenon in a comprehensive, holistic way . Interpretive methods focus on analytically disclosing the meaning-making practices of human subjects [the why, how, or by what means people do what they do], while showing how those practices arrange so that it can be used to generate observable outcomes. Interpretive methods allow you to recognize your connection to the phenomena under investigation. However, the interpretative group requires careful examination of variables because it focuses more on subjective knowledge.

II.  Content

The introduction to your methodology section should begin by restating the research problem and underlying assumptions underpinning your study. This is followed by situating the methods you used to gather, analyze, and process information within the overall “tradition” of your field of study and within the particular research design you have chosen to study the problem. If the method you choose lies outside of the tradition of your field [i.e., your review of the literature demonstrates that the method is not commonly used], provide a justification for how your choice of methods specifically addresses the research problem in ways that have not been utilized in prior studies.

The remainder of your methodology section should describe the following:

  • Decisions made in selecting the data you have analyzed or, in the case of qualitative research, the subjects and research setting you have examined,
  • Tools and methods used to identify and collect information, and how you identified relevant variables,
  • The ways in which you processed the data and the procedures you used to analyze that data, and
  • The specific research tools or strategies that you utilized to study the underlying hypothesis and research questions.

In addition, an effectively written methodology section should:

  • Introduce the overall methodological approach for investigating your research problem . Is your study qualitative or quantitative or a combination of both (mixed method)? Are you going to take a special approach, such as action research, or a more neutral stance?
  • Indicate how the approach fits the overall research design . Your methods for gathering data should have a clear connection to your research problem. In other words, make sure that your methods will actually address the problem. One of the most common deficiencies found in research papers is that the proposed methodology is not suitable to achieving the stated objective of your paper.
  • Describe the specific methods of data collection you are going to use , such as, surveys, interviews, questionnaires, observation, archival research. If you are analyzing existing data, such as a data set or archival documents, describe how it was originally created or gathered and by whom. Also be sure to explain how older data is still relevant to investigating the current research problem.
  • Explain how you intend to analyze your results . Will you use statistical analysis? Will you use specific theoretical perspectives to help you analyze a text or explain observed behaviors? Describe how you plan to obtain an accurate assessment of relationships, patterns, trends, distributions, and possible contradictions found in the data.
  • Provide background and a rationale for methodologies that are unfamiliar for your readers . Very often in the social sciences, research problems and the methods for investigating them require more explanation/rationale than widely accepted rules governing the natural and physical sciences. Be clear and concise in your explanation.
  • Provide a justification for subject selection and sampling procedure . For instance, if you propose to conduct interviews, how do you intend to select the sample population? If you are analyzing texts, which texts have you chosen, and why? If you are using statistics, why is this set of data being used? If other data sources exist, explain why the data you chose is most appropriate to addressing the research problem.
  • Provide a justification for case study selection . A common method of analyzing research problems in the social sciences is to analyze specific cases. These can be a person, place, event, phenomenon, or other type of subject of analysis that are either examined as a singular topic of in-depth investigation or multiple topics of investigation studied for the purpose of comparing or contrasting findings. In either method, you should explain why a case or cases were chosen and how they specifically relate to the research problem.
  • Describe potential limitations . Are there any practical limitations that could affect your data collection? How will you attempt to control for potential confounding variables and errors? If your methodology may lead to problems you can anticipate, state this openly and show why pursuing this methodology outweighs the risk of these problems cropping up.

NOTE:   Once you have written all of the elements of the methods section, subsequent revisions should focus on how to present those elements as clearly and as logically as possibly. The description of how you prepared to study the research problem, how you gathered the data, and the protocol for analyzing the data should be organized chronologically. For clarity, when a large amount of detail must be presented, information should be presented in sub-sections according to topic. If necessary, consider using appendices for raw data.

ANOTHER NOTE: If you are conducting a qualitative analysis of a research problem , the methodology section generally requires a more elaborate description of the methods used as well as an explanation of the processes applied to gathering and analyzing of data than is generally required for studies using quantitative methods. Because you are the primary instrument for generating the data [e.g., through interviews or observations], the process for collecting that data has a significantly greater impact on producing the findings. Therefore, qualitative research requires a more detailed description of the methods used.

YET ANOTHER NOTE:   If your study involves interviews, observations, or other qualitative techniques involving human subjects , you may be required to obtain approval from the university's Office for the Protection of Research Subjects before beginning your research. This is not a common procedure for most undergraduate level student research assignments. However, i f your professor states you need approval, you must include a statement in your methods section that you received official endorsement and adequate informed consent from the office and that there was a clear assessment and minimization of risks to participants and to the university. This statement informs the reader that your study was conducted in an ethical and responsible manner. In some cases, the approval notice is included as an appendix to your paper.

III.  Problems to Avoid

Irrelevant Detail The methodology section of your paper should be thorough but concise. Do not provide any background information that does not directly help the reader understand why a particular method was chosen, how the data was gathered or obtained, and how the data was analyzed in relation to the research problem [note: analyzed, not interpreted! Save how you interpreted the findings for the discussion section]. With this in mind, the page length of your methods section will generally be less than any other section of your paper except the conclusion.

Unnecessary Explanation of Basic Procedures Remember that you are not writing a how-to guide about a particular method. You should make the assumption that readers possess a basic understanding of how to investigate the research problem on their own and, therefore, you do not have to go into great detail about specific methodological procedures. The focus should be on how you applied a method , not on the mechanics of doing a method. An exception to this rule is if you select an unconventional methodological approach; if this is the case, be sure to explain why this approach was chosen and how it enhances the overall process of discovery.

Problem Blindness It is almost a given that you will encounter problems when collecting or generating your data, or, gaps will exist in existing data or archival materials. Do not ignore these problems or pretend they did not occur. Often, documenting how you overcame obstacles can form an interesting part of the methodology. It demonstrates to the reader that you can provide a cogent rationale for the decisions you made to minimize the impact of any problems that arose.

Literature Review Just as the literature review section of your paper provides an overview of sources you have examined while researching a particular topic, the methodology section should cite any sources that informed your choice and application of a particular method [i.e., the choice of a survey should include any citations to the works you used to help construct the survey].

It’s More than Sources of Information! A description of a research study's method should not be confused with a description of the sources of information. Such a list of sources is useful in and of itself, especially if it is accompanied by an explanation about the selection and use of the sources. The description of the project's methodology complements a list of sources in that it sets forth the organization and interpretation of information emanating from those sources.

Azevedo, L.F. et al. "How to Write a Scientific Paper: Writing the Methods Section." Revista Portuguesa de Pneumologia 17 (2011): 232-238; Blair Lorrie. “Choosing a Methodology.” In Writing a Graduate Thesis or Dissertation , Teaching Writing Series. (Rotterdam: Sense Publishers 2016), pp. 49-72; Butin, Dan W. The Education Dissertation A Guide for Practitioner Scholars . Thousand Oaks, CA: Corwin, 2010; Carter, Susan. Structuring Your Research Thesis . New York: Palgrave Macmillan, 2012; Kallet, Richard H. “How to Write the Methods Section of a Research Paper.” Respiratory Care 49 (October 2004):1229-1232; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008. Methods Section. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Rudestam, Kjell Erik and Rae R. Newton. “The Method Chapter: Describing Your Research Plan.” In Surviving Your Dissertation: A Comprehensive Guide to Content and Process . (Thousand Oaks, Sage Publications, 2015), pp. 87-115; What is Interpretive Research. Institute of Public and International Affairs, University of Utah; Writing the Experimental Report: Methods, Results, and Discussion. The Writing Lab and The OWL. Purdue University; Methods and Materials. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College.

Writing Tip

Statistical Designs and Tests? Do Not Fear Them!

Don't avoid using a quantitative approach to analyzing your research problem just because you fear the idea of applying statistical designs and tests. A qualitative approach, such as conducting interviews or content analysis of archival texts, can yield exciting new insights about a research problem, but it should not be undertaken simply because you have a disdain for running a simple regression. A well designed quantitative research study can often be accomplished in very clear and direct ways, whereas, a similar study of a qualitative nature usually requires considerable time to analyze large volumes of data and a tremendous burden to create new paths for analysis where previously no path associated with your research problem had existed.

To locate data and statistics, GO HERE .

Another Writing Tip

Knowing the Relationship Between Theories and Methods

There can be multiple meaning associated with the term "theories" and the term "methods" in social sciences research. A helpful way to delineate between them is to understand "theories" as representing different ways of characterizing the social world when you research it and "methods" as representing different ways of generating and analyzing data about that social world. Framed in this way, all empirical social sciences research involves theories and methods, whether they are stated explicitly or not. However, while theories and methods are often related, it is important that, as a researcher, you deliberately separate them in order to avoid your theories playing a disproportionate role in shaping what outcomes your chosen methods produce.

Introspectively engage in an ongoing dialectic between the application of theories and methods to help enable you to use the outcomes from your methods to interrogate and develop new theories, or ways of framing conceptually the research problem. This is how scholarship grows and branches out into new intellectual territory.

Reynolds, R. Larry. Ways of Knowing. Alternative Microeconomics . Part 1, Chapter 3. Boise State University; The Theory-Method Relationship. S-Cool Revision. United Kingdom.

Yet Another Writing Tip

Methods and the Methodology

Do not confuse the terms "methods" and "methodology." As Schneider notes, a method refers to the technical steps taken to do research . Descriptions of methods usually include defining and stating why you have chosen specific techniques to investigate a research problem, followed by an outline of the procedures you used to systematically select, gather, and process the data [remember to always save the interpretation of data for the discussion section of your paper].

The methodology refers to a discussion of the underlying reasoning why particular methods were used . This discussion includes describing the theoretical concepts that inform the choice of methods to be applied, placing the choice of methods within the more general nature of academic work, and reviewing its relevance to examining the research problem. The methodology section also includes a thorough review of the methods other scholars have used to study the topic.

Bryman, Alan. "Of Methods and Methodology." Qualitative Research in Organizations and Management: An International Journal 3 (2008): 159-168; Schneider, Florian. “What's in a Methodology: The Difference between Method, Methodology, and Theory…and How to Get the Balance Right?” PoliticsEastAsia.com. Chinese Department, University of Leiden, Netherlands.

  • << Previous: Scholarly vs. Popular Publications
  • Next: Qualitative Methods >>
  • Last Updated: Sep 4, 2024 9:40 AM
  • URL: https://libguides.usc.edu/writingguide

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • Product Demos
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence
  • Market Research
  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO

what methods are adequate for defining the research problem

Academic Experience

How to identify and resolve research problems

Updated August 23, 2024

In this article, we’re going to take you through one of the most pertinent parts of conducting research: a research problem (also known as a research problem statement).

When trying to formulate a good research statement, and understand how to solve it for complex projects, it can be difficult to know where to start.

Not only are there multiple perspectives (from stakeholders to project marketers who want answers), you have to consider the particular context of the research topic: is it timely, is it relevant and most importantly of all, is it valuable?

In other words: are you looking at a research worthy problem?

The fact is, a well-defined, precise, and goal-centric research problem will keep your researchers, stakeholders, and business-focused and your results actionable.

And when it works well, it's a powerful tool to identify practical solutions that can drive change and secure buy-in from your workforce.

Free eBook: The ultimate guide to market research

What is a research problem?

In social research methodology and behavioral sciences , a research problem establishes the direction of research, often relating to a specific topic or opportunity for discussion.

For example: climate change and sustainability, analyzing moral dilemmas or wage disparity amongst classes could all be areas that the research problem focuses on.

As well as outlining the topic and/or opportunity, a research problem will explain:

  • why the area/issue needs to be addressed,
  • why the area/issue is of importance,
  • the parameters of the research study
  • the research objective
  • the reporting framework for the results and
  • what the overall benefit of doing so will provide (whether to society as a whole or other researchers and projects).

Having identified the main topic or opportunity for discussion, you can then narrow it down into one or several specific questions that can be scrutinized and answered through the research process.

What are research questions?

Generating research questions underpinning your study usually starts with problems that require further research and understanding while fulfilling the objectives of the study.

A good problem statement begins by asking deeper questions to gain insights about a specific topic.

For example, using the problems above, our questions could be:

"How will climate change policies influence sustainability standards across specific geographies?"

"What measures can be taken to address wage disparity without increasing inflation?"

Developing a research worthy problem is the first step - and one of the most important - in any kind of research.

It’s also a task that will come up again and again because any business research process is cyclical. New questions arise as you iterate and progress through discovering, refining, and improving your products and processes. A research question can also be referred to as a "problem statement".

Note: good research supports multiple perspectives through empirical data. It’s focused on key concepts rather than a broad area, providing readily actionable insight and areas for further research.

Research question or research problem?

As we've highlighted, the terms “research question” and “research problem” are often used interchangeably, becoming a vague or broad proposition for many.

The term "problem statement" is far more representative, but finds little use among academics.

Instead, some researchers think in terms of a single research problem and several research questions that arise from it.

As mentioned above, the questions are lines of inquiry to explore in trying to solve the overarching research problem.

Ultimately, this provides a more meaningful understanding of a topic area.

It may be useful to think of questions and problems as coming out of your business data – that’s the O-data (otherwise known as operational data) like sales figures and website metrics.

What's an example of a research problem?

Your overall research problem could be: "How do we improve sales across EMEA and reduce lost deals?"

This research problem then has a subset of questions, such as:

"Why do sales peak at certain times of the day?"

"Why are customers abandoning their online carts at the point of sale?"

As well as helping you to solve business problems, research problems (and associated questions) help you to think critically about topics and/or issues (business or otherwise). You can also use your old research to aid future research -- a good example is laying the foundation for comparative trend reports or a complex research project.

(Also, if you want to see the bigger picture when it comes to research problems, why not check out our ultimate guide to market research? In it you'll find out: what effective market research looks like, the use cases for market research, carrying out a research study, and how to examine and action research findings).

The research process: why are research problems important?

A research problem has two essential roles in setting your research project on a course for success.

1. They set the scope

The research problem defines what problem or opportunity you’re looking at and what your research goals are. It stops you from getting side-tracked or allowing the scope of research to creep off-course .

Without a strong research problem or problem statement, your team could end up spending resources unnecessarily, or coming up with results that aren’t actionable - or worse, harmful to your business - because the field of study is too broad.

2. They tie your work to business goals and actions

To formulate a research problem in terms of business decisions means you always have clarity on what’s needed to make those decisions. You can show the effects of what you’ve studied using real outcomes.

Then, by focusing your research problem statement on a series of questions tied to business objectives, you can reduce the risk of the research being unactionable or inaccurate.

It's also worth examining research or other scholarly literature (you’ll find plenty of similar, pertinent research online) to see how others have explored specific topics and noting implications that could have for your research.

Four steps to defining your research problem

Defining a research problem

Image credit: http://myfreeschooltanzania.blogspot.com/2014/11/defining-research-problem.html

1. Observe and identify

Businesses today have so much data that it can be difficult to know which problems to address first. Researchers also have business stakeholders who come to them with problems they would like to have explored. A researcher’s job is to sift through these inputs and discover exactly what higher-level trends and key concepts are worth investing in.

This often means asking questions and doing some initial investigation to decide which avenues to pursue. This could mean gathering interdisciplinary perspectives identifying additional expertise and contextual information.

Sometimes, a small-scale preliminary study might be worth doing to help get a more comprehensive understanding of the business context and needs, and to make sure your research problem addresses the most critical questions.

This could take the form of qualitative research using a few in-depth interviews , an environmental scan, or reviewing relevant literature.

The sales manager of a sportswear company has a problem: sales of trail running shoes are down year-on-year and she isn’t sure why. She approaches the company’s research team for input and they begin asking questions within the company and reviewing their knowledge of the wider market.

2. Review the key factors involved

As a marketing researcher, you must work closely with your team of researchers to define and test the influencing factors and the wider context involved in your study. These might include demographic and economic trends or the business environment affecting the question at hand. This is referred to as a relational research problem.

To do this, you have to identify the factors that will affect the research and begin formulating different methods to control them.

You also need to consider the relationships between factors and the degree of control you have over them. For example, you may be able to control the loading speed of your website but you can’t control the fluctuations of the stock market.

Doing this will help you determine whether the findings of your project will produce enough information to be worth the cost.

You need to determine:

  • which factors affect the solution to the research proposal.
  • which ones can be controlled and used for the purposes of the company, and to what extent.
  • the functional relationships between the factors.
  • which ones are critical to the solution of the research study.

The research team at the running shoe company is hard at work. They explore the factors involved and the context of why YoY sales are down for trail shoes, including things like what the company’s competitors are doing, what the weather has been like – affecting outdoor exercise – and the relative spend on marketing for the brand from year to year.

The final factor is within the company’s control, although the first two are not. They check the figures and determine marketing spend has a significant impact on the company.

3. Prioritize

Once you and your research team have a few observations, prioritize them based on their business impact and importance. It may be that you can answer more than one question with a single study, but don’t do it at the risk of losing focus on your overarching research problem.

Questions to ask:

  • Who? Who are the people with the problem? Are they end-users, stakeholders, teams within your business? Have you validated the information to see what the scale of the problem is?
  • What? What is its nature and what is the supporting evidence?
  • Why? What is the business case for solving the problem? How will it help?
  • Where? How does the problem manifest and where is it observed?

To help you understand all dimensions, you might want to consider focus groups or preliminary interviews with external (including consumers and existing customers) and internal (salespeople, managers, and other stakeholders) parties to provide what is sometimes much-needed insight into a particular set of questions or problems.

After observing and investigating, the running shoe researchers come up with a few candidate questions, including:

  • What is the relationship between US average temperatures and sales of our products year on year?
  • At present, how does our customer base rank Competitor X and Competitor Y’s trail running shoe compared to our brand?
  • What is the relationship between marketing spend and trail shoe product sales over the last 12 months?

They opt for the final question, because the variables involved are fully within the company’s control, and based on their initial research and stakeholder input, seem the most likely cause of the dive in sales. The research question is specific enough to keep the work on course towards an actionable result, but it allows for a few different avenues to be explored, such as the different budget allocations of offline and online marketing and the kinds of messaging used.

Get feedback from the key teams within your business to make sure everyone is aligned and has the same understanding of the research problem and questions, and the actions you hope to take based on the results. Now is also a good time to demonstrate the ROI of your research and lay out its potential benefits to your stakeholders.

Different groups may have different goals and perspectives on the issue. This step is vital for getting the necessary buy-in and pushing the project forward.

The running shoe company researchers now have everything they need to begin. They call a meeting with the sales manager and consult with the product team, marketing team, and C-suite to make sure everyone is aligned and has bought into the direction of the research topic. They identify and agree that the likely course of action will be a rethink of how marketing resources are allocated, and potentially testing out some new channels and messaging strategies .

Can you explore a broad area and is it practical to do so?

A broader research problem or report can be a great way to bring attention to prevalent issues, societal or otherwise, but are often undertaken by those with the resources to do so.

Take a typical government cybersecurity breach survey, for example. Most of these reports raise awareness of cybercrime, from the day-to-day threats businesses face to what security measures some organizations are taking. What these reports don't do, however, is provide actionable advice - mostly because every organization is different.

The point here is that while some researchers will explore a very complex issue in detail, others will provide only a snapshot to maintain interest and encourage further investigation. The "value" of the data is wholly determined by the recipients of it - and what information you choose to include.

To summarize, it can be practical to undertake a broader research problem, certainly, but it may not be possible to cover everything or provide the detail your audience needs. Likewise, a more systematic investigation of an issue or topic will be more valuable, but you may also find that you cover far less ground.

It's important to think about your research objectives and expected findings before going ahead.

Ensuring your research project is a success

A complex research project can be made significantly easier with clear research objectives, a descriptive research problem, and a central focus. All of which we've outlined in this article.

If you have previous research, even better. Use it as a benchmark

Remember: what separates a good research paper from an average one is actually very simple: valuable, empirical data that explores a prevalent societal or business issue and provides actionable insights.

And we can help.

Sophisticated research made simple with Qualtrics

Trusted by the world's best brands, our platform enables researchers from academic to corporate to tackle the hardest challenges and deliver the results that matter.

Our CoreXM platform supports the methods that define superior research and delivers insights in real-time. It's easy to use (thanks to drag-and-drop functionality) and requires no coding, meaning you'll be capturing data and gleaning insights in no time.

Satisfaction New York vs Massachusetts

It also excels in flexibility; you can track consumer behavior across segments , benchmark your company versus competitors , carry out complex academic research, and do much more, all from one system.

It's one platform with endless applications, so no matter your research problem, we've got the tools to help you solve it. And if you don't have a team of research experts in-house, our market research team has the practical knowledge and tools to help design the surveys and find the respondents you need.

Of course, you may want to know where to begin with your own market research . If you're struggling, make sure to download our ultimate guide using the link below.

It's got everything you need and there’s always information in our research methods knowledge base.

Scott Smith

Scott Smith, Ph.D. is a contributor to the Qualtrics blog.

Related Articles

April 1, 2023

How to write great survey questions (with examples)

February 8, 2023

Smoothing the transition from school to work with work-based learning

December 6, 2022

How customer experience helps bring Open Universities Australia’s brand promise to life

August 9, 2022

3 things that will improve your teachers’ school experience

August 2, 2022

Why a sense of belonging at school matters for K-12 students

July 14, 2022

Improve the student experience with simplified course evaluations

March 17, 2022

Understanding what’s important to college students

February 18, 2022

Malala: ‘Education transforms lives, communities, and countries’

Stay up to date with the latest xm thought leadership, tips and news., request demo.

Ready to learn more about Qualtrics?

Universal Teacher

  • Mobile Phone
  • Advertising

Techniques of Defining a Research Problem

Problem definition demands the task of setting up boundaries within which an investigator should study the problem with a pre-determined goal in mind. The best way to define the problem is unquestionably a tough job. Having said that, it is a task that needs to be handled smartly in order to prevent the perplexity experienced in a research procedure.

What are the Techniques of Defining a Research Problem in Research Methodology?

The technique involved in defining research problem has following steps :

  • Statement of the problem in a general way: The research problem needs to deal with either a particular practical operational issue or some scientific discovery. It may also be related to satisfaction or widening of a certain intellectual curiosity. No matter what the subject of research, the problem definition should in general be at a logical level. For this reason, the investigator should involve himself thoroughly in the topic relating to which he wants to pose a problem. In the case of social research, it is considered a good idea to do some field observation and as such the investigator may take on some type of preliminary survey or what is known as pilot survey. The problem mentioned in a broad general way could have numerous ambiguities that need to be fixed by cool thinking and rethinking about the issue. While doing so the feasibility of a specific alternative must be considered and the same should be kept in view while stating the problem.
  • Understand the nature of the problem: The next step in defining the problem is that the investigator should be aware of the cause and character of the problem in clear terms via discussions and study of the environment within which problem is to be solved.
  • Literature Survey: All accessible literature in connection with the issue at hand must necessarily be surveyed and examined before a definition of the research problem is provided. It helps a professional to take a look at current dimensions in that specific area and results in enhancement of knowledge. The researcher will have to dedicate adequate time in examining of research previously carried out on relevant problems. It is performed to discover what data and other materials, if any, are readily available for operational purposes. Being aware of what data can be obtained often acts to narrow the problem itself in addition to the technique that may be employed.

Figure 1 – Key Steps

  • Experiential Advice: Discussion related to a difficulty usually produces valuable information. People who have understanding or have rich experience in the area of research have turned out to be excellent sounding board for an investigator. Their suggestions and comment on research proposal help a researcher to get greater clarity and focus on his research topic. Chats with such people should not just be limited to the formulation of the particular problem at hand, but should also be related to the overall approach to the specific issue, techniques that could be used, feasible solutions, etc.
  • Rephrase the research problem: Quite often, a problem redefinition takes place when the steps mentioned above are carried out. Researcher often redefines the problem in a fashion that is more practical and logical for the conduct of the research in hand. This effort will also help with defining hypothesis.

Read Also: Necessity of Defining a Research Problem

In addition to what has been stated above about the techniques of defining a research problem . The following points should also be observed in the procedure of defining the problem :

(a) The researcher must clearly define the Technical terms, words, phrases, etc. (b) Basic assumptions concerning the research problem must be clearly mentioned. (c) The criteria for the selection of the problem needs to be clearly specified. (d) The researcher should also consider suitability of the time-period and the sources of data available. (e) The scope of the study or the boundaries within which the problem is to be studied needs to be stated clearly.

Research is an update technique for revitalization of new product or re-branding of old product to new product

thanks you I found several knowledge from your experience.

Speak Your Mind

Return to top of page

Privacy Policy   Copyright © 2024 · universalteacher.com

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Research process
  • How to Define a Research Problem | Ideas & Examples

How to Define a Research Problem | Ideas & Examples

Published on 8 November 2022 by Shona McCombes and Tegan George.

A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge.

Some research will do both of these things, but usually the research problem focuses on one or the other. The type of research problem you choose depends on your broad topic of interest and the type of research you think will fit best.

This article helps you identify and refine a research problem. When writing your research proposal or introduction , formulate it as a problem statement and/or research questions .

Table of contents

Why is the research problem important, step 1: identify a broad problem area, step 2: learn more about the problem, frequently asked questions about research problems.

Having an interesting topic isn’t a strong enough basis for academic research. Without a well-defined research problem, you are likely to end up with an unfocused and unmanageable project.

You might end up repeating what other people have already said, trying to say too much, or doing research without a clear purpose and justification. You need a clear problem in order to do research that contributes new and relevant insights.

Whether you’re planning your thesis , starting a research paper , or writing a research proposal , the research problem is the first step towards knowing exactly what you’ll do and why.

Prevent plagiarism, run a free check.

As you read about your topic, look for under-explored aspects or areas of concern, conflict, or controversy. Your goal is to find a gap that your research project can fill.

Practical research problems

If you are doing practical research, you can identify a problem by reading reports, following up on previous research, or talking to people who work in the relevant field or organisation. You might look for:

  • Issues with performance or efficiency
  • Processes that could be improved
  • Areas of concern among practitioners
  • Difficulties faced by specific groups of people

Examples of practical research problems

Voter turnout in New England has been decreasing, in contrast to the rest of the country.

The HR department of a local chain of restaurants has a high staff turnover rate.

A non-profit organisation faces a funding gap that means some of its programs will have to be cut.

Theoretical research problems

If you are doing theoretical research, you can identify a research problem by reading existing research, theory, and debates on your topic to find a gap in what is currently known about it. You might look for:

  • A phenomenon or context that has not been closely studied
  • A contradiction between two or more perspectives
  • A situation or relationship that is not well understood
  • A troubling question that has yet to be resolved

Examples of theoretical research problems

The effects of long-term Vitamin D deficiency on cardiovascular health are not well understood.

The relationship between gender, race, and income inequality has yet to be closely studied in the context of the millennial gig economy.

Historians of Scottish nationalism disagree about the role of the British Empire in the development of Scotland’s national identity.

Next, you have to find out what is already known about the problem, and pinpoint the exact aspect that your research will address.

Context and background

  • Who does the problem affect?
  • Is it a newly-discovered problem, or a well-established one?
  • What research has already been done?
  • What, if any, solutions have been proposed?
  • What are the current debates about the problem? What is missing from these debates?

Specificity and relevance

  • What particular place, time, and/or group of people will you focus on?
  • What aspects will you not be able to tackle?
  • What will the consequences be if the problem is not resolved?

Example of a specific research problem

A local non-profit organisation focused on alleviating food insecurity has always fundraised from its existing support base. It lacks understanding of how best to target potential new donors. To be able to continue its work, the organisation requires research into more effective fundraising strategies.

Once you have narrowed down your research problem, the next step is to formulate a problem statement , as well as your research questions or hypotheses .

Once you’ve decided on your research objectives , you need to explain them in your paper, at the end of your problem statement.

Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one.

I will compare …

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis – a prediction that will be confirmed or disproved by your research.

Research objectives describe what you intend your research project to accomplish.

They summarise the approach and purpose of the project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. & George, T. (2022, November 08). How to Define a Research Problem | Ideas & Examples. Scribbr. Retrieved 9 September 2024, from https://www.scribbr.co.uk/the-research-process/define-research-problem/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, dissertation & thesis outline | example & free templates, example theoretical framework of a dissertation or thesis, how to write a strong hypothesis | guide & examples.

Research Problem and Questions

  • First Online: 20 September 2022

Cite this chapter

what methods are adequate for defining the research problem

  • Habeeb Adewale Ajimotokan 2  

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

1078 Accesses

The objectives of this chapter are to

Describe the research problem and questions;

Identify appropriate research problems and questions;

Specify the different sources for research problems;

Enumerate the criteria for selecting a problem for research; and

Describe the statement of problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Kothari, C. R. (2004). Research methodology: Methods and techniques . New Age International (P) Ltd.

Google Scholar  

Walliman, N. (2011). Research methods: The basics . Routledge—Taylor and Francis Group.

Pandey, P., & Pandey, M. M. (2015). Research methodology: Methods and techniques . Bridge Center.

Walliman, N. (2011). Your research project: Designing and planning your work . Sage Publications Ltd.

Download references

Author information

Authors and affiliations.

Department of Mechanical Engineering, University of Ilorin, Ilorin, Nigeria

Habeeb Adewale Ajimotokan

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Ajimotokan, H.A. (2023). Research Problem and Questions. In: Research Techniques. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-13109-7_2

Download citation

DOI : https://doi.org/10.1007/978-3-031-13109-7_2

Published : 20 September 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-13108-0

Online ISBN : 978-3-031-13109-7

eBook Packages : Engineering Engineering (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Geektonight

What is Research Problem? Components, Identifying, Formulating,

  • Post last modified: 13 August 2023
  • Reading time: 10 mins read
  • Post category: Research Methodology

what methods are adequate for defining the research problem

What is Research Problem?

A research problem refers to an area or issue that requires investigation, analysis, and resolution through a systematic and scientific approach. It is a specific question, gap, or challenge within a particular field of study that researchers aim to address through their research endeavors.

Table of Content

  • 1 What is Research Problem?
  • 2 Concept of a Research Problem
  • 3 Need to Define a Research Problem
  • 4 Conditions and Components of a Research Problem
  • 5 Identifying a Research Problem
  • 6 Formulating a Research Problem

Concept of a Research Problem

The first step in any research project is to identify the problem. When we specifically talk about research related to a business organisation, the first step is to identify the problem that is being faced by the concerned organisation. The researchers need to develop a concrete, unambiguous and easily comprehensible definition of the problem that requires research.

If the research problem is not well-defined, the research project may be affected. You may also consider defining research problem and carrying out literature review as the foundation on which the entire research process is based.

In general, a research problem refers to a problem that a researcher has witnessed or experienced in a theoretical or real-life situation and wants to develop a solution for the same. The research problem is only a problem statement and it does not describe how to do something. It must be remembered that a research problem is always related to some kind of management dilemma

Need to Define a Research Problem

The researchers must clearly define or formulate the research problem in order to represent a clear picture of what they wish to achieve through their research. When a researcher starts off his research with a well-formulated research problem, it becomes easier to carry out the research.

Some of the major reasons for which a research problem must be defined are:

  • Select useful information for research
  • Segregate useful information from irrelevant information
  • Monitor the research progress
  • Ensure research is centred around a problem
  • What data should be collected?
  • What data attributes are relevant and need to be analysed?
  • What relationships should be investigated?
  • Determine the structure of the study
  • Ensure that the research is centred around the research problem only

Defining a research problem well helps the decision makers in getting good research results if right questions are asked. On the contrary, correct answer to a wrong question will lead to bad research results.

Conditions and Components of a Research Problem

Conditions necessary for the existence of a research problem are:

  • Existence of a problem whose solution is not known currently
  • Existence of an individual, group or organisation to which the given problem can be attributed
  • Existence of at least two alternative courses of action that can be pursued by a researcher
  • At least two feasible outcomes of the course of action and out of two outcomes, one outcome should be more preferable to the other

A research problem consists of certain specific components as follows:

  • Manager/Decision-maker (individual/group/institution) and his/ her objectives The individual, group or an institution is the one who is facing the problem. At times, the different individuals or groups related to a problem do not agree with the problem statement as their objectives differ from one another. The decision makers must agree on a concrete and clearly worded problem statemen.
  • Environment or context of the problem
  • Nature of the problem
  • Alternative courses of problem
  • A set of consequences related to courses of action and the occurrence of events that are not under the control of the manager/decision maker
  • A state of uncertainty for which a course of action is best

Identifying a Research Problem

Identifying a research problem is an important and time-consuming activity. Research problem identification involves understanding the given social problem that needs to be investigated in order to solve it. In most cases, the researchers usually identify a research problem by using their observation, knowledge, wisdom and skills. Identifying a research problem can be as simple as recognising the difficulties and problems in your workplace.

Certain other factors that are considered while identifying a research problem include:

  • Potential research problems raised at the end of journal articles
  • Large-scale reports and data records in the field may disclose the findings or facts based on data that require further investigation
  • Personal interest of the researcher
  • Knowledge and competence of the researcher
  • Availability of resources such as large-scale data collection, time and finance
  • Relative importance of different problems
  • Practical utility of finding answers to a problem
  • Data availability for a problem

Formulating a Research Problem

Formulating a research problem is usually done under the first step of research process, i.e., defining the research problem. Identification, clarification and formulation of a research problem is done using different steps as:

  • Discover the Management Dilemma
  • Define the Management Question
  • Define the Research Question
  • Refine the Research Question(s)

You have already studied why it is important to clarify a research question. The next step is to discover the management dilemma. The entire research process starts with a management dilemma. For instance, an organisation facing increasing number of customer complaints may want to carry out research.

At most times, the researchers state the management dilemma followed by developing questions which are then broken down into specific set of questions. Management dilemma, in most cases, is a symptom of the actual problem being faced by an organisation.

A few examples of management dilemma are low turnover, high attrition, high product defect rate, low quality, increasing costs, decreasing profits, low employee morale, high absenteeism, flexibility and remote work issues, use of technology, increasing market share of a competitor, decline in plant/production capacity, distribution of profit between dividends and retained earnings, etc.

If an organisation tracks its performance indicators on a regular basis, it is quite easy to identify the management dilemma. Now, the difficult task for a researcher to choose a particular management dilemma among the given set of management dilemmas.

Business Ethics

( Click on Topic to Read )

  • What is Ethics?
  • What is Business Ethics?
  • Values, Norms, Beliefs and Standards in Business Ethics
  • Indian Ethos in Management
  • Ethical Issues in Marketing
  • Ethical Issues in HRM
  • Ethical Issues in IT
  • Ethical Issues in Production and Operations Management
  • Ethical Issues in Finance and Accounting
  • What is Corporate Governance?
  • What is Ownership Concentration?
  • What is Ownership Composition?
  • Types of Companies in India
  • Internal Corporate Governance
  • External Corporate Governance
  • Corporate Governance in India
  • What is Enterprise Risk Management (ERM)?
  • What is Assessment of Risk?
  • What is Risk Register?
  • Risk Management Committee

Corporate social responsibility (CSR)

  • Theories of CSR
  • Arguments Against CSR
  • Business Case for CSR
  • Importance of CSR in India
  • Drivers of Corporate Social Responsibility
  • Developing a CSR Strategy
  • Implement CSR Commitments
  • CSR Marketplace
  • CSR at Workplace
  • Environmental CSR
  • CSR with Communities and in Supply Chain
  • Community Interventions
  • CSR Monitoring
  • CSR Reporting
  • Voluntary Codes in CSR
  • What is Corporate Ethics?

Lean Six Sigma

  • What is Six Sigma?
  • What is Lean Six Sigma?
  • Value and Waste in Lean Six Sigma
  • Six Sigma Team
  • MAIC Six Sigma
  • Six Sigma in Supply Chains
  • What is Binomial, Poisson, Normal Distribution?
  • What is Sigma Level?
  • What is DMAIC in Six Sigma?
  • What is DMADV in Six Sigma?
  • Six Sigma Project Charter
  • Project Decomposition in Six Sigma
  • Critical to Quality (CTQ) Six Sigma
  • Process Mapping Six Sigma
  • Flowchart and SIPOC
  • Gage Repeatability and Reproducibility
  • Statistical Diagram
  • Lean Techniques for Optimisation Flow
  • Failure Modes and Effects Analysis (FMEA)
  • What is Process Audits?
  • Six Sigma Implementation at Ford
  • IBM Uses Six Sigma to Drive Behaviour Change
  • Research Methodology
  • What is Research?
  • What is Hypothesis?

Sampling Method

  • Research Methods

Data Collection in Research

  • Methods of Collecting Data
  • Application of Business Research

Levels of Measurement

  • What is Sampling?
  • Hypothesis Testing
  • Research Report
  • What is Management?
  • Planning in Management
  • Decision Making in Management
  • What is Controlling?
  • What is Coordination?
  • What is Staffing?
  • Organization Structure
  • What is Departmentation?
  • Span of Control
  • What is Authority?
  • Centralization vs Decentralization
  • Organizing in Management
  • Schools of Management Thought
  • Classical Management Approach
  • Is Management an Art or Science?
  • Who is a Manager?

Operations Research

  • What is Operations Research?
  • Operation Research Models
  • Linear Programming
  • Linear Programming Graphic Solution
  • Linear Programming Simplex Method
  • Linear Programming Artificial Variable Technique
  • Duality in Linear Programming
  • Transportation Problem Initial Basic Feasible Solution
  • Transportation Problem Finding Optimal Solution
  • Project Network Analysis with Critical Path Method
  • Project Network Analysis Methods
  • Project Evaluation and Review Technique (PERT)
  • Simulation in Operation Research
  • Replacement Models in Operation Research

Operation Management

  • What is Strategy?
  • What is Operations Strategy?
  • Operations Competitive Dimensions
  • Operations Strategy Formulation Process
  • What is Strategic Fit?
  • Strategic Design Process
  • Focused Operations Strategy
  • Corporate Level Strategy
  • Expansion Strategies
  • Stability Strategies
  • Retrenchment Strategies
  • Competitive Advantage
  • Strategic Choice and Strategic Alternatives
  • What is Production Process?
  • What is Process Technology?
  • What is Process Improvement?
  • Strategic Capacity Management
  • Production and Logistics Strategy
  • Taxonomy of Supply Chain Strategies
  • Factors Considered in Supply Chain Planning
  • Operational and Strategic Issues in Global Logistics
  • Logistics Outsourcing Strategy
  • What is Supply Chain Mapping?
  • Supply Chain Process Restructuring
  • Points of Differentiation
  • Re-engineering Improvement in SCM
  • What is Supply Chain Drivers?
  • Supply Chain Operations Reference (SCOR) Model
  • Customer Service and Cost Trade Off
  • Internal and External Performance Measures
  • Linking Supply Chain and Business Performance
  • Netflix’s Niche Focused Strategy
  • Disney and Pixar Merger
  • Process Planning at Mcdonald’s

Service Operations Management

  • What is Service?
  • What is Service Operations Management?
  • What is Service Design?
  • Service Design Process
  • Service Delivery
  • What is Service Quality?
  • Gap Model of Service Quality
  • Juran Trilogy
  • Service Performance Measurement
  • Service Decoupling
  • IT Service Operation
  • Service Operations Management in Different Sector

Procurement Management

  • What is Procurement Management?
  • Procurement Negotiation
  • Types of Requisition
  • RFX in Procurement
  • What is Purchasing Cycle?
  • Vendor Managed Inventory
  • Internal Conflict During Purchasing Operation
  • Spend Analysis in Procurement
  • Sourcing in Procurement
  • Supplier Evaluation and Selection in Procurement
  • Blacklisting of Suppliers in Procurement
  • Total Cost of Ownership in Procurement
  • Incoterms in Procurement
  • Documents Used in International Procurement
  • Transportation and Logistics Strategy
  • What is Capital Equipment?
  • Procurement Process of Capital Equipment
  • Acquisition of Technology in Procurement
  • What is E-Procurement?
  • E-marketplace and Online Catalogues
  • Fixed Price and Cost Reimbursement Contracts
  • Contract Cancellation in Procurement
  • Ethics in Procurement
  • Legal Aspects of Procurement
  • Global Sourcing in Procurement
  • Intermediaries and Countertrade in Procurement

Strategic Management

  • What is Strategic Management?
  • What is Value Chain Analysis?
  • Mission Statement
  • Business Level Strategy
  • What is SWOT Analysis?
  • What is Competitive Advantage?
  • What is Vision?
  • What is Ansoff Matrix?
  • Prahalad and Gary Hammel
  • Strategic Management In Global Environment
  • Competitor Analysis Framework
  • Competitive Rivalry Analysis
  • Competitive Dynamics
  • What is Competitive Rivalry?
  • Five Competitive Forces That Shape Strategy
  • What is PESTLE Analysis?
  • Fragmentation and Consolidation Of Industries
  • What is Technology Life Cycle?
  • What is Diversification Strategy?
  • What is Corporate Restructuring Strategy?
  • Resources and Capabilities of Organization
  • Role of Leaders In Functional-Level Strategic Management
  • Functional Structure In Functional Level Strategy Formulation
  • Information And Control System
  • What is Strategy Gap Analysis?
  • Issues In Strategy Implementation
  • Matrix Organizational Structure
  • What is Strategic Management Process?

Supply Chain

  • What is Supply Chain Management?
  • Supply Chain Planning and Measuring Strategy Performance
  • What is Warehousing?
  • What is Packaging?
  • What is Inventory Management?
  • What is Material Handling?
  • What is Order Picking?
  • Receiving and Dispatch, Processes
  • What is Warehouse Design?
  • What is Warehousing Costs?

You Might Also Like

What is measure of central tendency, data processing in research, what is research design features, components, data analysis in research, what is parametric tests types: z-test, t-test, f-test, cross-sectional and longitudinal research, what is sample size determination, formula, determining,, what is measure of dispersion, ethics in research, leave a reply cancel reply.

You must be logged in to post a comment.

World's Best Online Courses at One Place

We’ve spent the time in finding, so you can spend your time in learning

Digital Marketing

Personal Growth

what methods are adequate for defining the research problem

what methods are adequate for defining the research problem

Development

what methods are adequate for defining the research problem

what methods are adequate for defining the research problem

what methods are adequate for defining the research problem

  • Open access
  • Published: 13 September 2024

Understanding disciplinary perspectives: a framework to develop skills for interdisciplinary research collaborations of medical experts and engineers

  • Sophie van Baalen   ORCID: orcid.org/0000-0002-1592-3276 1 , 2 &
  • Mieke Boon   ORCID: orcid.org/0000-0003-2492-2854 1  

BMC Medical Education volume  24 , Article number:  1000 ( 2024 ) Cite this article

Metrics details

Health professionals need to be prepared for interdisciplinary research collaborations aimed at the development and implementation of medical technology. Expertise is highly domain-specific, and learned by being immersed in professional practice. Therefore, the approaches and results from one domain are not easily understood by experts from another domain. Interdisciplinary collaboration in medical research faces not only institutional, but also cognitive and epistemological barriers. This is one of the reasons why interdisciplinary and interprofessional research collaborations are so difficult. To explain the cognitive and epistemological barriers, we introduce the concept of disciplinary perspectives . Making explicit the disciplinary perspectives of experts participating in interdisciplinary collaborations helps to clarify the specific approach of each expert, thereby improving mutual understanding.

We developed a framework for making disciplinary perspectives of experts participating in an interdisciplinary research collaboration explicit. The applicability of the framework has been tested in an interdisciplinary medical research project aimed at the development and implementation of diffusion MRI for the diagnosis of kidney cancer, where the framework was applied to analyse and articulate the disciplinary perspectives of the experts involved.

We propose a general framework, in the form of a series of questions, based on new insights from the philosophy of science into the epistemology of interdisciplinary research. We explain these philosophical underpinnings in order to clarify the cognitive and epistemological barriers of interdisciplinary research collaborations. In addition, we present a detailed example of the use of the framework in a concrete interdisciplinary research project aimed at developing a diagnostic technology. This case study demonstrates the applicability of the framework in interdisciplinary research projects.

Interdisciplinary research collaborations can be facilitated by a better understanding of how an expert’s disciplinary perspectives enables and guides their specific approach to a problem. Implicit disciplinary perspectives can and should be made explicit in a systematic manner, for which we propose a framework that can be used by disciplinary experts participating in interdisciplinary research project. Furthermore, we suggest that educators can explore how the framework and philosophical underpinning can be implemented in HPE to support the development of students’ interdisciplinary expertise.

Peer Review reports

Expertise is highly domain-specific, and learned by being immersed in professional practice [ 1 ]. However, today’s rapidly evolving health care systems require clinicians who are capable of meeting complex challenges [ 2 ], which often requires interdisciplinary and interprofessional collaborations between experts from distinct disciplines. Footnote 1 With the increasingly central role of innovative medical technologies in many medical specialties [ 3 ], health professionals will presumable participate in interdisciplinary and interprofessional research collaborations. But interprofessional and interdisciplinary research collaborations are notoriously difficult (e.g., [ 4 , 5 , 6 , 7 ]). Boon et al. (2019) argue that the complexity of current medical practices requires interdisciplinary expertise , which is an extension of adaptive expertise [ 8 ]. Interdisciplinary expertise involves the ability to understand the role of disciplinary perspectives .

In this paper, we combine insights from the philosophy of science on disciplinary perspectives and practice experience from an interdisciplinary medical research project aimed at the development and implementation of diffusion MRI for the diagnosis of kidney cancer. Based on these insights and practice experience, we propose a framework for mitigating cognitive and epistemological barriers caused by different disciplinary perspectives. In addition, we present a detailed example of the use of the framework to analyse and explain the experts’ disciplinary perspectives in the aforementioned interdisciplinary research project aimed at developing a diagnostic technology. This case study demonstrates the use of the framework in interdisciplinary research projects. The framework can be used by health professionals to facilitate their interdisciplinary research projects, by analysing and explaining their disciplinary perspectives.

Interdisciplinary research

To address the barriers to interdisciplinary research, various authors have developed analytical frameworks to guide the research process and help disciplinary experts understand what it takes to execute projects together with experts from other disciplines [ 9 , 10 , 11 , 12 ]. Menken et al. (2016), for example, provide a method for interdisciplinary research that is much similar to the traditional empirical cycle, including steps such as “identify problem or topic,” “formulate preliminary research questions,” “data collection” and “draw conclusions” [ 11 ]. Other frameworks describe which steps need to be taken in the interdisciplinary research process . In the literature on team science , several authors also aim to provide a better understanding of the process of interdisciplinary research. For example, Hasan et al. (2023) focuses on the ‘micro’ layers of the team science ecosystem proposed by Stokols et al. (2019) – the layer of individual team members collaborating in interdisciplinary research projects [ 13 , 14 ]. From their analysis of an online collaborations between early academics from different fields, they provide insights into common issues in interdisciplinary research and methods for dealing with them. By applying their framework from the start of the interdisciplinary research process, they argue, interdisciplinary capture [ 15 ] can be avoided.

Although the aforementioned frameworks provide valuable guidance on the process of interdisciplinary collaboration, they do not address the deeper cognitive and epistemological challenges of interdisciplinary research collaboration [ 5 , 16 ], which is the objective of our contribution. A crucial assumption in current frameworks seems to be that interdisciplinary research collaboration is learned by doing, and that the integration of different disciplines will automatically follow. Footnote 2 In our view, however, the integration of different disciplines is both crucial and one of the most challenging aspects of interdisciplinary research collaboration. In previous work we have argued that the inherent cognitive and epistemological (knowledge-theoretical) challenges of integration have been neglected by most authors providing models for interdisciplinary research [ 8 ]. In this paper, our focus is therefore on challenges of using and producing knowledge in interdisciplinary research collaborations that aim at solving complex real-world problems. Examples are collaborations between distinct medical specialists in the diagnosis and treatment of a specific patient (e.g., an oncologist and radiologist), but also collaborations between medical experts and biomedical engineers aimed at innovative medical technology for clinical uses. In this paper, we focus on inter disciplinary research projects, in which two or more academic fields are integrated to solve real-world problems, and not on trans disciplinary projects in which one or more academic fields are integrated with expertise from outside of academia such as policy-making or practice. Footnote 3

The challenge of interdisciplinary research collaborations aimed at solving a shared problem is that each expert is guided by his/her own disciplinary perspective. However, the results produced by experts from different disciplines, although internally coherent, are not mutually coherent, so that they are not easily integrated. Furthermore, approaches and results understood within a contributing disciplinary perspective are not easily understood by experts specialised in other disciplinary perspectives, even though each expert aims to contribute to the same problem.

In short, the way in which experts use and produce knowledge is guided by the disciplinary perspective typical of their own practice. But experts are often unaware of having a disciplinary perspective. We argue that this is an obstacle to participating in interdisciplinary research collaborations focused on using and producing knowledge for complex problem-solving . Moreover, disciplinary perspectives are often considered impenetrable —as they are acquired by doing — which makes dealing with the disciplinary perspective of other experts a difficult learning objective. In this paper, we defend that disciplinary perspectives can be made explicit in a systematic manner, and that their role in ‘how experts in a specific discipline use and produce knowledge’ can thus be made understandable for experts and students in both their own and other disciplines.

To this end, we have developed a framework, based on new insights in the philosophy of science and on practice experience of interdisciplinary research collaboration aimed at the development of a medical technology, which can be used by experts in a particular discipline to analyse different elements of their discipline and, together with collaborators, to analyse the same elements from other disciplines. We believe that this systematic approach to understanding disciplinary perspectives will facilitate interdisciplinary research collaborations between experts from different fields. It will create awareness of one’s own disciplinary perspective and the ability to understand the disciplinary perspective of other experts at a sufficient level. Our framework thus aims to alleviate the challenge of integration in a collaborative research project by providing a tool for analysing disciplinary perspectives . We suggest that the concrete descriptions of disciplinary perspectives that result from the application of the framework, clarify the approaches of experts in a multi-disciplinary team. It thus enables effective communication through improved understanding of how each discipline contributes. Once researchers sufficiently understand each other’s discipline, they will be able to construct so-called conceptual models that integrate content relevant to the problems at hand. Footnote 4

Education in interdisciplinary research

In addition to professionals using our framework to facilitate collaboration in interdisciplinary research projects, we suggest that this framework can also be implemented in medical education. It can be used to teach students what it means to have a disciplinary perspective, and to explicate the role of disciplinary perspectives of disciplinary experts participating in an interdisciplinary research collaboration. We have implemented this framework in an innovative, challenge-based educational design that explicitly aims to support and promote the development of interdisciplinary research skills [ 22 ]. Research into the intended learning objectives has not yet been completed, but our initial findings indicate that the proposed framework effectively supports students in their ability to develop crucial skills for conducting interdisciplinary research projects. We suggest therefore that the framework can also be implemented in HPE as a scaffold for teaching and learning metacognitive skills needed in interdisciplinary research collaborations, for example between medical experts and engineers.

Research has shown that interprofessional education courses for healthcare students can have a positive effect on the knowledge, skills and attitudes required for interprofessional collaboration, but that organising such interventions is challenging [ 23 , 24 ]. In the HPE literature, it is generally assumed that the limitations of interprofessional and interdisciplinary teamwork are due to problems of communication, collaboration and cooperation [ 25 , 26 ], which are linked to barriers and enablers at institutional, organizational, infrastructural, professional and individual levels (e.g., [ 27 , 28 ]). Therefore, interprofessional and interdisciplinary collaborations are discussed extensively in the HPE literature – our focus is challenges of interdisciplinary research collaboration.

The ability to use and produce knowledge and methods in solving (novel) problems is covered in the HPE literature by the notion of adaptive expertise , which encompasses clinical reasoning, integrating basic and clinical sciences, and the transfer of previously learned knowledge, concepts and methods to solve new problems in another context (e.g., [ 1 , 29 , 30 , 31 , 32 , 33 , 34 ]). In previous work, we introduced the concept of interdisciplinary expertise, which expands on the notion of adaptive expertise by including the ability to understand, analyse and communicate disciplinary perspectives [ 8 ]. In this paper, we address the challenge posed by how this ability to understand, analyse and communicate disciplinary perspectives can be learned. The framework that we propose can be implemented in HPE to function as a tool to scaffold metacognitive skills of health professions students, facilitating the development of interdisciplinary expertise.

Aims and contributions of this paper

Our first objective is to show that interdisciplinary collaboration in (medical) research faces not only institutional, but also cognitive and epistemological barriers. Therefore, we first provide a theoretical explanation of the concept of ‘disciplinary perspective’ as developed in the philosophy of science, in order to make it plausible that the cognitive barriers experienced by experts in interdisciplinary collaboration are the result of different disciplinary perspectives on a problem and its solution.

Our second objective is to provide a systematic approach to improve interdisciplinary research, for which we propose a framework, in the form of a series of questions, based on new insights from the philosophy of science into the epistemology of interdisciplinary research. We provide a detailed explanation of the application of the proposed framework in an interdisciplinary medical research project to illustrate its applicability in a multidisciplinary research collaborations, by showing that the different disciplinary perspectives that inform researchers and technicians within a multidisciplinary research team can be made transparent in a systematic way.

In short, our intended contribution is (i) to explain cognitive and epistemological barriers by introducing the concept of disciplinary perspectives in medical research collaborations, (ii) to offer a framework that enables the mitigation of these barriers within interdisciplinary research projects that are caused by different disciplinary perspectives, and (iii) to illustrate the applicability of this framework by a concrete case of an interdisciplinary research collaboration in a medical-technical research setting.

We developed a framework for making disciplinary perspectives of experts participating in an interdisciplinary research collaboration explicit, by combining insights from the philosophy of science with practical experience from a medical research project. Philosophy of science provided the theoretical basis for our concept of disciplinary perspectives. Our detailed case-description stems from an interdisciplinary medical research project to develop and implement a new imaging tool for the diagnosis of kidney cancer, in which the first author participated. We then applied the framework to analyze and articulate the disciplinary perspectives of experts involved in this interdisciplinary medical research project.

The usefulness and applicability of the proposed framework was tested by the first author who, in her role as PI, was able to use it successfully in coordinating an interdisciplinary research project aimed at developing a biomedical technology for clinical practice [ 35 , 36 ]. Below, we illustrate how the framework was systematically applied to this specific case, providing initial evidence of its applicability. However, to test whether the proposed framework reduces the cognitive and epistemological barriers caused by different disciplinary perspectives, experts need to be trained in its use. We suggest that training in the use of this framework requires, among other things, some insight into the philosophical underpinnings of the concept of ‘disciplinary perspective’. Our explanation of the so-called epistemology of disciplinary perspectives in this paper aims to provide such insight.

Developing a framework for analysing and articulating a disciplinary perspective

The framework proposed here is based on insights about disciplinary perspectives in the philosophy of science. These insights concern an epistemology (a theory of knowledge) of scientific disciplines. In other words, the framework is based on an account of the knowledge-theoretical (epistemic) and pragmatic aspects that guide the production of knowledge and scientific understanding by a discipline [ 21 ].

The epistemology of scientific disciplines developed in our previous work is based on the philosophical work of Thomas Kuhn [ 37 ]. Building on his seminal ideas, we understand disciplinary perspectives as analysable in terms of a coherent set of epistemic and pragmatic aspects related to the way in which experts trained in the discipline (and who have thus, albeit implicitly, acquired the disciplinary perspective) apply and produce knowledge [ 38 ]. In our approach, the epistemic and pragmatic aspects that generally characterize a discipline, are made explicit through a set of questions that form the basis of the proposed framework (see Table 1 , and the first column of Table  2 ). The disciplinary perspective can thus be revealed through this framework. In turn, when used in educational settings, this framework can be used to foster interdisciplinary expertise by acting as a scaffold for teaching and learning metacognitive skills for interdisciplinary research collaborations. Footnote 5

The general aspects indicated by italics in each question in Table 1 are interdependent, so that analysis using this framework results in a coherent description of the disciplinary perspective in terms of these aspects. The framework can be used by experts in an interdisciplinary research project not only to make explicit their disciplinary perspective in a general sense, but to also to specify in a systematic way how these aspects relate to the interdisciplinary research problem from their disciplinary discipline (see Table  2 , which contains both the general and problem-specific descriptions for each aspect per discipline). In our view, this approach is productive in overcoming the cognitive and epistemological barriers. It thus contributes to productive interdisciplinary collaboration.

Applying the framework in an interdisciplinary medical research project

To test the applicability of this framework, we applied it to an interdisciplinary medical research project. The interdisciplinary medical research project aimed at developing a new clinical imaging tool, namely, diffusion magnetic resonance imaging (i.e., diffusion MRI) to characterize the micro-structural makeup of kidney tumours, running from early 2014 to mid-2018. The first author was involved in this project as a principle investigator (PI). As an interdisciplinary expert with a background in technical medicine , which combines medical training with technological expertise [ 41 ], she coordinated and integrated contributions from experts with medical and engineering backgrounds. In her role as PI, she applied the proposed framework to analyse and articulate the disciplinary perspectives of other experts involved in the medical research project.

The aim of the interdisciplinary medical research project was to develop a new imaging tool for the characterization of renal tumours, i.e., diffusion MRI. Diffusion MRI allows for visualization and quantification of water diffusion without administration of exogenous contrast materials and is, therefore, a promising technique for imaging kidney tumours. In earlier studies, several parameters derived from diffusion MRI studies were found to differentiate between different tumour types in the kidney [ 42 , 43 , 44 ]. Existing imaging methods in clinical practice can detect the size and location of kidney tumours, but the tumour type and malignancy can only be determined histologically after surgery. The purpose of the medical research project was to assess whether more advanced parameters that can be obtained from diffusion MRI [ 35 , 45 ] can differentiate between malignant and benign kidney tumours [ 36 ]. Being able to make this distinction could potentially prevent unnecessary surgery in patients with non-malignant tumours.

The interdisciplinary medical research project needed to bring together expertise (knowledge and skills) from different professionals, academic researchers as well as clinicians. Therefore, the research team consisted of a physicist, a biomedical engineer, a radiologist, a urologist and the principle investigator. The complex, interdisciplinary research object can be thought of as a system that encompasses several elements: the MRI-machine, the software necessary to produce images, the patient with a (suspected) kidney tumour, and the wider practice of care in which the clinical tool should function. In developing the clinical tool, these elements must be considered interrelated, whereas usually each expert focuses on one of these elements.

The PI utilized the framework to coordinate and integrate the contributions from different experts in the following manner. Throughout the project, she had meetings with each of the team members, where she probed them to explain their specific expertise in regard of the research object, as well as their expert contribution to the development of the imaging tool. Her approach in these meetings was guided by the general questions of the framework (Table 1 ). In this manner, she succeeded in getting a clear insight in aspects of each discipline relevant to the research object, and also in the specific contribution that needed to be made by each expert (as illustrated in Table  2 below). The level of understanding gained by this approach enabled her to, firstly, facilitate interdisciplinary team meetings in which disciplinary interpretations and questions from the experts about the target system could be aligned, and secondly, integrate their contributions towards the development of the new imaging tool [ 36 ].

In the presented approach, the framework was exclusively used by the PI, enabling her to acquire relevant information and understanding about the contributions of the disciplines involved. The other team members in the medical research project were not explicitly involved in applying the framework, nor in articulating their own disciplinary perspective or that of others. Hence, the resulting articulation of the disciplinary perspectives and of the contributions per discipline to the research object (in Table  2 ) is crafted by the PI. The level of understanding of the role of each discipline that the PI has acquired thereby appears to be sufficient to enable her coordinating task in this complex medical research project. Our suggestion for other research and educational practices, though, is that clinicians (as well as) other medical experts can develop this metacognitive skill by using the scaffold (in Table  1 ) in order to participate more effectively in these kinds of complex medical research projects.

In the results  section we will first present our explanation and justification of the idea that disciplinary perspectives determine the specific approaches of experts (who have been trained in a specific discipline in using and producing knowledge) when faced with a complex problem. In this explanation and justification, we will use insights from the philosophy of science. Next, we will explain and illustrate the systematic use of the proposed framework (Table 1 ) by showing the results of applying it to the interdisciplinary medical research project.

The insights from philosophy of science on which the proposed framework for the explication of disciplinary perspectives is rooted in insights of the philosophers Immanuel Kant (1794–1804) and Thomas Kuhn (1922–1996). Their important epistemological insight was that ‘objective’ knowledge of reality does not arise from some kind of imprint in the mind, such as on a photographic plate, but is partly formed by the concepts and theories that scientists hold. These concepts and theories therefore shape the way they perceive the world and produce knowledge about reality. This philosophical insight provides an important explanation for the cognitive and epistemological barriers between disciplines. After all, scientific experts learn these concepts and theories by being trained within a certain discipline. In this way, they develop a disciplinary perspective that determines their view and understanding of reality. Based on this philosophical insight, we can imagine how these barriers can be bridged, namely by developing the metacognitive ability to think about their own cognition and how their scientific view of reality is shaped by their specific disciplinary perspective. In order to facilitate this ability, we develop a framework that can be used as a metacognitive scaffold. Finally, we apply this framework to an example interdisciplinary medical-technical research project, to illustrate it’s use in practice.

Insights from the philosophy of science: disciplinary perspectives

Boon et al. (2019) refer to the notion of disciplinary perspectives and their indelible role in how experts approach problems —in particular, the ways in which experts use and produce knowledge in regard of the problem they aim to solve— and provide a philosophical account of this notion based on so-called constructivist (Kantian) epistemology (i.e., knowledge-theory, [ 38 , 46 ]). On a Kantian view, ‘the world does not speak for itself,’ i.e., knowledge of (aspects of) the external world is not acquired passively on the basis of impressions in the mind (physically) caused by the external world (e.g., similar to how pictures of the world are physically imprinted on a photographic plate). Instead, the way in which people produce and use knowledge results from an interaction between the external world, the human senses and the human cognitive system. Crucially, neither our concepts nor our perceptions stem from passive impressions. Instead, ‘pre-given’ concepts ‘in the mind’ are needed in order to be able to perceive something at all and thus to produce knowledge about reality. Conversely, according to Kant, the imaginative (i.e. creative) capacity of the mind is then able to generate new concepts and to draw new connections of which the adequacy and usability must be tested against our experiences of reality. When new concepts (invented by the creative capacity of the human mind) have been tested against experience, they allow us to see new things in the external world, which we would not see without those concepts. This theoretical insight by Kant is crucial to get past naïve conceptions of knowledge, in particular, by understanding the indelible role of concepts in generating knowledge from observations and experiences.

This philosophical insight already makes it clear, for instance, that ‘descriptions of facts’ in a research project involve discipline-specific concepts, making these descriptions not easy to understand for someone who is not trained in that discipline. After Kant, this role of concepts has been expanded to the role of perspectives . For, Kuhn [ 37 ] created awareness that the human mind plays ‘unconsciously’ and ‘unintentionally’ a much greater role in the way scientific knowledge is created than usually assumed in the view that scientific knowledge is objective . Kuhn has introduced the concept of scientific paradigm to indicate in what sense the mind contributes. His idea was revolutionary because the notion of true and objective knowledge, which is the aim of science, became deeply problematic, as knowledge is only true and objective within the scientific paradigm, whereas it may even be meaningless in another.

Our notion of disciplinary perspectives is in many respects comparable to Kuhn’s idea of scientific paradigm, and is certainly indebted to Kuhn’s invention, particularly, with regard to the idea that it is a more or less coherent, usually implicit ‘background picture’ or ‘conceptual framework,’ which constitutes an inherent part of the cognitive system of an expert, and which forms the basis from which an expert thinks, sees and investigates in a scientific or professional practice. Furthermore, the scientific paradigm is not ‘innate,’ nor individually acquired, but maintained and transferred in scientific or professional practices, usually by being immersed in it. The same can be said about disciplinary perspectives. Yet, there are also important differences.

First, Kuhn believed that the paradigm is so deeply rooted in the cognitive structure of individual scientists, and, moreover, is embedded in how the scientific community functions, that it takes a scientific revolution and a new generation of scientists to shift into another paradigm, which is called a paradigm-shift (sometimes explained as a Gestalt-switch ). Kuhn’s belief suggests that humans lack the capacity to reflect on their own paradigm. Footnote 6 Conversely, we argue that humans can develop the metacognitive ability to perform this kind of reflection by which the structure and content of the paradigm or disciplinary perspective is made explicit. We take this as an important part of interdisciplinary expertise . Our suggestion, however, should not be confused with the idea that we can think without any paradigm or disciplinary perspective – we can’t, but we can explicate its workings (and adapt it), which is what we will illustrate in the case-description below.

Second, Kuhn’s focus was science , i.e., the production of objectively true scientific knowledge, in particular, theories. Instead, our focus is on experts trained in specific disciplines, who use and produce knowledge with regard to (practical) problems that have to be solved. Nonetheless, the Kuhnean insight explains why knowledge generated in distinct disciplines often cannot be combined in a straightforward manner (e.g., as in a jigsaw puzzle), which is due to the fact that knowledge is only fully meaningful and understandable relative to the disciplinary perspective in which it has been produced.

Our notion of disciplinary perspectives is similar to Kuhn’s idea of paradigm (which he specified later on as disciplinary matrices ) in the sense that a paradigm functions as a perspective or a conceptual framework , i.e., a background picture within which a scientific or professional practice of a specific discipline is embedded and which guides and enables this practice. But instead of considering them as replacing each other in a serial historical order as Kuhn did, we assume that disciplinary perspectives co-exist, that is, exist in parallel instead of serial. This view on disciplinary perspectives can be elaborated somewhat further by harking back to Ludwik Fleck [ 47 ], a microbiologist, who already in the 1930s developed a historical philosophy and sociology of science that is very similar to Kuhn’s (also see [ 48 ]). Footnote 7 Similar to and deeply affected by Kant, Fleck draws a close connection between human knowledge (e.g., facts) and cognition. Hence, Fleck disputes that facts are descriptions of things in reality discovered through properly passive observation of aspects in reality – which is why, according to Fleck, facts are invented , not discovered . Similar to Kuhn, Fleck expands on Kant by also including the role of the community in which scientists and experts are trained. Instead of paradigms , however, Fleck uses the terms thought styles and thought collectives to describe how experts in a certain professional or academic community adopt similar ways of perceiving and thinking that differ between disciplines: “The expert [trained in the discipline] is already a specially moulded individual who can no longer escape the bonds of tradition and of the collective; otherwise he would not be an expert” ([ 47 ], p. 54). But while Kuhn strove to explain radical changes in science, Fleck’s focus is on ‘normal science,’ that is, on communities ( thought collectives each having their own thought style ) that co-exist and gradually, rather than radically, change, which is closer to our take on disciplines. Importantly, according to Fleck, the community guides which problems members of that communities find relevant and how they approach these problems. Translated to our vocabulary, in scientific and professional practices, experts trained in different disciplines each have different disciplinary perspective, by means of which they recognize different aspects and problems of the same so-called research object , which they approach in accordance with their own discipline.

We propose that disciplinary perspectives can be analysed and made explicit, which we consider a crucial metacognitive skill of interdisciplinary experts. Our proposal for the framework to analyse disciplinary perspectives (in Table 1 ) takes its cue in Kuhn’s notion of disciplinary matrices. Kuhn’s original notion presents a matrix by which historians and philosophers can analyse the paradigm in hindsight, specifying aspects such as the metaphysical background beliefs and basic concepts, core theories, epistemic values, and methods, which all play a role in how knowledge is generated (also see [ 8 , 50 ]). Our framework includes some of these aspects, but also adds others, thereby generating a scaffold that facilitates interdisciplinary collaborations aimed at applying and producing knowledge for complex problem-solving in professional research practices aimed at ‘real-world’ practices, such as medical research practice. Below, we will illustrate the application of this framework in a concrete case.

Interdisciplinary research project: diffusion MRI for the diagnosis of kidney tumour

We will illustrate the applicability of the proposed framework (Table 1 ) for the analysis of disciplinary perspectives using the example of a research project that aims to develop a new clinical imaging tool, namely, diffusion MRI to characterize the microstructure of renal tumours. In our analysis, we focus on experts from four different disciplines: (I) clinical practice, (II) medical biology, (III) MRI physics, and (IV) signal and image processing. As indicated in the methods section, the complex, interdisciplinary research object that these experts have to deal with concerns a system consisting of the MRI-machine, the software necessary to produce images, and the patient with a (suspected) renal tumour, including the broader care practice in which the clinical tool should function.

In the following paragraphs we will first present a general explanation of the four disciplines involved in the project, and next, illustrate how the proposed framework can be applied to analyse and articulate each disciplinary perspective as well as the specific contribution of each discipline to the research object (in Table  2 ). It is not our intention to provide comprehensive descriptions of the fields that are involved, but rather to provide insight into how the fields differ from each other across the elements of our framework. In addition, we do not believe that all (disciplinary) experts only adhere to one disciplinary perspective. For example, clinicians usually combine both a clinical and biomedical perspective to fit together a complete picture of a patient for clinical decision-making concerning diagnosis and treatment [ 51 , 52 , 53 ]. Moreover, MRI engineers will usually need to combine insights from MRI physics and signal processing.

I. Clinical practice concerning patients with renal tumours

Clinical practice concerns the patient with a renal tumour. This practice differs from the other disciplines in our example, because it is not primarily a scientific discipline. Nonetheless, to develop a diagnostic tool, the disciplinary perspective of clinicians specialized in patients with kidney tumours is crucial, for example, to determine the conditions that the technology needs to meet in order to be useful for their clinical practice. The knowledge-base of clinical experts is rooted in biomedical sciences, which means that clinical experts often understand their patient’s signs and symptoms from a biomedical perspective (i.e., in terms of tumour formation of healthy renal physiology). Yet, clinicians will usually focus on their patient’s clinical presentation and possible diagnostic and clinical pathways. In clinical practice, several kidney tumour types are distinguished, each with its own histological presentation (visible under the microscope), tumour growth rate and chance of metastases. Unfortunately, all kidney tumour types, including non-malignant types, appear the same on standard imaging modalities, namely, as solid lesions. When the tumour is not metastasized, treatment consists of surgery removing the whole kidney or the part of the kidney that contains the tumour (i.e., ‘radical’ or ‘partial’ nephrectomy). If surgery is not possible, other treatments include chemotherapy or radiation. After surgery, a pathologist examines the tumour tissue to determine the tumour type. Occasionally, the pathologist concludes that the removed tumour was non-malignant, which is a situation that may be prevented if diffusion MRI can be used to distinguish between malignant and non-malignant tumours prior to surgery.

II. Medical biology

In biology, the structure and working of the body is studied at several levels, from the interaction of proteins and other macromolecules within cells to the functioning of organs. In the case at hand, the organ of interest is the kidney. Functions of the kidneys are excretion of waste materials, control of blood pressure via hormone excretion, balancing the body fluid, acid-base balance and balancing salts by excretion or resorption of ions. Understanding these functions requires insights into the anatomy, tissue architecture and physiology of the kidneys. The main functional structures of the kidney are: (1) the nephron, consisting of a tuft of capillaries (the glomerulus) surrounded by membranes that are shaped like a cup (Bowman’s capsule), responsible for the first filtration of water and small ions, and (2) the renal tubule that is responsible for more specific resorption and excretion of ions and water. The arrangement of small tubes that fan from the centre towards the outside (or cortex) of the kidneys allows maintaining variation in concentrations of ions, which helps to regulate resorption and excretion. The contribution of medical biology to the development of the diagnostic tool is important because knowledge about kidneys such as just sketched provides an understanding of the properties (i.e., microstructural of physiological properties) by which different tumour types can be distinguished from each other, which is crucial to interpreting the novel diagnostic imaging technology.

III. MRI physics & diffusion MRI

Magnetic resonance imaging is based on the physics of magnetism and the interaction of tissue components with radio magnetic fields. The main component of the human body that clinical MRI machines are sensitive to is (the amount of) water molecules or, more specifically, hydrogen nuclei (protons). These protons can be thought of as rotating or spinning , producing (tiny) magnetic fields. By placing tissue in a relatively strong magnetic field (usually 1.5 or 3 Tesla emitted by a large coil that surrounds the body), the tiny magnetic fields of protons (in the water-phase of the tissue) will align themselves with the direction of the strong magnetic field. By then applying a series of radiofrequency pulses, protons will be pushed out of balance and rotate back to their original state, causing a magnetic flux that causes a change in voltage which is picked up by receiver coils in the MRI machine. The rate with which protons return to their original state, the relaxation time, is influenced by the makeup of their environment, and will, therefore, differ for different tissues, resulting in image contrasts between tissues. To be able to form images of the signal, magnetic field gradients are applied, spatially varying the field which enables to differentiate between signals from different locations. Computer software using mathematical formulas ‘translate’ the signal into a series of images.

Diffusion MRI is a subfield of MR imaging, that is based on a contrast between ‘diffusion rates’ of water molecules in different tissues. Diffusion is based on the random (‘Brownian’) motion of water molecules in tissue. This motion is restricted by tissue components such as membranes and macromolecules and therefore water molecules move (or ‘diffuse’) at different rates in different tissues, depending on the microstructure of tissues. To measure this, additional magnetic field gradients are applied, which results in a signal attenuation proportional to the diffusion rate, as water molecules move (‘or diffuse’) out of their original voxel due to diffusion.

The method for acquiring diffusion-weighted images with an MRI machine (i.e., the ‘acquisition sequence’ of applying radiofrequency pulses and switching gradients on and off) is designed to gain sensitivity to the water molecules diffusing from their original location. The measured diffusion coefficient is considered to be related to microstructural properties of the tissue, namely the density of tissue structures such as macromolecules and membranes that restrict water diffusion. Together with other diffusion parameters that can be obtained by fitting the signal to other functions or ‘models’, the diffusion coefficient can be used to characterise and distinguish between different (tumour) tissue types, which is the aim of this new imaging tool.

IV. Signal and image processing

The signal acquired by MRI machines undergoes many processing steps before they appear as images on the screen. Some of these steps are performed automatically by the MRI system while others require standardized operations in the software package supplied by the manufacturer, and yet other, more advanced, manipulations are performed in custom-made programs or software packages developed for specific research purposes. In the field of diffusion MRI, software packages that perform the most common fitting procedures are available but often custom-made algorithms are required. The reason for this is that diffusion MRI is originally developed for brain imaging, while investigating its feasibility in other organs has started more recently and only makes up a small part of the field. New applications generate new challenges. For example, unlike the brain, kidneys (and other abdominal organs) move up and down as a consequence of breathing. Therefore, specific algorithms manipulating the scan to correct for this respiratory motion are required for diffusion MRI of the kidneys. Furthermore, as tissue structure and physiology in the kidneys differ from that in the brain, existing models need to be adjusted to that of the kidney.

In this paper, we have argued that interdisciplinary collaboration is difficult because of the role of experts’ disciplinary perspective, which shapes their view and approach to a problem and creates cognitive and epistemological barriers when collaborating with other disciplines. To overcome these barriers, disciplinary experts involved in interdisciplinary research projects need to be able to explicate their own disciplinary perspective. This ability is part of what is known as interdisciplinary expertise [ 8 ]. We defend that interdisciplinary expertise begins with creating awareness of the role of disciplinary perspectives in how experts view a problem, interpret it, formulate questions and develop solutions.

Analytical frameworks to guide interdisciplinary research processes previously developed by other authors typically focus on the process of interdisciplinary collaboration [ 9 , 10 , 11 , 12 , 13 , 14 , 15 ]. The approach we propose here contributes to this literature by addressing the deeper cognitive and epistemological challenges of interdisciplinary research collaboration on the role of the disciplinary perspective as an inherent part of one’s expertise [ 5 , 16 ]. Several authors have already used the concept of ‘disciplinary perspectives’ to point out the challenges of interdisciplinary research (e.g., [ 9 , 15 ]). Our contribution to this literature is the idea, based on philosophical insights into the epistemology of interdisciplinary research, that disciplinary perspectives can be made explicit, and next, to provide an analytical framework with which disciplinary perspectives within an interdisciplinary research context can be systematically described (as in Table 1 ) with the aim of facilitating interdisciplinary communication within such research projects.

Our further contribution is that we have applied this framework to a concrete case, thereby demonstrating that disciplinary perspectives within a concrete interdisciplinary research project can actually be analyzed and explicated in terms of a coherent set of elements that make up the proposed framework. The result of this analysis (in Table  2 ) shows a coherent description of the discipline in question per column, with an explanation per aspect of what this aspect means for the interdisciplinary research project. It can also be seen that the horizontal comparison (in Table  2 ) results in very different descriptions per aspect for each discipline. We believe that this example demonstrates that it is possible to explain the nature of a specific discipline in a way that is accessible to experts from other disciplines. We do not claim, therefore, that this table is an exhaustive description of the four disciplines involved. Instead, our aim is to show that the approach outlined in this table reduces cognitive and epistemological barriers in interdisciplinary research by enabling communication about the content and nature of the disciplines involved.

We suggest that educators can explore how the framework and philosophical underpinning can be implemented in HPE to support the development of students’ interdisciplinary expertise. Much has been written, especially in the engineering education literature, about the importance of interdisciplinarity and how to teach it. A recent systematic review article shows that the focus of education aimed at interdisciplinarity is on so-called soft skills such as communication and teamwork. Project-based learning is often used to teach the necessary skills, but without specific support to promote these skills [ 7 ]. In our literature review on education for interdisciplinarity [ 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 ], we did not find any authors who specifically address the cognitive and epistemological barriers to interdisciplinary collaboration as described in our article. One possible reason for this is that current epistemological views on the application of science in real-world problem-solving contexts, such as the research project presented here, do not recognise the inherent cognitive and epistemological barriers philosophically explained in this article [ 78 ]. The novelty of our approach is therefore our emphasis on the epistemological and cognitive barriers between disciplines that result from the ineradicable role of disciplinary perspectives in the discipline-bound way in which researchers frame and interpret the common problem. This makes interdisciplinary communication and integration particularly difficult. Specific scaffolds are needed to overcome these barriers. The framework proposed here, which systematically makes the disciplinary perspective explicit, aims to be such a scaffold. We therefore argue that much more attention should be paid to this specific challenge of interdisciplinary collaboration in academic HPE education. This requires both an in-depth philosophical explanation that offers a new view of scientific knowledge that makes clear why interdisciplinary research is difficult, and learning how to make disciplinary perspectives explicit, for which the proposed framework provides a metacognitive scaffold.

We have implemented this framework in a newly designed minor programme that uses challenge-based learning and aims to develop interdisciplinary research skills. In this minor, small groups of students from different disciplines work on the (interdisciplinary) analysis and solution of a complex real-world problem. A number of other scaffolds focused on the overarching learning objective have been included in the educational design, which means that the framework proposed here cannot be tested in isolation. Although our research into whether this new educational design achieves the intended learning goal is not yet complete, our initial experience of using the framework is positive. Students, guided by the teacher, are able to use the framework in their interdisciplinary communication - first in a general sense to get to know each other’s disciplines and then within their research project. This implies that the framework is useful in education aimed at learning to conduct interdisciplinary research.

This example, where the framework has been implemented in education aimed at developing interdisciplinary research skills, also shows that although it was developed in the context of a medical-technical research project, it is in fact very general and well suited for any interdisciplinary research.

A critical comment should be made regarding our preliminary evidence of the framework’s usefulness. The first author, who was PI of the interdisciplinary medical research project, in which she applied this framework in her role as coordinator, was also involved in the development of the framework [ 35 , 36 ]. She, therefore has a detailed insight into the theoretical underpinnings of the framework in relation to its intended application. The lack of such a theoretical background may make it more difficult to apply the framework in interdisciplinary research. Footnote 8 Which is why we have provided an extensive elaboration of these underpinnings in this paper.

Further research should address the question of whether this scaffold can facilitate interdisciplinary collaboration between disciplinary experts.

Further research is also needed to systematically analyse the value of this framework in HPE education. This starts with the question of what type of educational design it can be successfully implemented in. Other important questions are: Can interdisciplinary expertise be acquired without knowledge of the other discipline (e.g., biomedical engineering)? In other words, how much education in other disciplines should HPE provide to prepare experts to participate in specific interdisciplinary collaborations?

Furthermore, we emphasize that in addition to learning to use this framework as a metacognitive scaffold to gain a deeper understanding of the epistemological and cognitive barriers, students also need to develop other skills necessary for interdisciplinary research collaboration and working in interdisciplinary teams. The frameworks discussed in our introduction that analyse and guide the interdisciplinary research process provide insights into these skills (e.g. [ 9 , 10 , 11 , 12 ] and [ 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 ]).

We suggest that the article as a whole can be used in such educational settings to achieve several goals, provided that students are guided and coached by educators. First, to foster student’s understanding of the epistemological challenges of interdisciplinary collaboration and to recognize that these challenges are usually underestimated and not addressed in most approaches. Second, by providing insights into the epistemological challenges by outlining the philosophical underpinnings, students will be made aware of having a disciplinary perspective and how it guides their work. Finally, by providing a framework that can be used to analyse these disciplinary perspectives and by providing an example from the case description. When successful, this approach encourages students to developing transferrable skills that can be used in research projects beyond the initial educational project.

Conclusions

Interdisciplinary research collaborations can be facilitated by a better understanding of how an expert’s disciplinary perspectives enables and guides their specific approach to a problem. Implicit disciplinary perspectives can and should be made explicit in a systematic manner, for which we propose a framework that can be used by disciplinary experts participating in interdisciplinary research projects. With this framework, and its philosophical underpinning, we contribute to a fundamental aspect of interdisciplinary collaborations.

Availability of data and materials

All data generated or analysed during this study are included in this published.

In this article, we use ‘disciplines,’ ‘fields’ and ‘specialisms’ interchangeably.

Bridle (2013), Klein (1990), Newell (2007) and Szostak (2002) provide activities that are important for interdisciplinary collaborations, such as communication, negotiation and evaluating assumptions. In order to be able to perform such activities, students need to develop the appropriate skills [ 9 , 17 , 18 , 19 ].

Roux et al. (2017) provide a clear characterization of transdisciplinary research: “A key aim of transdisciplinary research is for actors from science, policy and practice to co-evolve their understanding of a social–ecological issue, reconcile their diverse perspectives and co-produce appropriate knowledge to serve a common purpose.” ([ 20 ], p. 1).

Boon (2020, 2023) explains the notion of conceptual modelling in application oriented research [ 21 , 22 ].

i.e., a framework that enables us to think analytically and systematically about our cognitive processes when we use and produce knowledge [ 39 , 40 ].

Yet, we recognize that this belief was plausible in Kuhn’s era, where the idea that humans (including scientists) are inevitably and indelibly guided by paradigms and perspectives was revolutionary and devastating with regard to the rational view of man. But nowadays we have become familiar with this idea, which offers an opening for the metacognitive abilities that we suggest.

To scholars in HPE, we recommend the entry on Ludwik Fleck in the Stanford Encyclopedia of Philosophy [ 49 ].

The point made here touches on a more fundamental issue that is beyond the scope of this article. Namely, that resistance of students, but also of teachers, to the described approach may have to do with more traditional epistemological beliefs about science that do not fit well with the way scientific research works in practice [ 78 , 79 ]. The philosophical underpinnings of the proposed framework explained in this article suggest alternative epistemological beliefs that are more appropriate for interdisciplinary research aimed at (complex) ‘real-world’ problems.

Abbreviations

Health professions education

Magnetic Resonance Imaging

Principle investigator

Mylopoulos M, Regehr G. Cognitive metaphors of expertise and knowledge: prospects and limitations for medical education. Med Educ. 2007. https://doi.org/10.1111/j.1365-2923.2007.02912.x .

Mylopoulos M, Kulasegaram K, Woods NN. Developing the experts we need: fostering adaptive expertise through education. J Eval Clin Pract. 2018. https://doi.org/10.1111/jep.12905 .

World Health Organization (WHO). Medical devices: managing the Mismatch. An outcome of the Priority Medical devices project. WHO; 2010. https://www.who.int/publications/i/item/9789241564045 .

Gilbert JH, Yan J, Hoffman SJ. A WHO report: framework for action on interprofessional education and collaborative practice. J Allied Health. 2010;39(Suppl 1):196–7.

Google Scholar  

MacLeod M. What makes interdisciplinarity difficult? Some consequences of domain specificity in interdisciplinary practice. Synthese. 2016. https://doi.org/10.1007/s11229-016-1236-4 .

Hudson JN, Croker A. Educating for collaborative practice: an interpretation of current achievements and thoughts for future directions. Med Educ. 2018. https://doi.org/10.1111/medu.13455 .

Van der Beemt A, MacLeod M, van der Veen JT, van de Ven A, van Baalen S, Klaassen RG, Boon M. Interdisciplinary engineering education: a review of vision, teaching and support. J Eng Educ. 2020;109(1). https://doi.org/10.1002/jee.20347 .

Boon M, Van Baalen SJ, Groenier M. Interdisciplinary expertise in medical practice: challenges of using and producing knowledge in complex problem-solving. Med Teach. 2019. https://doi.org/10.1080/0142159X.2018.1544417 .

Klein J. Interdisciplinarity: history, theory and practice. Detroit, MI: Wayne State University; 1990.

Repko A, Navakas F, Fiscella J. Integrating interdisciplinarity: how the theories of common ground and Cognitive_Interdisciplinarity are informing the debate on interdisciplinary integration. Issues Interdisciplinary Stud. 2007;25:1–31.

Menken S, Keestra M, Rutting L, Post G, de Roo M, Blad S, de Greef L. An introduction to interdisciplinary research: theory and practice. Amsterdam: Amsterdam University; 2016.

Book   Google Scholar  

Repko AF, Szostak R. Interdisciplinary research. Process and theory. 3rd ed. Los Angeles: Sage; 2017.

Hasan MN, Koksal C, Montel L, Le Gouais A, Barnfield A, Bates G, Kwon HR. Developing shared understanding through online interdisciplinary collaboration: reflections from a research project on better integration of health outcomes in future urban. Futures. 2023. https://doi.org/10.1016/j.futures.2023.103176 .

Stokols D, Olson JS, Salazar M, Olson GM. Strengthening the ecosystem for effective team science: a case study from University of California, Irvine, USA. 2019. https://i2insights.org/2019/02/19/team-science-ecosystem/ . Accessed 2 Feb 2024 .

Brister E. Disciplinary capture and epistemological obstacles to interdisciplinary research: lessons from Central African conservation disputes. Stud History Philos Sci part C: Stud History Philos Biol Biomedical Sci. 2016. https://doi.org/10.1016/j.shpsc.2015.11.001 .

Boon M, Orozco M, Sivakumar K. Epistemological and educational issues in teaching practice-oriented scientific research: roles for philosophers of science. Eur J Philos Sci. 2022;12(1):16. https://doi.org/10.1007/s13194-022-00447-z .

Article   Google Scholar  

Bridle H, Vrieling A, Cardillo M, Araya Y, Hinojosa L. Preparing for an interdisciplinary future: a perspective from early-career researchers. Futures. 2013. https://doi.org/10.1016/j.futures.2013.09.003 .

Newell WH. Decision-making in Interdisciplinary studies. In: Morcol G, editor. Handbook of decision making. New York: CRC Press/Taylor & Francis Group; 2007. p. 245–65.

Szostak R. How to do interdisciplinarity. Integrating the debate. Issues Integr Stud. 2002;20:103–22.

Roux DJ, Nel JL, Cundill G, O’farrell P, Fabricius C. Transdisciplinary research for systemic change: who to learn with, what to learn about and how to learn. Sustain Sci. 2017. https://doi.org/10.1007/s11625-017-0446-0 .

Boon M. The role of disciplinary perspectives in an epistemology of models. Eur J Philos Sci. 2020. https://doi.org/10.1007/s13194-020-00295-9 .

Boon M, Conceptual modelling as an overarching research skill in engineering education. SEFI2023 2023;  https://doi.org/10.21427/ZDX4-VV41 accessed through https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1074&context=sefi2023_prapap .

Guraya SY, Barr H. The effectiveness of interprofessional education in healthcare: a systematic review and meta-analysis. Kaohsiung J Med Sci. 2018. https://doi.org/10.1016/j.kjms.2017.12.009 .

Darlow B, Brown M, McKinlay E, Gray L, Purdie G, Pullen S. Longitudinal impact of preregistration interprofessional education on the attitudes and skills of health professionals during their early careers: a non-randomised trial with 4-year outcomes. BMJ Open. 2022;12(7):e060066. https://doi.org/10.1136/bmjopen-2021-060066 .

Clark G. Institutionalizing interdisciplinary health professions programs in higher education: the implications of one story and two laws. J Interprof Care. 2004. https://doi.org/10.1080/13561820410001731296 .

O’Keefe M, Henderson A, Chick R. Defining a set of common interprofessional learning competencies for health profession students. Med Teach. 2017. https://doi.org/10.1080/0142159X.2017.1300246 .

Choi BC, Pak AW. Multidisciplinarity, interdisciplinarity, and transdisciplinarity in health research, services, education and policy: 2. Promotors, barriers, and strategies of enhancement. Clin Invest Med. 2007. https://doi.org/10.25011/cim.v30i6.2950 .

Lawlis TR, Anson J, Greenfield D. Barriers and enablers that influence sustainable interprofessional education: a literature review. J Interprof Care. 2014. https://doi.org/10.3109/13561820.2014.895977 .

Schwartz DL, Bransford JD, Sears D. Efficiency and innovation in transfer. In transfer of learning from a modern multidisciplinary perspective . Charlotte, NC: Information age publishing. 2005; 3:1–51. Edited by JP Mestre JP.

Mylopoulos M, Regehr G. Putting the expert together again. Med Educ. 2011. https://doi.org/10.1111/j.1365-2923.2011.04032.x .

Carbonell KB, Stalmeijer RE, Könings KD, Segers M, van Merriënboer JJ. How experts deal with novel situations: a review of adaptive expertise. Educ Res Rev. 2014. https://doi.org/10.1016/j.edurev.2014.03.001 .

Kulasegaram K, Min C, Howey E, Neville A, Woods N, Dore K, et al. The mediating effect of context variation in mixed practice for transfer of basic science. Adv Health Sci Educ. 2015. https://doi.org/10.1007/s10459-014-9574-9 .

Castillo JM, Park YS, Harris I, Cheung JJH, Sood L, Clark MD, et al. A critical narrative review of transfer of basic science knowledge in health professions education. Med Educ. 2018. https://doi.org/10.1111/medu.13519 .

Dyre L, Tolsgaard MG. The gap in transfer research. Med Educ. 2018. https://doi.org/10.1111/medu.13591 .

Van Baalen S, Leemans A, Dik P, Lilien MR, Ten Haken B, Froeling M. Intravoxel incoherent motion modeling in the kidneys: comparison of mono-, bi-, and triexponential fit. J Magn Reson Imaging. 2017. https://doi.org/10.1002/jmri.25519 .

Van Baalen S, Froeling M, Asselman M, Klazen C, Jeltes C, Van Dijk L, et al. Mono, bi-and tri-exponential diffusion MRI modelling for renal solid masses and comparison with histopathological findings. Cancer Imaging. 2018. https://doi.org/10.1186/s40644-018-0178-0 .

Kuhn TS. The Structure of Scientific Revolutions. 2nd ed. Chicago: The University of Chicago Press; 1970.

Boon M, Van Baalen S. Epistemology for interdisciplinary research–shifting philosophical paradigms of science. Eur J Philos Sci. 2019. https://doi.org/10.1007/s13194-018-0242-4 .

Flavell JH. Metacognition and cognitive monitoring: a new area of cognitive–developmental inquiry. Am Psychol. 1979. https://doi.org/10.1037/0003-066X.34.10.906 .

Pintrich P P.R. The role of metacognitive knowledge in learning, teaching, and assessing. Theory into Pract. 2002. https://doi.org/10.1207/s15430421tip4104_3 .

Groenier M, Pieters JM, Miedema HAT. Technical medicine: designing medical technological solutions for improved health care. Med Sci Educ 2017, https://doi.org/10.1007/s40670-017-0443-z

Chandarana H, Kang SK, Wong S, Rusinek H, Zhang JL, Arizono S et al. Diffusion-Weighted Intravoxel Incoherent Motion Imaging of Renal Tumors with Histopathologic Correlation. Invest Radiol 2012. https://doi.org/10.1097/RLI.0b013e31826a0a49 .

Feng Q, Ma Z, Zhang S, Wu J. Usefulness of diffusion tensor imaging for the differentiation between low-fat angiomyolipoma and clear cell carcinoma of the kidney. SpringerPlus. 2016. https://doi.org/10.1186/s40064-015-1628-x .

Rheinheimer S, Stieltjes B, Schneider F, Simon D, Pahernik S, Kauczor HU, et al. Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters–initial experience. Eur J Radiol. 2012. https://doi.org/10.1016/j.ejrad.2011.10.016 .

Van der Bel R, Gurney-Champion OJ, Froeling M, Stroues ESG, Nederveen AJ, Krediet CTP. A tri-exponential model for intravoxel incoherent motion analysis of the human kidney: in silico and during pharmacological renal perfusion modulation. Eur J Radiol. 2017. https://doi.org/10.1016/j.ejrad.2017.03.008 .

Boon M: Philosophy of science in practice: a proposal for epistemological constructivism. 2015; Helsinki (Finland). Edited by Leitgeb H, Niiniluoto I, Seppälä P, Sober E. Helsinki (Finland): College publications. 2017a:289–310. 2017a.

Fleck L. Genesis and development of a scientific fact. Chicago: University of Chicago Press; 1935/1979.

Mößner N. Thought styles and paradigms—a comparative study of Ludwik Fleck and Thomas S. Kuhn. Stud Hist Philos Sci Part A. 2011. https://doi.org/10.1016/j.shpsa.2010.12.002 .

Sady W. Ludwik Fleck. In: the stanford encyclopedia of philosophy. Zalta EN, editor. 2017. https://plato.stanford.edu/archives/fall2017/entries/fleck/ . Accessed 30 Jul 2020.

Boon M. An engineering paradigm in the biomedical sciences: knowledge as epistemic tool. Prog Biophys Mol Biol. 2017b. doi:j.pbiomolbio.2017.04.001.

Van Baalen S, Boon M. An epistemological shift: from evidence-based medicine to epistemological responsibility. J Eval Clin Pract. 2015. https://doi.org/10.1111/jep.12282 .

Woods NN, Brooks LR, Norman GR. The role of biomedical knowledge in diagnosis of difficult clinical cases. Adv Health Sci Educ. 2007;12:417–26.

Schmidt HG, Rikers RMJP. How expertise develops in medicine: knowledge encapsulation and illness script formation. Med Educ. 2007. https://doi.org/10.1111/j.1365-2923.2007.02915.x .

Newell WH. A theory of interdisciplinary studies. Issues Integr Stud. 2001;19:1–25.

Ivanitskaya L, Clark D, Montgomery G, Primeau R. Interdisciplinary learning: process and outcomes. Innov High Educ. 2002. https://doi.org/10.1023/A:1021105309984 .

Nikitina S. Three strategies for interdisciplinary teaching: contextualizing, conceptualizing, and problem-centring. J Curric stud. 2006. https://doi.org/10.1080/00220270500422632 .

Aram JD. Concepts of interdisciplinarity: configurations of knowledge and action. Hum Relat. 2004. https://doi.org/10.1177/0018726704043893 .

Aboelela SW, Larson E, Bakken S, Carrasquillo O, Formicola A, Glied SA, et al. Defining interdisciplinary research: conclusions from a critical review of the literature. Health Serv Res. 2007. https://doi.org/10.1111/j.1475-6773.2006.00621.x .

Mansilla VB, Duraisingh ED, Wolfe CR, Haynes C. Targeted assessment rubric: an empirically grounded rubric for interdisciplinary writing. J High Educ. 2009;80(3):334–53.

Spelt EJ, Biemans HJ, Tobi H, Luning PA, Mulder M. Teaching and learning in interdisciplinary higher education: a systematic review. Educ Psychol Rev. 2009. https://doi.org/10.1007/s10648-009-9113-z .

Klein JA. A Taxonomy of interdisciplinarity. In: Frodeman R, editor. In the oxford handbook of interdisciplinarity. Oxford: Oxford University press; 2010. p. 15–30.

Terpstra JL, Best A, Abrams DB, Moor G. Health sciences and health services. In: Frodeman R, editor. The Oxford Handbook of Interdisciplinarity. Oxford: Oxford University Press; 2010.

DeZure D. Interdisciplinary pedagogies in higher education. In: Frodeman R, editor. In the oxford handbook of interdisciplinarity. Oxford: Oxford University press; 2010. p. 372–87.

Frenk J, Chen L, Bhutta ZA, Cohen J, Crisp N, Evans T. Health professionals for a new century: transforming education to strengthen health systems in an interdependent world. Lancet. 2010. https://doi.org/10.1016/S0140-6736(10)61854-5 .

Haynes C, Brown-Leonard J. From surprise parties to mapmaking: undergraduate journeys toward interdisciplinary understanding. J High Educ. 2010. https://doi.org/10.1080/00221546.2010.11779070 .

Hirsch-Hadorn G, Pohl C, Bammer G. Solving problems through transdisciplinary research. In: Frodeman R, editor. In the oxford handbook of interdisciplinarity. Oxford: Oxford University press; 2010. p. 431–52.

Szostak R. The interdisciplinary research process. In: Repko AF, Newell WH, Szostak R, editors. In Interdisciplinary research: case studies of integrative understandings of complex problems. Thousand Oaks, CA: Sage; 2011. p. 3–19.

McNair LD, Newswander C, Boden D, Borrego M. Student and faculty interdisciplinary identities in self-managed teams. J Eng Educ. 2011. https://doi.org/10.1002/j.2168-9830.2011.tb00018.x .

Liu SY, Lin CS, Tsai CC. College Students’ scientific epistemological views and thinking patterns in Socioscientific decision making. Sci Educ. 2011. https://doi.org/10.1002/sce.20422 .

Abu-Rish E, Kim S, Choe L, Varpio L, Malik E, White AA, et al. Current trends in interprofessional education of health sciences students: a literature review. J Interprof Care. 2012. https://doi.org/10.3109/13561820.2012.715604 .

Bammer G. Disciplining interdisciplinarity - integration and implementation sciences for researching Complex real-world problems. Canberra: Australian National University E-Press; 2013.

Holbrook JB. What is interdisciplinary communication? Reflections on the very idea of disciplinary integration. Synthese. 2013. https://doi.org/10.1007/s11229-012-0179-7 .

Andersen H. The second essential tension: on tradition and innovation in interdisciplinary research. Topoi. 2013. https://doi.org/10.1007/s11245-012-9133-z .

Andersen H. Collaboration, interdisciplinarity, and the epistemology of contemporary science. Stud Hist Philos Sci Part A. 2016. https://doi.org/10.1016/j.shpsa.2015.10.006 .

Lattuca LR, Knight DB, Bergom IM. Developing a measure of interdisciplinary competence for engineers. Paper presented at the American Society for Engineering Education 2012 Annual Conference & Exposition, San Antonio, Texas, USA; 2013.

Acquavita SP, Lewis MA, Aparicio E, Pecukonis E. Student perspectives on interprofessional education and experiences. J Allied Health. 2014;43(2):e31–6.

Pharo E, Davison A, McGregor H, Warr K, Brown P. Using communities of practice to enhance interdisciplinary teaching: lessons from four Australian institutions. High Educ Res Dev. 2014. https://doi.org/10.1080/07294360.2013.832168 .

Boon M. How philosophical beliefs about science affect science education in academic engineering programs: the context of construction. Eng Stud. 2022. https://doi.org/10.1080/19378629.2022.2125398 .

Bromme R, Pieschl S, Stahl E. Epistemological beliefs are standards for adaptive learning: a functional theory about epistemological beliefs and metacognition. Metacognition Learn. 2010. https://doi.org/10.1007/s11409-009-9053-5 .

Download references

Acknowledgements

We are very grateful to three anonymous reviewers who have provided valuable feedback and suggestions that have helped us improve the paper.

This work is financed by an Aspasia grant (409.40216) of the Dutch National Science Foundation (NWO) for the project Philosophy of Science for the Engineering Sciences , and by the work package Interdisciplinary Engineering Education at the 4TU-CEE (Centre Engineering Education https://www.4tu.nl/cee/en/ ) in The Netherlands.

Author information

Authors and affiliations.

Department of Philosophy, University of Twente, Enschede, The Netherlands

Sophie van Baalen & Mieke Boon

Rathenau Instituut, Den Haag, The Netherlands

Sophie van Baalen

You can also search for this author in PubMed   Google Scholar

Contributions

SvB and MB have co-authored the manuscript and have contributed equally to the article.

Authors' information

Mieke Boon (PhD) graduated in chemical engineering (cum laude) and is a full professor in philosophy of science in practice . Her research aims at a philosophy of science for the engineering sciences , addressing topics such as methodology, technological instruments, scientific modeling, paradigms of science, interdisciplinarity, and science teaching. Sophie van Baalen (PhD) graduated in technical medicine and in philosophy of science technology and society , both cum laude. She recently finished her PhD project in which she aimed to understand epistemological aspects of technical medicine from a philosophy of science perspective, such as evidence-based medicine, expertise, interdisciplinarity and technological instruments.

Corresponding author

Correspondence to Mieke Boon .

Ethics declarations

Ethics approval and consent to participate.

No human participants were involved in this research, so ethical approval and/or consent to participate is not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

van Baalen, S., Boon, M. Understanding disciplinary perspectives: a framework to develop skills for interdisciplinary research collaborations of medical experts and engineers. BMC Med Educ 24 , 1000 (2024). https://doi.org/10.1186/s12909-024-05913-1

Download citation

Received : 14 July 2023

Accepted : 14 August 2024

Published : 13 September 2024

DOI : https://doi.org/10.1186/s12909-024-05913-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Adaptive expertise
  • Interdisciplinary expertise
  • Metacognitive skills
  • Higher-order cognitive abilities
  • Epistemology
  • Problem-solving
  • Disciplinary perspectives
  • Medical technology

BMC Medical Education

ISSN: 1472-6920

what methods are adequate for defining the research problem

IMAGES

  1. Defining the Research Problem

    what methods are adequate for defining the research problem

  2. Research problem: Everything a market researcher needs to know

    what methods are adequate for defining the research problem

  3. How to Formulate a Research Problem: Useful Tips

    what methods are adequate for defining the research problem

  4. Research Problem Generator for School & University Students

    what methods are adequate for defining the research problem

  5. PPT

    what methods are adequate for defining the research problem

  6. 45 Research Problem Examples & Inspiration (2024)

    what methods are adequate for defining the research problem

VIDEO

  1. Research Approaches

  2. Necessity of Defining Research Problem #researchmethodology #phd #researchpublication #ugcnet

  3. Metho 4: Good Research Qualities / Research Process / Research Methods Vs Research Methodology

  4. Validation in agent-based models, and modelling to examine power dynamics in agri-food transitions

  5. The Challenge of Transitioning to Agile in Highly Regulated Industries

  6. Without adequate oversight, AI will be a ruthless weapon to censor conservative Americans

COMMENTS

  1. Identifying a Research Problem: A Step-by-Step Guide

    To identify a research problem, you need a systematic approach and a deep understanding of the subject area. Below are some steps to guide you in this process: Conduct a thorough literature review to understand what has been studied before. Identify gaps in the existing research that could form the basis of your study.

  2. How to Define a Research Problem

    How to Define a Research Problem | Ideas & Examples. Published on November 2, 2022 by Shona McCombes and Tegan George. Revised on May 31, 2023. A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge.

  3. PDF Chapter 2 Defining and Formulating a Research Problem

    b. Organise and list all the themes you want to discuss and relate. c. Identify and describe various theories relevant to your field of research. d. Describe the gaps that exist in the body of knowledge in. To do so: a. Start your review with a theme or points that you want. your field.

  4. (PDF) Formulating Research Problems: Building the Foundation for

    Defining a research problem is the subsequent step, involving the precise articulation of the problem's scope, objectives, and data collection strategies. This process s eparates the specific

  5. The Research Problem/Question

    Difference Research Problem-- typically asks the question, "Is there a difference between two or more groups or treatments?" This type of problem statement is used when the researcher compares or contrasts two or more phenomena. This a common approach to defining a problem in the clinical social sciences or behavioral sciences.

  6. 1. Choosing a Research Problem

    The research problem, therefore, is the main organizing principle guiding the analysis of your research. The problem under investigation establishes an occasion for writing and a focus that governs what you want to say. It represents the core subject matter of scholarly communication and the means by which scholars arrive at other topics of ...

  7. Research Problem

    Research Problem. Definition: Research problem is a specific and well-defined issue or question that a researcher seeks to investigate through research. It is the starting point of any research project, as it sets the direction, scope, and purpose of the study. Types of Research Problems. Types of Research Problems are as follows: Descriptive ...

  8. What is a Research Problem? Characteristics, Types, and Examples

    Characteristics, Types, and Examples. August 22, 2023 Sunaina Singh. Knowing the basics of defining a research problem is instrumental in formulating a research inquiry. A research problem is a gap in existing knowledge, a contradiction in an established theory, or a real-world challenge that a researcher aims to address in their research.

  9. Understanding the Nature of and Identifying and Formulating "Research

    Elliott (2021) describes the slogan as a superficial definition of a research problem, defining it as "a state of affairs or situation in which something valued is harmed or is obstructed from reaching an end both valued and assigned to it" (p. 8). He clarified that the slogan enables individuals to consider a problem worthy of research ...

  10. The Research Problem & Problem Statement

    A research problem can be theoretical in nature, focusing on an area of academic research that is lacking in some way. Alternatively, a research problem can be more applied in nature, focused on finding a practical solution to an established problem within an industry or an organisation. In other words, theoretical research problems are motivated by the desire to grow the overall body of ...

  11. Organizing Your Social Sciences Research Paper

    As Schneider notes, a method refers to the technical steps taken to do research. Descriptions of methods usually include defining and stating why you have chosen specific techniques to investigate a research problem, followed by an outline of the procedures you used to systematically select, gather, and process the data [remember to always save ...

  12. PDF Identifying a Research Problem and Question, and Searching Relevant

    esearch question for a study, depending on the complex-ity and breadth of your proposed work. Each question should be clear and specific, refer to the problem or phenomenon, reflect an inter. ention in experimental work, and note the target population or participants (see Figure 2.1). Identifying a research question will provide greater focus ...

  13. Research Problems: How to Identify & Resolve

    2. Review the key factors involved. As a marketing researcher, you must work closely with your team of researchers to define and test the influencing factors and the wider context involved in your study. These might include demographic and economic trends or the business environment affecting the question at hand.

  14. How To Define a Research Problem in 6 Steps (With Types)

    5. Select and include important variables. A clear and manageable research problem typically includes the variables that are most relevant to the study. A research team summarizes how they plan to consider and use these variables and how they might influence the results of the study. Selecting the most important variables can help the study's ...

  15. Techniques of Defining a Research Problem

    The following points should also be observed in the procedure of defining the problem: (a) The researcher must clearly define the Technical terms, words, phrases, etc. (b) Basic assumptions concerning the research problem must be clearly mentioned. (c) The criteria for the selection of the problem needs to be clearly specified.

  16. How to Define a Research Problem

    A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge. Some research will do both of these things, but usually the research problem focuses on one or the other.

  17. Defining the Research Problem

    In document Research Methodology Methods and Techniques (Page 37-44) In research process, the first and foremost step happens to be that of selecting and properly defining a research problem.*. A researcher must find the problem and formulate it so that it becomes susceptible to research. Like a medical doctor, a researcher must examine all the ...

  18. Research Problem and Questions

    The research problem is the questions or challenges that the proposed research is posed to answer or solve to fill the knowledge gap in existing studies or contribute to the existing knowledge body in the study area. Generally, a research problem can be referred to as a specific issue, difficulty, or challenge that a researcher or a team of researchers experiences and wants to solve in the ...

  19. Research Methodology (Methods, Approaches And Techniques)

    NECESSITY OF DEFINING THE PROBLEM . 58. 3.3 . ... 5.3.2 Adequate Standard . 132. ... Research methods in quantitative studies include experiments, sur veys, and .

  20. What is Research Problem? Components, Identifying, Formulating

    Formulating a research problem is usually done under the first step of research process, i.e., defining the research problem. Identification, clarification and formulation of a research problem is done using different steps as: Discover the Management Dilemma. Define the Management Question. Define the Research Question.

  21. Sage Research Methods

    The research problem is a general statement of an issue meriting research. Its nature will suggest appropriate forms for its investigation. Here are several forms in which the research problem can be expressed to indicate the method of investigation. The research problem in some social science research projects using the hypothetico-deductive ...

  22. (PDF) Identifying and Formulating the Research Problem

    identify and determine the problem to study. Identifying a research problem is important. because, as the issue or concern in a particular setting that motivates and guides the need. Parlindungan ...

  23. Understanding disciplinary perspectives: a framework to develop skills

    The general aspects indicated by italics in each question in Table 1 are interdependent, so that analysis using this framework results in a coherent description of the disciplinary perspective in terms of these aspects. The framework can be used by experts in an interdisciplinary research project not only to make explicit their disciplinary perspective in a general sense, but to also to ...