Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Parts of the Brain and Their Functions

Parts of the Brain

The human brain is the epicenter of our nervous system and plays a pivotal role in virtually every aspect of our lives. It’s a complex, highly organized organ responsible for thoughts, feelings, actions, and interactions with the world around us. Here is a look at the intricate anatomy of the brain, its functions, and the consequences of damage to different areas.

Introduction to the Brain and Its Functions

The brain is an organ of soft nervous tissue that is protected within the skull of vertebrates. It functions as the coordinating center of sensation and intellectual and nervous activity. The brain consists of billions of neurons (nerve cells) that communicate through intricate networks. The primary functions of the brain include processing sensory information, regulating bodily functions, forming thoughts and emotions, and storing memories.

Main Parts of the Brain – Anatomy

The three main parts of the brain are the cerebrum, cerebellum, and brainstem.

1. Cerebrum

  • Location: The cerebellum occupies the upper part of the cranial cavity and is the largest part of the human brain.
  • Functions: It’s responsible for higher brain functions, including thought, action, emotion, and interpretation of sensory data.
  • Effects of Damage: Depending on the area affected, damage leads to memory loss, impaired cognitive skills, changes in personality, and loss of motor control.

2. Cerebellum

  • Location: The cerebellum is at the back of the brain, below the cerebrum.
  • Functions: It coordinates voluntary movements such as posture, balance, coordination, and speech.
  • Effects of Damage: Damage causes problems with balance, movement, and muscle coordination (ataxia).

3. Brainstem

  • Location: The brainstem is lower extension of the brain, connecting to the spinal cord. It includes the midbrain, pons, and medulla oblongata.
  • Functions: This part of the brain controls many basic life-sustaining functions, including heart rate, breathing, sleeping, and eating.
  • Effects of Damage: Damage results in life-threatening conditions like breathing difficulties, heart problems, and loss of consciousness.

Lobes of the Brain

The four lobes of the brain are regions of the cerebrum:

  • Location: This is the anterior or front part of the brain.
  • Functions: Decision making, problem solving, control of purposeful behaviors, consciousness, and emotions.
  • Location: Sits behind the frontal lobe.
  • Functions: Processes sensory information it receives from the outside world, mainly relating to spatial sense and navigation (proprioception).
  • Location: Below the lateral fissure, on both cerebral hemispheres.
  • Functions: Mainly revolves around auditory perception and is also important for the processing of both speech and vision (reading).
  • Location: At the back of the brain.
  • Functions: Main center for visual processing.

Left vs. Right Brain Hemispheres

The cerebrum has two halves, called hemispheres. Each half controls functions on the opposite side of the body. So, the left hemisphere controls muscles on the right side of the body, and vice versa. But, the functions of the two hemispheres are not entirely identical:

  • Left Hemisphere: It’s dominant in language and speech and plays roles in logical thinking, analysis, and accuracy. .
  • Right Hemisphere: This hemisphere is more visual and intuitive and functions in creative and imaginative tasks.

The corpus callosum is a band of nerves that connect the two hemispheres and allow communication between them.

Detailed List of Parts of the Brain

While knowing the three key parts of the brain is a good start, the anatomy is quite a bit more complex. In addition to nervous tissues, the brain also contains key glands:

  • Cerebrum: The cerebrum is the largest part of the brain. Divided into lobes, it coordinates thought, movement, memory, senses, speech, and temperature.
  • Corpus Callosum : A broad band of nerve fibers joining the two hemispheres of the brain, facilitating interhemispheric communication.
  • Cerebellum : Coordinates movement and balance and aids in eye movement.
  • Pons : Controls voluntary actions, including swallowing, bladder function, facial expression, posture, and sleep.
  • Medulla oblongata : Regulates involuntary actions, including breathing, heart rhythm, as well as oxygen and carbon dioxide levels.
  • Limbic System : Includes the amygdala, hippocampus, and parts of the thalamus and hypothalamus.
  • Amygdala: Plays a key role in emotional responses, hormonal secretions, and memory formation.
  • Hippocampus: Plays a vital role in memory formation and spatial navigation.
  • Thalamus : Acts as the brain’s relay station, channeling sensory and motor signals to the cerebral cortex, and regulating consciousness, sleep, and alertness.
  • Basal Ganglia : A group of structures involved in processing information related to movement, emotions, and reward. Key structures include the striatum, globus pallidus, substantia nigra, and subthalamic nucleus.
  • Ventral Tegmental Area (VTA) : Plays a role in the reward circuit of the brain, releasing dopamine in response to stimuli indicating a reward.
  • Optic tectum : Also known as the superior colliculus, it directs eye movements.
  • Substantia Nigra : Involved in motor control and contains a large concentration of dopamine-producing neurons.
  • Cingulate Gyrus : Plays a role in processing emotions and behavior regulation. It also helps regulate autonomic motor function.
  • Olfactory Bulb : Involved in the sense of smell and the integration of olfactory information.
  • Mammillary Bodies : Plays a role in recollective memory.
  • Function: Regulates emotions, memory, and arousal.

Glands in the Brain

The hypothalamus, pineal gland, and pituitary gland are the three endocrine glands within the brain:

  • Hypothalamus : The hypothalamus links the nervous and endocrine systems. It contains many small nuclei. In addition to participating in eating and drinking, sleeping and waking, it regulates the endocrine system via the pituitary gland. It maintains the body’s homeostasis, regulating hunger, thirst, response to pain, levels of pleasure, sexual satisfaction, anger, and aggressive behavior.
  • Pituitary Gland : Known as the “master gland,” it controls various other hormone glands in the body, such as the thyroid and adrenals, as well as regulating growth, metabolism, and reproductive processes.
  • Pineal Gland : The pineal gland produces and regulates some hormones, including melatonin, which is crucial in regulating sleep patterns and circadian rhythms.

Gray Matter vs. White Matter

The brain and spinal cord consist of gray matter (substantia grisea) and white matter (substantia alba).

  • White Matter: Consists mainly of axons and myelin sheaths that send signals between different brain regions and between the brain and spinal cord.
  • Gray Matter: Consists of neuronal cell bodies, dendrites, and axon terminals. Gray matter processes information and directs stimuli for muscle control, sensory perception, decision making, and self-control.

Frequently Asked Questions (FAQs) About the Human Brain

  • The human brain contains approximately 86 billion neurons. Additionally, it has a similar or slightly higher number of non-neuronal cells (glial cells), making the total number of cells in the brain close to 170 billion.
  • There are about 86 billion neurons in the human brain. These neurons are connected by trillions of synapses, forming a complex networks.
  • The average adult human brain weighs about 1.3 to 1.4 kilograms (about 3 pounds). This weight represents about 2% of the total body weight.
  • The brain is about 73% water.
  • The myth that humans only use 10% of their brain is false. Virtually every part gets use, and most of the brain is active all the time, even during sleep.
  • The average size of the adult human brain is about 15 centimeters (6 inches) in length, 14 centimeters (5.5 inches) in width, and 9 centimeters (3.5 inches) in height.
  • Brain signal speeds vary depending on the type of neuron and the nature of the signal. They travel anywhere from 1 meter per second to over 100 meters per second in the fastest neurons.
  • With age, the brain’s volume and/or weight decrease, synaptic connections reduce, and there can be a decline in cognitive functions. However, the brain to continues adapting and forming new connections throughout life.
  • The brain has a limited ability to repair itself. Neuroplasticity aids recovery by allowing other parts of the brain to take over functions of the damaged areas.
  • The brain consumes about 20% of the body’s total energy , despite only making up about 2% of the body’s total weight . It requires a constant supply of glucose and oxygen.
  • Sleep is crucial for brain health. It aids in memory consolidation, learning, brain detoxification, and the regulation of mood and cognitive functions.
  • Douglas Fields, R. (2008). “White Matter Matters”. Scientific American . 298 (3): 54–61. doi: 10.1038/scientificamerican0308-54
  • Kandel, Eric R.; Schwartz, James Harris; Jessell, Thomas M. (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1.
  • Kolb, B.; Whishaw, I.Q. (2003). Fundamentals of Human Neuropsychology (5th ed.). New York: Worth Publishing. ISBN 978-0-7167-5300-1.
  • Rajmohan, V.; Mohandas, E. (2007). “The limbic system”. Indian Journal of Psychiatry . 49 (2): 132–139. doi: 10.4103/0019-5545.33264
  • Shepherd, G.M. (1994). Neurobiology . Oxford University Press. ISBN 978-0-19-508843-4.

Related Posts

  • Type 2 Diabetes
  • Heart Disease
  • Digestive Health
  • Multiple Sclerosis
  • Diet & Nutrition
  • Health Insurance
  • Public Health
  • Patient Rights
  • Caregivers & Loved Ones
  • End of Life Concerns
  • Health News
  • Thyroid Test Analyzer
  • Doctor Discussion Guides
  • Hemoglobin A1c Test Analyzer
  • Lipid Test Analyzer
  • Complete Blood Count (CBC) Analyzer
  • What to Buy
  • Editorial Process
  • Meet Our Medical Expert Board

The Anatomy of the Brain

The brain controls your thoughts, feelings, and physical movements

Associated Conditions

The brain is a unique organ that is responsible for many functions such as problem-solving, thinking, emotions, controlling physical movements, and mediating the perception and responses related to the five senses. The many nerve cells of the brain communicate with each other to control this activity.

Each area of the brain has one or more functions. The skull, which is composed of bone, protects the brain. A number of different health conditions can affect the brain, including headaches , seizures , strokes , multiple sclerosis , and more. These conditions can often be managed with medical or surgical care.

The brain is primarily composed of nerve cells, which are also called neurons. Blood vessels supply oxygen and nutrients to the neurons of the brain. Cerebrospinal fluid (CSF), a fluid that provides nourishment and immune protection to the brain, flows around the brain and within the ventricular system (spaces between the regions of the brain).

The brain and the CSF are protected by the meninges, composed of three layers of connective tissue: the pia, arachnoid, and dura layers. The skull surrounds the meninges.

The brain has many important regions, such as the cerebral cortex, brainstem, and cerebellum. The areas of the brain all interact with each other through hormones and nerve stimulation.

The regions of the brain include:

  • Cerebral cortex : This is the largest portion of the brain. It includes two hemispheres (halves), which are connected to each other—physically and functionally—by the corpus callosum. The corpus callosum runs from the front of the cerebral cortex to the back of the cerebral cortex. The outer part of the cerebral cortex is often described as gray matter, and the deeper areas are often described as white matter due to their microscopic appearance.
  • Lobes of the cerebral cortex : Each hemisphere of the cerebral cortex is composed of four lobes. The frontal lobes are the largest, and they are located at the front of the brain. The temporal lobes are located on the sides of the brain, near and above the ears. The parietal lobes are at the top middle section of the brain. And the occipital lobes, which are the smallest lobes, are located in the back of the cerebral cortex.
  • Limbic system : The limbic system is located deep in the brain and is composed of several small structures, including the hippocampus, amygdala, thalamus, and hypothalamus .
  • Internal capsule : This area is located deep in the brain and is considered white matter. The frontal regions of the cerebral cortex surround the left and right internal capsules. The internal capsule is located near the lateral ventricles.
  • Thalamus : The left and right thalami are below the internal capsule, above the brainstem, and near the lateral ventricles.
  • Hypothalamus and pituitary gland : The hypothalamus is a tiny region of the brain located directly above the pituitary gland. The pituitary gland is a structure that extends directly above the optic chiasm, where the optic nerves meet.
  • Brainstem : The brainstem is the lowest region of the brain and is continuous with the spinal cord. It is composed of three sections: the midbrain, pons, and medulla. The cranial nerves emerge from the brainstem.
  • Cerebellum : The cerebellum is located at the lower back of the brain, under the occipital lobe and behind the brainstem. It has two hemispheres (left and right) that are connected by a middle structure called the vermis.
  • Blood vessels : The blood vessels that supply your brain include the anterior cerebral arteries , middle cerebral arteries , posterior cerebral arteries, basilar artery , and vertebral arteries . These blood vessels and the blood vessels that connect them to each other compose a collection of blood vessels described as the circle of Willis .
  • Ventricular system : CSF flows in the right and left lateral ventricles, the third ventricle, the cerebral aqueduct, the fourth ventricle, and down into the central canal in the spinal cord.

The brain has a number of functions, including motor function (controlling the body’s movements), coordination, sensory functions (being aware of sensations), hormone control, regulation of the heart and lungs, emotions, memory, behavior, and creativity.

These functions often rely on and interact with each other. For example, you might experience an emotion based on something that you see and/or hear. Or you might try to solve a problem with the help of your memory. Messages travel very quickly between the different regions in the brain, which makes the interactions almost instantaneous.

Functions of the brain include:

  • Motor function : Motor function is initiated in an area at the back of the frontal lobe called the motor homunculus. This region controls movement on the opposite side of the body by sending messages through the internal capsule to the brainstem, then to the spinal cord, and finally to a spinal nerve through a pathway described as the corticospinal tract.
  • Coordination and balance : Your body maintains balance and coordination through a number of pathways in the cerebral cortex, cerebellum, and brainstem.
  • Sensation : The brain receives sensory messages through a pathway that travels from the nerves in the skin and organs to the spine, then to the brainstem, up through the thalamus, and finally to an area of the parietal lobe called the sensory homunculus, which is directly behind the motor homunculus. Each hemisphere receives sensory input from the opposite side of the body. This pathway is called the spinothalamic tract.
  • Vision : Your optic nerves in your eyes can detect whatever you see, sending messages through your optic tract (pathway) to your occipital lobes. The occipital lobes put those messages together so that you can perceive what you are seeing in the world around you.
  • Taste and smell : Your olfactory nerve detects smell, while several of your cranial nerves work together to detect taste. These nerves send messages to your brain. The sensations of smell and taste often interact, as smell amplifies your experience of taste.
  • Hearing : You can detect sounds when a series of vibrations in your ear stimulate your vestibulocochlear nerve. The message is sent to your brainstem and then to your temporal cortex so that you can make sense of the sounds that you hear.
  • Language : Speaking and understanding language is a specialized brain function that involves several regions of your dominant hemisphere (the side of the brain opposite your dominant hand). The two major areas that control speech are Wernicke’s area , which controls the understanding of speech, and Broca’s area, which controls the fluency of your speech.
  • Emotions and memory : Your amygdala and hippocampus play important roles in storing memory and associating certain memories with emotion.
  • Hormones : Your hypothalamus, pituitary gland, and medulla all respond to the conditions of your body, such as your temperature, carbon dioxide level, and hormone levels, by releasing hormones and other chemicals that help regulate your body’s functions. Emotions such as fear can also have an influence on these functions.
  • Behavior and judgment : The frontal lobes control reasoning, planning, and maintaining social interactions. This area of the brain is also involved in judgment and maintaining appropriate behavior.
  • Analytical thinking : Mathematical problem solving is located in the dominant hemisphere. Often, this type of reasoning involves interaction with the decision-making regions of the frontal lobes.
  • Creativity : There are many types of creativity, including the production of visual art, music, and creative writing. These skills can involve three-dimensional thinking, also described as visual-spatial skills. Creativity also involves analytical reasoning and usually requires a balance between traditional ways of thinking (which occurs in the frontal lobes) and "thinking outside the box."

There are many conditions that can affect the brain. You may experience self-limited issues, such as the pain of a headache, or more lasting effects of brain disease, such as paralysis due to a stroke. The diagnosis of brain illnesses may be complex and can involve a variety of medical examinations and tests, including a physical examination, imaging tests, neuropsychological testing, electroencephalography (EEG) , and/or lumbar puncture .

Common conditions that involve the brain include:

  • Headaches : Head pain can occur due to chronic migraines or tension headaches. You can also have a headache when you feel sleepy, stressed, or due to an infection like meningitis (an infection of the meninges).
  • Traumatic brain injury : An injury to the head can cause damage such as bleeding in the brain, a skull fracture, a bruise in the brain, or, in severe cases, death. These injuries may cause vision loss, paralysis, or severe cognitive (thinking) problems.
  • Concussion : Head trauma can cause issues like loss of consciousness, memory impairment, and mood changes. These problems may develop even in the absence of bleeding or a skull fracture. Often, symptoms of a concussion resolve over time, but recurrent head trauma can cause serious and persistent problems with brain function, described as chronic traumatic encephalopathy (CTE).
  • Transient ischemic attack (TIA) : A temporary interruption in the blood supply to the brain can cause the affected areas to temporarily lose function. This can happen due to a blood clot, usually coming from the heart or carotid arteries. If the interruption in blood flow resolves before permanent brain damage occurs, this is called a TIA . Generally, a TIA is considered a warning that a person is at risk of having a stroke, so a search for stroke causes is usually necessary—and stroke prevention often needs to be initiated.
  • Stroke : A stroke is brain damage that occurs due to an interruption of blood flow to the brain. This can occur due to a blood clot (ischemic stroke) or a bleed in the brain (hemorrhagic stroke) . There are a number of causes of ischemic and hemorrhagic stroke, including heart disease, hypertension, and brain aneurysms.
  • Brain aneurysm : An aneurysm is an outpouching of a blood vessel. A brain aneurysm can cause symptoms due to pressure on nearby structures. An aneurysm can also bleed or rupture, causing a hemorrhage in the brain. Sometimes an aneurysm can be surgically repaired before it ruptures, preventing serious consequences.
  • Dementia : Degenerative disease of the regions in the brain that control memory and behavior can cause a loss of independence. This can occur in several conditions, such as Alzheimer’s disease , Lewy body dementia, Pick’s disease, and vascular dementia (caused by having many small strokes).
  • Multiple sclerosis (MS) : This is a condition characterized by demyelination (loss of the protective fatty coating around nerves) in the brain and spine. MS can cause a variety of effects, such as vision loss, muscle weakness, and sensory changes. The disease course can be characterized by exacerbations and remissions, a progressive decline, or a combination of these processes.
  • Parkinson’s disease : This condition is a progressive movement disorder that causes tremors of the body (especially the arms), stiffness of movements, and a slow, shuffling pattern of walking. There are treatments for this condition, but it is not curable.
  • Epilepsy : Recurrent seizures can occur due to brain damage or congenital (from birth) epilepsy. These episodes may involve involuntary movements, diminished consciousness, or both. Seizures usually last for a few seconds at a time, but prolonged seizures (status epilepticus) can occur as well. Anti-epileptic medications can help prevent seizures, and some emergency anti-epileptic medications can be used to stop a seizure while it is happening.
  • Meningitis or encephalitis : An infection or inflammation of the meninges (meningitis) or the brain (encephalitis) can cause symptoms such as fever, stiff neck, headache, or seizures. With treatment, meningitis usually improves without lasting effects, but encephalitis can cause brain damage, with long-term neurological impairment.
  • Brain tumors : A primary brain tumor starts in the brain, and brain tumors from the body can metastasize (spread) to the brain as well. These tumors can cause symptoms that correlate to the affected area of the brain. Brain tumors also may cause swelling in the brain and hydrocephalus (a disruption of the CSF flow in the ventricular system). Treatments include surgery, chemotherapy, and radiation therapy.

If you have a condition that could be affecting your brain, there are a number of complex tests that your medical team may use to identify the problem. Most important, a physical exam and mental status examination can determine whether there is any impairment of brain function and pinpoint the deficits. For example, you may have weakness of one part of the body, vision loss, trouble walking, personality or memory changes, or a combination of these issues. Other signs, such as rash or fever, which are not part of the neurological physical examination, can also help identify systemic issues that could be causing your symptoms.

Diagnostic tests include brain imaging tests such as computerized tomography (CT), magnetic resonance imaging (MRI), or functional magnetic resonance imaging (fMRI). These tests can identify structural and functional abnormalities. And sometimes, tests such as CT angiography (CTA), MRI angiography (MRA), or interventional cerebral angiography are needed to visualize the blood vessels in the brain.

Another test, an evoked potential test, can be used to identify hearing or vision problems in some circumstances. And a lumbar puncture may be used to evaluate the CSF surrounding the brain. This test can detect evidence of infection, inflammation, or cancer. Rarely, a brain biopsy is used to sample a tiny area of the brain to assess the abnormalities.

Thau L, Singh P. Anatomy, central nervous system . StatPearls.

Calso C, Besnard J, Allain P. Frontal lobe functions in normal aging: Metacognition, autonomy, and quality of life . Exp Aging Res . 2019;45(1):10-27. doi:10.1080/0361073X.2018.1560105

Ferry B, DeCastro A. Concussion . StatPearls.

Panuganti KK, Tadi P, Lui F. Transient ischemic attack . StatPearls.

Párraga RG, Possatti LL, Alves RV, Ribas GC, Türe U, de Oliveira E. Microsurgical anatomy and internal architecture of the brainstem in 3D images: surgical considerations . J Neurosurg . 2016;124(5):1377-95. doi:10.3171/2015.4.JNS132778

Talo M, Yildirim O, Baloglu UB, Aydin G, Acharya UR. Convolutional neural networks for multi-class brain disease detection using MRI images . Comput Med Imaging Graph . 2019;10:101673. doi:10.1016/j.compmedimag.2019.101673

By Heidi Moawad, MD Dr. Moawad is a neurologist and expert in brain health. She regularly writes and edits health content for medical books and publications.

  • Brain Development
  • Childhood & Adolescence
  • Diet & Lifestyle
  • Emotions, Stress & Anxiety
  • Learning & Memory
  • Thinking & Awareness
  • Alzheimer's & Dementia
  • Childhood Disorders
  • Immune System Disorders
  • Mental Health
  • Neurodegenerative Disorders
  • Infectious Disease
  • Neurological Disorders A-Z
  • Body Systems
  • Cells & Circuits
  • Genes & Molecules
  • The Arts & the Brain
  • Law, Economics & Ethics
  • Neuroscience in the News
  • Supporting Research
  • Tech & the Brain
  • Animals in Research
  • BRAIN Initiative
  • Meet the Researcher
  • Neuro-technologies
  • Tools & Techniques

Core Concepts

  • For Educators
  • Ask an Expert
  • The Brain Facts Book

BrainFacts.org

Mapping the Brain

  • Published 1 Apr 2012
  • Reviewed 1 Apr 2012
  • Source BrainFacts/SfN

The cerebrum, the largest part of the human brain, is associated with higher order functioning, including the control of voluntary behavior. Thinking, perceiving, planning, and understanding language all lie within the cerebrum’s control.

The top image shows the four main sections of the cerebral cortex: the frontal lobe, the parietal lobe, the occipital lobe, and the temporal lobe. Functions such as movement are controlled by the motor cortex, and the sensory cortex receives information on vision, hearing, speech, and other senses. The bottom image shows the location of the brain's major internal structures.

The top image shows the four main sections of the cerebral cortex: the frontal lobe, the parietal lobe, the occipital lobe, and the temporal lobe. Functions such as movement are controlled by the motor cortex, and the sensory cortex receives information on vision, hearing, speech, and other senses. The bottom image shows the location of the brain's major internal structures.

The cerebrum is divided into two hemispheres — the right hemisphere and the left hemisphere. Bridging the two hemispheres is a bundle of fibers called the corpus callosum. The two hemispheres communicate with one another across the corpus callosum.

Covering the outermost layer of the cerebrum is a sheet of tissue called the cerebral cortex. Because of its gray color, the cerebral cortex is often referred to as gray matter. The wrinkled appearance of the human brain also can be attributed to characteristics of the cerebral cortex. More than two-thirds of this layer is folded into grooves. The grooves increase the brain’s surface area, allowing for inclusion of many more neurons.

The function of the cerebral cortex can be understood by dividing it somewhat arbitrarily into zones, much like the geographical arrangement of continents.

The frontal lobe is responsible for initiating and coordinating motor movements; higher cognitive skills, such as problem solving, thinking, planning, and organizing; and for many aspects of personality and emotional makeup.

The parietal lobe is involved with sensory processes, attention, and language. Damage to the right side of the parietal lobe can result in difficulty navigating spaces, even familiar ones. If the left side is injured, the ability to understand spoken and/or written language may be impaired.

The occipital lobe helps process visual information, including recognition of shapes and colors.

The temporal lobe helps process auditory information and integrate information from the other senses. Neuroscientists also believe that the temporal lobe has a role to play in short-term memory through its hippocampal formation, and in learned emotional responses through its amygdala.

All of these structures make up the forebrain. Other key parts of the forebrain include the basal ganglia, which are cerebral nuclei deep in the cerebral cortex; the thalamus; and the hypothalamus. The cerebral nuclei help coordinate muscle movements and reward useful behaviors; the thalamus passes most sensory information on to the cerebral cortex after helping to prioritize it; and the hypothalamus is the control center for appetites, defensive and reproductive behaviors, and sleep-wakefulness.

The midbrain consists of two pairs of small hills called colliculi. These collections of neurons play a critical role in visual and auditory reflexes and in relaying this type of information to the thalamus. The midbrain also has clusters of neurons that regulate activity in widespread parts of the central nervous system and are thought to be important for reward mechanisms and mood.

The hindbrain includes the pons and the medulla oblongata, which control respiration, heart rhythms, and blood glucose levels.

Another part of the hindbrain is the cerebellum which, like the cerebrum, also has two hemispheres. The cerebellum’s two hemispheres help control movement and cognitive processes that require precise timing, and also play an important role in Pavlovian learning.

The spinal cord is the extension of the brain through the vertebral column. It receives sensory information from all parts of the body below the head. It uses this information for reflex responses to pain, for example, and it also relays the sensory information to the brain and its cerebral cortex. In addition, the spinal cord generates nerve impulses in nerves that control the muscles and the viscera, both through reflex activities and through voluntary commands from the cerebrum.

CONTENT PROVIDED BY

BrainFacts/SfN

Also In Anatomy

The Dancing Brain

Popular articles on BrainFacts.org

https://www.brainfacts.org/-/media/Brainfacts2/Diseases-and-Disorders/Mental-Health/Article-Images/Depression-and-Memory-Thumbnail.png

BrainFacts Book

Download a copy of the newest edition of the book, Brain Facts: A Primer on the Brain and Nervous System.

A beginner's guide to the brain and nervous system.

Educator Resources

Explain the brain to your students with a variety of teaching tools and resources.

Facebook

SUPPORTING PARTNERS

Dana Foundation logo

  • Accessibility Policy
  • Terms and Conditions
  • Manage Cookies

Some pages on this website provide links that require Adobe Reader to view.

Appointments at Mayo Clinic

  • How your brain works

The brain and nervous system

The brain contains billions of nerve cells arranged in patterns that coordinate thought, emotion, behavior, movement and sensation.

A complicated highway system of nerves connects the brain to the rest of your body, so communication can occur in seconds. Think about how fast you pull your hand back from a hot stove. While all the parts of the brain work together, each part is responsible for a specific function — controlling everything from your heart rate to your mood.

Illustration of brain and nervous system

The cerebrum is the largest part of the brain. It's what you probably visualize when you think of brains in general. The outermost layer of the cerebrum is the cerebral cortex, also called the "gray matter" of the brain. Deep folds and wrinkles in the brain increase the surface area of the gray matter, so more information can be processed.

The cerebrum is divided by a deep groove, also known as a fissure. The groove divides the brain into two halves known as hemispheres. The hemispheres communicate with each other through a thick tract of nerves called the corpus callosum at the base of the groove. In fact, messages to and from one side of the body are usually handled by the opposite side of the brain.

Illustration of cerebrum

Lobes of the brain

The brain's hemispheres have four lobes.

  • The frontal lobes help control thinking, planning, organizing, problem-solving, short-term memory and movement.
  • The parietal lobes help interpret feeling, known as sensory information. The lobes process taste, texture and temperature.
  • The occipital lobes process images from your eyes and connect them to the images stored in your memory. This allows you to recognize images.
  • The temporal lobes help process information from your senses of smell, taste and sound. They also play a role in memory storage.

Illustration of brain lobes

Cerebellum and brainstem

The cerebellum is a wrinkled ball of tissue below and behind the rest of the brain. It works to combine sensory information from the eyes, ears and muscles to help coordinate movement. The cerebellum activates when you learn to play the piano, for example.

The brainstem links the brain to the spinal cord. It controls functions vital to life, such as heart rate, blood pressure and breathing. The brainstem also is important for sleep.

Illustration of cerebellum and brainstem

The inner brain

Structures deep within the brain control emotions and memories. Known as the limbic system, these structures come in pairs. Each part of this system is present in both halves of the brain.

  • The thalamus acts as a gatekeeper for messages passed between the spinal cord and the cerebrum.
  • The hypothalamus controls emotions. It also regulates your body's temperature and controls functions such as eating or sleeping.
  • The hippocampus sends memories to be stored in areas of the cerebrum. It then recalls the memories later.

Illustration of thalamus, hypothalamus and hippocampus

Peripheral nervous system

All of the nerves in your body that are outside of the brain and spinal cord make up the peripheral nervous system.

It relays information between your brain and your extremities, such as your arms, hands, legs or feet. For example, if you touch a hot stove, pain signals travel from your finger to your brain in a split second. Your brain tells the muscles in your arm and hand to quickly take your finger off the hot stove.

Illustration of how nerves run through the body

Nerve cells

Nerve cells, known as neurons, send and receive nerve signals. They have two main types of branches coming off their cell bodies. Dendrites receive messages from other nerve cells. Axons carry outgoing messages from the cell body to other cells — such as a nearby neuron or muscle cell.

Interconnected with each other, neurons provide efficient, lightning-fast communication.

Illustration of how nerve cells connect

Neurotransmitters

A nerve cell communicates with other cells through electrical impulses when the nerve cell is stimulated. Within a neuron, the impulse moves to the tip of an axon and causes the release of chemicals, called neurotransmitters, that act as messengers.

Neurotransmitters pass through the gap between two nerve cells, known as the synapse. They then attach to receptors on the receiving cell. This process repeats from neuron to neuron as the impulse travels to its destination. This web of communication that allows you to move, think, feel and communicate.

Illustration of how nerves communicate

  • Brain basics: Know your brain. National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/health-information/public-education/brain-basics/brain-basics-know-your-brain#. Accessed Jan. 10, 2024.
  • Anatomy of the brain. American Association of Neurological Surgeons. https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Anatomy-of-the-Brain. Accessed Jan. 10, 2024.
  • Brain anatomy and functions. National Cancer Institute. https://www.cancer.gov/rare-brain-spine-tumor/tumors/anatomy/brain-anatomy-functions. Accessed Jan. 10, 2024.
  • Overview of peripheral nervous system disorders. Merck Manual Professional Version. https://www.merckmanuals.com/professional/neurologic-disorders/peripheral-nervous-system-and-motor-unit-disorders/overview-of-peripheral-nervous-system-disorders. Accessed Jan. 10, 2024.
  • Ciurleo R, et al. Parosmia and neurological disorders: A neglected association. Frontiers in Neurology. 2020; doi:10.3389/fneur.2020.543275.

Products and Services

  • A Book: Mayo Clinic Family Health Book
  • Newsletter: Mayo Clinic Health Letter — Digital Edition
  • Awake brain surgery
  • Pacemaker for epilepsy
  • DBS for Tremor
  • Deep brain stimulation
  • EEG (electroencephalogram)
  • Infographic: Epilepsy and Brain Mapping
  • Epilepsy surgery
  • Epilepsy surgery rehabilitation
  • Mayo Clinic Minute: Demystifying epilepsy
  • Medical marijuana
  • Neurontin side effects: How do I manage them?
  • Explaining epilepsy
  • Epilepsy FAQs
  • Infographic: Pediatric Epilepsy Early Intervention
  • Positron emission tomography scan
  • Seeing inside the heart with MRI
  • Transcranial magnetic stimulation
  • Vagus nerve stimulation
  • Video: Vagus nerve stimulation
  • Violinist Still Making Music After DBS Surgery
  • Mayo Clinic neurosurgeon Kendall H. Lee, M.D., Ph.D., describes deep brain stimulation research

Mayo Clinic does not endorse companies or products. Advertising revenue supports our not-for-profit mission.

  • Opportunities

Mayo Clinic Press

Check out these best-sellers and special offers on books and newsletters from Mayo Clinic Press .

  • Mayo Clinic on Incontinence - Mayo Clinic Press Mayo Clinic on Incontinence
  • The Essential Diabetes Book - Mayo Clinic Press The Essential Diabetes Book
  • Mayo Clinic on Hearing and Balance - Mayo Clinic Press Mayo Clinic on Hearing and Balance
  • FREE Mayo Clinic Diet Assessment - Mayo Clinic Press FREE Mayo Clinic Diet Assessment
  • Mayo Clinic Health Letter - FREE book - Mayo Clinic Press Mayo Clinic Health Letter - FREE book

5X Challenge

Thanks to generous benefactors, your gift today can have 5X the impact to advance AI innovation at Mayo Clinic.

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

September 9, 2021

How the brain solves problems

by Delia Du Toit, Wits University

brain

In trying to think of an introduction for this article it occurred to me that had I been inside an MRI, the screen would have showed several brain regions lighting up like Times Square as my mind was attempting to solve the problem.

First, the prefrontal cortex, basal ganglia and thalamus would recognize that the blank page meant that there was a problem that needed to be solved. The thought that the editor might not favor this first-person account in a science article would send the limbic system , the primal part of the brain where emotions are processed, into overdrive. The amygdala, that little almond-shaped nugget at the base of the brain, would look like a Christmas tree as anxiety ticked up.

Finally, as words started filling the screen, the prefrontal cortex behind the forehead would flicker and flash. The hippocampus would access memories of previous similar articles, the information-gathering process and even school-level English classes decades ago, to help the process along. And all this activity would happen at once.

Holistic problem solving

Depending on the problem in front of you, the entire brain could be involved in trying to find a solution, says Professor Kate Cockcroft, Division Leader of cognitive neuroscience at the Neuroscience Research Laboratory (Wits NeuRL) in the School of Human and Community Development.

"You would use many different brain regions to solve a problem, especially a novel or difficult one. The idea of processes being localized in one or two parts of the brain has been replaced with newer evidence that it is the connections among brain areas and their interaction that is important in cognitive processes . Some areas may be more activated with certain problems—a visual problem would activate the visual cortices, for example.

"All this activity takes place as electrochemical signals. The signals form within neurons, pass along the branch-like axons and jump from one neuron to the next across gaps called synapses, with the help of neurotransmitter chemicals. The pattern, size, shape and number of these signals, what they communicate with, and the region of the brain in which they happen, determine what they achieve."

Although problem solving is a metacognitive—"thinking about thinking"—process, that does not make it solely the domain of the highly evolved human prefrontal cortex , adds Dr. Sahba Besharati, Division Leader of social-affective neuroscience at NeuRL.

"This is the most recently evolved part of the human brain, but problem solving does not happen in isolation—it's immersed in a social context that influences how we interpret information. Your background, gender, religion or emotions, among other factors, all influence how you interpret a problem. This means that it would involve other brain areas like the limbic system, one of the oldest brain systems housed deep within the cortex," says Besharati.

"Problem-solving abilities are not a human peculiarity. Some animals are even better than us at solving certain problems, but we all share basic problem-solving skills—if there's danger, leave; if you're hungry, find food."

None of this would be possible without memory either, says Cockcroft. "Without it, we would forget what it is that we are trying to solve and we wouldn't be able to use past experiences to help us solve it."

And memory is, again, linked to emotion. "We use this information to increase the likelihood of positive results when solving new problems," she says.

Improving your skills

It has been proven time and again that just about any brain process can be improved—including problem-solving abilities. "Brain plasticity is a real thing—the brain can reorganize itself with targeted intervention," says Besharati. "Rehabilitation from neurological injury is a dynamic process and an ever-improving science that has allowed us to understand how the brain can change and adapt in response to the environment. Studies have also shown that simple memorisation exercises can assist tremendously in retaining cognitive skills in old age."

Of course, all these processes depend on your brain recognizing that there's a problem to be dealt with in the first place—if you don't realize you're spending money foolishly, you can't improve your finances. "Recognition of a problem can happen at both a conscious and unconscious level. Stroke patients who are not aware of their motor paralysis, for example, deludedly don't believe that they are paralyzed and will sometimes not engage in rehabilitation. But their delusions often spontaneously recover, suggesting recognition at an unconscious level and that, over time, the brain can restore function."

If all else fails, there might be some value to the adage "sleep on it," says Cockcroft. "Sleep is believed to assist memory consolidation—changing memories from a fragile state in which they can easily be damaged to a permanent state. In doing so, they become stored in different brain regions and new neural connections are formed that may assist problem solving. On waking, you may have formed associations between information that you didn't think of previously. This seems to be most effective within three hours of learning new information—perhaps we should institute compulsory naps for students after lectures!"

Explore further

Feedback to editors

part of brain that controls problem solving

Combo immunotherapy produces distinct waves of cancer-fighting T cells with each dose

33 minutes ago

part of brain that controls problem solving

Gene therapy gets a turbo boost from researchers

part of brain that controls problem solving

Mechanical stress in the borderzone: A new source of cardiac inflammation

part of brain that controls problem solving

Clinical trial assesses the efficacy of suvorexant in reducing delirium in older adults

part of brain that controls problem solving

Brain study suggests regions that grew the most during evolution are most susceptible to aging

part of brain that controls problem solving

VR headsets could be life changing for people with intellectual disability

part of brain that controls problem solving

Scientists discover how the body's killer cells attack cancer

part of brain that controls problem solving

Crucial role of JUN protein in restraining liver cancer growth discovered

part of brain that controls problem solving

Access to opioid agonist treatment in prisons saves lives, researchers say

part of brain that controls problem solving

Duloxetine may help elderly with depression and cognitive impairment

Related stories.

part of brain that controls problem solving

Have a vexing problem? Sleep on it.

Oct 17, 2019

part of brain that controls problem solving

Can't solve a riddle? The answer might lie in knowing what doesn't work

Mar 4, 2021

part of brain that controls problem solving

Researchers question the existence of the social brain as a separate system

Oct 15, 2020

part of brain that controls problem solving

Creativity important to lift math education

Feb 4, 2020

part of brain that controls problem solving

A child's brain activity reveals their memory ability

May 25, 2020

part of brain that controls problem solving

Why people with depression can sometimes experience memory problems

Feb 9, 2021

Recommended for you

part of brain that controls problem solving

Deep brain stimulation study models impulsivity and risk aversion

2 hours ago

part of brain that controls problem solving

Cochlear implant users reveal basic approaches for how people recognize words

6 hours ago

part of brain that controls problem solving

How zebrafish map their environment: Spatial orientation mechanisms surprisingly similar to our own

23 hours ago

part of brain that controls problem solving

Medication may stop migraines before headache starts, study shows

19 hours ago

part of brain that controls problem solving

Treating depression with psilocybin or escitalopram found to result in different hierarchical brain reconfigurations

Aug 28, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

ASU for You, learning resources for everyone

  • News/Events
  • Arts and Sciences
  • Design and the Arts
  • Engineering
  • Global Futures
  • Health Solutions
  • Nursing and Health Innovation
  • Public Service and Community Solutions
  • University College
  • Thunderbird School of Global Management
  • Polytechnic
  • Downtown Phoenix
  • Online and Extended
  • Lake Havasu
  • Research Park
  • Washington D.C.
  • Biology Bits
  • Bird Finder
  • Coloring Pages

Experiments and Activities

  • Games and Simulations
  • Quizzes in Other Languages
  • Virtual Reality (VR)
  • World of Biology
  • Meet Our Biologists
  • Listen and Watch
  • PLOSable Biology
  • All About Autism
  • Xs and Ys: How Our Sex Is Decided
  • When Blood Types Shouldn’t Mix: Rh and Pregnancy
  • What Is the Menstrual Cycle?
  • Understanding Intersex
  • The Mysterious Case of the Missing Periods
  • Summarizing Sex Traits
  • Shedding Light on Endometriosis
  • Periods: What Should You Expect?
  • Menstruation Matters
  • Investigating In Vitro Fertilization
  • Introducing the IUD
  • How Fast Do Embryos Grow?
  • Helpful Sex Hormones
  • Getting to Know the Germ Layers
  • Gender versus Biological Sex: What’s the Difference?
  • Gender Identities and Expression
  • Focusing on Female Infertility
  • Fetal Alcohol Syndrome and Pregnancy
  • Ectopic Pregnancy: An Unexpected Path
  • Creating Chimeras
  • Confronting Human Chimerism
  • Cells, Frozen in Time
  • EvMed Edits
  • Stories in Other Languages
  • Virtual Reality
  • Zoom Gallery
  • Ugly Bug Galleries
  • Ask a Question
  • Top Questions
  • Question Guidelines
  • Permissions
  • Information Collected
  • Author and Artist Notes
  • Share Ask A Biologist
  • Articles & News
  • Our Volunteers
  • Teacher Toolbox

Question icon

show/hide words to know

Disorder: something that is not in order. Not arranged correctly. In medicine a disorder is when something in the body is not working correctly.

Electroencephalogram: visual recording showing the electrical activity of the brain (EEG)...  more

Emotion: any of a long list of feelings a person can have such as joy, anger and love...  more

What Are the Regions of the Brain and What Do They Do?

The brain has many different parts . The brain also has specific areas that do certain types of work. These areas are called lobes. One lobe works with your eyes when watching a movie. There is a lobe that is controlling your legs and arms when running and kicking a soccer ball. There are two lobes that are involved with reading and writing. Your memories of a favorite event are kept by the same lobe that helps you on a math test. The brain is controlling all of these things and a lot more. Use the map below to take a tour of the regions in the brain and learn what they control in your body.

The brain is a very busy organ. It is the control center for the body. It runs your organs such as your heart and lungs. It is also busy working with other parts of your body. All of your senses  –  sight, smell, hearing, touch, and taste  –  depend on your brain. Tasting food with the sensors on your tongue is only possible if the signals from your taste buds are sent to the brain. Once in the brain, the signals are decoded. The sweet flavor of an orange is only sweet if the brain tells you it is.



Brain Waves

EEG recording net

How do you tell if the brain is working? What is it doing and how do you measure it? The head gear on the right that looks like it's from a work of science fiction measures electrical activity in the brain. These electrical waves are called brain waves.

When neurons send a signal they use electrical currents to pass messages to other nearby neurons. Just one or two neurons signaling is too small a change to be noticed. When a huge group of neurons signal at once, however, they can be recorded and measured with the help of special tools.

Measuring electrical activity in the brain is usually done with electrodes. Electrodes are devices able to record electrical changes over time. These are attached to the surface of the skin in specific places around the head. Recordings of brain wave activity look like a series of waves. These are called electroencephalograms, or EEGs for short.

Measuring activity in the brain can be a very useful tool in scientific studies. They can also be used to help identify sleeping disorders and other medical conditions relating to the brain.

First EEG recording.

The first human electroencephalogram, recorded in 1924 by Hans Berger.

Computer animation credit: BodyParts3D, Copyright© 2010 The Database Center for Life Science licensed under CC Attribution-Share Alike 2.1 Japan.

Read more about: A Nervous Journey

View citation, bibliographic details:.

  • Article: What's Your Brain Doing?
  • Author(s): Brett Szymik
  • Publisher: Arizona State University School of Life Sciences Ask A Biologist
  • Site name: ASU - Ask A Biologist
  • Date published: May 9, 2011
  • Date accessed: August 28, 2024
  • Link: https://askabiologist.asu.edu/brain-regions

Brett Szymik. (2011, May 09). What's Your Brain Doing?. ASU - Ask A Biologist. Retrieved August 28, 2024 from https://askabiologist.asu.edu/brain-regions

Chicago Manual of Style

Brett Szymik. "What's Your Brain Doing?". ASU - Ask A Biologist. 09 May, 2011. https://askabiologist.asu.edu/brain-regions

MLA 2017 Style

Brett Szymik. "What's Your Brain Doing?". ASU - Ask A Biologist. 09 May 2011. ASU - Ask A Biologist, Web. 28 Aug 2024. https://askabiologist.asu.edu/brain-regions

Computer animation image of the human brain. The colors show the frontal lobe (red), parietal lobe (orange), temporal lobe (green), and occipital lobe (yellow).

A Nervous Journey

more bio bits

Coloring Pages and Worksheets

Neuron Anatomy

What's In Your Brain

What's Your Brain Doing?

Puzzles Pages

Be Part of Ask A Biologist

By volunteering, or simply sending us feedback on the site. Scientists, teachers, writers, illustrators, and translators are all important to the program. If you are interested in helping with the website we have a Volunteers page to get the process started.

Share to Google Classroom

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Parts of the Brain

Anatomy, Functions, and Conditions

The Cerebral Cortex

The four lobes, the brain stem, the cerebellum, the limbic system, other parts of the brain, brain conditions, protecting your brain.

The human brain  is not only one of the most important organs in the human body; it is also the most complex. The brain is made up of billions of neurons and it also has a number of specialized parts that are each involved in important functions.

While there is still a great deal that researchers do not yet know about the brain, they have learned a great deal about the anatomy and function of the brain. Understanding these parts can help give people a better idea of how disease and damage may affect the brain and its ability to function.

The cerebral cortex is the part of the brain that makes human beings unique. Functions that originate in the cerebral cortex include:

  • Consciousness
  • Higher-order thinking
  • Imagination
  • Information processing
  • Voluntary physical action

The cerebral cortex is what we see when we look at the brain. It is the outermost portion that can be divided into four lobes. Each bump on the surface of the brain is known as a gyrus , while each groove is known as a sulcus (gyri and sulci are the plural form).

The cerebral cortex is the largest part of the brain and is responsible for a number of complex functions, including conscious thought, information processing, language, memory, behavior, and personality.

The cerebral cortex can be divided into four sections, known as lobes. The frontal lobe, parietal lobe, occipital lobe, and temporal lobe have been associated with different functions ranging from reasoning and memory to auditory and visual perception.

Frontal Lobe

This lobe is located at the front of the brain and is associated with reasoning, motor skills, higher-level cognition, and expressive language.

  • At the front of the frontal lobe is the prefrontal cortex , which is responsible for most executive functions , like thinking, paying attention, and self-control. Damage to the frontal lobe can lead to changes in sexual habits, socialization, and attention, as well as increased risk-taking .
  • The motor cortex , also known as the motor homunculus  (meaning 'little person'), lies at the back of the frontal lobe, near the central sulcus. It receives information from various lobes of the brain and uses it to carry out body movements like playing the piano, blowing a kiss, and skipping.

Parietal Lobe

The parietal lobe is located in the middle section of the brain, just behind the frontal lobe. It is associated with processing tactile sensory information such as pressure, touch, and pain .

A portion of the parietal lobe known as the somatosensory cortex is located just behind the central sulcus and is essential to the processing of the body's senses. It is also known as the somatosensory homunculus .

The homunculus is known as the "little person' in the brain because it has a topographical map of the whole human body in a small area of the cerebral cortex. There is one for the motor cortex in the frontal lobe and one for the somatosensory cortex in the parietal lobe.

Temporal Lobe

The temporal lobe is located on the bottom section of the brain next to the temples and ears.

  • This lobe is also the location of the primary auditory cortex , which is important for interpreting sounds, tones, and frequencies. This cortex has a topographical map of the cochlea, a tiny organ in the inner ear.
  • The secondary auditory cortex contains Wernicke's area , which is responsible for understanding spoken or written human language.
  • The hippocampus is also located in the temporal lobe, which is why this portion of the brain is also heavily associated with the formation of memories .

Damage to the temporal lobe can lead to problems with memory, sound discrimination, and speech comprehension.

Occipital Lobe

The occipital lobe is located at the back portion of the brain and is associated with interpreting visual stimuli and information. The primary visual cortex , which receives and interprets information from the retinas of the eyes, is located in the occipital lobe.

Damage to this lobe can cause visual problems such as difficulty recognizing objects, an inability to identify colors, and trouble recognizing words.

The brain comprises four lobes, each associated with different functions. The frontal lobe is found at the front of the brain; the parietal lobe is behind the frontal lobe; the temporal lobe is located at the sides of the head; and the occipital lobe is found at the back of the head.

The brainstem is an area located at the base of the brain that contains structures vital for involuntary functions such as heartbeat and breathing. It is comprised of the midbrain, pons, and medulla.

The midbrain is often considered the smallest region of the brain. It acts as a relay station for auditory and visual information and controls many important functions, such as the visual and auditory systems, as well as eye movement.

Portions of the midbrain called the  red nucleus  and the  substantia nigra  are involved in the control of body movement. The darkly pigmented substantia nigra contains a large number of dopamine-producing neurons.

The degeneration of neurons in the substantia nigra is associated with Parkinson’s disease.

The medulla is located directly above the spinal cord in the lower part of the brain stem and controls many vital autonomic functions such as heart rate, breathing, and blood pressure.

The pons, meaning "bridge," connects the cerebral cortex to the medulla and to the cerebellum and serves a number of essential functions. It plays a role in several autonomic processes, such as stimulating breathing and controlling sleep cycles.

The brainstem, which includes the midbrain, medulla, and pons, is responsible for involuntary processes, including breathing, heartbeat, and blood pressure.

Sometimes referred to as the ​"little brain," the cerebellum lies on top of the pons behind the brain stem. The cerebellum makes up approximately 10% of the brain's total size , but it accounts for more than 50% of the total number of neurons located in the entire brain .

The cerebellum is comprised of small lobes and serves several functions.

  • It receives information from the inner ear's balance system, sensory nerves, and auditory and visual systems. It is involved in coordinating movements and motor learning.
  • It helps control posture, balance, and the coordination of voluntary movements. This allows different muscle groups to act together and produce coordinated fluid movement.
  • It is also important in certain cognitive functions, including speech.

The cerebellum is associated with motor movement and control, but this is not because the motor commands originate here. Instead, the cerebellum modifies these signals and makes motor movements accurate and useful.

The cerebellum is densley packed with neurons and is responsible for managing posture, balance, and the coordination of movement.

Although there is no totally agreed-upon list of the structures that make up the limbic system, four of the main regions include:

The Hypothalamus

The hypothalamus is a grouping of nuclei that lie along the base of the brain near the pituitary gland. It connects with many other regions of the brain and is responsible for controlling hunger, thirst, emotions , body temperature regulation, and circadian rhythms.

The hypothalamus also controls the pituitary gland by secreting hormones. This gives the hypothalamus a great deal of control over many body functions.

The Amygdala

The amygdala is a cluster of nuclei located close to the base of the brain. It is primarily involved in functions including memory, emotion, and the body's fight-or-flight response . The structure processes external stimuli and then relays that information to the hippocampus, which can then prompt a response to deal with outside threats.

The Thalamus

Located above the brainstem, the thalamus processes and transmits movement and sensory information . It is essentially a relay station, taking in sensory information and then passing it on to the cerebral cortex. The cerebral cortex also sends information to the thalamus, which then sends this information to other systems.

The Hippocampus

The hippocampus is a structure located in the temporal lobe. It is important in memory and learning and is considered to be part of the limbic system because it plays an important part in emotional regulation or the control of emotional responses . It plays a role in the body's fight-or-flight response and in the recall of emotional memories.

The limbic system controls behaviors essential for well-being and survival, including emotional regulation, the fight-or-flight response, feeding behavior, and reproduction.

Other important structures play an essential role in supporting the structure and function of the brain. Some of these parts of the brain include:

The meninges are the layers that surround the brain and spinal cord and provide protection. There are three layers of meninges:

  • The dura mater : This is the thick, outmost layer located directly under the skull and vertebral column.
  • The arachnoid mater : This is a thin layer of web-like connective tissue. Under this layer is cerebrospinal fluid that helps cushion the brain and spinal cord.
  • The pia mater : This layer contains veins and arteries and is found directly atop the brain and spinal cord.

The brain also contains 12 cranial nerves. Each nerve plays a vital role in relaying essential information to the brain. These nerves include:

  • The olfactory nerve : Essential for the sense of smell
  • The optic nerve : Controls eyesight
  • The oculomotor nerve : Controls the motions of the eye and the response of the pupil
  • The trochlea nerve : Controls the muscles of the eye
  • The trigeminal nerve : Carries sensory and motor information to and from the face, jaw, teeth, and scalp
  • Abducens nerve : Associated with specific movements of the eye
  • Facial nerve : Responsible for sensory and motor functions controlling the face, tongue, tear glands, and parts of the ear
  • The vestibulocochlear nerve , which regulates hearing and balance
  • The glossopharyngeal nerve : Important for sensory information from parts of the tongue and stimulating specific throat muscles
  • The vagus nerve : Plays many important roles, including carrying sensory information from the ear, heart, intestines
  • The accessory nerve : Controls the muscles of the neck
  • The hypoglossal nerve : Responsible for the muscle movements of the tongue

In addition to the main parts of the brain, there are also other important structures that are important for normal functioning. This includes the protective meninges and the cranial nerves that transmit signals to and from the brain.

The brain can also be affected by a number of conditions and damage. According to the National Institute of Neurological Disorders and Stroke, there are more than 600 types of neurological diseases. Some conditions that can affect the brain and its function include:

  • Brain tumors
  • Cerebrovascular diseases such as stroke and vascular dementia
  • Convulsive disorders such as epilepsy
  • Degenerative diseases such as Alzheimer's disease and Parkinson's disease
  • Developmental disorders such as cerebral palsy
  • Infectious diseases such as AIDS dementia
  • Metabolic diseases such as Gaucher's disease
  • Neurogenetic diseases, including Huntington's disease and muscular dystrophy
  • Trauma such as head injury and spinal cord injury

By studying the brain and learning more about its anatomy and function, researchers are able to develop new treatments and preventative strategies for conditions that affect the brain.

Disease and damage can affect the brain's ability to function. Tumors, strokes, degenerative conditions, trauma, and infectious diseases are just a few of the conditions that can damage the brain.

You can't change your genetics or some other risk factors. But it's important to take steps to help protect the health of your brain.

Diet and Exercise

Research suggests that regular physical activity is essential for brain health. Exercise can help delay brain aging and degenerative diseases such as Alzheimer's, diabetes, and multiple sclerosis. It is also associated with improvements in cognitive abilities and memory.

Similarly, a nutritious, balanced diet that includes omega-3 fatty acids, vitamins, and antioxidants is important for brain function (as well as overall health).

It's also essential to protect your brain from injury by, for example, wearing a helmet when participating in physical activities that pose a risk for collision or falls, and always wearing a seatbelt when driving or riding in a car.

Sleep can also play a pivotal role in brain health and mental well-being . Studies have found that sleep can actually play a role in the development and maintenance of some psychiatric conditions, including anxiety, depression, and bipolar disorder.

Mental Activity

Evidence also suggests that staying mentally engaged can also play an important role in protecting your brain from some degenerative conditions. Activities that may help include learning new things and staying socially active.

Final Thoughts

The human brain is remarkably complex and researchers are still discovering many of the mysteries of how the mind works. By better understanding how different parts of the brain function, you can also better appreciate how disease or injury may impact it. If you think that you are experiencing symptoms of a brain condition, talk to your doctor for further evaluation.

Boly M, Massimini M, Tsuchiya N, Postle BR, Koch C, Tononi G. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence . J Neurosci . 2017;37(40):9603-9613. doi:10.1523/JNEUROSCI.3218-16.2017

Johns Hopkins. Brain anatomy and how the brain works .

Dall'Orso S, Hamstreet T, Muceli S. The “little person” in the brain who helps to direct our movements . Frontiers for Young Minds. Published online 2023 .

National Center for Biotechnology Information. The Auditory Cortex . In: Purves D, Augustine GJ, Fitzpatrick D, et al., eds. Neuroscience (2nd ed) . Sinauer Associates; 2001.

Hurley RA, Flashman LA, Chow TW, Taber KH. The brainstem: Anatomy, assessment, and clinical syndromes . J Neuropsychiatry Clin Neurosci . 2010;22(1):iv-7. doi:10.1176/jnp.2010.22.1.iv

Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L. Cerebellar granule cells encode the expectation of reward . Nature . 2017;544(7648):96-100. doi:10.1038/nature21726

Biran J, Tahor M, Wircer E, Levkowitz G. Role of developmental factors in hypothalamic function . Front Neuroanat . 2015;9:47. doi:10.3389/fnana.2015.00047

Baxter MG, Croxson PL. Facing the role of the amygdala in emotional information processing . Proc Nat Acad Sci . 2012;109(52):21180-21181. doi:10.1073/pnas.1219167110

Fama R, Sullivan EV. Thalamic structures and associated cognitive functions: Relations with age and aging . Neurosci Biobehav Rev . 2015;54:29-37. doi:10.1016/j.neubiorev.2015.03.008

Anand KS, Dhikav V. Hippocampus in health and disease: An overview . Ann Indian Acad Neurol . 2012;15(4):239-246. doi:10.4103/0972-2327.104323

Zhu Y, Gao H, Tong L, et al. Emotion regulation of hippocampus using real-time fmri neurofeedback in healthy human . Front Hum Neurosci . 2019;13:242. doi:10.3389/fnhum.2019.00242 

National Institute of Neurological Disorders and Stroke. Brain basics: Know your brain .

Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical activity and brain health .  Genes (Basel) . 2019;10(9):720. doi:10.3390/genes10090720

Scott AJ, Webb TL, Rowse G.  Does improving sleep lead to better mental health?. A protocol for a meta-analytic review of randomised controlled trials .  BMJ Open . 2017;7(9):e016873. doi:10.1136/bmjopen-2017-016873

Sommerlad A, Sabia S, Singh-manoux A, Lewis G, Livingston G.  Association of social contact with dementia and cognition: 28-year follow-up of the Whitehall II cohort study .  PLoS Med . 2019;16(8):e1002862. doi:10.1371/journal.pmed.1002862

Carter R. The Human Brain Book . Penguin; 2014.

Kalat JW. Biological Psychology . Cengage Learning; 2016. 

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Parts of the Brain: Anatomy, Structure & Functions

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

Learn about our Editorial Process

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

On This Page:

The brain controls all functions of the body, interprets information from the outside world, and defines who we are as individuals and how we experience the world.

The brain receives information through our senses: sight, touch, taste, smell, and hearing. This information is processed in the brain, allowing us to give meaning to the input it receives.

The brain is part of the central nervous system ( CNS ) along with the spinal cord. There is also a peripheral nervous system (PNS) comprised of 31 pairs of spinal nerves that branch from the spinal cord and cranial nerves that branch from the brain.

Brain Parts

The brain is composed of the cerebrum, cerebellum, and brainstem (Fig. 1).

The brain is composed of the cerebrum, cerebellum, and brainstem

Figure 1. The brain has three main parts: the cerebrum, cerebellum, and brainstem.

The cerebrum is the largest and most recognizable part of the brain. It consists of grey matter (the cerebral cortex ) and white matter at the center. The cerebrum is divided into two hemispheres, the left and right, and contains the lobes of the brain (frontal, temporal, parietal, and occipital lobes).

The cerebrum produces higher functioning roles such as thinking, learning, memory, language, emotion, movement, and perception.

The Cerebellum

The cerebellum is located under the cerebrum and monitors and regulates motor behaviors, especially automatic movements.

This structure is also important for regulating posture and balance and has recently been suggested for being involved in learning and attention.

Although the cerebellum only accounts for roughly 10% of the brain’s total weight, this area is thought to contain more neurons (nerve cells) than the rest of the brain combined.

The brainstem is located at the base of the brain. This area connects the cerebrum and the cerebellum to the spinal cord, acting as a relay station for these areas.

The brainstem regulates automatic functions such as sleep cycles, breathing, body temperature, digestion, coughing, and sneezing.

A diagram of the brain stem with the anatomical parts labelled: Thalamus, midbrain, pons, medulla and spinal cord

Right Brain vs. Left Brain

The cerebrum is divided into two halves: the right and left hemispheres (Fig. 2). The left hemisphere controls the right half of the body, and the right hemisphere controls the left half.

The two hemispheres are connected by a thick band of neural fibers known as the corpus callosum, consisting of about 200 million axons.

The corpus callosum allows the two hemispheres to communicate and allows information being processed on one side of the brain to be shared with the other.

The cerebrum is divided into left and right hemispheres. The two sides are connected by the nerve fibers corpus callosum.

Figure 2. The cerebrum is divided into left and right hemispheres. The nerve fibers corpus callosum connects the two sides.

Hemispheric lateralization is the idea that each hemisphere is responsible for different functions. Each of these functions is localized to either the right or left side.

The left hemisphere is associated with language functions, such as formulating grammar and vocabulary and containing different language centers (Broca’s and Wernicke’s area).

The right hemisphere is associated with more visuospatial functions such as visualization, depth perception, and spatial navigation. These left and right functions are the case in most people, especially those who are right-handed.

Lobes of the Brain

Each cerebral hemisphere can be subdivided into four lobes, each associated with different functions.

The four lobes of the brain are the frontal, parietal, temporal, and occipital lobes (Figure 3).

cerebral hemispheres: Frontal lobes, Occipital lobes, Parietal lobes, Temporal lobes

Figure 3. The cerebrum is divided into four lobes: frontal, parietal, occipital, and temporal.

Frontal lobes

The frontal lobes are located at the front of the brain, behind the forehead (Figure 4).

Their main functions are associated with higher cognitive functions, including problem-solving, decision-making, attention, intelligence, and voluntary behaviors.

The frontal lobes contain the motor cortex  responsible for planning and coordinating movements.

It also contains the prefrontal cortex, which is responsible for initiating higher-lever cognitive functioning, and Broca’s Area, which is essential for language production.

frontal lobe structure

Figure 4. Frontal lobe structure.

Temporal lobes

The temporal lobes are located on both sides of the brain, near the temples of the head, hence the name temporal lobes (Figure 5).

The main functions of these lobes include understanding, language, memory acquisition, face recognition, object recognition, perception, and auditory information processing.

There is a temporal lobe in both the left and right hemispheres. The left temporal lobe, which is usually the most dominant in people, is associated with language, learning, memorizing, forming words, and remembering verbal information.

The left lobe also contains a vital language center known as Wernicke’s area, which is essential for language development. The right temporal lobe is usually associated with learning and memorizing non-verbal information and determining facial expressions.

temporal lobe structure

Figure 5. Temporal lobe structure.

Parietal lobes

The parietal lobe is located at the top of the brain, between the frontal and occipital lobes, and above the temporal lobes (Figure 6).

The parietal lobe is essential for integrating information from the body’s senses to allow us to build a coherent picture of the world around us.

These lobes allow us to perceive our bodies through somatosensory information (e.g., through touch, pressure, and temperature). It can also help with visuospatial processing, reading, and number representations (mathematics).

The parietal lobes also contain the somatosensory cortex, which receives and processes sensory information, integrating this into a representational map of the body.

This means it can pinpoint the exact area of the body where a sensation is felt, as well as perceive the weight of objects, shape, and texture.

Parietal Lobe Structure (Simply Psychology)

Figure 6. Parietal lobe structure.

Occipital lobes

The occipital lobes are located at the back of the brain behind the temporal and parietal lobes and below the occipital bone of the skull (Figure 7).

The occipital lobes receive sensory information from the eyes’ retinas, which is then encoded into different visual data. Some of the functions of the occipital lobes include being able to assess the size, depth, and distance, determine color information, object and facial recognition, and mapping the visual world.

The occipital lobes also contain the primary visual cortex, which receives sensory information from the retinas, transmitting this information relating to location, spatial data, motion, and the colors of objects in the field of vision.

Occipital Lobe Structure (Simply Psychology)

Figure 7. Occipital lobe structure.

Cerebral Cortex

The surface of the cerebrum is called the cerebral cortex  and has a wrinkled appearance, consisting of bulges, also known as gyri, and deep furrows, known as sulci (Figure 8).

A gyrus (plural: gyri) is the name given to the bumps and ridges on the cerebral cortex (the outermost layer of the brain). A sulcus (plural: sulci) is another name for a groove in the cerebral cortex.

The cortex contains neurons (grey matter), which are interconnected to other brain areas by axons (white matter). The cortex has a folded appearance. A fold is called a gyrus and the valley between is a sulcus.

Figure 8. The cortex contains neurons (grey matter) interconnected to other brain areas by axons (white matter). The cortex has a folded appearance. A fold is called a gyrus, and the valley between is a sulcus.

The cerebral cortex is primarily constructed of grey matter (neural tissue made up of neurons), with between 14 and 16 billion neurons found here.

The many folds and wrinkles of the cerebral cortex allow a wider surface area for an increased number of neurons to live there, permitting large amounts of information to be processed.

Deep Structures

The amygdala is a structure deep in the brain that is involved in the processing of emotions and fear learning. The amygdala is a part of the limbic system, a neural network that mediates emotion and memory (Figure 9).

This structure also ties emotional meaning to memories, processes rewards, and helps us make decisions. This structure has also been linked with the fight-or-flight response.

part of brain that controls problem solving

Figure 9. The amygdala in the limbic system plays a key role in how animals assess and respond to environmental threats and challenges by evaluating the emotional importance of sensory information and prompting an appropriate response.

Thalamus and Hypothalamus

The thalamus relays information between the cerebral cortex, brain stem, and other cortical structures (Figure 10).

Because of its interactive role in relaying sensory and motor information, the thalamus contributes to many processes, including attention, perception, timing, and movement. The hypothalamus modulates a range of behavioral and physiological functions.

It controls autonomic functions such as hunger, thirst, body temperature, and sexual activity. To do this, the hypothalamus integrates information from different brain parts and responds to various stimuli such as light, odor, and stress.

The thalamus is often described as the relay station of the brain as a great deal of information that reaches the cerebral cortex, first stops in the thalamus before being sent to its destination.

Figure 10. The thalamus is often described as the brain’s relay station as a great deal of information that reaches the cerebral cortex first stops in the thalamus before being sent to its destination.

Hippocampus

The hippocampus is a curved-shaped structure in the limbic system associated with learning and memory (Figure 11).

This structure is most strongly associated with the formation of memories, is an early storage system for new long-term memories, and plays a role in the transition of these long-term memories to more permanent memories.

Hippocampus location in the brain

Figure 11. Hippocampus location in the brain

Basal Ganglia

The basal ganglia are a group of structures that regulate the coordination of fine motor movements, balance, and posture alongside the cerebellum.

These structures are connected to other motor areas and link the thalamus with the motor cortex. The basal ganglia are also involved in cognitive and emotional behaviors, as well as playing a role in reward and addiction.

The Basal Ganglia Illustration.

Figure 12. The Basal Ganglia Illustration

Ventricles and Cerebrospinal Fluid

Within the brain, there are fluid-filled interconnected cavities called ventricles , which are extensions of the spinal cord. These are filled with a substance called cerebrospinal fluid, which is a clear and colorless liquid.

The ventricles produce cerebrospinal fluid and transport and remove this fluid. The ventricles do not have a unique function, but they provide cushioning to the brain and are useful for determining the locations of other brain structures.

Cerebrospinal fluid circulates the brain and spinal cord and functions to cushion the brain within the skull. If damage occurs to the skull, the cerebrospinal fluid will act as a shock absorber to help protect the brain from injury.

Human

As well as providing cushioning, the cerebrospinal fluid circulates nutrients and chemicals filtered from the blood and removes waste products from the brain. Cerebrospinal fluid is constantly absorbed and replenished by the ventricles.

If there were a disruption or blockage, this can cause a build-up of cerebrospinal fluid and can cause enlarged ventricles.

Neurons are the nerve cells of the central nervous system that transmit information through electrochemical signals throughout the body. Neurons contain a soma, a cell body from which the axon extends.

Axons are nerve fibers that are the longest part of the neuron, which conduct electrical impulses away from the soma.

Diagram of Neuron Anatomy

There are dendrites at the end of the neuron, which are branch-like structures that send and receive information from other neurons.

A myelin sheath, a fatty insulating layer, forms around the axon, allowing nerve impulses to travel down the axon quickly.

There are different types of neurons. Sensory neurons transmit sensory information, motor neurons transmit motor information, and relay neurons allow sensory and motor neurons to communicate.

The communication between neurons is called synapses. Neurons communicate with each other via synaptic clefts, which are gaps between the endings of neurons.

Transmission of the nerve signal between two neurons with axon and synapse. Close-up of a chemical synapse

During synaptic transmission, chemicals, such as neurotransmitters, are released from the endings of the previous neuron (also known as the presynaptic neuron).

These chemicals enter the synaptic cleft to then be transported to receptors on the next neuron (also known as the postsynaptic neuron).

Once transported to the next neuron, the chemical messengers continue traveling down neurons to influence many functions, such as behavior and movement.

Glial Cells

Glial cells are non-neuronal cells in the central nervous system which work to provide the neurons with nourishment, support, and protection.

These are star-shaped cells that function to maintain the environment for neuronal signaling by controlling the levels of neurotransmitters surrounding the synapses.

They also work to clean up what is left behind after synaptic transmission, either recycling any leftover neurotransmitters or cleaning up when a neuron dies.

Oligodendrocytes

These types of glial have the appearance of balls with spikes all around them. They function by wrapping around the axons of neurons to form a protective layer called the myelin sheath.

This is a substance that is rich in fat and provides insulation to the neurons to aid neuronal signaling.

Microglial cells have oval bodies and many branches projecting out of them. The primary function of these cells is to respond to injuries or diseases in the central nervous system.

They respond by clearing away any dead cells or removing any harmful toxins or pathogens that may be present, so they are, therefore, important to the brain’s health.

Ependymal cells

These cells are column-shaped and usually line up together to form a membrane called the ependyma. The ependyma is a thin membrane lining the spinal cord and ventricles of the brain .

In the ventricles, these cells have small hairlike structures called cilia, which help encourage the flow of cerebrospinal fluid.

Cranial Nerves

There are 12 types of cranial nerves which are linked directly to the brain without having to pass through the spinal cord. These allow sensory information to pass from the organs of the face to the brain:

Cranial nerves. human brain and brainstem from below

Mnemonic for Order of Cranial Nerves:

S ome S ay M arry M oney B ut M y B rother S ays B ig B rains M atter M ore

  • Cranial I: Sensory
  • Cranial II: Sensory
  • Cranial III: Motor
  • Cranial IV: Motor
  • Cranial V: Both (sensory & motor)
  • Cranial VI: Motor
  • Cranial VII: Both (sensory & motor)
  • Cranial VIII: Sensory
  • Cranial IX: Both (sensory & motor)
  • Cranial X: Both (sensory & motor)
  • Cranial XI: Motor
  • Cranial XII: Motor

Purves, D., Augustine, G., Fitzpatrick, D., Katz, L., LaMantia, A., McNamara, J., & Williams, S. (2001). Neuroscience 2nd edition . sunderland (ma) sinauer associates. Types of Eye Movements and Their Functions.

Mayfield Brain and Spine (n.d.). Anatomy of the Brain. Retrieved July 28, 2021, from: https://mayfieldclinic.com/pe-anatbrain.htm

Robertson, S. (2018, August 23). What is Grey Matter? News Medical Life Sciences. https://www.news-medical.net/health/What-is-Grey-Matter.aspx

Guy-Evans, O. (2021, April 13). Temporal lobe: definition, functions, and location. Simply Psychology. www.www.www.www.www.www.simplypsychology.org/temporal-lobe.html

Guy-Evans, O. (2021, April 15). Parietal lobe: definition, functions, and location. Simply Psychology. www.www.www.www.www.www.simplypsychology.org/parietal-lobe.html

Guy-Evans, O. (2021, April 19). Occipital lobe: definition, functions, and location. Simply Psychology. www.www.www.www.www.www.simplypsychology.org/occipital-lobe.html

Guy-Evans, O. (2021, May 08). Frontal lobe function, location in brain, damage, more. Simply Psychology. www.www.www.www.www.www.simplypsychology.org/frontal-lobe.html

Guy-Evans, O. (2021, June 09). Gyri and sulci of the brain. Simply Psychology. www.www.www.www.www.www.simplypsychology.org/gyri-and-sulci-of-the-brain.html

Human Brain Anatomy Infographic Card Poster System Concept of Diagnostics and Health Care Flat Design Style. Vector illustration of Head

Watch CBS News

How The Brain Works

By Melissa McNamara

January 18, 2007 / 2:00 PM EST / CBS

Find out which parts of the brain handles which functions, and, for some, when during a person's life these areas are wired.

What Part Of The Brain Controls Movement, Touch?

The Motor Association Cortex area controls coordination of complex movement. The Primary Motor Cortex area controls initiation of voluntary movement. The Primary Somatosensory Cortex area receives tactile information from the body. The Sensory Association area controls the processing of multisensory information.

What Controls Creativity And Problem Solving?

The Corpus Callosum is a rope of nerves that connect the two hemispheres of the brain. Scientists believe it is linked to creativity and problem solving and that it develops greatly through the teen years.

What Controls Vision?

The Visual Association Area controls complex processing of visual information. The Visual Cortex controls detection of simple stimuli.

What Controls Coordination?

The Cerebellum is the area helps control balance and motor coordination and the coordination of thinking processes. This area undergoes great change and growth during the teenage years.

What Controls Hearing?

The Auditory Association area and the Auditory Cortex controls complex processing of auditory information. The Auditory Cortex detects sound quality.

What Controls Impulses?

The Prefrontal Cortex area controls the "executive functions" of the brain including judgment, impulse control, management of aggression, emotional regulation, self regulation, planning, reasoning and social skills. This area has a blossoming period around the age of 12, followed by a period of pruning through adolescence.

To Learn More About The Brain:

• Click here for a CBSNews.com interactive about teen brains. • You can read more about mapping the brain at WebMD .

More from CBS News

Sushiman/Shutterstock

Executive Function

Executive Control Network

Reviewed by Psychology Today Staff

Executive function describes a set of cognitive processes and mental skills that help an individual plan, monitor, and successfully execute their goals . The “executive functions,” as they’re known, include attentional control, working memory , inhibition, and problem-solving, many of which are thought to originate in the brain’s prefrontal cortex.

  • Understanding Executive Function
  • Executive Functioning Problems
  • Improving Executive Function

ANURAK PONGPATIMET/Shutterstock

Many behaviors in which humans engage, such as breathing or stepping out of the way of an oncoming car, occur without conscious thought. Most others, however, rely on executive function. Any process or goal pursuit that requires time management , decision-making , and storing information in one’s memory makes use of executive function to some degree. Since much of modern life is process-driven and demands that individuals set and meet goals, disruptions in executive function can make it challenging for someone to succeed in school, at work, or in the household.

Many experts believe that t he human mind contains seven different executive functions . These include self-awareness, inhibition, nonverbal working memory ( short-term memory related to sensory and spatial information), verbal working memory (short-term memory related to speech and language), emotional regulation , motivational regulation, and planning and problem-solving. 

Studies have found consistent overlap between executive functioning and general intelligence scores; some researchers have even proposed that executive functioning may better predict success than does IQ  across a wide array of disciplines. However, some high-IQ individuals struggle with executive functions; thus, there is clearly more to intelligence than executive functioning alone.

The executive functions start to appear in the first year of a child’s life and develop rapidly in the elementary school years. For most people, they will continue to develop into the mid-20s or even early 30s . Children and teens who lag behind their peers in executive functioning may find that they have fewer challenges once they enter adulthood.

part of brain that controls problem solving

Someone who struggles with executive functioning will likely have trouble starting or finishing tasks, executing multiple steps of a project in sequence, and keeping their belongings organized. They may struggle to make decisions or lose important items frequently.

Issues with impulse or emotional control are a less obvious sign of an executive functioning deficit. Someone with underdeveloped executive functioning may act without thinking and may appear overly emotional at times; this is because both behavioral and emotional inhibition are key aspects of executive functioning.

Executive dysfunction—sometimes called executive function disorder, or EFD—may appear similar to ADHD ; indeed, some experts posit that ADHD is itself a disorder of executive function. People with ADHD—especially children—usually struggle with one or more executive functions, in addition to other symptoms such as hyperactivity and distractibility.

The term “executive function disorder,” or EFD, describes a condition in which a child or adult struggles significantly with planning, problem-solving, or other aspects of executive function. EFD is not currently an official diagnosis in the DSM-5 , though executive function-related symptoms do appear in other DSM conditions.

The cause of poor executive functioning is not always clear. Like other developmental challenges such as ADHD, the cause is likely a combination of genetics , prenatal exposure to drugs or alcohol , early childhood trauma , or other factors. Sometimes, there is no discernible cause.

Someone with executive functioning challenges will find it more difficult than others in their age group to remember information, plan and execute tasks, keep items and information organized, and maintain motivation . They may also struggle with emotional, impulse, or attentional control.

No, though many experts believe the two are closely related. Though many with ADHD will struggle with one or more executive functions , the core symptoms of ADHD—hyperactivity, impulsivity, and distractibility—are not solely related to executive functioning. What’s more, executive function difficulties can co-occur with other developmental and mood disorders, including autism or depression .

Executive function disorder, or EFD, is not an official diagnosis. However, it is possible—and in fact, quite likely—for someone with ADHD to also have significant challenges with executive functioning.

Children can be disorganized because of ADHD, disobedience, or simply because they’re not interested in neatness. However, some children who wish to be organized but find it difficult may have poor executive functioning . These children may struggle with the motivation, problem-solving, and planning that are required for staying organized.

part of brain that controls problem solving

The ability to plan, problem-solve, organize, and execute can help children and adults in many domains in life. Thus, improving these skills is often a key interest for parents and adults. For some who struggle with executive function, accommodations at work or school can help fill the gaps; strategies aimed specifically at areas of weakness can also be of great help.

However, it’s important to remember that executive function is among the slowest mental processes to develop. Thus, many children who struggle with executive function may find that their skills naturally catch up over time and continue to improve well into adulthood.

Yes. Most children and teens who are behind their peers in executive function will continue to improve with time, particularly if offered specific strategies for doing so; many will catch up by the time they reach adulthood. Adults may find progress to be slower but can also improve executive functions using targeted strategies and accommodations. 

Strategies for improving executive function include: breaking a larger task into smaller chunks; externalizing information using to-do lists, notepads, or phone reminders; buddying up with a peer to foster accountability; blocking access to distractions (putting one’s phone in a drawer or blocking tempting websites); and using rewards to motivate periods of consistent effort.

Many children who struggle to keep track of tasks and responsibilities find the simple act of writing them down—and thus externalizing them—to be hugely helpful. Working with the teacher if necessary, parents can help their child establish a consistent routine for writing down tasks, planning the steps for completion, and rewarding themselves when successful.

Yes. Adults should identify which specific executive functions they wish to strengthen —whether planning, problem-solving, working memory, or emotional regulation—when deciding which strategy to use. For example, adults who struggle with motivation can devise a reward system for successfully completing a task, while those who struggle with impulse control can establish consistent routines to strengthen inhibition.

part of brain that controls problem solving

The onset of collecting behaviors in disorders such as frontal-temporal lobe dementia and Parkinson’s disease highlights the profound impact of neurobiological changes on behavior.

part of brain that controls problem solving

Personal Perspective: Is your ADHD child a master of putting things off? Learn how to help your child to conquer their to-do list.

part of brain that controls problem solving

To save your brain from neurobiological boredom, stand up and be squatted every now and then, and start to think of sitting as part of your interruption of standing.

part of brain that controls problem solving

Discover practical strategies to prevent burnout and achieve sustainable success in your legal career.

part of brain that controls problem solving

Is your daughter on her way to college? Are you feeling a mix of excitement and uncertainty? Check out this essential guide for parents as she navigates this pivotal transition.

part of brain that controls problem solving

Sometimes we do things self-consciously, and other times we act on autopilot. Here's how to eat more mindfully and see if there are benefits for you.

part of brain that controls problem solving

It is not always about the accomplishment; the journey can be every bit as rewarding.

the bond is more important than the medal

Punishment is the least effective means of education. It increases fear, hostility, helplessness, stress, and violence—none of which enhance learning. Let's make better choices.

part of brain that controls problem solving

Don’t know your Down Dog from your Dancer? Never fear, it’s easier to get started than you think. Here’s how.

part of brain that controls problem solving

Slow processors often feel pressured to speed up their thinking. However, self-acceptance, openness, and more effective interactions with others might lead to greater contentment.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

July 2024 magazine cover

Sticking up for yourself is no easy task. But there are concrete skills you can use to hone your assertiveness and advocate for yourself.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

Search form

How the brain helps us make good decisions — and bad ones.

Illustration of a brain overlaid with circuitry, a roadmap, and fast food restaurants

(Illustration by Sonia Ruiz, courtesy of Yale University)

A prevailing theory in neuroscience holds that people make decisions based on integrated global calculations that occur within the frontal cortex of the brain. 

However, Yale researchers have found that three distinct circuits connecting to different brain regions are involved in making good decisions, bad ones, and determining which of those past choices to store in memory, they report June 25 in the journal Neuron .

The study of decision-making in rats may help scientists find the roots of flawed decision-making common to mental health disorders such as addiction, the authors say.

“ Specific decision-making computations are altered in individuals with mental illness,” said Jane Taylor , professor of psychiatry and senior author of the study. “Our results suggest that these impairments may be linked to dysfunction within distinct neural circuits.”

Researchers used a new tool to manipulate brain circuits in rats while they were making choices between actions that led to them receiving rewards or no rewards.  The authors found decision-making is not confined to the orbital frontal cortex, seat of higher order thinking.  Instead, brain circuits from the orbital frontal cortex connecting to deeper brain regions performed three different decision-making calculations.

 “There are at least three individual processes that combine in unique ways to help us to make good decisions,” said Stephanie Groman , associate research scientist of psychiatry and lead author of the research.

Groman says an analogy would be deciding on a restaurant for dinner. If restaurant A has good food, one brain circuit is activated. If the food is bad, a different circuit is activated. A third circuit records the memories of the experience, good or bad. All three are crucial to decision-making, Groman says.

For instance, without the “good choice” circuit you may not return to the restaurant with good food and without the “bad choice” circuit you might not avoid the restaurant with bad food.  The third “memory” circuit is crucial in making decisions such as whether to return to the restaurant after receiving one bad meal after several good ones.

Alterations to these circuits may help explain a hallmark of addiction — why people continue to make harmful choices even after repeated negative experiences, researchers say.

The Yale researchers previously showed that some of the same brain computations were disrupted in animals that had taken methamphetamine.

“ Because we used a test that is equivalent to those used in studies of human decision- making, our findings have direct relevance to humans and could aid in the search for novel treatments for substance abuse in humans,” Groman said.

  • Yale team explores roots of poor decisions

Health & Medicine

Science & Technology

Media Contact

Bill Hathaway: [email protected] , 203-432-1322

part of brain that controls problem solving

Yale Film Archive offers 21 screenings through December

part of brain that controls problem solving

Incoming Jackson class arrives ready to tackle ‘daunting issues’

part of brain that controls problem solving

Yale economist explains the labor market effects of domestic outsourcing

part of brain that controls problem solving

Yale writer-in-residence’s new novel makes the familiar strange

  • Show More Articles
  • Brain & Nervous System

What You Need to Know About the Frontal Lobe

part of brain that controls problem solving

Your brain has four lobes that each control different functions. The parietal lobe processes input from your senses of taste and touch. The occipital lobe processes things you see and records the information to memory. The temporal lobe processes information from your senses of smell, taste, and sound. It also helps with storing your memories.‌

The frontal lobe of the brain controls:

  • Problem-solving
  • Short-term memory‌

Understanding the Frontal Lobe

The frontal lobe is the largest of the four lobes and sits behind your nasal cavity, extending behind your ears. The lobe has many different parts that control functions in your body, including:

  • Body movements on the opposite side of your body
  • Eye movements on the opposite side of your body
  • Smooth motor movements‌
  • Motor language 

Impact of the Frontal Lobe on Your Health

Your frontal lobe has a dominant side — either left or right — that controls language and speech. This is different for each person, but most people store language and speech on the left side of their brain. You may store language and speech on the right side of your brain if you are left-handed or sustain an injury to the left side of your brain early in life.

Language encompasses:

  • Semantics or meaning — understanding the differences in words that sound the same
  • Developing new words — using one base word to make new words
  • Grammar — creating the appropriate sentence structure
  • Social context — using language that is appropriate for the setting, like home versus school

Speech encompasses:

  • Articulation — sounding out words correctly
  • Voice — using your vocal cords to adjust the sound and tone of your voice‌
  • Fluency — using proper rhythm and tone to convey feeling

The frontal lobe stores how you use language, and it also processes how you interpret language. You may have a language disorder if you have difficulty understanding other peoples’ speech or explaining your own ideas, thoughts, or feelings. You may have a speech disorder if you struggle to use the correct word sounds or rhythm of speech.‌

There are three specific areas in the brain that control language and speech:

  • Broca’s area — This portion of the brain is in your brain’s left hemisphere. It produces speech and helps you with articulation. 
  • Wernicke’s area — This portion of the brain is in the posterior superior temporal lobe and contributes to your comprehension of language. This includes what you hear and what you read.‌
  • Angular gyrus — This portion of the brain is near the parietal lobe. It helps process senses that contribute to understanding language as you associate it with images in your mind. ‌

Motor movements. The frontal lobe also helps control your voluntary motor movements. Each side of the frontal lobe controls the opposite side of your body. Cortical neurons radiate to your brain stem and down your spinal cord, telling your body what movement to complete. This includes accurately coordinating movements with correct position and timing.

Risks of Damage to the Frontal Lobe

Seizures. Some seizure disorders are caused by damage to — or a malformation in — the brain's frontal lobe. Seizures impact your motor abilities and speech. Your doctor will assess your seizures and determine which region of your frontal lobe may be impacted.

Personality and social skills. Because the frontal lobe is large and in the front of your skull, it is susceptible to damage. Any damage may contribute to changes in your social behavior. Damage may impact your spatial orientation and coordination of your facial muscles.

person getting diagnosis from doctor

Top doctors in ,

Find more top doctors on, related links.

  • Brain & Nervous System News & Features
  • Brain & Nervous System Reference
  • Brain & Nervous System Slideshows
  • Brain & Nervous System Quizzes
  • Brain & Nervous System Videos
  • Find a Neurologist
  • Living Better With MS
  • Alzheimer's Disease
  • Creutzfeldt-Jakob Disease
  • Guillain-Barré Syndrome
  • Lou Gehrig’s Disease (ALS)
  • Multiple Sclerosis
  • Parkinson's Disease
  • Restless Legs Syndrome
  • Spinal Muscular Atrophy
  • More Related Topics

part of brain that controls problem solving

  • Share full article

Advertisement

Supported by

What Your Brain Looks Like When It Solves a Math Problem

part of brain that controls problem solving

By Benedict Carey

  • July 28, 2016

Solving a hairy math problem might send a shudder of exultation along your spinal cord. But scientists have historically struggled to deconstruct the exact mental alchemy that occurs when the brain successfully leaps the gap from “Say what?” to “Aha!”

Now, using an innovative combination of brain-imaging analyses, researchers have captured four fleeting stages of creative thinking in math. In a paper published in Psychological Science, a team led by John R. Anderson, a professor of psychology and computer science at Carnegie Mellon University, demonstrated a method for reconstructing how the brain moves from understanding a problem to solving it, including the time the brain spends in each stage.

The imaging analysis found four stages in all: encoding (downloading), planning (strategizing), solving (performing the math), and responding (typing out an answer).

“I’m very happy with the way the study worked out, and I think this precision is about the limit of what we can do” with the brain imaging tools available, said Dr. Anderson, who wrote the report with Aryn A. Pyke and Jon M. Fincham, both also at Carnegie Mellon.

To capture these quicksilver mental operations, the team first taught 80 men and women how to interpret a set of math symbols and equations they had not seen before. The underlying math itself wasn’t difficult, mostly addition and subtraction, but manipulating the newly learned symbols required some thinking. The research team could vary the problems to burden specific stages of the thinking process — some were hard to encode, for instance, while others extended the length of the planning stage.

The scientists used two techniques of M.R.I. data analysis to sort through what the participants’ brains were doing. One technique tracked the neural firing patterns during the solving of each problem; the other identified significant shifts from one kind of mental state to another. The subjects solved 88 problems each, and the research team analyzed the imaging data from those solved successfully.

The analysis found four separate stages that, depending on the problem, varied in length by a second or more. For instance, planning took up more time than the other stages when a clever workaround was required. The same stages are likely applicable to solving many creative problems, not just in math. But knowing how they play out in the brain should help in designing curriculums, especially in mathematics, the paper suggests.

“We didn’t know exactly what students were doing when they solved problems,” said Dr. Anderson, whose lab designs math instruction software. “Having a clearer understanding of that will help us develop better instruction; I think that’s the first place this work will have some impact.”

Like the Science Times page on Facebook. | Sign up for the Science Times newsletter.

IMAGES

  1. The Brain & Problem Solving: Areas & Process

    part of brain that controls problem solving

  2. Lobes of the Brain: Cerebral Cortex Anatomy, Function, Labeled Diagram

    part of brain that controls problem solving

  3. Understanding the Parts of the Brain

    part of brain that controls problem solving

  4. The structure Brain carries out functions like thinking, emotions

    part of brain that controls problem solving

  5. Brain Anatomy and How the Brain Works

    part of brain that controls problem solving

  6. What Part of the Brain Controls Problem Solving?

    part of brain that controls problem solving

VIDEO

  1. Brain: Parts & Function

  2. The Brain

  3. How Your Brain Controls Time

  4. Recommended Brain Game

  5. Three Switch Light Bulb Puzzle 💡🔀

  6. NeuroAnatomy

COMMENTS

  1. Parts of the Brain and Their Functions

    The four lobes of the brain are regions of the cerebrum: Frontal Lobe. Location: This is the anterior or front part of the brain. Functions: Decision making, problem solving, control of purposeful behaviors, consciousness, and emotions. Parietal Lobe. Location: Sits behind the frontal lobe.

  2. Brain Anatomy and How the Brain Works

    The cerebrum (front of brain) comprises gray matter (the cerebral cortex) and white matter at its center. The largest part of the brain, the cerebrum initiates and coordinates movement and regulates temperature. Other areas of the cerebrum enable speech, judgment, thinking and reasoning, problem-solving, emotions and learning.

  3. The Brain: Anatomy, Function, and Treatment

    The brain controls your thoughts, feelings, and physical movements. The brain is a unique organ that is responsible for many functions such as problem-solving, thinking, emotions, controlling physical movements, and mediating the perception and responses related to the five senses. The many nerve cells of the brain communicate with each other ...

  4. Frontal Lobe: Functions, Structure, Damage, and More

    The frontal lobe is the part of the brain that controls important cognitive skills in humans, such as: emotional expression; problem-solving; memory; language; judgment; sexual behaviors;

  5. Mapping the Brain

    The cerebrum, the largest part of the human brain, is associated with higher order functioning, including the control of voluntary behavior. Thinking, perceiving, planning, and understanding language all lie within the cerebrum's control. ... such as problem solving, thinking, planning, and organizing; and for many aspects of personality and ...

  6. Frontal Lobe

    The frontal lobe is the brain's largest region, located behind the forehead, at the front of the brain. These lobes are part of the cerebral cortex and are the largest brain structure. The frontal lobe's main functions are typically associated with 'higher' cognitive functions, including decision-making, problem-solving, thought, and ...

  7. How your brain works

    The brain's hemispheres have four lobes. The frontal lobes help control thinking, planning, organizing, problem-solving, short-term memory and movement.; The parietal lobes help interpret feeling, known as sensory information. The lobes process taste, texture and temperature. The occipital lobes process images from your eyes and connect them to the images stored in your memory.

  8. The Brain & Problem Solving: Areas & Process

    Another area of the brain vital to problem solving is the prefrontal cortex, located toward the front of the brain. For a long time, it was thought that some parts of the prefrontal cortex were ...

  9. How the brain solves problems

    The idea of processes being localized in one or two parts of the brain has been replaced with newer evidence ... be improved—including problem-solving abilities. "Brain plasticity is a real ...

  10. Brain Regions and Functions

    The brain is a very busy organ. It is the control center for the body. It runs your organs such as your heart and lungs. It is also busy working with other parts of your body. All of your senses - sight, smell, hearing, touch, and taste - depend on your brain. Tasting food with the sensors on your tongue is only possible if the signals from ...

  11. Areas of the Brain

    The brain stem, situated at the bottom of the brain, is made up of three main parts: the midbrain, pons, and medulla oblongata. The midbrain is the highest part of the brain stem. Among other ...

  12. Parts of the Brain: Anatomy, Functions, and Conditions

    This lobe is located at the front of the brain and is associated with reasoning, motor skills, higher-level cognition, and expressive language. At the front of the frontal lobe is the prefrontal cortex, which is responsible for most executive functions, like thinking, paying attention, and self-control. Damage to the frontal lobe can lead to ...

  13. Brain areas associated with numbers and calculations in children: Meta

    Self-control is related to motivation, in the sense that a motivated action requires self-control to be carried out, particularly in complex situations. When task problem-solving appears complicated and misleading, self-consciousness may become particularly necessary (e.g., Damasio, 2010, Pascual-Leone, 2000).

  14. Parts of the Brain: Anatomy, Structure & Functions

    The human brain is a complex organ, made up of several distinct parts, each responsible for different functions. The cerebrum, the largest part, is responsible for sensory interpretation, thought processing, and voluntary muscle activity. Beneath it is the cerebellum, which controls balance and coordination. The brainstem connects the brain to the spinal cord and oversees automatic processes ...

  15. How The Brain Works

    Find Out Which Parts Of The Brain Handle Which Functions. ... What Controls Creativity And Problem Solving? The Corpus Callosum is a rope of nerves that connect the two hemispheres of the brain ...

  16. Executive Function

    2. Next. Executive function describes a set of cognitive processes and mental skills that help an individual plan, monitor, and successfully execute their goals. The "executive functions," as ...

  17. How the brain helps us make good decisions

    A prevailing theory in neuroscience holds that people make decisions based on integrated global calculations that occur within the frontal cortex of the brain. However, Yale researchers have found that three distinct circuits connecting to different brain regions are involved in making good decisions, bad ones, and determining which of those ...

  18. The Frontal Lobe: What Is It and How Does It Impact Your Health?

    The frontal lobe is the part of the brain that controls speech, language, and motor skills. Learn more about what it is and how it can impact your health. ... Problem-solving; Short-term memory‌ ...

  19. What Your Brain Looks Like When It Solves a Math Problem

    July 28, 2016. Solving a hairy math problem might send a shudder of exultation along your spinal cord. But scientists have historically struggled to deconstruct the exact mental alchemy that ...