• Open access
  • Published: 11 September 2019

Inquiry and critical thinking skills for the next generation: from artificial intelligence back to human intelligence

  • Jonathan Michael Spector   ORCID: orcid.org/0000-0002-6270-3073 1 &
  • Shanshan Ma 1  

Smart Learning Environments volume  6 , Article number:  8 ( 2019 ) Cite this article

34k Accesses

64 Citations

32 Altmetric

Metrics details

Along with the increasing attention to artificial intelligence (AI), renewed emphasis or reflection on human intelligence (HI) is appearing in many places and at multiple levels. One of the foci is critical thinking. Critical thinking is one of four key 21st century skills – communication, collaboration, critical thinking and creativity. Though most people are aware of the value of critical thinking, it lacks emphasis in curricula. In this paper, we present a comprehensive definition of critical thinking that ranges from observation and inquiry to argumentation and reflection. Given a broad conception of critical thinking, a developmental approach beginning with children is suggested as a way to help develop critical thinking habits of mind. The conclusion of this analysis is that more emphasis should be placed on developing human intelligence, especially in young children and with the support of artificial intelligence. While much funding and support goes to the development of artificial intelligence, this should not happen at the expense of human intelligence. Overall, the purpose of this paper is to argue for more attention to the development of human intelligence with an emphasis on critical thinking.

Introduction

In recent decades, advancements in Artificial Intelligence (AI) have developed at an incredible rate. AI has penetrated into people’s daily life on a variety of levels such as smart homes, personalized healthcare, security systems, self-service stores, and online shopping. One notable AI achievement was when AlphaGo, a computer program, defeated the World Go Champion Mr. Lee Sedol in 2016. In the previous year, AlphaGo won in a competition against a professional Go player (Silver et al. 2016 ). As Go is one of the most challenging games, the wins of AI indicated a breakthrough. Public attention has been further drawn to AI since then, and AlphaGo continues to improve. In 2017, a new version of AlphaGo beat Ke Jie, the current world No.1 ranking Go player. Clearly AI can manage high levels of complexity.

Given many changes and multiple lines of development and implement, it is somewhat difficult to define AI to include all of the changes since the 1980s (Luckin et al. 2016 ). Many definitions incorporate two dimensions as a starting point: (a) human-like thinking, and (b) rational action (Russell and Norvig 2009 ). Basically, AI is a term used to label machines (computers) that imitate human cognitive functions such as learning and problem solving, or that manage to deal with complexity as well as human experts.

AlphaGo’s wins against human players were seen as a comparison between artificial and human intelligence. One concern is that AI has already surpassed HI; other concerns are that AI will replace humans in some settings or that AI will become uncontrollable (Epstein 2016 ; Fang et al. 2018 ). Scholars worry that AI technology in the future might trigger the singularity (Good 1966 ), a hypothesized future that the development of technology becomes uncontrollable and irreversible, resulting in unfathomable changes to human civilization (Vinge 1993 ).

The famous theoretical physicist Stephen Hawking warned that AI might end mankind, yet the technology he used to communicate involved a basic form of AI (Cellan-Jones 2014 ). This example highlights one of the basic dilemmas of AI – namely, what are the overall benefits of AI versus its potential drawbacks, and how to move forward given its rapid development? Obviously, basic or controllable AI technologies are not what people are afraid of. Spector et al. 1993 distinguished strong AI and weak AI. Strong AI involves an application that is intended to replace an activity performed previously by a competent human, while weak AI involves an application that aims to enable a less experienced human to perform at a much higher level. Other researchers categorize AI into three levels: (a) artificial narrow intelligence (Narrow AI), (b) artificial general intelligence (General AI), and (c) artificial super intelligence (Super AI) (Siau and Yang 2017 ; Zhang and Xie 2018 ). Narrow AI, sometimes called weak AI, refers to a computer that focus on a narrow task such as AlphaZero or a self-driving car. General AI, sometimes referred to as strong AI, is the simulation of human-level intelligence, which can perform more cognitive tasks as well as most humans do. Super AI is defined by Bostrom ( 1998 ) as “an intellect that is much smarter than the best human brains in practically every field, including scientific creativity, general wisdom and social skills” (p.1).

Although the consequence of singularity and its potential benefits or harm to the human race have been intensely debated, an undeniable fact is that AI is capable of undertaking recursive self-improvement. With the increasing improvement of this capability, more intelligent generations of AI will appear rapidly. On the other hand, HI has its own limits and its development requires continuous efforts and investment from generation to generation. Education is the main approach humans use to develop and improve HI. Given the extraordinary growth gap between AI and HI, eventually AI can surpass HI. However, that is no reason to neglect the development and improvement of HI. In addition, in contrast to the slow development rate of HI, the growth of funding support to AI has been rapidly increasing according to the following comparison of support for artificial and human intelligence.

The funding support for artificial and human intelligence

There are challenges in comparing artificial and human intelligence by identifying funding for both. Both terms are somewhat vague and can include a variety of aspects. Some analyses will include big data and data analytics within the sphere of artificial intelligence and others will treat them separately. Some will include early childhood developmental research within the sphere of support for HI and others treat them separately. Education is a major way of human beings to develop and improve HI. The investments in education reflect the efforts put on the development of HI, and they pale in comparison with investments in AI.

Sources also vary from governmental funding of research and development to business and industry investments in related research and development. Nonetheless, there are strong indications of increased funding support for AI in North America, Europe and Asia, especially in China. The growth in funding for AI around the world is explosive. According to ZDNet, AI funding more than doubled from 2016 to 2017 and more than tripled from 2016 to 2018. The growth in funding for AI in the last 10 years has been exponential. According to Venture Scanner, there are approximately 2500 companies that have raised $60 billion in funding from 3400 investors in 72 different countries (see https://www.slideshare.net/venturescanner/artificial-intelligence-q1-2019-report-highlights ). Areas included in the Venture Scanner analysis included virtual assistants, recommendation engines, video recognition, context-aware computing, speech recognition, natural language processing, machine learning, and more.

The above data on AI funding focuses primarily on companies making products. There is no direct counterpart in the area of HI where the emphasis is on learning and education. What can be seen, however, are trends within each area. The above data suggest exponential growth in support for AI. In contrast, according to the Urban Institute, per-student funding in the USA has been relatively flat for nearly two decades, with a few states showing modest increases and others showing none (see http://apps.urban.org/features/education-funding-trends/ ). Funding for education is complicated due to the various sources. In the USA, there are local, state and federal sources to consider. While that mixture of funding sources is complex, it is clear that federal and state spending for education in the USA experienced an increase after World War II. However, since the 1980s, federal spending for education has steadily declined, and state spending on education in most states has declined since 2010 according to a government report (see https://www.usgovernmentspending.com/education_spending ). This decline in funding reflects the decreasing emphasis on the development of HI, which is a dangerous signal.

Decreased support for education funding in the USA is not typical of what is happening in other countries, according to The Hechinger Report (see https://hechingerreport.org/rest-world-invests-education-u-s-spends-less/ ). For example, in the period of 2010 to 2014, American spending on elementary and high school education declined 3%, whereas in the same period, education spending in the 35 countries in the OECD rose by 5% with some countries experiencing very significant increases (e.g., 76% in Turkey).

Such data can be questioned in terms of how effectively funds are being spent or how poorly a country was doing prior to experiencing a significant increase. However, given the performance of American students on the Program for International Student Assessment (PISA), the relative lack of funding support in the USA is roughly related with the mediocre performance on PISA tests (see https://nces.ed.gov/surveys/pisa/pisa2015/index.asp ). Research by Darling-Hammond ( 2014 ) indicated that in order to improve learning and reduce the achievement gap, systematic government investments in high-need schools would be more effective if the focus was on capacity building, improving the knowledge and skills of educators and the quality of curriculum opportunities.

Though HI could not be simply defined by the performance on PISA test, improving HI requires systematic efforts and funding support in high-need areas as well. So, in the following section, we present a reflection on HI.

Reflection on human intelligence

Though there is a variety of definitions of HI, from the perspective of psychology, according to Sternberg ( 1999 ), intelligence is a form of developing expertise, from a novice or less experienced person to an expert or more experienced person, a student must be through multiple learning (implicit and explicit) and thinking (critical and creative) processes. In this paper, we adopted such a view and reflected on HI in the following section by discussing learning and critical thinking.

What is learning?

We begin with Gagné’s ( 1985 ) definition of learning as characterized by stable and persistent changes in what a person knows or can do. How do humans learn? Do you recall how to prove that the square root of 2 is not a rational number, something you might have learned years ago? The method is intriguing and is called an indirect proof or a reduction to absurdity – assume that the square root of 2 is a rational number and then apply truth preserving rules to arrive at a contradiction to show that the square root of 2 cannot be a rational number. We recommend this as an exercise for those readers who have never encountered that method of learning and proof. (see https://artofproblemsolving.com/wiki/index.php/Proof_by_contradiction ). Yet another interesting method of learning is called the process of elimination, sometimes accredited to Arthur Conan Doyle’s ( 1926 ) in The Adventure of the Blanched Soldier – Sherlock Holmes says to Dr. Watson that the process of elimination “starts upon the supposition that when you have eliminated all which is impossible, that whatever remains, however improbable, must be the truth ” (see https://www.dfw-sherlock.org/uploads/3/7/3/8/37380505/1926_november_the_adventure_of_the_blanched_soldier.pdf ).

The reason to mention Sherlock Holmes early in this paper is to emphasize the role that observation plays in learning. The character Sherlock Holmes was famous for his observation skills that led to his so-called method of deductive reasoning (a process of elimination), which is what logicians would classify as inductive reasoning as the conclusions of that reasoning process are primarily probabilistic rather than certain, unlike the proof of the irrationality of the square root of 2 mentioned previously.

In dealing with uncertainty, it seems necessary to make observations and gather evidence that can lead one to a likely conclusion. Is that not what reasonable people and accomplished detectives do? It is certainly what card counters do at gambling houses; they observe high and low value cards that have already been played in order to estimate the likelihood of the next card being a high or low value card. Observation is a critical process in dealing with uncertainty.

Moreover, humans typically encounter many uncertain situations in the course of life. Few people encounter situations which require resolution using a mathematical proof such as the one with which this article began. Jonassen ( 2000 , 2011 ) argued that problem solving is one of the most important and frequent activities in which people engage. Moreover, many of the more challenging problems are ill-structured in the sense that (a) there is incomplete information pertaining to the situation, or (b) the ideal resolution of the problem is unknown, or (c) how to transform a problematic situation into an acceptable situation is unclear. In short, people are confronted with uncertainty nearly every day and in many different ways. The so called key 21st century skills of communication, collaboration, critical thinking and creativity (the 4 Cs; see http://www.battelleforkids.org/networks/p21 ) are important because uncertainty is a natural and inescapable aspect of the human condition. The 4 Cs are interrelated and have been presented by Spector ( 2018 ) as interrelated capabilities involving logic and epistemology in the form of the new 3Rs – namely, re-examining, reasoning, and reflecting. Re-examining is directly linked to observation as a beginning point for inquiry. The method of elimination is one form of reasoning in which a person engages to solve challenging problems. Reflecting on how well one is doing in the life-long enterprise of solving challenging problems is a higher kind of meta-cognitive activity in which accomplished problem-solvers engage (Ericsson et al. 1993 ; Flavell 1979 ).

Based on these initial comments, a comprehensive definition of critical thinking is presented next in the form of a framework.

A framework of critical thinking

Though there is variety of definitions of critical thinking, a concise definition of critical thinking remains elusive. For delivering a direct understanding of critical thinking to readers such as parents and school teachers, in this paper, we present a comprehensive definition of critical thinking through a framework that includes many of the definitions offered by others. Critical thinking, as treated broadly herein, is a multi-dimensioned and multifaceted human capability. Critical thinking has been interpreted from three perspectives: education, psychology, and epistemology, all of which are represented in the framework that follows.

In a developmental approach to critical thinking, Spector ( 2019 ) argues that critical thinking involves a series of cumulative and related abilities, dispositions and other variables (e.g., motivation, criteria, context, knowledge). This approach proceeds from experience (e.g., observing something unusual) and then to various forms of inquiry, investigation, examination of evidence, exploration of alternatives, argumentation, testing conclusions, rethinking assumptions, and reflecting on the entire process.

Experience and engagement are ongoing throughout the process which proceeds from relatively simple experiences (e.g., direct and immediate observation) to more complex interactions (e.g., manipulation of an actual or virtual artifact and observing effects).

The developmental approach involves a variety of mental processes and non-cognitive states, which help a person’s decision making to become purposeful and goal directed. The associated critical thinking skills enable individuals to be likely to achieve a desired outcome in a challenging situation.

In the process of critical thinking, apart from experience, there are two additional cognitive capabilities essential to critical thinking – namely, metacognition and self-regulation . Many researchers (e.g., Schraw et al. 2006 ) believe that metacognition has two components: (a) awareness and understanding of one’s own thoughts, and (b) the ability to regulate one’s own cognitive processes. Some other researchers put more emphasis on the latter component. For example, Davies ( 2015 ) described metacognition as the capacity to monitor the quality of one’s thinking process, and then to make appropriate changes. However, the American Psychology Association (APA) defines metacognition as an awareness and understanding of one’s own thought with the ability to control related cognitive processes (see https://psycnet.apa.org/record/2008-15725-005 ).

Although the definition and elaboration of these two concepts deserve further exploration, they are often used interchangeably (Hofer and Sinatra 2010 ; Schunk 2008 ). Many psychologists see the two related capabilities of metacognition and self-regulation as being closely related - two sides on one coin, so to speak. Metacognition involves or emphasizes awareness, whereas self-regulation involves and emphasizes appropriate control. These two concepts taken together enable a person to create a self-regulatory mechanism, which monitors and regulates the corresponding skills (e.g., observation, inquiry, interpretation, explanation, reasoning, analysis, evaluation, synthesis, reflection, and judgement).

As to the critical thinking skills, it should be noted that there is much discussion about the generalizability and domain specificity of them, just as there is about problem-solving skills in general (Chi et al. 1982 ; Chiesi et al. 1979 ; Ennis 1989 ; Fischer 1980 ). The research supports the notion that to achieve high levels of expertise and performance, one must develop high levels of domain knowledge. As a consequence, becoming a highly effective critical thinker in a particular domain of inquiry requires significant domain knowledge. One may achieve such levels in a domain in which one has significant domain knowledge and experience but not in a different domain in which one has little domain knowledge and experience. The processes involved in developing high levels of critical thinking are somewhat generic. Therefore, it is possible to develop critical thinking in nearly any domain when the two additional capabilities of metacognition and self-regulation are coupled with motivation and engagement and supportive emotional states (Ericsson et al. 1993 ).

Consequently, the framework presented here (see Fig. 1 ) is built around three main perspectives about critical thinking (i.e., educational, psychological and epistemological) and relevant learning theories. This framework provides a visual presentation of critical thinking with four dimensions: abilities (educational perspective), dispositions (psychological perspective), levels (epistemological perspective) and time. Time is added to emphasize the dynamic nature of critical thinking in terms of a specific context and a developmental approach.

figure 1

Critical thinking often begins with simple experiences such as observing a difference, encountering a puzzling question or problem, questioning someone’s statement, and then leads, in some instances to an inquiry, and then to more complex experiences such as interactions and application of higher order thinking skills (e.g., logical reasoning, questioning assumptions, considering and evaluating alternative explanations).

If the individual is not interested in what was observed, an inquiry typically does not begin. Inquiry and critical thinking require motivation along with an inquisitive disposition. The process of critical thinking requires the support of corresponding internal indispositions such as open-mindedness and truth-seeking. Consequently, a disposition to initiate an inquiry (e.g., curiosity) along with an internal inquisitive disposition (e.g., that links a mental habit to something motivating to the individual) are both required (Hitchcock 2018 ). Initiating dispositions are those that contribute to the start of inquiry and critical thinking. Internal dispositions are those that initiate and support corresponding critical thinking skills during the process. Therefore, critical thinking dispositions consist of initiating dispositions and internal dispositions. Besides these factors, critical thinking also involves motivation. Motivation and dispositions are not mutually exclusive, for example, curiosity is a disposition and also a motivation.

Critical thinking abilities and dispositions are two main components of critical thinking, which involve such interrelated cognitive constructs as interpretation, explanation, reasoning, evaluation, synthesis, reflection, judgement, metacognition and self-regulation (Dwyer et al. 2014 ; Davies 2015 ; Ennis 2018 ; Facione 1990 ; Hitchcock 2018 ; Paul and Elder 2006 ). There are also some other abilities such as communication, collaboration and creativity, which are now essential in current society (see https://en.wikipedia.org/wiki/21st_century_skills ). Those abilities along with critical thinking are called the 4Cs; they are individually monitored and regulated through metacognitive and self-regulation processes.

The abilities involved in critical thinking are categorized in Bloom’s taxonomy into higher order skills (e.g., analyzing and synthesizing) and lower level skills (e.g., remembering and applying) (Anderson and Krathwohl 2001 ; Bloom et al. 1956 ).

The thinking process can be depicted as a spiral through both lower and higher order thinking skills. It encompasses several reasoning loops. Some of them might be iterative until a desired outcome is achieved. Each loop might be a mix of higher order thinking skills and lower level thinking skills. Each loop is subject to the self-regulatory mechanism of metacognition and self-regulation.

But, due to the complexity of human thinking, a specific spiral with reasoning loops is difficult to represent. Therefore, instead of a visualized spiral with an indefinite number of reasoning loops, the developmental stages of critical thinking are presented in the diagram (Fig. 1 ).

Besides, most of the definitions of critical thinking are based on the imagination about ideal critical thinkers such as the consensus generated from the Delphi report (Facione 1990 ). However, according to Dreyfus and Dreyfus ( 1980 ), in the course of developing an expertise, students would pass through five stages. Those five stages are “absolute beginner”, “advanced beginner”, “competent performer”, “proficient performer,” and “intuitive expert performer”. Dreyfus and Dreyfus ( 1980 ) described the five stages the result of the successive transformations of four mental functions: recollection, recognition, decision making, and awareness.

In the course of developing critical thinking and expertise, individuals will pass through similar stages which are accompanied with the increasing practices and accumulation of experience. Through the intervention and experience of developing critical thinking, as a novice, tasks are decomposed into context-free features which could be recognized by students without the experience of particular situations. For further improving, students need to be able to monitor their awareness, and with a considerable experience. They can note recurrent meaningful component patterns in some contexts. Gradually, increased practices expose students to a variety of whole situations which enable the students to recognize tasks in a more holistic manner as a professional. On the other hand, with the increasing accumulation of experience, individuals are less likely to depend simply on abstract principles. The decision will turn to something intuitive and highly situational as well as analytical. Students might unconsciously apply rules, principles or abilities. A high level of awareness is absorbed. At this stage, critical thinking is turned into habits of mind and in some cases expertise. The description above presents a process of critical thinking development evolving from a novice to an expert, eventually developing critical thinking into habits of mind.

We mention the five-stage model proposed by Dreyfus and Dreyfus ( 1980 ) to categorize levels of critical thinking and emphasize the developmental nature involved in becoming a critical thinker. Correspondingly, critical thinking is categorized into 5 levels: absolute beginner (novice), advanced beginner (beginner), competent performer (competent), proficient performer (proficient), and intuitive expert (expert).

Ability level and critical thinker (critical thinking) level together represent one of the four dimensions represented in Fig. 1 .

In addition, it is noteworthy that the other two elements of critical thinking are the context and knowledge in which the inquiry is based. Contextual and domain knowledge must be taken into account with regard to critical thinking, as previously argued. Besides, as Hitchcock ( 2018 ) argued, effective critical thinking requires knowledge about and experience applying critical thinking concepts and principles as well.

Critical thinking is considered valuable across disciplines. But except few courses such as philosophy, critical thinking is reported lacking in most school education. Most of researchers and educators thus proclaim that integrating critical thinking across the curriculum (Hatcher 2013 ). For example, Ennis ( 2018 ) provided a vision about incorporating critical thinking across the curriculum in higher education. Though people are aware of the value of critical thinking, few of them practice it. Between 2012 and 2015, in Australia, the demand of critical thinking as one of the enterprise skills for early-career job increased 125% (Statista Research Department, 2016). According to a survey across 1000 adults by The Reboot Foundation 2018 , more than 80% of respondents believed that critical thinking skills are lacking in today’s youth. Respondents were deeply concerned that schools do not teach critical thinking. Besides, the investigation also found that respondents were split over when and how to teach critical thinking, clearly.

In the previous analysis of critical thinking, we presented the mechanism of critical thinking instead of a concise definition. This is because, given the various perspectives of interpreting critical thinking, it is not easy to come out with an unitary definition, but it is essential for the public to understand how critical thinking works, the elements it involves and the relationships between them, so they can achieve an explicit understanding.

In the framework, critical thinking starts from simple experience such as observing a difference, then entering the stage of inquiry, inquiry does not necessarily turn the thinking process into critical thinking unless the student enters a higher level of thinking process or reasoning loops such as re-examining, reasoning, reflection (3Rs). Being an ideal critical thinker (or an expert) requires efforts and time.

According to the framework, simple abilities such as observational skills and inquiry are indispensable to lead to critical thinking, which suggests that paying attention to those simple skills at an early stage of children can be an entry point to critical thinking. Considering the child development theory by Piaget ( 1964 ), a developmental approach spanning multiple years can be employed to help children develop critical thinking at each corresponding development stage until critical thinking becomes habits of mind.

Although we emphasized critical thinking in this paper, for the improvement of intelligence, creative thinking and critical thinking are separable, they are both essential abilities that develop expertise, eventually drive the improvement of HI at human race level.

As previously argued, there is a similar pattern among students who think critically in different domains, but students from different domains might perform differently in creativity because of different thinking styles (Haller and Courvoisier 2010 ). Plus, students have different learning styles and preferences. Personalized learning has been the most appropriate approach to address those differences. Though the way of realizing personalized learning varies along with the development of technologies. Generally, personalized learning aims at customizing learning to accommodate diverse students based on their strengths, needs, interests, preferences, and abilities.

Meanwhile, the advancement of technology including AI is revolutionizing education; students’ learning environments are shifting from technology-enhanced learning environments to smart learning environments. Although lots of potentials are unrealized yet (Spector 2016 ), the so-called smart learning environments rely more on the support of AI technology such as neural networks, learning analytics and natural language processing. Personalized learning is better supported and realized in a smart learning environment. In short, in the current era, personalized learning is to use AI to help learners perform at a higher level making adjustments based on differences of learners. This is the notion with which we conclude – the future lies in using AI to improve HI and accommodating individual differences.

The application of AI in education has been a subject for decades. There are efforts heading to such a direction though personalized learning is not technically involved in them. For example, using AI technology to stimulate critical thinking (Zhu 2015 ), applying a virtual environment for building and assessing higher order inquiry skills (Ketelhut et al. 2010 ). Developing computational thinking through robotics (Angeli and Valanides 2019 ) is another such promising application of AI to support the development of HI.

However, almost all of those efforts are limited to laboratory experiments. For accelerating the development rate of HI, we argue that more emphasis should be given to the development of HI at scale with the support of AI, especially in young children focusing on critical and creative thinking.

In this paper, we argue that more emphasis should be given to HI development. Rather than decreasing the funding of AI, the analysis of progress in artificial and human intelligence indicates that it would be reasonable to see increased emphasis placed on using various AI techniques and technologies to improve HI on a large and sustainable scale. Well, most researchers might agree that AI techniques or the situation might be not mature enough to support such a large-scale development. But it would be dangerous if HI development is overlooked. Based on research and theory drawn from psychology as well as from epistemology, the framework is intended to provide a practical guide to the progressive development of inquiry and critical thinking skills in young children as children represent the future of our fragile planet. And we suggested a sustainable development approach for developing inquiry and critical thinking (See, Spector 2019 ). Such an approach could be realized through AI and infused into HI development. Besides, a project is underway in collaboration with NetDragon to develop gamified applications to develop the relevant skills and habits of mind. A game-based assessment methodology is being developed and tested at East China Normal University that is appropriate for middle school children. The intention of the effort is to refocus some of the attention on the development of HI in young children.

Availability of data and materials

Not applicable.

Abbreviations

Artificial Intelligence

Human Intelligence

L.W. Anderson, D.R. Krathwohl, A taxonomy for learning, teaching, and assessing: A revision of bloom’s taxonomy of educational objectives (Allyn & Bacon, Boston, 2001)

Google Scholar  

Angeli, C., & Valanides, N. (2019). Developing young children’s computational thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Comput. Hum. Behav. Retrieved from https://doi.org/10.1016/j.chb.2019.03.018

B.S. Bloom, M.D. Engelhart, E.J. Furst, W.H. Hill, D.R. Krathwohl, Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive Domain (David McKay Company, New York, 1956)

Bostrom, N. (1998). How long before superintelligence? Retrieved from https://nickbostrom.com/superintelligence.html

R. Cellan-Jones, Stephen hawking warns artificial intelligence could end mankind. BBC. News. 2 , 2014 (2014)

M.T.H. Chi, R. Glaser, E. Rees, in Advances in the Psychology of Human Intelligence , ed. by R. S. Sternberg. Expertise in problem solving (Erlbaum, Hillsdale, 1982), pp. 7–77

H.L. Chiesi, G.J. Spliich, J.F. Voss, Acquisition of domain-related information in relation to high and low domain knowledge. J. Verbal Learn. Verbal Behav. 18 , 257–273 (1979)

Article   Google Scholar  

L. Darling-Hammond, What can PISA tell US about US education policy? N. Engl. J. Publ. Policy. 26 (1), 4 (2014)

M. Davies, in Higher education: Handbook of theory and research . A Model of Critical Thinking in Higher Education (Springer, Cham, 2015), pp. 41–92

Chapter   Google Scholar  

A.C. Doyle, in The Strand Magazine . The adventure of the blanched soldier (1926) Retrieved from https://www.dfw-sherlock.org/uploads/3/7/3/8/37380505/1926_november_the_adventure_of_the_blanched_soldier.pdf

S.E. Dreyfus, H.L. Dreyfus, A five-stage model of the mental activities involved in directed skill acquisition (no. ORC-80-2) (University of California-Berkeley Operations Research Center, Berkeley, 1980)

Book   Google Scholar  

C.P. Dwyer, M.J. Hogan, I. Stewart, An integrated critical thinking framework for the 21st century. Think. Skills Creat. 12 , 43–52 (2014)

R.H. Ennis, Critical thinking and subject specificity: Clarification and needed research. Educ. Res. 18 , 4–10 (1989)

R.H. Ennis, Critical thinking across the curriculum: A vision. Topoi. 37 (1), 165–184 (2018)

Epstein, Z. (2016). Has artificial intelligence already surpassed the human brain? Retrieved from https://bgr.com/2016/03/10/alphago-beats-lee-sedol-again/

K.A. Ericsson, R.T. Krampe, C. Tesch-Römer, The role of deliberate practice in the acquisition of expert performance. Psychol. Rev. 100 (3), 363–406 (1993)

Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction [Report for the American Psychology Association]. Retrieved from https://files.eric.ed.gov/fulltext/ED315423.pdf

J. Fang, H. Su, Y. Xiao, Will Artificial Intelligence Surpass Human Intelligence? (2018). https://doi.org/10.2139/ssrn.3173876

K.W. Fischer, A theory of cognitive development: The control and construction of hierarchies of skills. Psychol. Rev. 87 , 477–431 (1980)

J.H. Flavell, Metacognition and cognitive monitoring: A new area of cognitive development inquiry. Am. Psychol. 34 (10), 906–911 (1979)

R.M. Gagné, The conditions of learning and theory of instruction , 4th edn. (Holt, Rinehart, & Winston, New York, 1985)

I.J. Good, Speculations concerning the first ultraintelligent machine. Adv Comput. 6 , 31-88 (1966)

C.S. Haller, D.S. Courvoisier, Personality and thinking style in different creative domains. Psychol. Aesthet. Creat. Arts. 4 (3), 149 (2010)

D.L. Hatcher, Is critical thinking across the curriculum a plausible goal? OSSA. 69 (2013) Retrieved from https://scholar.uwindsor.ca/ossaarchive/OSSA10/papersandcommentaries/69

Hitchcock, D. (2018). Critical thinking. Retrieved from https://plato.stanford.edu/entries/critical-thinking/

B.K. Hofer, G.M. Sinatra, Epistemology, metacognition, and self-regulation: Musings on an emerging field. Metacogn. Learn. 5 (1), 113–120 (2010)

D.H. Jonassen, Toward a design theory of problem solving. Educ. Technol. Res. Dev. 48 (4), 63–85 (2000)

D.H. Jonassen, Learning to Solve Problems: A Handbook for Designing Problem-Solving Learning Environments (Routledge, New York, 2011)

D.J. Ketelhut, B.C. Nelson, J. Clarke, C. Dede, A multi-user virtual environment for building and assessing higher order inquiry skills in science. Br. J. Educ. Technol. 41 (1), 56–68 (2010)

R. Luckin, W. Holmes, M. Griffiths, L.B. Forcier, Intelligence Unleashed: An Argument for AI in Education (Pearson Education, London, 2016) Retrieved from http://oro.open.ac.uk/50104/1/Luckin%20et%20al.%20-%202016%20-%20Intelligence%20Unleashed.%20An%20argument%20for%20AI%20in%20Educ.pdf

R. Paul, L. Elder, The miniature guide to critical thinking: Concepts and tools , 4th edn. (2006) Retrieved from https://www.criticalthinking.org/files/Concepts_Tools.pdf

J. Piaget, Part I: Cognitive development in children: Piaget development and learning. J. Res. Sci. Teach. 2 (3), 176–186 (1964)

S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach , 3rd edn. (Prentice Hall, Upper Saddle River, 2009) ISBN 978-0-136042594

G. Schraw, K.J. Crippen, K. Hartley, Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Res. Sci. Educ. 36 (1–2), 111–139 (2006)

D.H. Schunk, Metacognition, self-regulation, and self-regulated learning: Research recommendations. Educ. Psychol. Rev. 20 (4), 463–467 (2008)

K. Siau, Y. Yang, in Twelve Annual Midwest Association for Information Systems Conference (MWAIS 2017) . Impact of artificial intelligence, robotics, and machine learning on sales and marketing (2017), pp. 18–19

D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, et al., Mastering the game of Go with deep neural networks and tree search. Nature. 529 (7587), 484 (2016)

J. M. Spector, M. C. Polson, D. J. Muraida (eds.), Automating Instructional Design: Concepts and Issues (Educational Technology Publications, Englewood Cliffs, 1993)

J.M. Spector, Smart Learning Environments: Concepts and Issues . In G. Chamblee & L. Langub (Eds.), Proceedings of Society for Information Technology & Teacher Education International Conference (pp. 2728–2737). (Association for the Advancement of Computing in Education (AACE), Savannah, GA, United States, 2016). Retrieved June 4, 2019 from https://www.learntechlib.org/primary/p/172078/ .

J. M. Spector, Thinking and learning in the anthropocene: The new 3 Rs . Discussion paper presented at the International Big History Association Conference, Philadelphia, PA (2018). Retrieved from http://learndev.org/dl/HLAIBHA2018/Spector%2C%20J.%20M.%20(2018).%20Thinking%20and%20Learning%20in%20the%20Anthropocene.pdf .

J. M. Spector, Complexity, Inquiry Critical Thinking, and Technology: A Holistic and Developmental Approach . In Mind, Brain and Technology (pp. 17–25). (Springer, Cham, 2019).

R.J. Sternberg, Intelligence as developing expertise. Contemp. Educ. Psychol. 24 (4), 359–375 (1999)

The Reboot Foundation. (2018). The State of Critical Thinking: A New Look at Reasoning at Home, School, and Work. Retrieved from https://reboot-foundation.org/wp-content/uploads/_docs/REBOOT_FOUNDATION_WHITE_PAPER.pdf

V. Vinge, The Coming Technological Singularity: How to Survive in the Post-Human Era . Resource document. NASA Technical report server. Retrieved from https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940022856.pdf . Accessed 20 June 2019.

D. Zhang, M. Xie, Artificial Intelligence’s Digestion and Reconstruction for Humanistic Feelings . In 2018 International Seminar on Education Research and Social Science (ISERSS 2018) (Atlantis Press, Paris, 2018)

X. Zhu, in Twenty-Ninth AAAI Conference on Artificial Intelligence . Machine Teaching: An Inverse Problem to Machine Learning and an Approach toward Optimal Education (2015)

Download references

Acknowledgements

We wish to acknowledge the generous support of NetDragon and the Digital Research Centre at the University of North Texas.

Initial work is being funded through the NetDragon Digital Research Centre at the University of North Texas with Author as the Principal Investigator.

Author information

Authors and affiliations.

Department of Learning Technologies, University of North Texas Denton, Texas, TX, 76207, USA

Jonathan Michael Spector & Shanshan Ma

You can also search for this author in PubMed   Google Scholar

Contributions

The authors contributed equally to the effort. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Jonathan Michael Spector .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Spector, J.M., Ma, S. Inquiry and critical thinking skills for the next generation: from artificial intelligence back to human intelligence. Smart Learn. Environ. 6 , 8 (2019). https://doi.org/10.1186/s40561-019-0088-z

Download citation

Received : 06 June 2019

Accepted : 27 August 2019

Published : 11 September 2019

DOI : https://doi.org/10.1186/s40561-019-0088-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Artificial intelligence
  • Critical thinking
  • Developmental model
  • Human intelligence
  • Inquiry learning

critical thinking as a tool for inquiry

The Art of Questioning: Techniques to Promote Critical Thinking and Inquiry

We can all agree that critical thinking is an essential skill for students to develop.

This article will provide educators with a comprehensive guide on the art of questioning - powerful techniques to promote critical thinking, inquiry, and deep learning in the classroom.

You'll discover the core principles of effective questioning, actionable strategies to engage different types of learners, as well as sample activities and assessments to put these methods into practice. Equipped with these practical tools, you can transform class discussions that foster students' natural curiosity and grow their capacity for critical thought.

Embracing the Importance of Art of Questioning

The art of questioning is a critical skill for educators to develop. Questioning techniques that promote critical thinking and inquiry-based learning lead to increased student engagement and deeper understanding. By mastering various strategic questioning approaches, teachers can stimulate complex thinking in their students.

Defining the Art of Questioning

The art of questioning refers to the teacher's ability to craft and ask meaningful questions that push students to think more critically. It goes beyond surface-level, fact-based questioning and instead focuses on stimulating analysis, evaluation, creation, connection-making, and reflection. Well-designed questions require students to tap into higher-order cognitive skills and prior knowledge to construct responses. This process mirrors real-world critical thinking and problem-solving.

Benefits of Mastering Questioning Techniques

Teachers skilled in questioning techniques reap many rewards, including:

  • Increased student participation and engagement during lessons
  • Development of students' critical thinking capacities
  • Ability to check students' understanding and identify knowledge gaps
  • Scaffolding learning to meet students at their zone of proximal development
  • Encouragement of inquiry, sparking student curiosity and motivation to learn

By honing their questioning approach, teachers gain an invaluable tool for promoting deep learning.

The Role of Questioning in Early Childhood Education

Questioning plays a pivotal role in early childhood education by fostering mental activity and communities of practice. Crafting developmentally-appropriate questions allows teachers to gauge children's baseline understanding and then scaffold new concepts. This questioning facilitates theory of mind growth, as children learn to articulate their thought processes. An inquiry-based classroom also encourages participation, inclusive learning, and problem-solving. Ultimately, strategic questioning lays the foundation for critical thinking that will benefit students throughout their education.

What is the art of questioning critical thinking?

The art of questioning refers to the skill of asking thoughtful, open-ended questions that promote critical thinking , inquiry, and deeper learning. As an educator, mastering this art is key to creating an engaging classroom environment where students actively participate.

Here are some best practices around the art of questioning:

Use Open-Ended Questions

Open-ended questions allow students to explain their thought process and help teachers identify gaps in understanding. For example, asking "Why do you think the character made that decision?" lets students share their unique perspectives. Closed-ended questions that just require yes/no answers should be used sparingly.

Ask Follow-Up Questions

Asking follow-up questions based on students' responses shows you are listening and encourages them to expand upon their ideas. Phrases like "Tell me more about..." or "What makes you think that?" stimulate further discussion.

Pause After Posing Questions

Providing wait time of 3-5 seconds after asking a question gives students time to reflect and articulate a thoughtful response, rather than feeling put on the spot.

Scaffold Complex Questions

Break down multi-layered questions into smaller parts to make them more manageable. You can also give students a framework to help organize their thoughts before answering.

Encourage Multiple Perspectives

Prompt students to consider other vantage points by asking, "How might this look from X's perspective?" This builds empathy, critical analysis skills, and more inclusive thinking.

Mastering the art questioning leads to richer class discussions and unlocks students' intellectual curiosity. With practice, you'll be able to stimulate vibrant student-centered dialogue.

What questioning techniques promote critical thinking?

Asking effective questions is a skill that takes practice to develop. Here are some techniques to promote critical thinking through questioning:

Ask questions that require more than a one-word response. This encourages students to explain their reasoning and make connections. For example:

  • Why do you think that?
  • What evidence supports your conclusion?
  • How does this relate to what we learned before?

Dig deeper into student responses by asking them to expand upon their ideas. This helps clarify understanding and uncover misconceptions. Some follow up questions include:

  • Can you explain what you mean by that?
  • What makes you think that?
  • How does that apply to this situation?

Pause After Questions

Provide wait time of 3-5 seconds after posing a question. This gives students time to think and construct an answer, promoting deeper reflection. Resist the urge to rephrase the question or provide the answer yourself.

Scaffold Questions

Break down complex questions into smaller parts to guide student thinking while still encouraging them to do the intellectual work.

Asking thoughtful, open-ended questions takes practice but is essential for developing critical thinking skills . Start by planning 2-3 higher-order questions for each lesson and focus on truly listening to student responses. Over time, a questioning approach focused on explanation, evidence, and exploration will become second nature.

What is the art of questioning method?

The art of questioning is a teaching technique that focuses on asking strategic questions to promote critical thinking, inquiry, and meaningful learning experiences for students. It is an essential skill for educators to master in order to elicit student understanding and uncover gaps in knowledge.

Some key things to know about the art of questioning:

It checks for understanding and gets insight into students' thought processes. By asking probing questions, teachers can determine if students have truly grasped key concepts.

It activates higher-order thinking skills. Well-designed questions require students to analyze, evaluate, and create, moving beyond basic recall.

It sparks student curiosity and engagement. Thought-provoking questions pique interest in lesson topics.

It facilitates rich class discussions. Using quality questioning techniques lays the foundation for impactful dialogue.

It informs teaching strategies and adaptations. Based on student responses, teachers can clarify misconceptions or adjust the pace/complexity of lessons.

Mastering the art of questioning takes practice but is worth the effort. It transforms passive learning into an active, student-centered experience that sticks. Equipped with this vital skill, teachers can maximize critical thinking and inquiry-based learning in their classrooms.

What are the 4 main questioning techniques?

Teachers can utilize four key questioning techniques to promote critical thinking and inquiry in the classroom:

Closed Questions

Closed questions typically require short or one-word answers. They are useful for:

  • Checking for understanding
  • Getting students to state facts
  • Reviewing material

For example, "What year did World War 2 begin?"

Open Questions

Open questions require more elaborate responses. They are effective for:

  • Encouraging discussion
  • Extracting deeper thinking
  • Allowing students to explain concepts

For instance, "How did the Great Depression impact American society?"

Funnel Questions

Funnel questions start broad and become increasingly specific. This technique:

  • Prompts recall of contextual details
  • Guides students step-by-step
  • Focuses thinking

An example is, "What do you know about World War 2? What were the key events leading up to it? What specific decisions by world leaders contributed to its outbreak?"

Probing Questions

Probing questions request clarification or more information. They help to:

  • Draw out additional details
  • Test the strength of an argument
  • Determine accuracy and depth of understanding

For example, "You mentioned the Great Depression caused widespread poverty. Can you expand on the ways it impacted day-to-day life?"

Using a mix of these four questioning techniques can elicit thoughtful participation and allow teachers to effectively gauge comprehension.

sbb-itb-bb2be89

Exploring types of art of questioning.

Art of questioning refers to the teacher's ability to ask thoughtful, open-ended questions that promote critical thinking, inquiry, and engagement among students. Here we explore some key categories of questions that go beyond basic fact recall to stimulate deeper learning.

Open-Ended Questions to Foster Inquiry

Open-ended questions have no single right answer, allowing students to respond creatively within their current knowledge and experiences. Some examples:

  • What do you think would happen if...?
  • How might we go about solving this problem?
  • What are some possible explanations for...?

Guidelines for open-ended questions:

  • Ask about hypothetical situations or predictions
  • Inquire about students' thought processes or reasoning
  • Seek multiple diverse responses to broad issues

Probing Questions to Assess Prior Knowledge

Probing questions aim to uncover and expand upon students' existing knowledge. For instance:

  • What do you already know about this topic?
  • Can you explain your solution further?

Tips for probing questions:

  • Ask students to elaborate or clarify their responses
  • Dig deeper into the reasons behind their ideas
  • Gauge their current level of understanding on a topic

Hypothetical & Speculative Questions for Mental Activity

Hypothetical and speculative questions require students to mentally engage with imaginative or puzzling scenarios. Examples:

  • What do you imagine this character is thinking/feeling?
  • If you could travel anywhere, where would you go?
  • What might the world look like 100 years from now?

Strategies using speculative questions:

  • Present imaginary situations
  • Ask about unlikely or fantastical events
  • Inquire about hopes, wonders, or puzzles

Synthesis & Evaluation Questions to Enhance Critical Thinking

Higher-order questions push students to analyze, evaluate, and synthesize information. For example:

  • How would you compare and contrast these two stories?
  • What evidence supports or contradicts this conclusion?
  • What changes would you suggest to improve this process?

Techniques for using synthesis questions:

  • Ask students to make connections between ideas
  • Require them to assess credibility and logical consistency
  • Prompt them to create novel solutions based on analysis

Thoughtful questioning is invaluable for engaging students, inspiring deeper thinking, assessing understanding, and taking learning to the next level. Match question types to desired educational outcomes.

Effective Timing and Application of Questioning Techniques

Utilizing zones of proximal development at the beginning of lesson.

At the start of a lesson, it's important to assess students' prior knowledge and understanding within their zones of proximal development. Open-ended questions that require some thought and analysis work well here, such as "What do you already know about this topic?" or "How might this connect to what we learned previously?". Allowing some think time and using gentle probing follow-ups can uncover gaps and misconceptions to address.

During Instruction: Encouraging Active Participation

While teaching new material, questions should regularly check comprehension and spur examination of ideas. "Why" and "how" questions prompt students to articulate concepts in their own words, while think-pair-share structures promote participation. Allow just enough wait time for students to gather thoughts before cold-calling. Ask students to summarize key points or apply them in novel contexts. Maintain an encouraging tone and affirm effort.

End-of-Lesson Evaluations and Inquiry

Conclude by synthesizing main points and addressing lingering questions. Open-ended questions like "What are you still wondering about?" give quieter students a chance to share. Exit tickets, short reflective writing assignments, also stimulate additional inquiry. Follow-up questions based on student responses facilitate rich discussion. Affirm participation and remind students that lingering questions present opportunities for future investigation.

Art of Questioning Activities and Games

Think-pair-share and other participatory activities.

The think-pair-share approach provides an excellent framework for questioning techniques. Students are first asked to independently think about a question or problem. They then discuss their ideas in pairs, encouraging participation from every student before ideas are shared with the whole class. Variations like think-write-pair-share add a writing component for reflection. These participatory structures promote critical thinking and inquiry through peer discussion.

Question Cycles for Continuous Learning Experience

Using a series of interrelated questions on a topic creates continuity in the learning experience. Starting with simpler questions then building up to more complex, higher-order questions logically develops student understanding. Question cycles enable connecting new information to prior knowledge, unpacking ideas, applying concepts, making evaluations, and synthesizing learning. This technique ensures questioning sequentially builds up rather than occurring in isolation.

Socratic Questioning to Challenge Theory of Mind

The Socratic method uses questioning to draw out ideas and uncover assumptions. Teachers can play "devil's advocate" to challenge students' thought processes. This develops theory of mind as students learn to see other perspectives. Socratic questioning teaches the value of intellectual humility and deep thinking. Example questions include "What do you mean when you say...?", "What evidence supports that?", "How does this tie into our earlier discussion?"

Interactive Questioning Games to Engage Students

Games put questioning techniques into action while engaging students. Examples include Quiz-Quiz-Trade with student-created questions, Question Rally with teams answering on whiteboards, Question Cards with written responses, and Question Dice promoting discussion. These games leverage friendly competition and peer involvement to motivate learning through questioning. The interactive format promotes enjoyment, attention, and participation.

Assessing the Objectives and Impact of Questioning Techniques

Developing questioning rubrics aligned with objectives.

Rubrics can be a useful tool for assessing questioning techniques and alignment with learning objectives. When developing a rubric, key aspects to consider include:

  • Types of questions asked - Factual, convergent, divergent, evaluative, etc.
  • Cognitive level of questions - Remember, understand, apply, analyze, evaluate, create
  • Scaffolding and sequencing of questions
  • Linkage to lesson objectives and goals
  • Student engagement and participation

The rubric can include rating scales or descriptors across these dimensions to evaluate the art of questioning. Teachers can use the rubric for self-assessment or be observed and evaluated by others.

Gathering Insights Through Student Feedback Surveys

Conducting periodic student surveys can provide valuable perceptions into questioning approaches. Useful survey questions may cover:

  • Comfort and willingness to respond to questions
  • Perceived relevance of questions to learning goals
  • Role of questions in promoting thinking and understanding
  • Suggestions for improvement

Analyzing survey results over time can indicate whether shifts in questioning techniques have positively influenced the learning experience.

Measuring Growth in Critical Thinking with Assessments

Assessments focused on critical thinking skills can gauge the impact of improved questioning. These may include:

  • Essay prompts and open-ended questions
  • Scenarios to analyze that require evaluation, synthesis and creative solutions
  • Individual or group projects necessitating inquiry and investigation
  • Presentations demonstrating deep understanding

Comparing baseline to post-intervention assessments can quantify if questioning strategies have successfully developed critical thinking capacities.

Participatory Action Research for Professional Development

Teachers can engage in participatory action research by:

  • Recording lessons and categorizing types/cognitive levels of questions asked
  • Soliciting peer or mentor feedback on questioning approaches
  • Setting goals for improvement and tracking progress
  • Iteratively refining techniques based on evidence and collaboration

This process facilitates continuous growth and allows networking with a community of practice.

Building a Community of Practice Through Questioning

Fostering collaborative environments where educators can share best practices in questioning techniques is key to building a strong community of practice focused on the art of questioning. By creating opportunities for continuous learning and adaptation, educators can work together to advance their skills.

Fostering Collaborative Environments

  • Establish routines for educators to observe each other's classrooms and provide feedback on questioning strategies
  • Organize professional learning groups for educators to collaborate on developing effective questions
  • Create shared online spaces for educators to exchange ideas on the art of questioning
  • Promote a growth mindset culture that values inquiry and critical feedback

Sharing Best Practices in Questioning

  • Host workshops for educators to demonstrate questioning techniques and activities
  • Publish videos/documents highlighting examples of impactful questioning strategies in action
  • Maintain forums for educators to post questions and get input from colleagues
  • Enable educators to share lesson plans centered around critical thinking questions
  • Encourage educators to exchange ideas on adapting questioning for different subjects

Continuous Learning and Adaptation

  • Survey educators regularly on evolving needs related to questioning techniques
  • Provide ongoing professional development on emerging best practices in questioning
  • Establish mentoring programs for new educators to get support in questioning skills
  • Promote reflection techniques for educators to assess their questioning methods
  • Foster a culture of critical inquiry where questioning practices continuously improve

By taking a collaborative, growth-focused approach to the art of questioning, educators can work together in communities of practice to advance their skills and create vibrant cultures of learning in their classrooms.

Conclusion: Synthesizing the Art of Questioning for Educational Excellence

The art of questioning is a critical skill that all educators should develop. By mastering various techniques that promote critical thinking and inquiry, teachers can stimulate rich discussion, facilitate deeper learning, and empower students to analyze information.

Here are some key takeaways:

Asking open-ended questions is key to sparking curiosity and prompting students to think more critically. Closed-ended questions that have yes/no answers should be used sparingly.

Mix lower and higher-order questions. Lower-order questions assess basic understanding while higher-order questions require evaluation, synthesis and analysis.

Allow adequate wait time between questions. Give students sufficient time to process the question and develop thoughtful responses.

Scaffold complex questions by building on students' prior knowledge. Connect new ideas to concepts already familiar to them.

Encourage participation from all students with inclusive questioning strategies. Consider think-pair-share methods.

Use prompting and probing techniques to extend dialogue. Ask follow-up questions to clarify, provide evidence or expand on initial responses.

By honing expertise in thoughtful inquiry-based questioning, educators can unlock their students' potential for critical thought while creating engaging, student-centered learning environments. Continual development through communities of practice, action research and other forms of professional development can help perfect this invaluable teaching skill.

Related posts

  • The Socratic Method: Engaging Students in Critical Thinking and Dialogue
  • Teaching Resources for Teachers: Cultivate Critical Thinking
  • Cultivating Creativity: Innovative Approaches to Encouraging Student Imagination
  • How to Develop Critical Thinking Skills in Students

critical thinking as a tool for inquiry

A Tale of Two Cities: Exploring Historical Contexts and Character Analysis with Student Activities

The Diary of a Young Girl by Anne Frank: Book Review for Teachers

The Diary of a Young Girl by Anne Frank: Book Review for Teachers

Addressing Bullying: Roles and Responsibilities

Addressing Bullying: Roles and Responsibilities

Become a buddy..

Join 500+ teachers getting free goodies every week. 📚

Form2

loading

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

20 Types Of Questions For Teaching Critical Thinking

What are some of the most common types of questions for teaching critical thinking? This led to many dozens of answers.

Types Of Questions For Critical Thinking

What Are The Best Questions For Teaching Critical Thinking?

by Terry Heick

What are the different types of questions? Turns out, it’s pretty limitless.

I’ve always been interested in them–the way they can cause (or stop) thinking; the nature of inquiry and reason; the way they can facilitate and deepen a conversation; the way they can reveal understanding (or lack thereof); the stunning power of the right question at the right time.

There’s a kind of humility to questions. Someone who doesn’t know asks someone who might. Or even someone who does know (rhetorically) asks someone who doesn’t to produce an effect (rhetorically). There’s a relative intimacy between someone asking and answering questions, one that says, ‘We need one another.’

It’s from that kind of perspective that TeachThought was founded, so it was surprising to me when I realized recently that, after years of writing about questions and questions stems and the power of questions and so on, I hadn’t ever written about the types of questions.

After doing some research, I realized that identifying clearly what the ‘types of questions’ are isn’t easy because there isn’t a set number. Much like when I wrote about  types of transfer of learning or types of blended learning , it was clear that although I kept seeing the same categories and question types, there really wasn’t a limit. When I asked myself, ‘What are the different kinds of questions?’ I was asking the wrong question.

A slight adjustment: What are some of the most common types of questions? What are the categories of questions? What are the most common forms of questions? This led to many dozens of answers. There are dozens of types of questions and categories of questions and forms of questions and on and on and on. An entire book could be written about the topic (if not a series of books).

But we have to start somewhere, so below I’ve started that kind of process with a collection of types of questions for teaching critical thinking –a collection that really needs better organizing and clearer formatting. Hopefully I can get to that soon.

Let’s start out with some simple ones.

Common Types Of Assessment Questions

Multiple-choice/Single : A question with multiple available answers for the responder to choose from but only one correct solution

Multiple-Choice/Multiple : A question with multiple available answers for the responder to choose from and more than one correct solution

See The Problem With Multiple-Choice Questions

True-or-false : A statement that the responder must decide is ‘true’ or ‘false’

Fill in the blank : A statement with a key piece of information missing that the responder must add to make the statement complete and true

Matching : Most commonly, Matching Questions have two columns and each column has items categorized by a clear rule that must be matched to items on the opposing column. For example, the column on the left can have words and the column on the right can have definitions. Other possibilities:

Left Column/Right Column: Inventors/Inventions; Forms of Government/Strengths and Weaknesses, Geometric Shape/Formula to calculate area; etc.

A variation of the Matching Question has one column holding more items than the other. This generally makes the question more complex–or at least more difficult–as the responder can’t be sure all items are used and must be more selective. Deductive reasoning (process of elimination, for example) is less accessible to the responder.

Short-Answer : This is less close-ended than the above common assessment questions types. In a short answer, the responder must answer the prompt without the benefit of any additional information or possible answers.

Analogies : These aren’t exactly a type of ‘question’ but analogies excellent assessment tools and can be used in many of the other forms of questions–multiple-choice for example.

Pig : Mud :: Bird: _____ (simple)

Pig: Mud :: Mitochondria: ___ (less simple)

What Are The Different Categories Of Questions?

This one isn’t simple or standardized either. There are simply too many different ways to think about inquiry.

You could, for example, use every level of Bloom’s Taxonomy and say that there are ‘Evaluation-level questions’ and ‘Analyze-level’ questions and ‘Remember’ and so on. A lot of this comes down to function: as a teacher, what are you wanting the question to ‘do’? With that in mind, let’s look at just a few examples (this is by no means an exhaustive list).

The Definition of Factual Questions: Questions with unambiguous, more or less universally accepted objective answers based on knowledge.

The Definition of Interpretive Questions : Questions meant to interpret something else –a comment, work of art, speech, poem, etc. The emphasis here is on the thinking process and will often result in an improved understanding of that ‘other’ (rather than demonstrating knowledge as is the case in a Factual Question. Responses to Interpretive Questions should be evidence-based but are inherently subjective, open-ended, and ongoing.

The Definition of Evaluative Questions : Questions that emphasize one’s personal opinion–of the value of a law or the strength of an author’s thematic development, for example.

Analytical Questioning and Didactic Questioning are common forms of questioning and inquiry whose role is simple and whose patterns are clear and plain enough to see and follow.

The Definition Of Analytical Questions: Questions meant to understand–to identify the ‘parts’ and understand how those parts work together and depend on and affect one another. Analytical Questions depend on other higher-level thinking skills like classifying, attributing, and organizing by rules or other phenomena.

An example of an Analytical Question might be to ask a student about character motivation in a novel or how science drives technology–“What is the protagonist’s motivation in the story and how do we know?” or ‘Why was this event important?’.

The Definition Of Didactic Questions: Structured, formal questions commonly about facts and knowledge at the recall and comprehension level, including remembering, describing, explaining, naming, identifying, etc.

Examples Of Didactic Questions: ‘Who, what, where and when’ can be examples of Didactic Questions while ‘Why’ tends more toward an Analytic Questions (see below).

Sidenote: Questioning And The Socrative Method

The Socrative Method is among the most well-known version of the Didactic approach, where students are (or can be, depending on how the seminar is structured) guided by ‘more knowledge others’ (MKO) personalized and extended reflection through inquiry. This, of course, can result in the thinker shedding their own dogma and reaching enlightenment.

It’s not very scalable in a classroom with one teacher and 34 students, which is where the Socrative Seminar comes in–a ‘built-for-the-classroom structure to bring learning-through-questioning’ into traditional educational spaces. This Socrative Seminar (or ‘Method’) is a formal approach to inquiry-based conversation where open-ended questions are used to facilitate discussion by students who respond to prompting from the teacher or comments and questions from other students. It’s not exactly a ‘type of question’ but is a format to use questions to promote understanding in a classroom.

This method is dialectical and dialogic, depending on the ability of students and teachers to be able to verbalize often complex and abstract thinking. A ‘good’ question in a Socrative Seminar would be much different than a ‘good’ question on a criterion-referenced assessment. What is a ‘good question’?

The quality of a question, then, is highly contextual–and to answer it with any clarity, you have to be able to answer: For that student in that situation at that time, what did that question  do ? What was the  effect  of that question?

See also ‘ The Relationship Between Quality And Effect .’

Types Of Questions For Teaching

Clarifying Question : A question meant to clarify something–either a question asked by the teacher to clarify the answer a student gives or what the student thinks or a question asked by the student to the teacher to clarify something (a statement, a task, a question, etc.)

Probing Questions : A probing question does what it sounds like it might: Serves as an inquiry tool to explore a topic or a student’s thinking and existing understanding of a topic. Probing questions also have different forms, including Emphasizing, Clarifying, Redirecting, Evaluative, Prompting, and Critical Analysis.

Thinking Over Time Questions : Questions that reflect on an idea, topic, or even question over time. This can emphasize change over time and lead to cause/effect discussions about the changes. This can also focus on metacognition–one’s thinking over time and how it has changed, etc.

Extending Questions : Questions meant to continue to lead a discussion, assessment, or ‘learning event,’ often after a ‘successful’ event immediately prior. For example, if a student is asked a question about adding fractions and they answer successfully, the teacher can ask an ‘Extending Question’ about adding mixed numbers or decimals.

Deepening Questions : Similar to Extending Questions, a Deepening Question increases in complexity rather simply extending what’s been learned. In the scenario above, after answering the question about adding fractions, a teacher could ask how exponents or the order of operations might affect adding fractions.

Transfer Questions : Questions meant to ‘laterally’ extend an idea without necessarily becoming more complex. If discussing the orbit of Saturn, you could ask an ‘Extending Question’ meant to take knowledge gleaned from that discussion and apply it

Contextualizing Questions : Questions meant to clarify the context of a topic/question/answer rather than to elicit an ‘answer.’

Perspective-Based Questions : Questions focused on the effect perspectives have on answers and/or ‘truth.’ Perspective Questions can also be asked from specific points-of-view–a student could answer a question about government from the perspective of a modern citizen, citizen of an ancient culture, famous historical figure, specific political party, etc.

Concrete Questions : Usually a ‘close-ended’ question, Concrete Questions ask students to provide ‘concrete’ answers–names, quantities, formulas, facts, characteristics, etc. See the following item for an example.

Metaphorical & Abstract Questions : The opposite of Concrete Questions, Abstract Questions intended to draw attention to or more closely understand abstract ideas or the abstraction in non-abstract ideas.

These can also be thought of as Thematic or Conceptual Questions. For example, asking a student to identify the three branches of the US government would be a ‘Concrete Question’ while asking them to describe, from their perspective, the virtues of democracy or how ‘freedom’ affects citizenship are examples of Perspective-Based Abstract Questions.

Compare & Contrast Questions : Questions that–you guessed it–ask students to identify the way two or more ‘things’ (concrete or abstract, for example) are the same and different.

Claim/Critique & Defend Questions : Questions (or prompts) that ask students to make a claim or issue a ‘criticism’ (e.g., of an argument), then defend that claim or criticism with concrete evidence.

Cause & Effect Questions : Another more or less self-explanatory category, Cause & Effect Questions require students to separate cause from effect or focus on mostly causes or mostly effects. These can be Concrete or Abstract, or Perspective-Based as well.

Open-Ended Questions : Often subjective questions meant to promote conversation, inquiry, etc. Open/Open-ended questions are central to Socrative Dialogue (though closed/yes or no questions can be just as effective at times because questioning is an art).

Closed Questions : Questions with yes or no answers generally used to check for understanding, emphasize an idea, or uncover information

Leading Questions : Questions meant to ‘lead’ the thinking of the responder in a specific direction for an intellectual or psychological effect

Loaded Questions : Questions embedded with an underlying assumption–one that might contain faulty reasoning, bias, etc. This question is characterized by those faulty or otherwise distracting assumptions rather than the assessment or answer.

Dichotomous Question : A type of Closed Question with only two answers (generally Yes/No)

Display Questions (Known Information Question): A way to check for understanding; a type of question that requires the answerer to ‘perform’ or demonstrate their understanding by answering a question the questioner already knows the answer to.

Then there are  Referential Questions : An inherently subjective question, Referential Questions produce new information and can be either open or closed-ended questions.

An Example of a Referential Question: Which character in Macbeth would be most likely to be a successful YouTuber (or ‘streamer’) today?

Rhetorical Questions : A question asked to create some form of effect rather than produce an answer. These are useful in discussions but can also be used in writing as well. After all, who is going to answer a question posed by an author in an essay?

Epistemic Questions : Questions about the nature of knowledge and understanding. This is more of a content-based category rather than a universal ‘type of question,’ though asking students about the nature of knowledge in math or science–how we form it, how we know if it’s accurate, the value of that knowledge, etc.–can be used in most content areas.

Divergent Questions : According to Wikipedia , a divergent question is a “question with no specific answer, but rather exercises one’s ability to think broadly about a certain topic.”

Inductive Questions : Questions meant to cause or induce the responder to form general principles theories based on observation, evidence, or data. In inductive reasoning, the conclusion or argument becomes more general than the premises that prompted it.

Deductive Questions : Questions meant to support the responder in forming a the given theory based on continued testing. In deductive reasoning, the conclusions drawn are less general (i.e., more specific) than the premises given and in a valid deductive line of reasoning, the conclusion must be true if the premises are true.

5 Ws Questions : Wonderfully simple and devastatingly effective questions: Who, What, Where, Why, and When? And you can add ‘How’ to the list, too. These include Who, What, and Where questions? These can be useful in guided discussion, reflection prompts, the formation of essential questions , and more.

Examples Of Using ‘5 Ws Questions’ For Critical Thinking

What’s the point?

What’s the big idea?

What’s the purpose?

What is the process?

What’s more important here? Less important?

What crucial information are we missing?

What did they think or believe and how did that belief change over time? What contributed to that change?

Why should I learn this?

What should I do with what I’ve learned?

What is the author, speaker, write, or artist ‘saying’ here? What are they underlying assumptions of that message?

What is the author’s point of view? What do I believe and how does that affect what I think others believe–or how does it affect what I think about what they do believe?

What should I ask about this?

How can I improve the questions I or others have already asked?

Is the answer wrong or is the question ‘wrong’?

Education Expert

Founder & Director of TeachThought

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

critical thinking as a tool for inquiry

Try for free

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

critical thinking as a tool for inquiry

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved September 4, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Discover the freshest content on the Inspiring Inquiry website today! Check out the "What's New" page.

critical thinking as a tool for inquiry

Inquiry Resources

Inquiry-Based Learning

Additional Inquiry-Based Learning Resources

A teacher self-assessment: strengthening our approach to inquiry.

critical thinking as a tool for inquiry

How Every Inquiry Teacher is a DJ : Meet the Responsive Teaching Console

critical thinking as a tool for inquiry

Where Do Ideas Come From?

Student-driven learning, essential questions that encourage inquiry- b ased learning.

critical thinking as a tool for inquiry

PD: Asking Questions that Encourage Inquiry- B ased Learning*

critical thinking as a tool for inquiry

Putting Student Questioning at the Heart of Inquiry

Strategy for promoting critical thinking.

critical thinking as a tool for inquiry

How to Get Students to Ask Good Questions, and Drive Deeper Learning

It won’t come as a huge surprise to educators: Sometimes good questions are more productive than right answers.

That was the conclusion of a 2020 study , too. Students who studied a topic and then composed their own questions scored 14 percentage points higher on a test than students who used passive strategies like studying their notes and rereading materials. Creating questions, the researchers found, not only encouraged students to think more deeply about the topic but also strengthened their ability to remember the material.

   Click/Tap to Continue

Quality matters, and you can move kids from simple yes/no questions to more penetrating inquiry by guiding them toward questions that start with “explain,” or that use “how” and “why” framing. Alternatively, you can use class time to identify the characteristics of higher-order questions—those that require analysis or synthesis, for example—then collect student questions and discuss them as a group.

Source: Edutopia & Wiley Online Library

Provocations to Spark Your Students to Think, Wonder and Question

The following websites offer a wide spectrum of provocations for students to pique their curiosity and get them thinking, wondering and speaking about topics that interest them. These are wonderful conversation starters that can lead to the development of critical thinking, listening and oracy skills that can support your units of inquiry.

Five Jamboard Bellringers to Start the School Day : Jamboard is such a good tool for creating quick, interactive activities to warm up students’ brains at the beginning of class. A great time to jump into a Jamboard is when the morning school bell chimes. Here are five bellringers that you can copy and run with! 

Daily Puzzlements : Each week, Ian Byrd who managers the Byrdseed website , sends out a list of five free links to fascinating images and intriguing videos to share with your class. ( for instructions see " Creating A Culture of Curiosity ").

The Kid Should See This : The TKSST website is chalk-full for amazing videos that will start conversations, spark questions, and invite inquiry.

What's Going on in This Picture? : P ublished by t he New Your Times (NYT) is a wonderful resource using a range of powerful images designed to develop critical and creative thinking skills. Also see their collection of 40 intriguing photographs and a student support document called " Get the Picture "

Want to use intriguing photographs to help students practice visual thinking and close reading skills? "If you’re not sure how to get started, the NYT have created this guide to help you get started: How to Teach With ‘What’s Going On in This Picture? ’

Try Using With The Following Visible Thinking Routines: Zoom ; Think, Puzzle, Explore ; See, Think, Wonder ; Chalk Talk ; Circle of Viewpoints ; Claim, Support, Question

Neal.fun : This site is a network of 24 interactive projects some of which could be integrated in subjects (10 Years Ago or Who Was Alive - History; Absurd Trolly Problems - philosophy; Draw Logos from Memory - Art; Speed - Math, and much more. Great provocations and lots of interesting information.

Deep Talk: A year’s worth of daily questions generated by a machine : 365 questions were generated using GPT-J-6B, an autoregressive language model trained on 800 GB of internet text. The prompts used for the generation were randomly shuffled samples of human-written questions

CNN10 : International and USA News explained in 10 minutes that is easy to understand by children. Even though, US biased, the content will spark student interest and inquiry. 

Fix the News : This site reports on only "Good News" which is refreshing. You'll be surprised at how much good news is actually happening around the world. 

Connecting to the Environment

[ kath murdoch ].

Host Kevin O’Shea chats with well-known consultant and educator, Kath Murdoch. Kath is a celebrated author and inquiry-based education thinker, but she is also a passionate environmentalist and lover of all things nature. Kath talks about sparking curiosity through nature, but also about how we need much deeper connections and understandings of the environment in order to make lasting and meaningful change. To protect the natural world we need to grow deep-rooted personal connections to it.

Kath Murdoch on Twitter

Kath Murdoch Consulting

Also, you may be interested in reading Kath's blog: Experiencing The Cycle of Inquiry where she reflects on the concept of an Inquiry cycle.

Ideas for Inquiry-Based Learning

critical thinking as a tool for inquiry

Powerful Questions for Inquiry

critical thinking as a tool for inquiry

Questions to Promote Thinking

critical thinking as a tool for inquiry

Guided Student Journal to Support Inquiry in the PYP

critical thinking as a tool for inquiry

Toddle's Chris Gadbury has created a wonderful guided inquiry journal for PYP students. It is a collection of thinking tools that will encourage students to ask questions, reflect, and apply their understandings and skills. 

*** Check out his video walkthrough of the document. 

The guided student journal includes:

Visual templates to help unpack your unit of inquiry

Beautifully designed thinking routines to guide student inquiry

Ready-to-use mini lessons for each stage of an inquiry cycle

Tools to help students feel like artists as they document their learning journey

Unit of Inquiry Planning Process & Resources

critical thinking as a tool for inquiry

Rubric for Becoming an Inquiry-Based Teacher

critical thinking as a tool for inquiry

How To Get i nto Inquiry-Based Learning: Part 1

First steps to inquiry, how to get i nto inquiry-based learning: part 2, working towards open inquiry, how to get into inquiry-based learning: part 3, five skills to become an inquiry teacher, how to get into inquiry-based learning: part 4, four inquiry skills to nurture and assess, taking the pulse of inquiry in your classroom.

critical thinking as a tool for inquiry

Helping Students Think About Their Learning

critical thinking as a tool for inquiry

Podcast: Interview Kimberly Mitchell About Inquiry-Based Learning

critical thinking as a tool for inquiry

Inquiry: Thoughts, Views & Strategies

critical thinking as a tool for inquiry

Inquiry - Starting the Year in Kindergarten

Inquirers are creative.

critical thinking as a tool for inquiry

Benefits of Creativity

critical thinking as a tool for inquiry

Strategies to Improve Feedback

critical thinking as a tool for inquiry

Power of Curiosity - Lesson Plan (Gr 3-5)

critical thinking as a tool for inquiry

Divergent & Convergent Thinking Models

critical thinking as a tool for inquiry

Using Inquiry to Support Deeper Learning

critical thinking as a tool for inquiry

Focus on Inquiry Research

critical thinking as a tool for inquiry

Focus on Inquiry Website

critical thinking as a tool for inquiry

  • Chapter 1: Building a Culture of Inquiry
  • Chapter 2: Discipline-Based Inquiry: Making It Work
  • Chapter 3: The Importance of Assessment
  • Chapter 4: Teaching and Learning in a Discipline-Based Inquiry Classroom
  • Chapter 5: Creating A Scholarly Practice
  • Chapter 6: Leadership Imperative

Inquiry-Based Articles

Scaffolding Curiosity: 5 Precepts for Guiding Inquiry | Toddle | Cindy Blackburn | Through this worksho p, Cindy r eviews the guided inquiry approach and its benefits for supporting learners and e xplores 5 practical lessons for structuring and supporting guided inquiry. 

Instructional Shifts to Support Deep Learning | Jay McTighe and Harvey Silver | Educational Leadership | September 2020 

30 Universal Strategies for Critical Learning | Terry Heick | Teach Thought |

32 Habits That Make Thinkers | Terry Heick | Teach Thought |

Books That Support Inquiry-Based Learning

critical thinking as a tool for inquiry

Review or buy it here

From Agency to Zest presents a captivating exploration of concepts integral to inquiry-based learning, skillfully penned by the esteemed educator and inquiry authority, Kath Murdoch. 

The book takes an alphabetical approach, dissecting and contemplating 26 pivotal words (alongside numerous related terms) that encapsulate the core of inquiry. 

Serving as an invitation to introspection, From Agency to Zest encourages educators to engage in meaningful professional dialogues, fostering a deeper grasp of inquiry as a teaching and learning methodology. 

Amidst elucidating these concepts, Kath generously imparts practical insights on leveraging the book to enhance and enrich professional learning endeavours within and beyond educational institutions. 

This thoughtfully crafted work serves as a valuable resource for educators seeking to navigate the intricacies of inquiry-based education.

critical thinking as a tool for inquiry

“This book is Kath Murdoch's masterpiece. It is immaculately researched, carefully argued, elegantly written, beautifully produced, and above all, incredibly useful and practical.”—Guy Claxton, author of The Future of Teaching

In Getting Personal with Inquiry Learning , world-renowned inquiry expert, Kath Murdoch, draws on decades of experience to offer a thorough, practical guide to supporting young learners’ investigations into their passions, interests and questions. 

Following her best-selling Power of Inquiry, this book invites teachers to take their thinking about inquiry to the next level and to truly honour both their own and their students’ agency.

Getting Personal with Inquiry Learning offers educators a compelling argument for providing young people with opportunities to pursue their interests at school and provides a myriad of practical strategies to make this effective and manageable. Rich with classroom examples, templates to guide planning and accompanied by advice from a range of highly respected educators from around the world, this book beautifully connects theory and practice—achieving depth and accessibility.

Bonus: Check out this video where Kath chats about her new book - it's worth a view.

critical thinking as a tool for inquiry

How can we create learning environments that cultivate curiosity and grow young people as confident, capable and creative inquirers?  How can we ensure that our teaching nurtures rather than diminishes the sense of wonder with which we are all born? How can we become better inquirers as we teach? 

How can we help our students grow as thinkers, collaborators, self-managers, communicators and researchers as they inquire? The Power of Inquiry is an inspiring and comprehensive guide to the implementation of quality inquiry practices in the contemporary classroom. Organized around ten essential questions, each chapter provides both a theoretical and practical overview of the elements that combine to create learning environments rich in purpose and passion. 

______________________________________

critical thinking as a tool for inquiry

Curating Inquiries: Curriculum Design and Mapping for Primary Schools by Grant Lewis

" Curating Inquiries " by Grant Lewis is an indispensable resource for curriculum coordinators, teachers, and administrators which I highly recommend. Grant, drawing from over 20 years of experience in curriculum design and inquiry-based learning in primary schools across Australia and globally, presents his insights in a friendly, sometimes humorous, conversational style that makes the book a pleasure to read.

This comprehensive guide is designed for educators who aim to establish a robust inquiry-focused framework that enhances teaching and learning through meaningful inquiries. While suitable for all educators interested in inquiry-based teaching and learning, it serves as an excellent support resource for IB PYP teachers, coordinators and administrators.

Grant begins by highlighting the importance of a well-structured conceptual framework for curriculum design. He underscores the necessity of long-term planning, advocating for curriculum mapping over a year or more to ensure continuity and depth, which fosters substantial and interconnected inquiries.

A significant portion of the book is dedicated to defining and illustrating inquiry-based learning. Grant clarifies its purpose and benefits, demonstrating how it can be effectively integrated into the curriculum while adhering to educational standards and incorporating student voices. He dissects the components of successful inquiry, offering practical examples from his extensive experience.

The core of " Curating Inquiries " lies in its practicality. Grant provides a wealth of strategies and protocols that teachers and administrators can immediately apply to support and enhance inquiry-based teaching and learning. These include methods for designing inquiry questions and provocations, structuring learning activities, assessing student progress, and championing student agency, including student voice and action.

One of the key challenges in inquiry-based learning is balancing the freedom of exploration with the need for accountability. Grant addresses this by illustrating how to align inquiries with curriculum standards without stifling creativity. He advocates for a flexible approach that respects student interests and voices while ensuring that learning objectives are met.

" Curating Inquiries " is particularly recommended for school leaders and teachers looking to deepen their understanding of inquiry-based learning. Grant provides guidance on planning and implementing inquiries that are memorable, powerful, and engaging. The book aims to empower educators to create rich learning experiences that resonate with students, allowing learner agency, voice, and action to flourish.

In summary, Grant Lewis's " Curating Inquiries " is a valuable resource for educators seeking to enhance their curriculum through inquiry-based learning. With its blend of theoretical insights and practical advice, the book equips teachers with the tools they need to create meaningful and effective learning journeys for their students.

critical thinking as a tool for inquiry

Concept-Based Inquiry in Action by Carla Marschall, Rachel French

Create a thinking classroom that helps students move from the factual to the conceptual.

Concept-Based Inquiry is a framework for inquiry that promotes deep understanding. The key is using guiding questions to help students inquire into concepts and the relationships between them.

Concept-Based Inquiry in Action provides teachers with the tools and resources necessary to organize and focus student learning around concepts and conceptual relationships that support the transfer of understanding. Step by step, the authors lead both new and experienced educators to implement teaching strategies that support the realization of inquiry-based learning for understanding in any K–12 classroom.

critical thinking as a tool for inquiry

Philosophical Inquiry shows how to use the tools of philosophy for educational purposes. It is a practical guide to the philosophical arts of questioning, conceptual exploration and reasoning, with wide application across the school curriculum. It provides educators with an effective means of teaching students to think critically and creatively, to use their knowledge to solve problems, to deal with issues, to explore possibilities and work with ideas.   Philosophical Inquiry emphasizes the use of collaborative learning, through class discussion, working with a partner, and small group work. This approach teaches students to think in socially responsible ways. It means that students become not only thinking individuals but also good team-players, with benefits that extend beyond the classroom and the school to community life and the world of work.

Download Resources

Back to Top

Back to Inquiry-Based Learning

critical thinking as a tool for inquiry

Resources & Downloads

Here you will find a selection of resources that have been created to support teacing and learning in my work with schools. You are more than welcome to download these resources and use them with your students or staff to enhance agency and engagment in learning.

critical thinking as a tool for inquiry

INQUIRY PLANNING RESOURCE

This graphic has been developed to support educators to design Guided Inquiries that empower student agency, reflection and action. Adapted from Kath Murdoch's model of Inquiry (2016) and the 4eX2 Instructional model (2007), it highlights how metacognitive strategies and assessment approaches compliment the Inquiry process. The graphic highlights the importance developing key questions that nurture critical and creative thinking, but also a focus on explicit teaching and intention to scaffold thinking throughout the Inquiry process. (Note the strategy library is available to partnership schools only).

LINK TO RESOURCE HERE (NOTE THE STRATEGY LIBRARY IS ONLY ACCESSIBLE TO PARTNERSHIP SCHOOLS)

critical thinking as a tool for inquiry

VISION FOR HIGH IMPACT TEACHING IN INQUIRY LEARNING

Inquiry Learning and Explicit Teaching are NOT competing pedagogies. In fact research says that we need to find the 'sweet spot' to balance a model of explicit direct instruction with room for student voice and curiosity. This model drives my vision for Inquiry and hardnesses an explict model of deliver (I do, we do, you do) with high impact teaching strategies throughout an Inquiry methodology to enhance curiosity, agency and clarity (knowledge and skill)

LINK TO RESOURCE HERE

critical thinking as a tool for inquiry

METACONITION ACTION VERBS 

Naming thinking facilitates learning growth by providing a structured framework for students to understand and articulate their cognitive processes. As part of my work with schools I have recently adapted a continuum of Blooms action thinking verbs and have mapped it through an Inquiry process. This tool is aimed to enhance how teachers might identify the types of thinking they are nurturing in their students throughout a Guided Inquiry. I hope that this tool can help learners to enhance their agency by encouraging reflective thinking and metacognitive awareness.

LINK TO RESOURCE HERE 

critical thinking as a tool for inquiry

COST BENEFIT ANALYSIS

A Cost-benefit analysis is a decision-making tool used to compare the costs and benefits of a particular decision or action.

This strategy helps learners to analysis and consider the feasibility of their ideas for taking action in Inquiry

critical thinking as a tool for inquiry

One pagers are a great way to organize your thoughts by summarizing important information in a single page. They help you focus on what's most important and avoid getting overwhelmed by too much information. One pagers can also help you see connections between ideas and make it easier to communicate your thoughts to others. Even better are one pager templates that help learners to segment and sort important take aways within a framework. I've created a set of landscape templates which give students a choice of how they would like to set out their ideas and key messages in a visual way. Adding colour and images help scaffold thinking and reinforce long term memory. You can view and download my free set of one page templates for you to print via the link in bio! I'd love you to share with me how you use them! 

FREE DOWNLOAD HERE

critical thinking as a tool for inquiry

THINK - PAIR - SHARE

One of the most commonly thinking routines used in classrooms, but do we rush it and not give enough consideration to scaffolding the conversion.....

THINK: The children are invited to firstly stop and take some time to think about their own personal thoughts and feelings. This should if possibly be noted down, ready to share. This step is vital in helping learners to consider new learnings and what it means to them.

PAIR: Children are invited to listen to one another and understand their perspective.

SHARE: The children are invited to then consider the different viewpoints and create a response that is shared by both learners. This may or may not be different from their own initial response.

critical thinking as a tool for inquiry

HEAD, HEART, HANDS THINKING 

Before we start a Guided Inquiry a tool we use with our teachers to help them unpack the big picture ideas and possibilities is Head, Heart and Hand thinking. This helps our teachers to not just focus on curriculum standards but to think more broadly about possibilities and how we can design learning opportunities that make it real and relevant for our children. This is a macro planning tool we use to help have conversations before we start. Then we move to rich provocations and tools that develop student questions and wonderings around our big idea.

critical thinking as a tool for inquiry

THIN & THICK QUESTIONS

The ‘think or thick’ question tool is one of my new favourites. Post it notes on paper are always my preference but sometimes online templates and Jamboards can be great for older kids too.

I’ve created this one in Canva for you to use! Use it as a template or a background in Jamboards, edit to your heart’s content!

critical thinking as a tool for inquiry

DEBONO'S THINKING HATS

Created in 1985, Edward de Bono's infamous 'Thinking Hats' routine was intended to provide a framework for teaching students to approach problems and issues from multiple viewpoints. Each of the six hats symbolizes a distinct thinking perspective —white for facts, red for emotions, black for critical judgment, yellow for positivity, green for creativity, and blue for overview and process.  By guiding students to 'wear' different hats during discussions, teachers can help them practice metacognition, fostering an awareness of their own thought processes and encouraging reflective thinking. This structured approach not only enhances critical and creative thinking skills but also helps students develop a more holistic understanding of complex issues, making it an powerful tool for educators.

  • Description Generator

Child Report Generator

  • Marking and Grading Assistant
  • Lesson Plans
  • Lesson Plan Power Points

Email & Message Reply Generator

  • Story Writer

Question Generator

  • Multi Choice Generator
  • Long Form Question Generator
  • All Articles
  • Effective Feedback
  • Future Classrooms
  • Lesson Planning Evolution
  • Collaborative Learning with AI
  • Digital Literacy
  • English Language
  • English Literature
  • Religious Studies
  • Phonics and Reading
  • Get Started in Seconds

Revolutionize Your Teaching with AI

Planit Teachers offers cutting-edge AI tools to supercharge your teaching productivity.

Boost Productivity

AI-Powered Planning

Use code "GETSTARTED" for 50% off your first month!

Enhancing Student Critical Thinking through Strategic Questioning

Explore the power of questions in stimulating student critical thinking and learn how to implement inquiry-based learning with Planit Teachers.

Unlocking the Potential of Inquiry in the Classroom

As educators, we understand the importance of nurturing critical thinking skills in our students. The art of questioning is a pivotal technique in this developmental process, serving as the key to unlock the potential of young minds. This blog post delves into the strategic use of questioning to foster a culture of inquiry and critical analysis in the classroom.

The significance of questioning within the educational sphere cannot be overstated. It is through thought-provoking questions that we can guide students to think deeply and critically about subject matter. Crafting questions that challenge assumptions and stimulate curiosity is not just an art; it is a skill that can be honed with the right tools and mindset.

Inquiry-based learning stands at the forefront of educational strategies that promote critical thinking. By encouraging students to ask questions and seek answers, we empower them to take ownership of their learning. Planit Teachers' AI Teaching Assistant Platform is an invaluable resource in this quest, providing lesson plan generators and other tools to facilitate a dynamic and interactive learning environment.

The integration of technology in education has opened up new avenues for engaging students. Planit Teachers harnesses the power of AI to offer resources like story writers and AI marking assistants, which not only save time but also enhance the quality of education. These tools support teachers in creating a classroom atmosphere where questioning and critical thinking are not just encouraged but celebrated.

Effective questioning leads to greater student engagement and a deeper understanding of the material. As educators, it's our responsibility to foster an environment where students feel comfortable to inquire and explore. Planit Teachers' platform offers a suite of tools that can assist in developing these essential skills, ensuring that our students are well-equipped for the challenges of the future.

Transform Your Grading with AI Teacher Marking

Revolutionize your grading process with our advanced AI Teacher Marking tool. Our AI algorithms can efficiently grade a variety of assignments, providing detailed feedback and insights.

AI Teacher Marking doesnt just grade; it provides constructive criticism, pinpoints errors, identifies model answers, and references the mark scheme for a holistic evaluation.

By automating the grading process, AI Teacher Marking frees up valuable time for educators, allowing them to focus more on student engagement and personalized teaching.

AI Teacher Marking revolutionizes workflow efficiency for educators. The tool's capability to quickly process and grade student submissions in bulk significantly reduces the time spent on manual marking.

Beyond just grading, AI Teacher Marking offers deep analytical insights into student performance. It provides educators with detailed reports highlighting class trends, common misconceptions, and areas needing more focus.

Revolutionize Your Teaching with AI-Powered Lesson Plans

Welcome to the future of education! Planit Teachers brings you AI-powered lesson plans, tailored for any subject and age group. Just describe your topic and age group, and our advanced AI will craft a bespoke, unique lesson plan designed specifically for your needs.

Our AI-driven lesson plans are not just about convenience, they're about quality. Each plan is meticulously crafted to ensure it meets the highest educational standards. Plus, with our AI's ability to learn and adapt, your lesson plans will only get better over time.

But that's not all! With each lesson plan, you'll also receive a comprehensive list of resources to aid your teaching. And the best part? You can save your plan to your account, edit it as you see fit, and even generate a PDF for offline use or printing.

Innovative Long Form Question Generator

Transform the way you create quizzes with our state-of-the-art Long Form Question Generator. Designed for educators, this revolutionary tool crafts unlimited, expertly written questions tailored to any topic or age group, all powered by advanced AI.

Experience the freedom to customize your quizzes to align perfectly with your educational goals. Our generator allows for unparalleled customization of topics, difficulty levels, and more, enabling you to craft the perfect questions for your students in mere minutes.

Elevate your teaching and engage your students like never before. Save time, enhance learning, and ensure your quizzes are always fresh and relevant. Our Long Form Question Generator is your ultimate partner in creating dynamic, impactful educational content.

End of term reports are a time consuming and stressful task for any teacher. We've built a tool to help you save time and effort when writing reports. Simply describe the child and we'll generate a report for you. You can then edit the report to make it perfect and download it as a PDF. Your report can be tailored using tone, length and complexity settings.

Get back control of your free time using our Child Report Generator. Instant report generation for any child. Happy, angry, concerned and comedic reports generated instantly to your exact specifications.

Crafting quizzes and question sheets for your class is a problem of the past with our Question Generator. Simply describe the topic and age group and we'll do the rest, crafting you a bespoke and totally unique set of questions built exactly for your needs.

With your new quiz, you'll also get a list of resources to help as well as the ability to save your quiz to your account and edit it later. You can then generate a PDF from your quiz, download it for offline use and print for your class.

Get back control of your free time using our Question Generator. Instant quiz and question generation for any topic and age group.

Subject Description Generator

When teaching English, Teachers often need to spend time crafting complex subject, landscape, setting and character descriptions. With our Subject Description Generator, you can instantly generate a description for any subject, landscape, setting or character. Simply describe the subject, landscape, setting or character and we'll do the rest, crafting you a bespoke and totally unique description built exactly for your needs.

We even tailor the description to your exact specifications, allowing you to choose the length, complexity and tone of the description. We then craft the wording to perfectly match your age group and child level.

Multiple Choice Question Generator

Say goodbye to the hassle of creating quizzes manually. Our innovative Multiple Choice Question Generator empowers teachers to generate unlimited questions with 4 multiple choice answers on any topic for any age group, all powered by AI.

Tailor your quizzes to perfectly match your teaching needs. With the ability to customize topics, difficulty levels, and more, you can create the ideal quiz for your class in minutes. Plus, save your quizzes for future use, edit them as needed, and even generate PDFs for easy sharing and printing.

Reclaim your free time and enhance your teaching with quizzes that engage and challenge your students. Our Multiple Choice Question Generator is the ultimate tool for instant, hassle-free quiz creation for any subject and age group.

AI-powered instant replies for emails and messages. Everyone knows that teachers already have enough on their plate, so we've built a tool to help you save time and effort when replying to emails and messages from parents, students and colleagues. Simply describe the topic of the email and we'll generate a reply for you. You can then edit the reply to make it perfect and send it off. If it totally misses the mark, you can instantly regenerate a new reply and try again.

Get back control of your free time using our Email, Message, Class Dojo Reply Generator. Instant message generation for any usage.

Related Articles

  • The Future of Education: How AI is Revolutionizing the Classroom Experience
  • The Power of Project-Based Learning: Inspiring Creativity and Critical Thinking in Education
  • The Teacher as a Cognitive Coach: Nurturing Metacognition in the Classroom
  • The Microlearning Revolution: Transforming Education with Bite-sized Strategies
  • Mastering Differentiated Instruction: Strategies for Meeting Every Student's Needs | Planit Teachers
  • The Outdoor Classroom: Reconnecting Education with Nature | Planit Teachers
  • The Classroom Biome: Cultivating a Living Ecosystem for Learning | Planit Teachers
  • The Flipped Classroom Revolution: Boost Student Engagement with Active Learning
  • The Classroom of Things: Revolutionizing Education with IoT | Planit Teachers
  • The Sensory-Smart Classroom: Designing Inclusive Learning Spaces | Planit Teachers
  • The Gamification of Education: Boosting Student Engagement and Achievement
  • The Neuroscience of Creativity: Fostering Innovation in Education | Planit Teachers
  • The Digital Detox Classroom: Balancing Technology and Human Connection in Education
  • The Empathy Curriculum: Cultivating Emotional Intelligence in a Digital Age | Planit Teachers
  • The Green Classroom Revolution: Sustainability Education and Eco-Friendly School Practices
  • Exploring the Benefits of Outdoor Education
  • The Power of Gamification in Education - Boost Student Engagement
  • Empowering Students Through Project-Based Learning
  • The Art of Effective Communication: Enhancing Teacher-Student Interactions
  • The Art of Inquiry-Based Learning: Fostering Curiosity and Critical Inquiry in the Classroom

The Pedagogy of Confidence Homepage

The Pedagogy of Confidence Homepage

Critical Thinking Tools

The four pillars of critical thinking are models of practical methods that are the core of developing critical thinking skills. Download Critical Thinking Guide

Collaborative Communities are three supporting methods of collaborative tools for individual and collaborative success. These include:   community building exercises and models, collaborative learning methods and peer-to-peer coaching.

Questioning Methods are used to engage students in curiosity, exploration, discovery and discussions. This includes effective methods for developing questioning skills leading to inquiry based shared inquiry.

Open Source Visual Mapping is for organizing and understanding thinking individually and collaboratively. The maps support recognizing patterns of thinking along with the frame of reference to understand different perspectives.

Thinking Environments is an awareness, understanding and a process focused on the design, interface and impact of the environment including a person’s use of space, materials, and objects.

Collaborative Communities

Community Building Exercises Building community exercises involves developing the whole community together   for understanding one another, learning how to collaborate collectively, developing listening for learning, and other methods for the whole school community collectively learning with one another.

Peer to Peer Coaching Peer to Peer Coaching involves teachers creating their own professional coaching community. It includes regularly observing each other throughout the whole school with a focused protocol to support seeing each other’s professional skills. The goal is learning professionally from one another in quest of the finest craft and pedagogy for student outcomes.

Collaborative Learning Methods Collaborative learning builds relationships among students (and teachers with teachers) that requires positive inter-dependence (a sense of sink or swim together), individual accountability (each of us has to contribute and learn), interpersonal skills (communication, trust, leadership, decision making, and conflict resolution), face-to-face promotive interaction, and processing (reflecting on how well the team is functioning and how to function even better).

Questioning Methods

We ask questions regularly. There are several types of questions:

  • evaluative  
  • interpretive

Statements and Questions Statements are ‘answers’ that signal a stop in thinking with a final answer. Questions are a driving force in the process of thinking. One asks questions to stimulate thinking. The art of questions like any skill takes practice of the finer points to achieve mastery. We will focus on bringing questioning into the classrooms critical thinking by scaffolding supportive strategies:

Powerful Questions

Collaborative Questions

Socratic Method for Shared Dialogue with Classroom Discussions

Visual Mapping

  • Introducing all eight Thinking Maps to learn the tool using pictures, words and other representations for all grade levels.
  • Introducing the Frame of Reference for Thinking Maps and other visual tools.
  • Learning hand symbols for each of the Thinking Maps.
  • Students choosing the Thinking Map that best represents how they are organizing their thinking (student centered ownership).
  • Integrating Thinking Maps across all subjects and content.

Critical Thinking Environments

  • Beliefs with a classroom of equity that focuses on mindfulness of belonging for all students and adults in a learning environment.
  • People including proximity of the teacher with students and how we choreograph the flow.  
  • Objects in the classroom including furniture, lighting and all objects that influence in regards to their design and use.
  • Materials used including choices and use of natural and recycled things.

The teacher’s decisions with intentionality impact the classroom and school’s environment. They are crucial to the quality outcomes of the children and youth’s learning experiences and how they model with the children, and become a model to how students learn.

Download Critical Thinking Guide

mySmowltech

critical thinking as a tool for inquiry

Critical thinking: definition and how to improve its skills

Critical thinking process all ideas must be open.

Recruitment

critical thinking as a tool for inquiry

Discover our proctoring plans

Receive an ebook on proctoring solutions. SMOWL is the most complete and customizable proctoring software.

Recent posts

What is training?

Training vs teaching: differences and similarities

The Future of HR Technology

HR technology trends: the future landscapes

Critical thinking process all ideas must be open.

Ghosting after interviews: tips and ideas to avoid it

Critical thinking is based on the observation and analysis of facts and evidences to return rational, skeptical and unbiased judgments.   

This type of thinking involves a series of skills that can be created but also improved, as we will see throughout this article in which we will begin by defining the concept and end with tips to build and improve the skills related to critical thinking.

What is critical thinking?

Critical thinking is a discipline based on the ability of people to observe, elucidate and analyze information, facts and evidences in order to judge or decide if it is right or wrong.

It goes beyond mere curiosity, simple knowledge or analysis of any kind of fact or information.

People who develop this type of outlook are able to logically connect ideas and defend them with weighty opinions that ultimately help them make better decisions.

Critical thinking: definition and how to improve its skills

How to build and improve critical thinking skills?

Building and improving critical thinking skills involves focusing on a number of abilities and capacities .

To begin the critical thinking process all ideas must be open and all options must be understood as much as possible.

Even the dumbest or craziest idea can end up being the gateway to the most intelligent and successful conclusion.

The problem with having an open mind is that it is the most difficult path and often involves a greater challenge and effort. It is well known that the easy thing to do is to go with the obvious and the commonly accepted but this has no place in critical thinking.

By contrast, it is helpful not to make hasty decisions and to weigh the problem in its entirety after a first moment of awareness.

Finally, practicing active listening will help you to receive feedback from others and to understand other points of view that may help you as a reference.

Impartiality

An important point in the critical thinking process is the development of the ability to identify biases and maintain an impartial view in evaluations.

To improve this aspect it is advisable to have tools to be able to identify and recognize the prejudices and biases you have and try to leave them completely aside when thinking about the solution.

Subscribe today to SMOWL’s weekly newsletter!

Discover the latest trends in eLearning, technology, and innovation, alongside experts in assessment and talent management. Stay informed about industry updates and get the information you need.

Simply fill out the form and stay up-to-date with everything relevant in our field.

Observation

Observation allows you to see each and every detail , no matter how small, subtle or inconsequential they may be or seem to be.

Behind the superficial information hides a universe of data, sources and experiences that help you make the best decision.

One of the pillars of critical thinking is objectivity. This forces you to base your value judgments on established facts that you will have gathered after a correct research process. 

At this point in the process you should also be clear about the influencing factors to be taken into account and those that can be left out.

Remember that your research is not only about gathering a good amount of information that puts the maximum number of options, variables or situations on the table. 

For the information to be of quality, it must be based on reliable and trustworthy sources.

If the information you have to collect is based on the comments and opinions of third parties, try to exercise quality control but without interference. 

To do this, ask open-ended questions that bring all the nuances to the table and at the same time serve to sift out possible biases.

How to build and improve critical thinking skills?

With the research process completed, it is time to analyze the sources and information gathered.

At this point, your analytical skills will help you to discard what does not conform to unconventional thinking, to prioritize among the information that is of value, to identify possible trends and to draw your own conclusions.

One of the skills that characterize a person with critical thinking is their ability to recognize patterns and connections between all the pieces of information they handle in their research.

This allows them to draw conclusions of great relevance on which to base their predictions with weighty foundations.

Analytical thinking is sometimes confused with critical thinking. The former only uses facts and data, while the latter incorporates other nuances such as emotions, experiences or opinions.

One of the problems with critical thinking is that it can be developed to infinity and beyond. You can always keep looking for new avenues of investigation and new lines of argument by stretching inference to limits that may not be necessary.

At this point it is important to clarify that inference is the process of drawing conclusions from initial premises or hypotheses.

Knowing when to stop the research and thinking process and move on to the next stage in which you put into practice the actions considered appropriate is necessary.

Communication

The information you collect in your research is not top secret material. On the contrary, your knowledge sharing with other people who are involved in the next steps of the process is so important.

Think that your analytical ability to extract the information and your conclusions can serve to guide others .

What is critical thinking?

Problem solving

It is important to note at this point that critical thinking can be aimed at solving a problem but can also be used to simply answer questions or even to identify areas for improvement in certain situations. 

At Smowltech, our proctoring plans help with the creation of objective, respectful and innovative exchange and evaluation spaces.Request us a free demo in which we display all the remote supervision solutions we can offer you, as personalized and detailed reports on remote activities’ progress.

Download now!

8 interesting

about proctoring

Discover everything you need about online proctoring in this book to know how to choose the best software.

Fill out the form and download the guide now.

And subscribe to the weekly SMOWL newsletter to get exclusive offers and promotions .

You will discover all the trends in eLearning, technology, innovation, and proctoring at the hands of evaluation and talent management experts .

Discover how SMOWL works

  • Register in mySmowltech indicating your LMS.
  • Check your email and follow the steps to integrate the tool.
  • Enjoy your free trial of 25 licenses.

Request a free demo with one of our experts

In addition to showing you how SMOWL works, we will guide and advise you at all times so that you can choose the plan that best suits your company or institution.

  • Copyright © 2024 all rights reserved SMOWLTECH

Write below what you are looking for

Banner

Generative AI and Research

Research Process

  • Research Assignments
  • Humanitarian Concerns
  • Information Ethics and Plagiarism

Generative AI, like other technology before it, will disrupt and change research practices and skills.

Research is a process of discovering information, evaluating that information, and reshaping our understanding of a topic or issue as we search. It requires basic search mechanics as well as higher order thinking such as evaluating and creating.

AI offers us the opportunity to consider the research skills and practices that we want students to acquire in our classrooms and whether AI will be a part of that research process. 

AI and other research tools will constantly be evolving, but we can provide students with the critical thinking skills needed to evaluate those tools and their content.

New Pathways to Research Skills

 The threshold concept,  Research as Inquiry ,  stresses that research is iterative and involves asking new questions and breaking down complex questions into simpler ones. As students become more information literate, they develop the ability to: 

  • value curiosity
  • maintain an open mind and critical stance 
  • consider research as open-ended exploration 
  • seek multiple perspectives during information gathering and assessment

Students can achieve these dispositions through certain knowledge practices like: formulating research questions, simplifying topics and concepts, generating keywords and outlines for projects, organizing information, finding a variety of sources, and critiquing or analyzing content.

People are now using generative AI to complete some of these tasks. AI may shift how we help students reach these critical information mindsets by practicing new research processes and skills. 

For example: we value that the research process is iterative and non-linear because we want students to develop mental flexibility. When students learn to search library databases, they practice skills like refining research questions, brainstorming search terms, assessing the quality of search results and refining search queries. As an instructor, you might ask how prompt engineering and assessing Generative AI output could reinforce mental flexibility in similar ways. In both cases students have to define their information need and engage in metacognition about their search process. 

Discovery Process: “Mountain Music Granola Vibes Early Morning” Spotify Playlist

critical thinking as a tool for inquiry

Using AI, Spotify generates personalized playlists ("daylists") with word-salad titles based on past listening sessions. The playlists are a great way to "discover" new music that is similar to past music that you've listened to. But using AI for discovery tools raises important questions about relevance, ranking, and selection. 

Personalization of music playlists is the tip of the AI iceberg - we know major library tools provided by vendors like ESBCO and JSTOR are beginning to incorporate AI into the discovery and search process. Library tools are shifting how they present and rank sources based on additional algorithms running behind the scenes. AI tools like Elicit and Reseach Rabbit will create a web of related research for scholars.

These new tools and features will change how we interact with database search result and influence how and what we find in traditional library spaces. 

Reflection Questions about Research Process

  • Questions to Ask Yourself
  • Questions to Ask Your Students

Use these questions to further reflect on research practices in your discipline.

Because technology is constantly changing, we can focus on the process and outcomes more than the tools themselves. 

  • What are the  core “research” practices or skills  that I want my students to learn and to be able to apply?
  • Why are these practices or skills the most important? 
  • Preparing for Research 
  • Finding Information 
  • Synthesizing Research

Research AI Tools

In relation to the questions above - 

  • Are there AI tools that would be appropriate for students to use during the research process?
  • How could these AI tools help students learn or master research practices or skills? 

Curiosity and Non-Linear Research

Instructors have concerns that AI will flatten the information landscape and students will just be "fact-finders" instead of active thinkers in the research process.

  • How can I foster curiosity in students?
  • How can I prioritize or value student voices and analysis in my class?
  • How can I convey the importance of curiosity to my discipline? 

Use these questions with your students for class discussions, reflection short-writes, or other assignments. 

1. What AI tools have you used in the past for classwork or paper assignments? Was there a specific process that you used it for? Why? Did you find it valuable and useful? 

2. What parts of the research process do you struggle with? Why? What parts are easier for you? Why? What strategies do you use to be successful? What does your research process look like normally? 

3. How do you evaluate information? How do you "fact-check," or determine the credibility of a source? What are important aspects to consider? [This can change by discipline!]

4. Library databases like JSTOR and EBSCO are using AI to generate summaries or rank and promote "relevant" sources. How could this selection potentially be a discovery issue if we only see results from heavily cited scholars and only a few sources from new scholars? What perspectives are lost when only the dominant literature is retrieved? 

5. Research tools like Elicit and Research Rabbit, built on large language models, are introducing new ways of finding research articles and visualizing connections between articles. The creators at Elicit even note that there are limitations to their tools and outline how to use it responsibly. How do we balance using these new tools with known limitations with the exciting advantages that they have? What critical mindsets do we need to have when using new tools built on rapidly changing technology? Is searching a skill that should be automated by a tool? When might human interaction be necessary for a search? 

Support and Resources

  • Library Services and Support
  • Resources and Further Reading
  • Generative AI Product Tracker comprehensive list of AI tools from Ithaka - tools are geared for faculty or college students
  • AI Tools for Research, Text, Search, Images, Design, & Presentations Research guide from FIU Libraries
  • Generative AI Can Harm Learning SSRN research article (July 2024) about use of AI math tutors and effects on learning - AI tool has short-term benefits but does not last
  • Ask Smarter Questions in 5 Minutes 5 minute video with categories of questions that prompt curiosity - business focus but still appropriate for students
  • Seven Ways to Be More Curious Blog post from Psychology Today with broad suggestions to prompt and build curiosity
  • How to use Elicit responsibly Advice from Elicit founders, Ought, on how to use Elicit responsibly and get the most out of the tool - raises important limitations
  • << Previous: Home
  • Next: Research Assignments >>
  • Last Updated: Sep 5, 2024 2:47 PM
  • URL: https://guides.library.uwm.edu/ai

IMAGES

  1. Critical Thinking Skills

    critical thinking as a tool for inquiry

  2. 10 Essential Critical Thinking Skills (And How to Improve Them

    critical thinking as a tool for inquiry

  3. How to promote Critical Thinking Skills

    critical thinking as a tool for inquiry

  4. Inquiry, Inquiry based learning, Critical thinking skills

    critical thinking as a tool for inquiry

  5. Tools Of Critical Thinking

    critical thinking as a tool for inquiry

  6. How to Improve Critical Thinking

    critical thinking as a tool for inquiry

VIDEO

  1. Critical thinking: Scientific method

  2. Critical Thinking

  3. PCQ

  4. Inquiry Webinar

  5. he Socratic Method: A Powerful Teaching Approach #socratic #philosophy #shorts

  6. Responsible AI

COMMENTS

  1. Encouraging Critical Thinking Through Inquiry

    When teachers leverage inquiry, students use critical thinking skills to examine multiple perspectives and find ways to improve our world. By Michael McDowell. April 19, 2023 ... Here we use the powerful tools of critical thinking to challenge and better understand the nature of how we have been presented, persuaded, and pushed to learn content ...

  2. Inquiry and critical thinking skills for the next generation: from

    Along with the increasing attention to artificial intelligence (AI), renewed emphasis or reflection on human intelligence (HI) is appearing in many places and at multiple levels. One of the foci is critical thinking. Critical thinking is one of four key 21st century skills - communication, collaboration, critical thinking and creativity. Though most people are aware of the value of critical ...

  3. 11 Critical Inquiry & the Role of Reflection

    1. Reflection is a meaning-making process that moves a learner from one experience into the next with deeper understanding of its relationships with and connections to other experiences and ideas. It is the thread that makes continuity of learning possible, and ensures the progress of the individual and, ultimately, society. It is a means to ...

  4. The Art of Questioning: Techniques to Promote Critical Thinking and Inquiry

    The art of questioning is a critical skill for educators to develop. Questioning techniques that promote critical thinking and inquiry-based learning lead to increased student engagement and deeper understanding. By mastering various strategic questioning approaches, teachers can stimulate complex thinking in their students.

  5. Critical Thinking

    Critical Theory refers to a way of doing philosophy that involves a moral critique of culture. A "critical" theory, in this sense, is a theory that attempts to disprove or discredit a widely held or influential idea or way of thinking in society. Thus, critical race theorists and critical gender theorists offer critiques of traditional ...

  6. Critical thinking in the community of inquiry framework: An analysis of

    Critical thinking is conceptualized more as confirmation of knowledge structures and problem-solving thinking within the Practical Inquiry model. In a second step, we systematically analyze cognitive presence coding schemes as research tools for capturing critical thinking.

  7. Critical Thinking

    Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well. Collecting, analyzing and evaluating information is an important skill in life, and a highly ...

  8. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  9. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  10. Inquiry: A New Paradigm for Critical Thinking

    University of Windsor, Dec 5, 2018 - Philosophy - 419 pages. This volume reflects the development and theoretical foundation of a new paradigm for critical thinking based on inquiry. The field of critical thinking, as manifested in the Informal Logic movement, developed primarily as a response to the inadequacies of formalism to represent ...

  11. (PDF) Enhancing students' critical thinking skills through inquiry

    Inquiry-based Learning. ArticlePDF Available. Enhancing students' critical thinking skills through inquiry-based learning model. October 2019. Journal of Physics Conference Series 1317:012193 ...

  12. 20 Types Of Questions For Teaching Critical Thinking

    Probing Questions: A probing question does what it sounds like it might: Serves as an inquiry tool to explore a topic or a student's thinking and existing understanding of a topic. Probing questions also have different forms, including Emphasizing, Clarifying, Redirecting, Evaluative, Prompting, and Critical Analysis.

  13. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  14. PDF The Miniature Guide to Critical Thinking: Concepts & Tools

    ConCepts and tools. By Dr. Richard Paul and Dr. Linda Elder. The Foundation for Critical Thinking. www.criticalthinking.org 707-878-9100 [email protected]. Why A Critical Thinking Mini-Guide? This miniature guide focuses on of the essence of critical thinking concepts and tools distilled into pocket size.

  15. Inquiry Resources

    These are wonderful conversation starters that can lead to the development of critical thinking, listening and oracy skills that can support your units of inquiry. ... Visible Thinking Routines & Concept-Based Inquiry in Action (book) & Tools & Strategies. Rubric for Becoming an Inquiry-Based Teacher. Click/Tap the above image to view/download ...

  16. Promoting critical thinking in an online, project-based course

    In 1990, the American Philosophical Association stated that critical thinking "is essential as a tool of inquiry, and a liberating force in education and a powerful resource in one's personal and civic life." ... The critical thinking assessment tool used in this study was developed following an iterative process of design-based research ...

  17. The Inquiry Project

    The graphic highlights the importance developing key questions that nurture critical and creative thinking, but also a focus on explicit teaching and intention to scaffold thinking throughout the Inquiry process. ... Before we start a Guided Inquiry a tool we use with our teachers to help them unpack the big picture ideas and possibilities is ...

  18. "We Are the Future": Critical Inquiry and Social Action in the Classroom

    Critical literacy scholars assert that critical engagement with texts can lead to social action (Butler, 2017; Campano et al., 2016; Luke, 2014; Morrell, 2008). Critical inquiry fosters students' interest and motivation to engage in civic projects, human rights, and youth activism. Campano et al. (2016) demonstrated that teaching through.

  19. The Art of Questioning: A Strategy to Foster Critical Thinki

    As educators, we understand the importance of nurturing critical thinking skills in our students. The art of questioning is a pivotal technique in this developmental process, serving as the key to unlock the potential of young minds. This blog post delves into the strategic use of questioning to foster a culture of inquiry and critical analysis ...

  20. Defining Critical Thinking

    Foundation for Critical Thinking. PO Box 31080 • Santa Barbara, CA 93130 . Toll Free 800.833.3645 • Fax 707.878.9111. [email protected]

  21. PDF The Art of Socratic Questioning

    stioning and critical thinking.As you begin to ask questions in the spirit of Socrates—to dig deeply into what people believe and why they believe it—you will begin to experience greater command of your own thinking as. ell as the thinking of others. Be patient with. urself and with your students. Proficiency in Socratic questioning takes tim.

  22. Critical Thinking Tools

    The four pillars of critical thinking are models of practical methods that are the core of developing critical thinking skills. Collaborative Communities are three supporting methods of collaborative tools for individual and collaborative success. These include: community building exercises and models, collaborative learning methods and peer-to ...

  23. (PDF) Increasing Students Critical Thinking Skills and Learning

    1) There were differences in critical thinking skills between the experimental group. students who were using inquiry min d map tools for learning activ ities and control. group students treated ...

  24. Critical thinking: definition and how to improve its skills

    Critical thinking is based on the observation and analysis of facts and evidences to return rational, skeptical and unbiased judgments. This type of thinking involves a series of skills that can be created but also improved, as we will see throughout this article in which we will begin by defining the concept and end with tips to build and improve the skills related to critical thinking.

  25. Using ChatGPT for Critical Thinking in the Classroom

    There continues to be much debate: While some educators are concerned that the chatbot stifles learning by automatically outputting responses with no thought required on the part of the user, others are more optimistic about the tool. In fact, we've heard from a number of teachers who are using ChatGPT for critical thinking activities that help their students hone their analytical skills ...

  26. Research Process

    This guide is designed to support faculty and instructors as they navigate research and information literacy concerns caused by the rise of generative AI technology. AI tools will constantly be evolving - we can provide students with the critical thinking skills to evaluate the tool and its content.