A statement that could be true, which might then be tested.
Example: Sam has a hypothesis that "large dogs are better at catching tennis balls than small dogs". We can test that hypothesis by having hundreds of different sized dogs try to catch tennis balls.
Sometimes the hypothesis won't be tested, it is simply a good explanation (which could be wrong). Conjecture is a better word for this.
Example: you notice the temperature drops just as the sun rises. Your hypothesis is that the sun warms the air high above you, which rises up and then cooler air comes from the sides.
Note: when someone says "I have a theory" they should say "I have a hypothesis", because in mathematics a theory is actually well proven.
January 10, 2014
Is the Universe Made of Math? [Excerpt]
In this excerpt from his new book, Our Mathematical Universe, M.I.T. professor Max Tegmark explores the possibility that math does not just describe the universe, but makes the universe
By Max Tegmark
Excerpted with permission from Our Mathematical Universe: My Quest for the Ultimate Nature of Reality , by Max Tegmark . Available from Random House/Knopf. Copyright © 2014.
What's the answer to the ultimate question of life, the universe, and everything? In Douglas Adams' science-fiction spoof “The Hitchhiker's Guide to the Galaxy”, the answer was found to be 42; the hardest part turned out to be finding the real question. I find it very appropriate that Douglas Adams joked about 42, because mathematics has played a striking role in our growing understanding of our Universe.
The Higgs Boson was predicted with the same tool as the planet Neptune and the radio wave: with mathematics. Galileo famously stated that our Universe is a “grand book” written in the language of mathematics. So why does our universe seem so mathematical, and what does it mean? In my new book “Our Mathematical Universe”, I argue that it means that our universe isn’t just described by math, but that it is math in the sense that we’re all parts of a giant mathematical object, which in turn is part of a multiverse so huge that it makes the other multiverses debated in recent years seem puny in comparison.
On supporting science journalism
If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.
Math, math everywhere! But where's all this math that we're going on about? Isn't math all about numbers? If you look around right now, you can probably spot a few numbers here and there, for example the page numbers in your latest copy of Scientific American, but these are just symbols invented and printed by people, so they can hardly be said to reflect our Universe being mathematical in any deep way.
Because of our education system, many people equate mathematics with arithmetic. Yet mathematicians study abstract structures far more diverse than numbers, including geometric shapes. Do you see any geometric patterns or shapes around you? Here again, human-made designs like the rectangular shape of this book don't count. But try throwing a pebble and watch the beautiful shape that nature makes for its trajectory! The trajectories of anything you throw have the same shape, called an upside-down parabola. When we observe how things move around in orbits in space, we discover another recurring shape: the ellipse. Moreover, these two shapes are related: the tip of a very elongated ellipse is shaped almost exactly like a parabola, so in fact, all of these trajectories are simply parts of ellipses.
We humans have gradually discovered many additional recurring shapes and patterns in nature, involving not only motion and gravity, but also areas as disparate as electricity, magnetism, light, heat, chemistry, radioactivity, and subatomic particles. These patterns are summarized by what we call our laws of physics. Just as the shape of an ellipse, all these laws can be described using mathematical equations.
Equations aren't the only hints of mathematics that are built into nature: there are also numbers. As opposed to human creations like the page numbers in this book, I'm now talking about numbers that are basic properties of our physical reality. For example, how many pencils can you arrange so that they're all perpendicular (at 90 degrees) to each other? 3 – by placing them along the 3 edges emanating from a corner of your room, say. Where did that number 3 come sailing in from? We call this number the dimensionality of our space, but why are there 3 dimensions rather than 4 or 2 or 42? And why are there, as far as we can tell, exactly 6 kinds of quarks in our Universe? There are also numbers encoded in nature that require decimals to write out – for example, the proton about 1836.15267 times heavier than the electron. From just 32 such numbers, we physicists can in principle compute every other physical constant ever measured.
There's something very mathematical about our Universe, and that the more carefully we look, the more math we seem to find. So what do we make of all these hints of mathematics in our physical world? Most of my physics colleagues take them to mean that nature is for some reason described by mathematics, at least approximately, and leave it at that. But I'm convinced that there's more to it, and let's see if it makes more sense to you than to that professor who said it would ruin my career.
The mathematical universe hypothesis I was quite fascinated by all these mathematical clues back in grad school. One Berkeley evening in 1990, while my friend Bill Poirier and I were sitting around speculating about the ultimate nature of reality, I suddenly had an idea for what it all meant: that our reality isn't just described by mathematics – it is mathematics, in a very specific sense. Not just aspects of it, but all of it, including you.
My starting assumption, the external reality hypothesis, states that there exists an external physical reality completely independent of us humans. When we derive the consequences of a theory, we introduce new concepts and words for them, such as “protons”, “atoms”, “molecules”, “cells” and “stars”, because they're convenient. It's important to remember, however, that it's we humans who create these concepts; in principle, everything could be calculated without this baggage.
But if we assume that reality exists independently of humans, then for a description to be complete, it must also be well-defined according to non-human entities – aliens or supercomputers, say – that lack any understanding of human concepts. That brings us to the Mathematical Universe Hypothesis, which states that our external physical reality is a mathematical structure.
For example, suppose a basketball trajectory is that of a beautiful buzzer-beater that wins you the game, and that you later want to describe what it looked like to a friend. Since the ball is made of elementary particles (quarks and electrons), you could in principle describe its motion without making any reference to basketballs:
Particle 1 moves in a parabola. Particle 2 moves in a parabola. … Particle 138,314,159,265,358,979,323,846,264 moves in a parabola.
That would be slightly inconvenient, however, because it would take you longer than the age of our Universe to say it. It would also be redundant, since all the particles are stuck together and move as a single unit. That's why we humans have invented a word “ball” to refer to the entire unit, enabling us to save time by simply describing the motion of the whole unit once and for all. The ball was designed by humans, but it's quite analogous for composite objects that aren't man-made, such as molecules, rocks and stars: inventing words for them is convenient both for saving time, and for providing concepts in terms of which to understand the world more intuitively. Although useful, such words are all optional baggage.
All of this begs the question: is it actually possible to find such a description of the external reality that involves no baggage? If so, such a description of objects in this external reality and the relations between them would have to be completely abstract, forcing any words or symbols to be mere labels with no preconceived meanings whatsoever. Instead, the only properties of these entities would be those embodied by the relations between them.
To answer this question, we need to take a closer look at mathematics. To a modern logician, a mathematical structure is precisely this: a set of abstract entities with relations between them. This is in stark contrast to the way most of us first perceive mathematics – either as a sadistic form of punishment, or as a bag of tricks for manipulating numbers.
Modern mathematics is the formal study of structures that can be defined in a purely abstract way, without any human baggage. Think of mathematical symbols as mere labels without intrinsic meaning. It doesn't matter whether you write “two plus two equals four”, “2 + 2 = 4” or “dos mas dos igual a cuatro”. The notation used to denote the entities and the relations is irrelevant; the only properties of integers are those embodied by the relations between them. That is, we don't invent mathematical structures – we discover them, and invent only the notation for describing them.
In summary, there are two key points to take away: The External Reality Hypothesis implies that a “theory of everything” (a complete description of our external physical reality) has no baggage, and something that has a complete baggage-free description is precisely a mathematical structure. Taken together, this implies the Mathematical Universe Hypothesis, i.e., that the external physical reality described by the theory of everything is a mathematical structure. So the bottom line is that if you believe in an external reality independent of humans, then you must also believe that our physical reality is a mathematical structure. Everything in our world is purely mathematical – including you.
An abstract game of chess is independent of the colors and shapes of the pieces, and of whether its moves are described on a physically existing board, by stylized computer-rendered images or by so-called algebraic chess notation – it's still the same chess game. Analogously, a mathematical structure is independent of the symbols used to describe it. Image: Courtesy of Max Tegmark
Life without baggage Above we described how we humans add baggage to our descriptions. Now let's look at the opposite: how mathematical abstraction can remove baggage and strip things down to their bare essence. Consider the sequence of chess moves that have become known as “The Immortal Game”, where white spectacularly sacrifices both rooks, a bishop, and the queen to checkmate with the three remaining minor pieces. When chess aficionados call the Immortal Game beautiful, they're not referring to the attractiveness of the players, the board or the pieces, but to a more abstract entity, which we might call the abstract game, or the sequence of moves.
Chess involves abstract entities (different chess pieces, different squares on the board, etc.) and relations between them. For example, one relation that a piece may have to a square is that the former is standing on the latter. Another relation that a piece may have to a square is that it's allowed to move there. There are many equivalent ways of describing these entities and relations, for example with a physical board, via verbal descriptions in English or Spanish, or using so-called algebraic chess notation. So what is it that's left when you strip away all this baggage? What is it that's described by all these equivalent descriptions? The Immortal Game itself, 100% pure, with no additives. There’s only one unique mathematical structure that’s described by all these equivalent descriptions.
The Mathematical Universe Hypothesis implies that we live in a relational reality, in the sense that the properties of the world around us stem not from properties of its ultimate building blocks, but from the relations between these building blocks. The external physical reality is therefore more than the sum of its parts, in the sense that it can have many interesting properties while its parts have no intrinsic properties at all. This crazy-sounding belief of mine that our physical world not only is described by mathematics, but that it is mathematics, makes us self-aware parts of a giant mathematical object. As I describe in the book, this ultimately demotes familiar notions such as randomness, complexity and even change to the status of illusions; it also implies a new and ultimate collection of parallel universes so vast and exotic that all the above-mentioned bizarreness pales in comparison, forcing us to relinquish many of our most deeply ingrained notions of reality.
It’s easy feel small and powerless when faced with this vast reality. Indeed, we humans have had this experience before, over and over again discovering that what we thought was everything was merely a small part of a larger structure: our planet, our solar system, our Galaxy, our universe and perhaps a hierarchy of parallel universes, nested like Russian dolls. However, I find this empowering as well, because we've repeatedly underestimated not only the size of our cosmos, but also the power of our human mind to understand it. Our cave-dwelling ancestors had just as big brains as we have, and since they didn't spend their evenings watching TV, I'm sure they asked questions like “What's all that stuff up there in the sky?” and “Where does it all come from?”. They'd been told beautiful myths and stories, but little did they realize that they had it in them to actually figure out the answers to these questions for themselves. And that the secret lay not in learning to fly into space to examine the celestial objects, but in letting their human minds fly. When our human imagination first got off the ground and started deciphering the mysteries of space, it was done with mental power rather than rocket power.
I find this quest for knowledge so inspiring that I decided to join it and become a physicist, and I’ve written this book because I want to share these empowering journeys of discovery, especially in this day and age when it’s so easy to feel powerless. If you decide to read it, then it will be not only the quest of me and my fellow physicists, but our quest.
- Mathematicians
- Math Lessons
- Square Roots
- Math Calculators
- Hypothesis | Definition & Meaning
JUMP TO TOPIC
Explanation of Hypothesis
Contradiction, simple hypothesis, complex hypothesis, null hypothesis, alternative hypothesis, empirical hypothesis, statistical hypothesis, special example of hypothesis, solution part (a), solution part (b), hypothesis|definition & meaning.
A hypothesis is a claim or statement that makes sense in the context of some information or data at hand but hasn’t been established as true or false through experimentation or proof.
In mathematics, any statement or equation that describes some relationship between certain variables can be termed as hypothesis if it is consistent with some initial supporting data or information, however, its yet to be proven true or false by some definite and trustworthy experiment or mathematical law.
Following example illustrates one such hypothesis to shed some light on this very fundamental concept which is often used in different areas of mathematics.
Figure 1: Example of Hypothesis
Here we have considered an example of a young startup company that manufactures state of the art batteries. The hypothesis or the claim of the company is that their batteries have a mean life of more than 1000 hours. Now its very easy to understand that they can prove their claim on some testing experiment in their lab.
However, the statement can only be proven if and only if at least one batch of their production batteries have actually been deployed in the real world for more than 1000 hours . After 1000 hours, data needs to be collected and it needs to be seen what is the probability of this statement being true .
The following paragraphs further explain this concept.
As explained with the help of an example earlier, a hypothesis in mathematics is an untested claim that is backed up by all the known data or some other discoveries or some weak experiments.
In any mathematical discovery, we first start by assuming something or some relationship . This supposed statement is called a supposition. A supposition, however, becomes a hypothesis when it is supported by all available data and a large number of contradictory findings.
The hypothesis is an important part of the scientific method that is widely known today for making new discoveries. The field of mathematics inherited this process. Following figure shows this cycle as a graphic:
Figure 2: Role of Hypothesis in the Scientific Method
The above figure shows a simplified version of the scientific method. It shows that whenever a supposition is supported by some data, its termed as hypothesis. Once a hypothesis is proven by some well known and widely acceptable experiment or proof, its becomes a law. If the hypothesis is rejected by some contradictory results then the supposition is changed and the cycle continues.
Lets try to understand the scientific method and the hypothesis concept with the help of an example. Lets say that a teacher wanted to analyze the relationship between the students performance in a certain subject, lets call it A, based on whether or not they studied a minor course, lets call it B.
Now the teacher puts forth a supposition that the students taking the course B prior to course A must perform better in the latter due to the obvious linkages in the key concepts. Due to this linkage, this supposition can be termed as a hypothesis.
However to test the hypothesis, the teacher has to collect data from all of his/her students such that he/she knows which students have taken course B and which ones haven’t. Then at the end of the semester, the performance of the students must be measured and compared with their course B enrollments.
If the students that took course B prior to course A perform better, then the hypothesis concludes successful . Otherwise, the supposition may need revision.
The following figure explains this problem graphically.
Figure 3: Teacher and Course Example of Hypothesis
Important Terms Related to Hypothesis
To further elaborate the concept of hypothesis, we first need to understand a few key terms that are widely used in this area such as conjecture, contradiction and some special types of hypothesis (simple, complex, null, alternative, empirical, statistical). These terms are briefly explained below:
A conjecture is a term used to describe a mathematical assertion that has notbeenproved. While testing may occasionally turn up millions of examples in favour of a conjecture, most experts in the area will typically only accept a proof . In mathematics, this term is synonymous to the term hypothesis.
In mathematics, a contradiction occurs if the results of an experiment or proof are against some hypothesis. In other words, a contradiction discredits a hypothesis.
A simple hypothesis is such a type of hypothesis that claims there is a correlation between two variables. The first is known as a dependent variable while the second is known as an independent variable.
A complex hypothesis is such a type of hypothesis that claims there is a correlation between more than two variables. Both the dependent and independent variables in this hypothesis may be more than one in numbers.
A null hypothesis, usually denoted by H0, is such a type of hypothesis that claims there is no statistical relationship and significance between two sets of observed data and measured occurrences for each set of defined, single observable variables. In short the variables are independent.
An alternative hypothesis, usually denoted by H1 or Ha, is such a type of hypothesis where the variables may be statistically influenced by some unknown factors or variables. In short the variables are dependent on some unknown phenomena .
An Empirical hypothesis is such a type of hypothesis that is built on top of some empirical data or experiment or formulation.
A statistical hypothesis is such a type of hypothesis that is built on top of some statistical data or experiment or formulation. It may be logical or illogical in nature.
According to the Riemann hypothesis, only negative even integers and complex numbers with real part 1/2 have zeros in the Riemann zeta function . It is regarded by many as the most significant open issue in pure mathematics.
Figure 4: Riemann Hypothesis
The Riemann hypothesis is the most well-known mathematical conjecture, and it has been the subject of innumerable proof efforts.
Numerical Examples
Identify the conclusions and hypothesis in the following given statements. Also state if the conclusion supports the hypothesis or not.
Part (a): If 30x = 30, then x = 1
Part (b): if 10x + 2 = 50, then x = 24
Hypothesis: 30x = 30
Conclusion: x = 10
Supports Hypothesis: Yes
Hypothesis: 10x + 2 = 50
Conclusion: x = 24
All images/mathematical drawings were created with GeoGebra.
Hour Hand Definition < Glossary Index > Identity Definition
Become a Problem-solving School
Or search by topic
Number and algebra.
- Properties of numbers
- Place value and the number system
- Calculations and numerical methods
- Fractions, decimals, percentages, ratio and proportion
- Patterns, sequences and structure
- Coordinates, functions and graphs
- Algebraic expressions, equations and formulae
Geometry and measure
- Measuring and calculating with units
- Angles, polygons, and geometrical proof
- 3D geometry, shape and space
- Transformations and constructions
- Pythagoras and trigonometry
- Vectors and matrices
Probability and statistics
- Probability
- Handling, processing and representing data
Working mathematically
- Thinking mathematically
- Mathematical mindsets
Advanced mathematics
- Decision mathematics and combinatorics
- Advanced probability and statistics
For younger learners
- Early years foundation stage
Understanding hypotheses
'What happens if ... ?' to ' This will happen if'
The experimentation of children continually moves on to the exploration of new ideas and the refinement of their world view of previously understood situations. This description of the playtime patterns of young children very nicely models the concept of 'making and testing hypotheses'. It follows this pattern:
- Make some observations. Collect some data based on the observations.
- Draw a conclusion (called a 'hypothesis') which will explain the pattern of the observations.
- Test out your hypothesis by making some more targeted observations.
So, we have
- A hypothesis is a statement or idea which gives an explanation to a series of observations.
Sometimes, following observation, a hypothesis will clearly need to be refined or rejected. This happens if a single contradictory observation occurs. For example, suppose that a child is trying to understand the concept of a dog. He reads about several dogs in children's books and sees that they are always friendly and fun. He makes the natural hypothesis in his mind that dogs are friendly and fun . He then meets his first real dog: his neighbour's puppy who is great fun to play with. This reinforces his hypothesis. His cousin's dog is also very friendly and great fun. He meets some of his friends' dogs on various walks to playgroup. They are also friendly and fun. He is now confident that his hypothesis is sound. Suddenly, one day, he sees a dog, tries to stroke it and is bitten. This experience contradicts his hypothesis. He will need to amend the hypothesis. We see that
- Gathering more evidence/data can strengthen a hypothesis if it is in agreement with the hypothesis.
- If the data contradicts the hypothesis then the hypothesis must be rejected or amended to take into account the contradictory situation.
- A contradictory observation can cause us to know for certain that a hypothesis is incorrect.
- Accumulation of supporting experimental evidence will strengthen a hypothesis but will never let us know for certain that the hypothesis is true.
In short, it is possible to show that a hypothesis is false, but impossible to prove that it is true!
Whilst we can never prove a scientific hypothesis to be true, there will be a certain stage at which we decide that there is sufficient supporting experimental data for us to accept the hypothesis. The point at which we make the choice to accept a hypothesis depends on many factors. In practice, the key issues are
- What are the implications of mistakenly accepting a hypothesis which is false?
- What are the cost / time implications of gathering more data?
- What are the implications of not accepting in a timely fashion a true hypothesis?
For example, suppose that a drug company is testing a new cancer drug. They hypothesise that the drug is safe with no side effects. If they are mistaken in this belief and release the drug then the results could have a disastrous effect on public health. However, running extended clinical trials might be very costly and time consuming. Furthermore, a delay in accepting the hypothesis and releasing the drug might also have a negative effect on the health of many people.
In short, whilst we can never achieve absolute certainty with the testing of hypotheses, in order to make progress in science or industry decisions need to be made. There is a fine balance to be made between action and inaction.
Hypotheses and mathematics So where does mathematics enter into this picture? In many ways, both obvious and subtle:
- A good hypothesis needs to be clear, precisely stated and testable in some way. Creation of these clear hypotheses requires clear general mathematical thinking.
- The data from experiments must be carefully analysed in relation to the original hypothesis. This requires the data to be structured, operated upon, prepared and displayed in appropriate ways. The levels of this process can range from simple to exceedingly complex.
Very often, the situation under analysis will appear to be complicated and unclear. Part of the mathematics of the task will be to impose a clear structure on the problem. The clarity of thought required will actively be developed through more abstract mathematical study. Those without sufficient general mathematical skill will be unable to perform an appropriate logical analysis.
Using deductive reasoning in hypothesis testing
There is often confusion between the ideas surrounding proof, which is mathematics, and making and testing an experimental hypothesis, which is science. The difference is rather simple:
- Mathematics is based on deductive reasoning : a proof is a logical deduction from a set of clear inputs.
- Science is based on inductive reasoning : hypotheses are strengthened or rejected based on an accumulation of experimental evidence.
Of course, to be good at science, you need to be good at deductive reasoning, although experts at deductive reasoning need not be mathematicians. Detectives, such as Sherlock Holmes and Hercule Poirot, are such experts: they collect evidence from a crime scene and then draw logical conclusions from the evidence to support the hypothesis that, for example, Person M. committed the crime. They use this evidence to create sufficiently compelling deductions to support their hypotheses beyond reasonable doubt . The key word here is 'reasonable'. There is always the possibility of creating an exceedingly outlandish scenario to explain away any hypothesis of a detective or prosecution lawyer, but judges and juries in courts eventually make the decision that the probability of such eventualities are 'small' and the chance of the hypothesis being correct 'high'.
- If a set of data is normally distributed with mean 0 and standard deviation 0.5 then there is a 97.7% certainty that a measurement will not exceed 1.0.
- If the mean of a sample of data is 12, how confident can we be that the true mean of the population lies between 11 and 13?
It is at this point that making and testing hypotheses becomes a true branch of mathematics. This mathematics is difficult, but fascinating and highly relevant in the information-rich world of today.
To read more about the technical side of hypothesis testing, take a look at What is a Hypothesis Test?
You might also enjoy reading the articles on statistics on the Understanding Uncertainty website
This resource is part of the collection Statistics - Maths of Real Life
Help | Advanced Search
Mathematics > Statistics Theory
Title: hypothesis testing with e-values.
Abstract: This book is written to offer a humble, but unified, treatment of e-values in hypothesis testing. The book is organized into three parts: Fundamental Concepts, Core Ideas, and Advanced Topics. The first part includes three chapters that introduce the basic concepts. The second part includes five chapters of core ideas such as universal inference, log-optimality, e-processes, operations on e-values, and e-values in multiple testing. The third part contains five chapters of advanced topics. We hope that, by putting the materials together in this book, the concept of e-values becomes more accessible for educational, research, and practical use.
Submission history
Access paper:.
- Other Formats
References & Citations
- Google Scholar
- Semantic Scholar
BibTeX formatted citation
Bibliographic and Citation Tools
Code, data and media associated with this article, recommenders and search tools.
- Institution
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .
- Maths Notes Class 12
- NCERT Solutions Class 12
- RD Sharma Solutions Class 12
- Maths Formulas Class 12
- Maths Previous Year Paper Class 12
- Class 12 Syllabus
- Class 12 Revision Notes
- Physics Notes Class 12
- Chemistry Notes Class 12
- Biology Notes Class 12
Hypothesis | Definition, Meaning and Examples
Hypothesis is a hypothesis is fundamental concept in the world of research and statistics. It is a testable statement that explains what is happening or observed. It proposes the relation between the various participating variables.
Hypothesis is also called Theory, Thesis, Guess, Assumption, or Suggestion . Hypothesis creates a structure that guides the search for knowledge.
In this article, we will learn what hypothesis is, its characteristics, types, and examples. We will also learn how hypothesis helps in scientific research.
Table of Content
What is Hypothesis?
Characteristics of hypothesis, sources of hypothesis, types of hypothesis, functions of hypothesis, how hypothesis help in scientific research.
Hypothesis is a suggested idea or an educated guess or a proposed explanation made based on limited evidence, serving as a starting point for further study. They are meant to lead to more investigation.
It's mainly a smart guess or suggested answer to a problem that can be checked through study and trial. In science work, we make guesses called hypotheses to try and figure out what will happen in tests or watching. These are not sure things but rather ideas that can be proved or disproved based on real-life proofs. A good theory is clear and can be tested and found wrong if the proof doesn't support it.
Hypothesis Meaning
A hypothesis is a proposed statement that is testable and is given for something that happens or observed.
- It is made using what we already know and have seen, and it's the basis for scientific research.
- A clear guess tells us what we think will happen in an experiment or study.
- It's a testable clue that can be proven true or wrong with real-life facts and checking it out carefully.
- It usually looks like a "if-then" rule, showing the expected cause and effect relationship between what's being studied.
Here are some key characteristics of a hypothesis:
- Testable: An idea (hypothesis) should be made so it can be tested and proven true through doing experiments or watching. It should show a clear connection between things.
- Specific: It needs to be easy and on target, talking about a certain part or connection between things in a study.
- Falsifiable: A good guess should be able to show it's wrong. This means there must be a chance for proof or seeing something that goes against the guess.
- Logical and Rational: It should be based on things we know now or have seen, giving a reasonable reason that fits with what we already know.
- Predictive: A guess often tells what to expect from an experiment or observation. It gives a guide for what someone might see if the guess is right.
- Concise: It should be short and clear, showing the suggested link or explanation simply without extra confusion.
- Grounded in Research: A guess is usually made from before studies, ideas or watching things. It comes from a deep understanding of what is already known in that area.
- Flexible: A guess helps in the research but it needs to change or fix when new information comes up.
- Relevant: It should be related to the question or problem being studied, helping to direct what the research is about.
- Empirical: Hypotheses come from observations and can be tested using methods based on real-world experiences.
Hypotheses can come from different places based on what you're studying and the kind of research. Here are some common sources from which hypotheses may originate:
- Existing Theories: Often, guesses come from well-known science ideas. These ideas may show connections between things or occurrences that scientists can look into more.
- Observation and Experience: Watching something happen or having personal experiences can lead to guesses. We notice odd things or repeat events in everyday life and experiments. This can make us think of guesses called hypotheses.
- Previous Research: Using old studies or discoveries can help come up with new ideas. Scientists might try to expand or question current findings, making guesses that further study old results.
- Literature Review: Looking at books and research in a subject can help make guesses. Noticing missing parts or mismatches in previous studies might make researchers think up guesses to deal with these spots.
- Problem Statement or Research Question: Often, ideas come from questions or problems in the study. Making clear what needs to be looked into can help create ideas that tackle certain parts of the issue.
- Analogies or Comparisons: Making comparisons between similar things or finding connections from related areas can lead to theories. Understanding from other fields could create new guesses in a different situation.
- Hunches and Speculation: Sometimes, scientists might get a gut feeling or make guesses that help create ideas to test. Though these may not have proof at first, they can be a beginning for looking deeper.
- Technology and Innovations: New technology or tools might make guesses by letting us look at things that were hard to study before.
- Personal Interest and Curiosity: People's curiosity and personal interests in a topic can help create guesses. Scientists could make guesses based on their own likes or love for a subject.
Here are some common types of hypotheses:
Simple Hypothesis
Complex hypothesis, directional hypothesis.
- Non-directional Hypothesis
Null Hypothesis (H0)
Alternative hypothesis (h1 or ha), statistical hypothesis, research hypothesis, associative hypothesis, causal hypothesis.
Simple Hypothesis guesses a connection between two things. It says that there is a connection or difference between variables, but it doesn't tell us which way the relationship goes. Example: Studying more can help you do better on tests. Getting more sun makes people have higher amounts of vitamin D.
Complex Hypothesis tells us what will happen when more than two things are connected. It looks at how different things interact and may be linked together. Example: How rich you are, how easy it is to get education and healthcare greatly affects the number of years people live. A new medicine's success relies on the amount used, how old a person is who takes it and their genes.
Directional Hypothesis says how one thing is related to another. For example, it guesses that one thing will help or hurt another thing. Example: Drinking more sweet drinks is linked to a higher body weight score. Too much stress makes people less productive at work.
Non-Directional Hypothesis
Non-Directional Hypothesis are the one that don't say how the relationship between things will be. They just say that there is a connection, without telling which way it goes. Example: Drinking caffeine can affect how well you sleep. People often like different kinds of music based on their gender.
Null hypothesis is a statement that says there's no connection or difference between different things. It implies that any seen impacts are because of luck or random changes in the information. Example: The average test scores of Group A and Group B are not much different. There is no connection between using a certain fertilizer and how much it helps crops grow.
Alternative Hypothesis is different from the null hypothesis and shows that there's a big connection or gap between variables. Scientists want to say no to the null hypothesis and choose the alternative one. Example: Patients on Diet A have much different cholesterol levels than those following Diet B. Exposure to a certain type of light can change how plants grow compared to normal sunlight.
Statistical Hypothesis are used in math testing and include making ideas about what groups or bits of them look like. You aim to get information or test certain things using these top-level, common words only. Example: The average smarts score of kids in a certain school area is 100. The usual time it takes to finish a job using Method A is the same as with Method B.
Research Hypothesis comes from the research question and tells what link is expected between things or factors. It leads the study and chooses where to look more closely. Example: Having more kids go to early learning classes helps them do better in school when they get older. Using specific ways of talking affects how much customers get involved in marketing activities.
Associative Hypothesis guesses that there is a link or connection between things without really saying it caused them. It means that when one thing changes, it is connected to another thing changing. Example: Regular exercise helps to lower the chances of heart disease. Going to school more can help people make more money.
Causal Hypothesis are different from other ideas because they say that one thing causes another. This means there's a cause and effect relationship between variables involved in the situation. They say that when one thing changes, it directly makes another thing change. Example: Playing violent video games makes teens more likely to act aggressively. Less clean air directly impacts breathing health in city populations.
Hypotheses have many important jobs in the process of scientific research. Here are the key functions of hypotheses:
- Guiding Research: Hypotheses give a clear and exact way for research. They act like guides, showing the predicted connections or results that scientists want to study.
- Formulating Research Questions: Research questions often create guesses. They assist in changing big questions into particular, checkable things. They guide what the study should be focused on.
- Setting Clear Objectives: Hypotheses set the goals of a study by saying what connections between variables should be found. They set the targets that scientists try to reach with their studies.
- Testing Predictions: Theories guess what will happen in experiments or observations. By doing tests in a planned way, scientists can check if what they see matches the guesses made by their ideas.
- Providing Structure: Theories give structure to the study process by arranging thoughts and ideas. They aid scientists in thinking about connections between things and plan experiments to match.
- Focusing Investigations: Hypotheses help scientists focus on certain parts of their study question by clearly saying what they expect links or results to be. This focus makes the study work better.
- Facilitating Communication: Theories help scientists talk to each other effectively. Clearly made guesses help scientists to tell others what they plan, how they will do it and the results expected. This explains things well with colleagues in a wide range of audiences.
- Generating Testable Statements: A good guess can be checked, which means it can be looked at carefully or tested by doing experiments. This feature makes sure that guesses add to the real information used in science knowledge.
- Promoting Objectivity: Guesses give a clear reason for study that helps guide the process while reducing personal bias. They motivate scientists to use facts and data as proofs or disprovals for their proposed answers.
- Driving Scientific Progress: Making, trying out and adjusting ideas is a cycle. Even if a guess is proven right or wrong, the information learned helps to grow knowledge in one specific area.
Researchers use hypotheses to put down their thoughts directing how the experiment would take place. Following are the steps that are involved in the scientific method:
- Initiating Investigations: Hypotheses are the beginning of science research. They come from watching, knowing what's already known or asking questions. This makes scientists make certain explanations that need to be checked with tests.
- Formulating Research Questions: Ideas usually come from bigger questions in study. They help scientists make these questions more exact and testable, guiding the study's main point.
- Setting Clear Objectives: Hypotheses set the goals of a study by stating what we think will happen between different things. They set the goals that scientists want to reach by doing their studies.
- Designing Experiments and Studies: Assumptions help plan experiments and watchful studies. They assist scientists in knowing what factors to measure, the techniques they will use and gather data for a proposed reason.
- Testing Predictions: Ideas guess what will happen in experiments or observations. By checking these guesses carefully, scientists can see if the seen results match up with what was predicted in each hypothesis.
- Analysis and Interpretation of Data: Hypotheses give us a way to study and make sense of information. Researchers look at what they found and see if it matches the guesses made in their theories. They decide if the proof backs up or disagrees with these suggested reasons why things are happening as expected.
- Encouraging Objectivity: Hypotheses help make things fair by making sure scientists use facts and information to either agree or disagree with their suggested reasons. They lessen personal preferences by needing proof from experience.
- Iterative Process: People either agree or disagree with guesses, but they still help the ongoing process of science. Findings from testing ideas make us ask new questions, improve those ideas and do more tests. It keeps going on in the work of science to keep learning things.
People Also View:
Mathematics Maths Formulas Branches of Mathematics
Hypothesis is a testable statement serving as an initial explanation for phenomena, based on observations, theories, or existing knowledge . It acts as a guiding light for scientific research, proposing potential relationships between variables that can be empirically tested through experiments and observations.
The hypothesis must be specific, testable, falsifiable, and grounded in prior research or observation, laying out a predictive, if-then scenario that details a cause-and-effect relationship. It originates from various sources including existing theories, observations, previous research, and even personal curiosity, leading to different types, such as simple, complex, directional, non-directional, null, and alternative hypotheses, each serving distinct roles in research methodology .
The hypothesis not only guides the research process by shaping objectives and designing experiments but also facilitates objective analysis and interpretation of data , ultimately driving scientific progress through a cycle of testing, validation, and refinement.
Hypothesis - FAQs
What is a hypothesis.
A guess is a possible explanation or forecast that can be checked by doing research and experiments.
What are Components of a Hypothesis?
The components of a Hypothesis are Independent Variable, Dependent Variable, Relationship between Variables, Directionality etc.
What makes a Good Hypothesis?
Testability, Falsifiability, Clarity and Precision, Relevance are some parameters that makes a Good Hypothesis
Can a Hypothesis be Proven True?
You cannot prove conclusively that most hypotheses are true because it's generally impossible to examine all possible cases for exceptions that would disprove them.
How are Hypotheses Tested?
Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data
Can Hypotheses change during Research?
Yes, you can change or improve your ideas based on new information discovered during the research process.
What is the Role of a Hypothesis in Scientific Research?
Hypotheses are used to support scientific research and bring about advancements in knowledge.
Similar Reads
- Mathematics
- Geeks Premier League
- School Learning
- Geeks Premier League 2023
- Maths-Class-12
Please Login to comment...
Improve your coding skills with practice.
What kind of Experience do you want to share?
Mathematicians Edge Closer to Solving a 'Million Dollar' Math Problem
Did a team of mathematicians just take a big step toward answering a 160-year-old, million-dollar question in mathematics?
Maybe. The crew did solve a number of other, smaller questions in a field called number theory. And in doing so, they have reopened an old avenue that might eventually lead to an answer to the old question: Is the Riemann hypothesis correct?
The Reimann hypothesis is a fundamental mathematical conjecture that has huge implications for the rest of math. It forms the foundation for many other mathematical ideas — but no one knows if it's true. Its validity has become one of the most famous open questions in mathematics. It's one of seven " Millennium Problems " laid out in 2000, with the promise that whoever solves them will win $1 million. (Only one of the problems has since been solved.) [ 5 Seriously Mind-Boggling Math Facts ]
Where did this idea come from?
Back in 1859, a German mathematician named Bernhard Riemann proposed an answer to a particularly thorny math equation. His hypothesis goes like this: The real part of every non-trivial zero of the Riemann zeta function is 1/2 . That's a pretty abstract mathematical statement , having to do with what numbers you can put into a particular mathematical function to make that function equal zero. But it turns out to matter a great deal, most importantly regarding questions of how often you'll encounter prime numbers as you count up toward infinity.
We'll come back to the details of the hypothesis later. But the important thing to know now is that if the Riemann hypothesis is true, it answers a lot of questions in mathematics.
"So often in number theory, what ends up happening is if you assume the Riemann hypothesis [is true], you're then able to prove all kinds of other results," Lola Thompson, a number theorist at Oberlin College in Ohio, who wasn't involved in this latest research, said.
Often, she told Live Science, number theorists will first prove that something is true if the Riemann hypothesis is true. Then they'll use that proof as a sort of stepping stone toward a more intricate proof, which shows that their original conclusion is true whether or not the Riemann hypothesis is true.
Sign up for the Live Science daily newsletter now
Get the world’s most fascinating discoveries delivered straight to your inbox.
The fact that this trick works, she said, convinces many mathematicians that the Riemann hypothesis must be true.
But the truth is that nobody knows for sure.
A small step toward a proof?
So how did this small team of mathematicians seem to bring us closer toward a solution?
"What we have done in our paper," said Ken Ono, a number theorist at Emory University and co-author of the new proof, "is we revisited a very technical criterion which is equivalent to the Riemann hypothesis … and we proved a large part of it. We proved a large chunk of this criterion."
A "criterion which is equivalent to the Riemann hypothesis," in this case, refers to a separate statement that is mathematically equivalent to the Riemann hypothesis.
It's not obvious at first glance why the two statements are so connected. (The criterion has to do with something called the "hyperbolicity of Jensen polynomials.") But in the 1920s, a Hungarian mathematician named George Pólya proved that if this criterion is true, then the Riemann hypothesis is true — and vice versa. It's an old proposed route toward proving the hypothesis, but one that had been largely abandoned.
Ono and his colleagues, in a paper published May 21 in the journal Proceedings of the Natural Academy of Sciences (PNAS), proved that in many, many cases, the criterion is true.
But in math, many is not enough to count as a proof. There are still some cases where they don't know if the criterion is true or false.
"It's like playing a million-number Powerball," Ono said. "And you know all the numbers but the last 20. If even one of those last 20 numbers is wrong, you lose. … It could still all fall apart."
Researchers would need to come up with an even more advanced proof to show the criterion is true in all cases, thereby proving the Riemann hypothesis. And it's not clear how far away such a proof is, Ono said.
So, how big a deal is this paper?
In terms of the Riemann hypothesis, it's tough to say how big a deal this is. A lot depends on what happens next.
"This [criterion] is just one of many equivalent formulations of the Riemann hypothesis," Thompson said.
In other words, there are a lot of other ideas that, like this criterion, would prove that the Riemann hypothesis is true if they themselves were proven .
"So, it's really hard to know how much progress this is, because on the one hand it's made progress in this direction. But, there's so many equivalent formulations that maybe this direction isn't going to yield the Riemann hypothesis. Maybe one of the other equivalent theorems instead will, if someone can prove one of those," Thompson said.
If the proof turns up along this track, then that will likely mean Ono and his colleagues have developed an important underlying framework for solving the Riemann hypothesis. But if it turns up somewhere else, then this paper will turn out to have been less important.
Still, mathematicians are impressed.
"Although this remains far away from proving the Riemann hypothesis, it is a big step forward," Encrico Bombieri, a Princeton number theorist who was not involved in the team's research, wrote in an accompanying May 23 PNAS article. "There is no doubt that this paper will inspire further fundamental work in other areas of number theory as well as in mathematical physics."
(Bombieri won a Fields Medal — the most prestigious prize in mathematics — in 1974, in large part for work related to the Riemann hypothesis.)
What does the Riemann hypothesis mean anyway?
I promised we'd get back to this. Here's the Riemann hypothesis again: The real part of every non-trivial zero of the Riemann zeta function is 1/2 .
Let's break that down according to how Thompson and Ono explained it.
First, what's the Riemann zeta function?
In math, a function is a relationship between different mathematical quantities. A simple one might look like this: y = 2x.
The Riemann zeta function follows the same basic principles. Only it's much more complicated. Here's what it looks like.
It's a sum of an infinite sequence , where each term — the first few are 1/1^s, 1/2^s and 1/3^s — is added to the previous terms. Those ellipses mean the series in the function keeps going on like that, forever.
Now we can answer the second question: What is a zero of the Riemann zeta function?
This is easier. A "zero" of the function is any number you can put in for x that causes the function to equal zero.
Next question: What's the "real part" of one of those zeros, and what does it mean that it equals 1/2?
The Riemann zeta function involves what mathematicians call " complex numbers ." A complex number looks like this: a+b*i.
In that equation, "a" and "b" stand for any real numbers. A real number can be anything from minus 3, to zero, to 4.9234, pi , or 1 billion. But there's another kind of number: imaginary numbers . Imaginary numbers emerge when you take the square root of a negative number, and they're important, showing up in all kinds of mathematical contexts. [ 10 Surprising Facts About Pi ]
The simplest imaginary number is the square root of -1, which is written as "i." A complex number is a real number ("a") plus another real number ("b") times i. The "real part" of a complex number is that "a."
A few zeros of the Riemann zeta function, negative integers between -10 and 0, don't count for the Reimann hypothesis. These are considered "trivial" zeros because they’re real numbers, not complex numbers. All the other zeros are "non-trivial" and complex numbers.
The Riemann hypothesis states that when the Riemann zeta function crosses zero (except for those zeros between -10 and 0), the real part of the complex number has to equal to 1/2.
That little claim might not sound very important. But it is. And we may be just a teensy bit closer to solving it.
Originally published on Live Science .
- The Most Massive Numbers in Existence
- 9 Numbers That Are Cooler Than Pi
- Photos: Large Numbers That Define the Universe
High school students who came up with 'impossible' proof of Pythagorean theorem discover 9 more solutions to the problem
Largest known prime number, spanning 41 million digits, discovered by amateur mathematician using free software
Indonesia volcano eruption kills at least 10
Most Popular
- 2 India targets 2028 for Chandrayaan-4 sample-return mission to moon's south pole
- 3 'Fireball' meteors possible over US tonight as South Taurid meteor shower peaks
- 4 These 3 neurons may underlie the drive to eat food
- 5 Earth from space: Watch Valencia disappear under a sea of mud during deadly Spanish floods
Professor: Erika L.C. King Email: [email protected] Office: Lansing 304 Phone: (315)781-3355
The majority of statements in mathematics can be written in the form: "If A, then B." For example: "If a function is differentiable, then it is continuous". In this example, the "A" part is "a function is differentiable" and the "B" part is "a function is continuous." The "A" part of the statement is called the "hypothesis", and the "B" part of the statement is called the "conclusion". Thus the hypothesis is what we must assume in order to be positive that the conclusion will hold.
Whenever you are asked to state a theorem, be sure to include the hypothesis. In order to know when you may apply the theorem, you need to know what constraints you have. So in the example above, if we know that a function is differentiable, we may assume that it is continuous. However, if we do not know that a function is differentiable, continuity may not hold. Some theorems have MANY hypotheses, some of which are written in sentences before the ultimate "if, then" statement. For example, there might be a sentence that says: "Assume n is even." which is then followed by an if,then statement. Include all hypotheses and assumptions when asked to state theorems and definitions!
Still have questions? Please ask!
Reset password New user? Sign up
Existing user? Log in
Hypothesis Testing
Already have an account? Log in here.
A hypothesis test is a statistical inference method used to test the significance of a proposed (hypothesized) relation between population statistics (parameters) and their corresponding sample estimators . In other words, hypothesis tests are used to determine if there is enough evidence in a sample to prove a hypothesis true for the entire population.
The test considers two hypotheses: the null hypothesis , which is a statement meant to be tested, usually something like "there is no effect" with the intention of proving this false, and the alternate hypothesis , which is the statement meant to stand after the test is performed. The two hypotheses must be mutually exclusive ; moreover, in most applications, the two are complementary (one being the negation of the other). The test works by comparing the \(p\)-value to the level of significance (a chosen target). If the \(p\)-value is less than or equal to the level of significance, then the null hypothesis is rejected.
When analyzing data, only samples of a certain size might be manageable as efficient computations. In some situations the error terms follow a continuous or infinite distribution, hence the use of samples to suggest accuracy of the chosen test statistics. The method of hypothesis testing gives an advantage over guessing what distribution or which parameters the data follows.
Definitions and Methodology
Hypothesis test and confidence intervals.
In statistical inference, properties (parameters) of a population are analyzed by sampling data sets. Given assumptions on the distribution, i.e. a statistical model of the data, certain hypotheses can be deduced from the known behavior of the model. These hypotheses must be tested against sampled data from the population.
The null hypothesis \((\)denoted \(H_0)\) is a statement that is assumed to be true. If the null hypothesis is rejected, then there is enough evidence (statistical significance) to accept the alternate hypothesis \((\)denoted \(H_1).\) Before doing any test for significance, both hypotheses must be clearly stated and non-conflictive, i.e. mutually exclusive, statements. Rejecting the null hypothesis, given that it is true, is called a type I error and it is denoted \(\alpha\), which is also its probability of occurrence. Failing to reject the null hypothesis, given that it is false, is called a type II error and it is denoted \(\beta\), which is also its probability of occurrence. Also, \(\alpha\) is known as the significance level , and \(1-\beta\) is known as the power of the test. \(H_0\) \(\textbf{is true}\)\(\hspace{15mm}\) \(H_0\) \(\textbf{is false}\) \(\textbf{Reject}\) \(H_0\)\(\hspace{10mm}\) Type I error Correct Decision \(\textbf{Reject}\) \(H_1\) Correct Decision Type II error The test statistic is the standardized value following the sampled data under the assumption that the null hypothesis is true, and a chosen particular test. These tests depend on the statistic to be studied and the assumed distribution it follows, e.g. the population mean following a normal distribution. The \(p\)-value is the probability of observing an extreme test statistic in the direction of the alternate hypothesis, given that the null hypothesis is true. The critical value is the value of the assumed distribution of the test statistic such that the probability of making a type I error is small.
Methodologies: Given an estimator \(\hat \theta\) of a population statistic \(\theta\), following a probability distribution \(P(T)\), computed from a sample \(\mathcal{S},\) and given a significance level \(\alpha\) and test statistic \(t^*,\) define \(H_0\) and \(H_1;\) compute the test statistic \(t^*.\) \(p\)-value Approach (most prevalent): Find the \(p\)-value using \(t^*\) (right-tailed). If the \(p\)-value is at most \(\alpha,\) reject \(H_0\). Otherwise, reject \(H_1\). Critical Value Approach: Find the critical value solving the equation \(P(T\geq t_\alpha)=\alpha\) (right-tailed). If \(t^*>t_\alpha\), reject \(H_0\). Otherwise, reject \(H_1\). Note: Failing to reject \(H_0\) only means inability to accept \(H_1\), and it does not mean to accept \(H_0\).
Assume a normally distributed population has recorded cholesterol levels with various statistics computed. From a sample of 100 subjects in the population, the sample mean was 214.12 mg/dL (milligrams per deciliter), with a sample standard deviation of 45.71 mg/dL. Perform a hypothesis test, with significance level 0.05, to test if there is enough evidence to conclude that the population mean is larger than 200 mg/dL. Hypothesis Test We will perform a hypothesis test using the \(p\)-value approach with significance level \(\alpha=0.05:\) Define \(H_0\): \(\mu=200\). Define \(H_1\): \(\mu>200\). Since our values are normally distributed, the test statistic is \(z^*=\frac{\bar X - \mu_0}{\frac{s}{\sqrt{n}}}=\frac{214.12 - 200}{\frac{45.71}{\sqrt{100}}}\approx 3.09\). Using a standard normal distribution, we find that our \(p\)-value is approximately \(0.001\). Since the \(p\)-value is at most \(\alpha=0.05,\) we reject \(H_0\). Therefore, we can conclude that the test shows sufficient evidence to support the claim that \(\mu\) is larger than \(200\) mg/dL.
If the sample size was smaller, the normal and \(t\)-distributions behave differently. Also, the question itself must be managed by a double-tail test instead.
Assume a population's cholesterol levels are recorded and various statistics are computed. From a sample of 25 subjects, the sample mean was 214.12 mg/dL (milligrams per deciliter), with a sample standard deviation of 45.71 mg/dL. Perform a hypothesis test, with significance level 0.05, to test if there is enough evidence to conclude that the population mean is not equal to 200 mg/dL. Hypothesis Test We will perform a hypothesis test using the \(p\)-value approach with significance level \(\alpha=0.05\) and the \(t\)-distribution with 24 degrees of freedom: Define \(H_0\): \(\mu=200\). Define \(H_1\): \(\mu\neq 200\). Using the \(t\)-distribution, the test statistic is \(t^*=\frac{\bar X - \mu_0}{\frac{s}{\sqrt{n}}}=\frac{214.12 - 200}{\frac{45.71}{\sqrt{25}}}\approx 1.54\). Using a \(t\)-distribution with 24 degrees of freedom, we find that our \(p\)-value is approximately \(2(0.068)=0.136\). We have multiplied by two since this is a two-tailed argument, i.e. the mean can be smaller than or larger than. Since the \(p\)-value is larger than \(\alpha=0.05,\) we fail to reject \(H_0\). Therefore, the test does not show sufficient evidence to support the claim that \(\mu\) is not equal to \(200\) mg/dL.
The complement of the rejection on a two-tailed hypothesis test (with significance level \(\alpha\)) for a population parameter \(\theta\) is equivalent to finding a confidence interval \((\)with confidence level \(1-\alpha)\) for the population parameter \(\theta\). If the assumption on the parameter \(\theta\) falls inside the confidence interval, then the test has failed to reject the null hypothesis \((\)with \(p\)-value greater than \(\alpha).\) Otherwise, if \(\theta\) does not fall in the confidence interval, then the null hypothesis is rejected in favor of the alternate \((\)with \(p\)-value at most \(\alpha).\)
- Statistics (Estimation)
- Normal Distribution
- Correlation
- Confidence Intervals
Problem Loading...
Note Loading...
Set Loading...
- Science, Tech, Math ›
- Chemistry ›
Scientific Hypothesis, Model, Theory, and Law
Understanding the Difference Between Basic Scientific Terms
Hero Images / Getty Images
- Chemical Laws
- Periodic Table
- Projects & Experiments
- Scientific Method
- Biochemistry
- Physical Chemistry
- Medical Chemistry
- Chemistry In Everyday Life
- Famous Chemists
- Activities for Kids
- Abbreviations & Acronyms
- Weather & Climate
- Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
- B.A., Physics and Mathematics, Hastings College
Words have precise meanings in science. For example, "theory," "law," and "hypothesis" don't all mean the same thing. Outside of science, you might say something is "just a theory," meaning it's a supposition that may or may not be true. In science, however, a theory is an explanation that generally is accepted to be true. Here's a closer look at these important, commonly misused terms.
A hypothesis is an educated guess, based on observation. It's a prediction of cause and effect. Usually, a hypothesis can be supported or refuted through experimentation or more observation. A hypothesis can be disproven but not proven to be true.
Example: If you see no difference in the cleaning ability of various laundry detergents, you might hypothesize that cleaning effectiveness is not affected by which detergent you use. This hypothesis can be disproven if you observe a stain is removed by one detergent and not another. On the other hand, you cannot prove the hypothesis. Even if you never see a difference in the cleanliness of your clothes after trying 1,000 detergents, there might be one more you haven't tried that could be different.
Scientists often construct models to help explain complex concepts. These can be physical models like a model volcano or atom or conceptual models like predictive weather algorithms. A model doesn't contain all the details of the real deal, but it should include observations known to be valid.
Example: The Bohr model shows electrons orbiting the atomic nucleus, much the same way as the way planets revolve around the sun. In reality, the movement of electrons is complicated but the model makes it clear that protons and neutrons form a nucleus and electrons tend to move around outside the nucleus.
A scientific theory summarizes a hypothesis or group of hypotheses that have been supported with repeated testing. A theory is valid as long as there is no evidence to dispute it. Therefore, theories can be disproven. Basically, if evidence accumulates to support a hypothesis, then the hypothesis can become accepted as a good explanation of a phenomenon. One definition of a theory is to say that it's an accepted hypothesis.
Example: It is known that on June 30, 1908, in Tunguska, Siberia, there was an explosion equivalent to the detonation of about 15 million tons of TNT. Many hypotheses have been proposed for what caused the explosion. It was theorized that the explosion was caused by a natural extraterrestrial phenomenon , and was not caused by man. Is this theory a fact? No. The event is a recorded fact. Is this theory, generally accepted to be true, based on evidence to-date? Yes. Can this theory be shown to be false and be discarded? Yes.
A scientific law generalizes a body of observations. At the time it's made, no exceptions have been found to a law. Scientific laws explain things but they do not describe them. One way to tell a law and a theory apart is to ask if the description gives you the means to explain "why." The word "law" is used less and less in science, as many laws are only true under limited circumstances.
Example: Consider Newton's Law of Gravity . Newton could use this law to predict the behavior of a dropped object but he couldn't explain why it happened.
As you can see, there is no "proof" or absolute "truth" in science. The closest we get are facts, which are indisputable observations. Note, however, if you define proof as arriving at a logical conclusion, based on the evidence, then there is "proof" in science. Some work under the definition that to prove something implies it can never be wrong, which is different. If you're asked to define the terms hypothesis, theory, and law, keep in mind the definitions of proof and of these words can vary slightly depending on the scientific discipline. What's important is to realize they don't all mean the same thing and cannot be used interchangeably.
- Scientific Method Lesson Plan
- What Is an Experiment? Definition and Design
- How To Design a Science Fair Experiment
- Chemistry 101 - Introduction & Index of Topics
- What Is the Difference Between Hard and Soft Science?
- What Is a Control Group?
- Henry's Law Definition
- Chemistry Vocabulary Terms
- Hess's Law Definition
- What Does pH Stand For?
- How to Write a Lab Report
- What Is Chemical Engineering?
- Teach Yourself Chemistry Today
- Check Out These Chemistry Career Options Before You Get a Degree
- Here's How to Calculate pH Values
- Setting Up a Home Chemistry Lab
Hypothesis Testing
Hypothesis testing is the use of statistics to determine the probability that a given hypothesis is true. The usual process of hypothesis testing consists of four steps.
2. Identify a test statistic that can be used to assess the truth of the null hypothesis .
Explore with Wolfram|Alpha
More things to try:
- hypothesis testing mean
- (10,8) cage graph
- gcd x^4-9x^2-4x+12, x^3+5x^2+2x-8
Referenced on Wolfram|Alpha
Cite this as:.
Weisstein, Eric W. "Hypothesis Testing." From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/HypothesisTesting.html
Subject classifications
Hypothesis test
A significance test, also referred to as a statistical hypothesis test, is a method of statistical inference in which observed data is compared to a claim (referred to as a hypothesis) in order to assess the truth of the claim. For example, one might wonder whether age affects the number of apples a person can eat, and may use a significance test to determine whether there is any evidence to suggest that it does.
Generally, the process of statistical hypothesis testing involves the following steps:
- State the null hypothesis.
- State the alternative hypothesis.
- Select the appropriate test statistic and select a significance level.
- Compute the observed value of the test statistic and its corresponding p-value.
- Reject the null hypothesis in favor of the alternative hypothesis, or do not reject the null hypothesis.
The null hypothesis
The null hypothesis, H 0 , is the claim that is being tested in a statistical hypothesis test. It typically is a statement that there is no difference between the populations being studied, or that there is no evidence to support a claim being made. For example, "age has no effect on the number of apples a person can eat."
A significance test is designed to test the evidence against the null hypothesis. This is because it is easier to prove that a claim is false than to prove that it is true; demonstrating that the claim is false in one case is sufficient, while proving that it is true requires that the claim be true in all cases.
The alternative hypothesis
The alternative hypothesis is the opposite of the null hypothesis in that it is a statement that there is some difference between the populations being studied. For example, "younger people can eat more apples than older people."
The alternative hypothesis is typically the hypothesis that researchers are trying to prove. A significance test is meant to determine whether there is sufficient evidence to reject the null hypothesis in favor of the alternative hypothesis. Note that the results of a significance test should either be to reject the null hypothesis in favor of the alternative hypothesis, or to not reject the null hypothesis. The result should not be to reject the alternative hypothesis or to accept the alternative hypothesis.
Test statistics and significance level
A test statistic is a statistic that is calculated as part of hypothesis testing that compares the distribution of observed data to the expected distribution, based on the null hypothesis. Examples of test statistics include the Z-score, T-statistic, F-statistic, and the Chi-square statistic. The test statistic used is dependent on the significance test used, which is dependent on the type of data collected and the type of relationship to be tested.
In many cases, the chosen significance level is 0.05, though 0.01 is also used. A significance level of 0.05 indicates that there is a 5% chance of rejecting the null hypothesis when the null hypothesis is actually true. Thus, a smaller selected significance level will require more evidence if the null hypothesis is to be rejected in favor of the alternative hypothesis.
After the test statistic is computed, the p-value can be determined based on the result of the test statistic. The p-value indicates the probability of obtaining test results that are at least as extreme as the observed results, under the assumption that the null hypothesis is correct. It tells us how likely it is to obtain a result based solely on chance. The smaller the p-value, the less likely a result can occur purely by chance, while a larger p-value makes it more likely. For example, a p-value of 0.01 means that there is a 1% chance that a result occurred solely by chance, given that the null hypothesis is true; a p-value of 0.90 means that there is a 90% chance.
A p-value is significantly affected by sample size. The larger the sample size, the smaller the p-value, even if the difference between populations may not be meaningful. On the other hand, if a sample size is too small, a meaningful difference may not be detected.
The last step in a significance test is to determine whether the p-value provides evidence that the null hypothesis should be rejected in favor of the alternative hypothesis. This is based on the selected significance level. If the p-value is less than or equal to the selected significance level, the null hypothesis is rejected in favor of the alternative hypothesis, and the result is deemed statistically significant. If the p-value is greater than the selected significance level, the null hypothesis is not rejected, and the result is deemed not statistically significant.
IMAGES
VIDEO
COMMENTS
The Riemann hypothesis is the most important open question in number theory—if not all of mathematics. It has occupied experts for more than 160 years.
Hypothesis. A statement that could be true, which might then be tested. Example: Sam has a hypothesis that "large dogs are better at catching tennis balls than small dogs". We can test that hypothesis by having hundreds of different sized dogs try to catch tennis balls. Sometimes the hypothesis won't be tested, it is simply a good explanation ...
January 10, 2014. 9 min read. Is the Universe Made of Math? [Excerpt] In this excerpt from his new book, Our Mathematical Universe, M.I.T. professor Max Tegmark explores the possibility that math ...
A hypothesis is a proposition that is consistent with known data, but has been neither verified nor shown to be false. In statistics, a hypothesis (sometimes called a statistical hypothesis) refers to a statement on which hypothesis testing will be based. Particularly important statistical hypotheses include the null hypothesis and alternative hypothesis. In symbolic logic, a hypothesis is the ...
Mathematical universe hypothesis. In physics and cosmology, the mathematical universe hypothesis (MUH), also known as the ultimate ensemble theory, is a speculative "theory of everything" (TOE) proposed by cosmologist Max Tegmark. [1][2] According to the hypothesis, the universe is a mathematical object in and of itself.
A hypothesis is a claim or statement that makes sense in the context of some information or data at hand but hasn't been established as true or false through experimentation or proof. In mathematics, any statement or equation that describes some relationship between certain variables can be termed as hypothesis if it is consistent with some ...
Using deductive reasoning in hypothesis testing. There is often confusion between the ideas surrounding proof, which is mathematics, and making and testing an experimental hypothesis, which is science. The difference is rather simple: Mathematics is based on deductive reasoning: a proof is a logical deduction from a set of clear inputs.
Hypothesis testing with e-values. This book is written to offer a humble, but unified, treatment of e-values in hypothesis testing. The book is organized into three parts: Fundamental Concepts, Core Ideas, and Advanced Topics. The first part includes three chapters that introduce the basic concepts. The second part includes five chapters of ...
Hypothesis is a hypothesis is fundamental concept in the world of research and statistics. It is a testable statement that explains what is happening or observed. It proposes the relation between the various participating variables. Hypothesis is also called Theory, Thesis, Guess, Assumption, or Suggestion. Hypothesis creates a structure that ...
Identify the hypothesis and the conclusion for each of the following conditional statements. (a) If n is a prime number, then n2 has three positive factors. (b) If a is an irrational number and b is an irrational number, then a ⋅ b is an irrational number. (c) If p is a prime number, then p = 2 or p is an odd number.
The Reimann hypothesis is a fundamental mathematical conjecture that has huge implications for the rest of math. It forms the foundation for many other mathematical ideas — but no one knows if ...
What is a Hypothesis? MATH 131 - Calculus II. Professor: Erika L.C. King Email:[email protected] Office: Lansing 304 Phone: (315)781-3355 . The majority of statements in mathematics can be written in the form: "If A, then B." For example: "If a function is differentiable, then it is continuous".
hypothesis. In mathematics, a hypothesis is an unproven statement which is supported by all the available data and by many weaker results. An unproven mathematical statement is usually called a " conjecture ", and while experimentation can sometimes produce millions of examples to support a conjecture, usually nothing short of a proof can ...
First published in Riemann's groundbreaking 1859 paper (Riemann 1859), the Riemann hypothesis is a deep mathematical conjecture which states that the nontrivial Riemann zeta function zeros, i.e., the values of s other than -2, -4, -6, ... such that zeta(s)=0 (where zeta(s) is the Riemann zeta function) all lie on the "critical line" sigma=R[s]=1/2 (where R[s] denotes the real part of s). A ...
A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.
A standardized test statistic for a hypothesis test is the statistic that is formed by subtracting from the statistic of interest its mean and dividing by its standard deviation. For example, reviewing Example 8.1.3 8.1. 3, if instead of working with the sample mean X¯¯¯¯ X ¯ we instead work with the test statistic.
Review. In a hypothesis test, sample data is evaluated in order to arrive at a decision about some type of claim.If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis, typically denoted with \(H_{0}\).The null is not rejected unless the hypothesis test shows otherwise.
A hypothesis test is a statistical inference method used to test the significance of a proposed (hypothesized) relation between population statistics (parameters) and their corresponding sample estimators. In other words, hypothesis tests are used to determine if there is enough evidence in a sample to prove a hypothesis true for the entire population. The test considers two hypotheses: the ...
Words have precise meanings in science. For example, "theory," "law," and "hypothesis" don't all mean the same thing. Outside of science, you might say something is "just a theory," meaning it's a supposition that may or may not be true. In science, however, a theory is an explanation that generally is accepted to be true.
Hypothesis testing is the use of statistics to determine the probability that a given hypothesis is true. The usual process of hypothesis testing consists of four steps. 1. Formulate the null hypothesis H_0 (commonly, that the observations are the result of pure chance) and the alternative hypothesis H_a (commonly, that the observations show a real effect combined with a component of chance ...
Hypothesis test. A significance test, also referred to as a statistical hypothesis test, is a method of statistical inference in which observed data is compared to a claim (referred to as a hypothesis) in order to assess the truth of the claim. For example, one might wonder whether age affects the number of apples a person can eat, and may use a significance test to determine whether there is ...