what is research purpose of research

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

What is Research? – Purpose of Research

Picture of DiscoverPhDs

  • By DiscoverPhDs
  • September 10, 2020

Purpose of Research - What is Research

The purpose of research is to enhance society by advancing knowledge through the development of scientific theories, concepts and ideas. A research purpose is met through forming hypotheses, collecting data, analysing results, forming conclusions, implementing findings into real-life applications and forming new research questions.

What is Research

Simply put, research is the process of discovering new knowledge. This knowledge can be either the development of new concepts or the advancement of existing knowledge and theories, leading to a new understanding that was not previously known.

As a more formal definition of research, the following has been extracted from the Code of Federal Regulations :

what is research purpose of research

While research can be carried out by anyone and in any field, most research is usually done to broaden knowledge in the physical, biological, and social worlds. This can range from learning why certain materials behave the way they do, to asking why certain people are more resilient than others when faced with the same challenges.

The use of ‘systematic investigation’ in the formal definition represents how research is normally conducted – a hypothesis is formed, appropriate research methods are designed, data is collected and analysed, and research results are summarised into one or more ‘research conclusions’. These research conclusions are then shared with the rest of the scientific community to add to the existing knowledge and serve as evidence to form additional questions that can be investigated. It is this cyclical process that enables scientific research to make continuous progress over the years; the true purpose of research.

What is the Purpose of Research

From weather forecasts to the discovery of antibiotics, researchers are constantly trying to find new ways to understand the world and how things work – with the ultimate goal of improving our lives.

The purpose of research is therefore to find out what is known, what is not and what we can develop further. In this way, scientists can develop new theories, ideas and products that shape our society and our everyday lives.

Although research can take many forms, there are three main purposes of research:

  • Exploratory: Exploratory research is the first research to be conducted around a problem that has not yet been clearly defined. Exploration research therefore aims to gain a better understanding of the exact nature of the problem and not to provide a conclusive answer to the problem itself. This enables us to conduct more in-depth research later on.
  • Descriptive: Descriptive research expands knowledge of a research problem or phenomenon by describing it according to its characteristics and population. Descriptive research focuses on the ‘how’ and ‘what’, but not on the ‘why’.
  • Explanatory: Explanatory research, also referred to as casual research, is conducted to determine how variables interact, i.e. to identify cause-and-effect relationships. Explanatory research deals with the ‘why’ of research questions and is therefore often based on experiments.

Characteristics of Research

There are 8 core characteristics that all research projects should have. These are:

  • Empirical  – based on proven scientific methods derived from real-life observations and experiments.
  • Logical  – follows sequential procedures based on valid principles.
  • Cyclic  – research begins with a question and ends with a question, i.e. research should lead to a new line of questioning.
  • Controlled  – vigorous measures put into place to keep all variables constant, except those under investigation.
  • Hypothesis-based  – the research design generates data that sufficiently meets the research objectives and can prove or disprove the hypothesis. It makes the research study repeatable and gives credibility to the results.
  • Analytical  – data is generated, recorded and analysed using proven techniques to ensure high accuracy and repeatability while minimising potential errors and anomalies.
  • Objective  – sound judgement is used by the researcher to ensure that the research findings are valid.
  • Statistical treatment  – statistical treatment is used to transform the available data into something more meaningful from which knowledge can be gained.

Finding a PhD has never been this easy – search for a PhD by keyword, location or academic area of interest.

Types of Research

Research can be divided into two main types: basic research (also known as pure research) and applied research.

Basic Research

Basic research, also known as pure research, is an original investigation into the reasons behind a process, phenomenon or particular event. It focuses on generating knowledge around existing basic principles.

Basic research is generally considered ‘non-commercial research’ because it does not focus on solving practical problems, and has no immediate benefit or ways it can be applied.

While basic research may not have direct applications, it usually provides new insights that can later be used in applied research.

Applied Research

Applied research investigates well-known theories and principles in order to enhance knowledge around a practical aim. Because of this, applied research focuses on solving real-life problems by deriving knowledge which has an immediate application.

Methods of Research

Research methods for data collection fall into one of two categories: inductive methods or deductive methods.

Inductive research methods focus on the analysis of an observation and are usually associated with qualitative research. Deductive research methods focus on the verification of an observation and are typically associated with quantitative research.

Research definition

Qualitative Research

Qualitative research is a method that enables non-numerical data collection through open-ended methods such as interviews, case studies and focus groups .

It enables researchers to collect data on personal experiences, feelings or behaviours, as well as the reasons behind them. Because of this, qualitative research is often used in fields such as social science, psychology and philosophy and other areas where it is useful to know the connection between what has occurred and why it has occurred.

Quantitative Research

Quantitative research is a method that collects and analyses numerical data through statistical analysis.

It allows us to quantify variables, uncover relationships, and make generalisations across a larger population. As a result, quantitative research is often used in the natural and physical sciences such as engineering, biology, chemistry, physics, computer science, finance, and medical research, etc.

What does Research Involve?

Research often follows a systematic approach known as a Scientific Method, which is carried out using an hourglass model.

A research project first starts with a problem statement, or rather, the research purpose for engaging in the study. This can take the form of the ‘ scope of the study ’ or ‘ aims and objectives ’ of your research topic.

Subsequently, a literature review is carried out and a hypothesis is formed. The researcher then creates a research methodology and collects the data.

The data is then analysed using various statistical methods and the null hypothesis is either accepted or rejected.

In both cases, the study and its conclusion are officially written up as a report or research paper, and the researcher may also recommend lines of further questioning. The report or research paper is then shared with the wider research community, and the cycle begins all over again.

Although these steps outline the overall research process, keep in mind that research projects are highly dynamic and are therefore considered an iterative process with continued refinements and not a series of fixed stages.

What is a Research Instrument?

The term research instrument refers to any tool that you may use to collect, measure and analyse research data.

Types of Research Design

There are various types of research that are classified by objective, depth of study, analysed data and the time required to study the phenomenon etc.

How to impress a PhD supervisor

Learn 10 ways to impress a PhD supervisor for increasing your chances of securing a project, developing a great working relationship and more.

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

what is research purpose of research

Browse PhDs Now

what is research purpose of research

Impostor Syndrome is a common phenomenon amongst PhD students, leading to self-doubt and fear of being exposed as a “fraud”. How can we overcome these feelings?

Write an effective figure legend

A well written figure legend will explain exactly what a figure means without having to refer to the main text. Our guide explains how to write one.

Joe-Manning-Profile

Dr Manning gained his PhD in Chemical Engineering from the University of Sheffield in 2019. He is now a postdoc researcher studying molecular simulations on nanomaterials at the University of Bath.

what is research purpose of research

Rebecca recently finished her PhD at the University of York. Her research investigated the adaptations that occur in the symbiosis between the tsetse fly and its bacterial microbiome.

Join Thousands of Students

  • Privacy Policy

Research Method

Home » Purpose of Research – Objectives and Applications

Purpose of Research – Objectives and Applications

Table of Contents

Purpose of Research

Purpose of Research

Definition:

The purpose of research is to systematically investigate and gather information on a particular topic or issue, with the aim of answering questions, solving problems, or advancing knowledge.

The purpose of research can vary depending on the field of study, the research question, and the intended audience. In general, research can be used to:

  • Generate new knowledge and theories
  • Test existing theories or hypotheses
  • Identify trends or patterns
  • Gather information for decision-making
  • Evaluate the effectiveness of programs, policies, or interventions
  • Develop new technologies or products
  • Identify new opportunities or areas for further study.

Objectives of Research

The objectives of research may vary depending on the field of study and the specific research question being investigated. However, some common objectives of research include:

  • To explore and describe a phenomenon: Research can be conducted to describe and understand a phenomenon or situation in greater detail.
  • To test a hypothesis or theory : Research can be used to test a specific hypothesis or theory by collecting and analyzing data.
  • To identify patterns or trends: Research can be conducted to identify patterns or trends in data, which can provide insights into the behavior of a system or population.
  • To evaluate a program or intervention: Research can be used to evaluate the effectiveness of a program or intervention, such as a new drug or educational intervention.
  • To develop new knowledge or technology : Research can be conducted to develop new knowledge or technologies that can be applied to solve practical problems.
  • To inform policy decisions: Research can provide evidence to inform policy decisions and improve public policy.
  • To improve existing knowledge: Research can be conducted to improve existing knowledge and fill gaps in the current understanding of a topic.

Applications of Research

Research has a wide range of applications across various fields and industries. Here are some examples:

  • Medicine : Research is critical in developing new treatments and drugs for diseases. Researchers conduct clinical trials to test the safety and efficacy of new medications and therapies. They also study the underlying causes of diseases to find new ways to prevent or treat them.
  • Technology : Research is crucial in developing new technologies and improving existing ones. Researchers work to develop new software, hardware, and other technological innovations that can be used in various industries such as healthcare, manufacturing, and telecommunications.
  • Education : Research is essential in the field of education to develop new teaching methods and strategies. Researchers conduct studies to determine the effectiveness of various educational approaches and to identify factors that influence student learning.
  • Business : Research is critical in helping businesses make informed decisions. Market research can help businesses understand their target audience and identify trends in the market. Research can also help businesses improve their products and services.
  • Environmental Science : Research is crucial in the field of environmental science to understand the impact of human activities on the environment. Researchers conduct studies to identify ways to reduce pollution, protect natural resources, and mitigate the effects of climate change.

Goal of Research

The ultimate goal of research is to advance our understanding of the world and to contribute to the development of new theories, ideas, and technologies that can be used to improve our lives. Some more common Goals are follows:

  • Explore and discover new knowledge : Research can help uncover new information and insights that were previously unknown.
  • Test hypotheses and theories : Research can be used to test and validate theories and hypotheses, allowing researchers to refine and develop their ideas.
  • Solve practical problems: Research can be used to identify solutions to real-world problems and to inform policy and decision-making.
  • Improve understanding : Research can help improve our understanding of complex phenomena and systems, such as the human body, the natural world, and social systems.
  • Develop new technologies and innovations : Research can lead to the development of new technologies, products, and innovations that can improve our lives and society.
  • Contribute to the development of academic fields : Research can help advance academic fields by expanding our knowledge and understanding of important topics and areas of inquiry.

Importance of Research

The importance of research lies in its ability to generate new knowledge and insights, to test existing theories and ideas, and to solve practical problems.

Some of the key reasons why research is important are:

  • Advancing knowledge: Research is essential for advancing knowledge and understanding in various fields. It enables us to explore and discover new concepts, ideas, and phenomena that can contribute to scientific and technological progress.
  • Solving problems : Research can help identify and solve practical problems and challenges in various domains, such as health care, agriculture, engineering, and social policy.
  • Innovation : Research is a critical driver of innovation, as it enables the development of new products, services, and technologies that can improve people’s lives and contribute to economic growth.
  • Evidence-based decision-making : Research provides evidence and data that can inform decision-making in various fields, such as policy-making, business strategy, and healthcare.
  • Personal and professional development : Engaging in research can also contribute to personal and professional development, as it requires critical thinking, problem-solving, and communication skills.

When to use Research

Research should be used in situations where there is a need to gather new information, test existing theories, or solve problems. Some common scenarios where research is often used include:

  • Scientific inquiry : Research is essential for advancing scientific knowledge and understanding, and for exploring new concepts, theories, and phenomena.
  • Business and market analysis: Research is critical for businesses to gather data and insights about the market, customer preferences, and competition, to inform decision-making and strategy development.
  • Social policy and public administration: Research is often used in social policy and public administration to evaluate the effectiveness of programs and policies, and to identify areas where improvements are needed.
  • Healthcare: Research is essential in healthcare to develop new treatments, improve existing ones, and to understand the causes and mechanisms of diseases.
  • Education : Research is critical in education to evaluate the effectiveness of teaching methods and programs, and to develop new approaches to learning.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Critical Analysis

Critical Analysis – Types, Examples and Writing...

Research Recommendations

Research Recommendations – Examples and Writing...

Significance of the Study

Significance of the Study – Examples and Writing...

Data Analysis

Data Analysis – Process, Methods and Types

Research Topic

Research Topics – Ideas and Examples

What is a Hypothesis

What is a Hypothesis – Types, Examples and...

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

what is research purpose of research

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

 
Approach used Unstructured Structured Highly structured
Conducted throughAsking questions Asking questions By using hypotheses.
TimeEarly stages of decision making Later stages of decision makingLater stages of decision making

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods .

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

what is research purpose of research

Why You Should Attend XDAY 2024

Aug 30, 2024

Alchemer vs Qualtrics

Alchemer vs Qualtrics: Find out which one you should choose

target population

Target Population: What It Is + Strategies for Targeting

Aug 29, 2024

Microsoft Customer Voice vs QuestionPro

Microsoft Customer Voice vs QuestionPro: Choosing the Best

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Educational resources and simple solutions for your research journey

research

What is Research? Definition, Types, Methods, and Examples

Academic research is a methodical way of exploring new ideas or understanding things we already know. It involves gathering and studying information to answer questions or test ideas and requires careful thinking and persistence to reach meaningful conclusions. Let’s try to understand what research is.   

Table of Contents

Why is research important?    

Whether it’s doing experiments, analyzing data, or studying old documents, research helps us learn more about the world. Without it, we rely on guesswork and hearsay, often leading to mistakes and misconceptions. By using systematic methods, research helps us see things clearly, free from biases. (1)   

What is the purpose of research?  

In the real world, academic research is also a key driver of innovation. It brings many benefits, such as creating valuable opportunities and fostering partnerships between academia and industry. By turning research into products and services, science makes meaningful improvements to people’s lives and boosts the economy. (2)(3)  

What are the characteristics of research?    

The research process collects accurate information systematically. Logic is used to analyze the collected data and find insights. Checking the collected data thoroughly ensures accuracy. Research also leads to new questions using existing data.   

Accuracy is key in research, which requires precise data collection and analysis. In scientific research, laboratories ensure accuracy by carefully calibrating instruments and controlling experiments. Every step is checked to maintain integrity, from instruments to final results. Accuracy gives reliable insights, which in turn help advance knowledge.   

Types of research    

The different forms of research serve distinct purposes in expanding knowledge and understanding:    

  • Exploratory research ventures into uncharted territories, exploring new questions or problem areas without aiming for conclusive answers. For instance, a study may delve into unexplored market segments to better understand consumer behaviour patterns.   
  • Descriptive research delves into current issues by collecting and analyzing data to describe the behaviour of a sample population. For instance, a survey may investigate millennials’ spending habits to gain insights into their purchasing behaviours.   
  • Explanatory research, also known as causal research, seeks to understand the impact of specific changes in existing procedures. An example might be a study examining how changes in drug dosage over some time improve patients’ health.   
  • Correlational research examines connections between two sets of data to uncover meaningful relationships. For instance, a study may analyze the relationship between advertising spending and sales revenue.   
  • Theoretical research deepens existing knowledge without attempting to solve specific problems. For example, a study may explore theoretical frameworks to understand the underlying principles of human behaviour.   
  • Applied research focuses on real-world issues and aims to provide practical solutions. An example could be a study investigating the effectiveness of a new teaching method in improving student performance in schools.  (4)

Types of research methods

  • Qualitative Method: Qualitative research gathers non-numerical data through interactions with participants. Methods include one-to-one interviews, focus groups, ethnographic studies, text analysis, and case studies. For example, a researcher interviews cancer patients to understand how different treatments impact their lives emotionally.    
  • Quantitative Method: Quantitative methods deal with numbers and measurable data to understand relationships between variables. They use systematic methods to investigate events and aim to explain or predict outcomes. For example, Researchers study how exercise affects heart health by measuring variables like heart rate and blood pressure in a large group before and after an exercise program. (5)  

Basic steps involved in the research process    

Here are the basic steps to help you understand the research process:   

  • Choose your topic: Decide the specific subject or area that you want to study and investigate. This decision is the foundation of your research journey.   
  • Find information: Look for information related to your research topic. You can search in journals, books, online, or ask experts for help.   
  • Assess your sources: Make sure the information you find is reliable and trustworthy. Check the author’s credentials and the publication date.   
  • Take notes: Write down important information from your sources that you can use in your research.   
  • Write your paper: Use your notes to write your research paper. Broadly, start with an introduction, then write the body of your paper, and finish with a conclusion.   
  • Cite your sources: Give credit to the sources you used by including citations in your paper.   
  • Proofread: Check your paper thoroughly for any errors in spelling, grammar, or punctuation before you submit it. (6)

How to ensure research accuracy?  

Ensuring accuracy in research is a mix of several essential steps:    

  • Clarify goals: Start by defining clear objectives for your research. Identify your research question, hypothesis, and variables of interest. This clarity will help guide your data collection and analysis methods, ensuring that your research stays focused and purposeful.   
  • Use reliable data: Select trustworthy sources for your information, whether they are primary data collected by you or secondary data obtained from other sources. For example, if you’re studying climate change, use data from reputable scientific organizations with transparent methodologies.   
  • Validate data: Validate your data to ensure it meets the standards of your research project. Check for errors, outliers, and inconsistencies at different stages, such as during data collection, entry, cleaning, or analysis.    
  • Document processes: Documenting your data collection and analysis processes is essential for transparency and reproducibility. Record details such as data collection methods, cleaning procedures, and analysis techniques used. This documentation not only helps you keep track of your research but also enables others to understand and replicate your work.   
  • Review results: Finally, review and verify your research findings to confirm their accuracy and reliability. Double-check your analyses, cross-reference your data, and seek feedback from peers or supervisors. (7) 

Research is crucial for better understanding our world and for social and economic growth. By following ethical guidelines and ensuring accuracy, researchers play a critical role in driving this progress, whether through exploring new topics or deepening existing knowledge.   

References:  

  • Why is Research Important – Introductory Psychology – Washington State University  
  • The Role Of Scientific Research In Driving Business Innovation – Forbes  
  • Innovation – Royal Society  
  • Types of Research – Definition & Methods – Bachelor Print  
  • What Is Qualitative vs. Quantitative Study? – National University  
  • Basic Steps in the Research Process – North Hennepin Community College  
  • Best Practices for Ensuring Data Accuracy in Research – LinkedIn  

Researcher.Life is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Researcher.Life All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 21+ years of experience in academia, Researcher.Life All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $17 a month !    

Related Posts

Back to school 2024 sale

Back to School – Lock-in All Access Pack for a Year at the Best Price

journal turnaround time

Journal Turnaround Time: Researcher.Life and Scholarly Intelligence Join Hands to Empower Researchers with Publication Time Insights 

National Academies Press: OpenBook

Airport Passenger-Related Processing Rates Guidebook (2009)

Chapter: chapter 3 - defining the research: purpose, focus, and potential uses.

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

14 Chapter 3 identifies roles, relationships, and responsibilities of stakeholders. It examines principal steps involved in planning an airport passenger-rate data collection effort. It begins with the ques- tion of whether the potential benefits of the proposed effort outweigh the anticipated cost; describes different types of research (i.e., exploratory, descriptive, inferential); summarizes the questions each type addresses; and notes the ends to which the data might be used. 3.1 Roles and Responsibilities When an airport data collection event is first mentioned, it invariably raises numerous ques- tions: Who is asking for the data? How will it be used? What’s the budget? What’s the schedule? What kind of resources can be made available? Without answers to these fundamental questions, the success of your research is in jeopardy. This section will help the researcher establish the role of key stakeholders and their interrelationships within the team. Many entities can sponsor a data collection study, including airports, airlines, manufacturers, and various agencies. Likewise, there are many ways of managing and staffing the event and pro- moting involvement with stakeholders. There are therefore myriad ways of organizing a study. Exhibit 3-1 is an example of how a study could be arranged with the airport as the sponsor. 3.1.1 Client/Sponsor For airports, oversight is guided by a board, commission, or an authority consisting of appointed or elected officials. While these agencies typically provide oversight to airport man- agement and approve long-term plans and large capital expenditures, usually it is the airport director or manager who makes day-to-day decisions. Depending on the size of the airport, there may be several departments, each having its own manager. In such cases, passenger terminal-related studies would typically fall within the purview of the planning and/or engineering department and would be managed by its director. Regardless of the affiliation of the project sponsor(s), it is essential that the following ques- tions be answered clearly and unambiguously as they pertain to the sponsor at the beginning of any project: • Who has primary responsibility for defining the questions the study is intended to address? • What preference does this person or group have regarding ongoing involvement with the project? – What information would they like to receive, in what format, and with what frequency? – Who should be the principal point-of-contact (POC) on the client’s side for questions that might emerge related to the study’s focus, direction, etc.? C H A P T E R 3 Defining the Research: Purpose, Focus, and Potential Uses

Defining the Research: Purpose, Focus, and Potential Uses 15 • Who is the designated project manager, and what information would he or she like to receive, in what format, and with what frequency? • If the person given responsibility for day-to-day issues pertaining to access, authorizations, etc. is different from the project manager, who is that person, and what is the scope of issues he or she is authorized to address? • If problems or obstacles arise in implementing the study, and the project manager is not able or authorized to resolve them, what is the chain of persons through which the issue should be escalated? 3.1.2 Study Team The size of the study team will depend on the team’s depth and organization, and the size, duration, and complexity of the study itself. For a typical medium- to large-scale study, the roles listed in the following sections are the most typical. Multiple roles might be assumed by a single person or distributed across multiple persons. Titles vary as well, but the functions are largely universal. Project Manager The project manager is typically a mid-level to senior person who has the long-term, day-to- day relationship with his or her client counterpart. The need for the passenger-related process- ing rate study may initially originate from discussions between the project manager and those within the airport or airline. Survey Manager The survey manager is usually a mid-level staff person. His/her role on the project would be to oversee the day-to-day management of the data processing rate study, including leading the development of the scope, schedule, and budget; developing the team; and assigning roles and responsibilities. The survey manager would have the responsibility of ensuring the survey goals were adequately defined and met. Decision Maker Survey Manager Admin. Support Staffing Source (e.g., airport personnel, mkt. research firm) Surveyor Surveyor Surveyor Sponsor/Client (Airport) (Large Airport: Dir./Mgr.) Project Manager (Large Airport: Dir. Planning/Eng.) (Small Airport: Apt. Mgr.) Project Manager (Typ. oversees multiple tasks of which survey is but one part) Study Team (Typically, Consultant) Statistical Technical Expert Survey Assistant Data Analyst IT Analyst Other Stakeholders • Airlines • Agencies • Concessionaires Exhibit 3-1. Typical sponsor and study team roles (assuming an airport is the sponsor).

16 Airport Passenger-Related Processing Rates Guidebook Research and Statistical Expert A person(s) with expertise in research methodology and quantitative/statistical analysis should be consulted to develop, or provide comments and recommendations about, the overall methodology, the sampling plan, and so forth. Most of this person’s input would occur at the project’s initiation. A distinction is sometimes drawn in the consulting literature among differ- ent approaches to consulting. One such approach, generally referred to as process consultation might be of particular appeal.1 When acting in this role, the consultant not only provides tech- nical expertise related to the specific project, but also works with the client to develop expertise. This arrangement has the goal of, over time, reducing the reliance on the consultant. Survey Assistant The survey assistant has primary responsibility for assisting the survey project manager and secondarily to assist others on the project team throughout the duration of the study. Typically, this staff person will be at a junior level. The degree of assistance this person can provide is based on his/her level of education and current skill sets. Data Analyst The data analyst should not only be well-versed in technical analysis, but should also have a strong familiarity with the airport terminal environment. This person could be a terminal or air- port planner or aviation architect. The analyst is often largely responsible for documenting results, and responsibilities might extend to presenting findings to the client. Administrative Support Data collection efforts are inherently complex and, as such, often require a significant level of coordination and administration. The staff person serving this function would be responsible for such things as making travel plans, scheduling visits to the airport’s security office, buying supplies, shipping and receiving materials, scheduling meetings, preparing invoices and con- tracts, and editing/proofing the report. Data Collection Staff For small studies (e.g., small airports where only a few functional elements are being observed for a limited time period), airport/airline or consultant staffing may be used. For larger studies, typically examining multiple functional elements of a medium or large airport over a multi-day period, a market-research firm is frequently employed. The data collection staff reports directly to the survey manager. 3.2 Is the Study Needed? While the need for data collection is often justifiable, the benefit of validating the need, and avoiding what might be a costly, and possibly unjustified, effort well exceeds the relatively minor cost of pausing to consider a few basic questions (see Appendix C for more information). Exhibit 3-2 illustrates these questions. 3.3 Research Fundamentals This section summarizes a number of fundamental issues and terms related to the research process. (Additional detail is included in Appendix C.) 1 Schein, E. H. (1999). Process Consultation Revisited: Building the Helping Relationship. NY: Addison Wesley.

Research is a dynamic process with both deductive and inductive dimensions. This differs in some ways from what some present as the “traditional” approach to research, i.e., that theory drives hypothesis testing. Sometimes it does, but sometimes it doesn’t work this way. 3.3.1 Theory, Hypotheses, and Evidence The word “theory” often implies a formal set of laws, propositions, variables, and the like, whose relationships are clearly defined. A related implication is that theory may not be particu- larly germane to the everyday world of work. This view of theory is not incorrect, but neither is it complete. While theory can be abstract and complex in its detail, it does not necessarily have to be abstract, complex, or formal. It can be thought of more broadly and simply as an explanation of “how the world works.” For exam- ple, an organization might develop a mission or a value statement (or both); engrave the words in a medium intended to last millennia; and prominently display the statement in the workplace with the intent of communicating to all its perspective clients on issues pertinent to its view. In Defining the Research: Purpose, Focus, and Potential Uses 17 Question Things to Consider Have relevant data been collected at this airport in the past that might be used rather than collecting new data? Might you be able to get data from another airport similar in key ways to this airport? Are there data available that might help answer the research question? Might access to the data be blocked due to proprietary or security issues? Sometimes the data are perceived to be so sensitive that the “owner” of the data may not give permission to share it. Has the decision already been made, and the data are being collected to legitimize the decision? Is there anything to suggest that the study is an attempt to “prove” something true or false? What role will the results play in the decision being considered? To what extent will the decision makers be persuaded by the results? What will the decision makers accept as credible evidence? Before collecting data, make certain that the research plan will result in data that the sponsors will accept. It is better to learn beforehand, for example, that the proposed sampling plan does not meet the sponsor’s criteria for rigor. What is the cost of the potential investment that the data will help inform? What is the cost of conducting the research? Does the benefit equal or outweigh the cost? Cost should be considered not only in economic terms, but as safety, inconvenience, and so forth. Exhibit 3-2. Considerations to determine need for data collection.

2008, British Airways announced a new venture: OpenSkies. The “theory” OpenSkies used to define its clients is reflected in its advertising as shown in Exhibit 3-3. So, how does this relate to airport processing rate studies? It relates in the following two ways: 1. The published research literature may well contain formal theories relevant to what data to collect and how to collect it. For example, Appendix B includes a bibliography of recent research articles related to passenger and baggage processing in airports. It is intended to illustrate the scope and diversity of research available on a given topic. Before embarking on an investigation, review the literature to see how it might enhance the quality of the planned research. The Internet provides access to numerous sources for such scholarly documents. 2. Informally, the key decisions about how to go about collecting data are grounded in assump- tions about how things work (i.e., one’s own theory). For example, you might choose to col- lect passenger security screening data between 6:00 a.m. and 8:00 a.m. on a Monday because your experience is that this time period reflects peak checkpoint activity. While this “theory” may be correct in some circumstances, it may also be wrong in others. For example, at many vacation-oriented airports, the peak at the checkpoint occurs in the late morning due to check-out times at hotels. Another common view of research is of the stereotypical scientist, objectively testing hypothe- ses (or an “educated guess”) arising from theory. Exhibit 3-4 reflects this general approach to research. This is certainly one way in which research proceeds, but, similar to theory, it is not the only way. Before considering an “evidence first” approach, we wish to mention a variation on the tra- ditional approach displayed in Exhibit 3-4 that has been gaining dominance in recent years. In particular, this is a confidence interval (CI) approach rather than a hypothesis driven approach. In a hypothesis driven approach, the researcher’s primary interest is in testing a population parameter, and uses a sample drawn from the population. When the researcher takes a CI approach, the intent is to calculate an interval within which the population parameter is likely 18 Airport Passenger-Related Processing Rates Guidebook Exhibit 3-3. OpenSkies advertisement. Question key assumptions, even if they seem to be “common sense,” by checking with informants, look- ing at the literature, etc.

to fall. Hypotheses are stated before data collection; CIs are calculated after data are collected.2 In conducting passenger-processing rate research in airport environments, the CI approach is going to be the most appropriate in most instances. A markedly different approach to those described above is shown in Exhibit 3-5. In contrast to beginning with a theory and then collecting evidence to test the theory or estimate a popula- tion parameter within some CI, this approach begins with evidence for which one seeks poten- tial explanations, or “theories” to explain the evidence. This approach is subsumed under the broad heading of Bayesian Law, so named after the 18th Century English clergyman, Thomas Bayes, credited with developing the approach. Depending on where one begins can result in potentially dramatic conclusions (see Exhibit 3-6). This is important because limiting oneself to a particular perspective of how research should be conducted and how data ought to be gathered may impose unnecessary constraints. What is important is that the research is executed systematically and with rigor. The documented ways in which science proceeds are often idealized: portraying what is inherently a very dynamic and nonlinear process as logical and linear. 3.3.2 Research Questions and Purposes A basic issue in research is specifying the question the research will help answer. Penning a specific question also helps in determining what approach might be best used in seeking an Defining the Research: Purpose, Focus, and Potential Uses 19 Theory Drives questions & hypotheses Hypothesis: Installing n kiosks will reduce the average time of passengers waiting in line by 10% over check-in agents. Leading to a conclusion Drives data collection Followed by analysis Exhibit 3-4. Hypothesis driven approach. Evidence leads to speculation about possible explanations Which may or may not drive more data collection & analysis Theory Exhibit 3-5. Bayesian approach. 2 While these approaches are presented here as mutually exclusive, they might be integrated in practice.

answer. One classic text in research methodology5 suggests that a research question should express a relationship between two or more variables, and it should imply an empirical approach, that is, it should lend itself to being measured using data. A variable is, not surprisingly, some- thing that can vary, or assume different values. In the next section, illustrative questions are given, categorized by the purpose of research with which they are best matched. The five research purposes are presented as the following: 1. Explore, 2. Describe, 3. Test, 4. Evaluate, and 5. Predict. The distinctions among these purposes are not absolute, nor are they necessarily exclusive of one another. A research initiative might be directed at answering questions with multiple pur- poses. Indeed, this is but one of many ways of classifying research. In addition, the reader whose practice lies primarily in the arena of modeling and simulation might note their absence from this list. Although modeling and simulation applications require input data, for example, to gen- erate distributions and parameters for use as stochastic varieties in modeling, the techniques used to collect data are largely independent of specific applications (such as simulation and model- ing). Those issues unique to modeling are beyond the scope of this guidebook. Explore (Exploratory Research) Exploratory research is sometimes defined as “what to do when you don’t know what you don’t know.” Its aim is discovery and to develop an understanding of relevant variables and their interactions in a real (field) environment. Exploratory research, as such, is appropriate when the 20 Airport Passenger-Related Processing Rates Guidebook If your intent is to… And take action based on… Use… Example Test a hypothesis regarding a population parameter Whether you reject or fail to reject the null hypothesis Hypothesis testing approach The proportion of coach passengers checking in more than 60 min prior to scheduled departure is 80% H A : p > .80 3 H 0 : p .804 Estimate a population parameter The confidence interval selected CI approach Plus or minus 5%, what is the average time coach passengers check in prior to scheduled departure? Determine the likelihood of an event given some evidence The calculated probability Bayesian approach What is the probability that a passenger’s carry on- luggage will be subject to secondary security screening given that the passenger is boarding an international flight? Exhibit 3-6. Research approaches. 3 This is the research, or Alternative, hypothesis. It reads: The proportion is greater than 80%. 4 This is the null hypothesis. It is what is tested, and reads: The proportion is less than or equal to 80%. 5 Kerlinger F. & Lee, H. (2000). Foundations of Behavioral Research, 4th ed. NY: Harcourt Brace.

problem is not well defined. For example, passenger complaints about signs within a facility might prompt the following exploratory question: • “Where should signage be located to minimize passenger confusion?” As another example, if a new security checkpoint configuration is proposed, it may be too novel to rely on variables used in other studies. The question, therefore, might then be the following: • “How does a given alternative security checkpoint configuration affect capacity?” This type of research is often qualitative rather than quantitative. That is, it employs verbal descriptors of observations, rather than counts of those observations (see Appendix C for more information). Describe (Descriptive Research) Descriptive research, as the name implies, is intended to describe phenomena. While descrip- tive research might involve collecting qualitative data by asking open-ended questions in an interview, it typically employs quantitative methods resulting in reporting frequencies, calculat- ing averages, and the like. The following two questions illustrate the nature of descriptive research. Each implies that the relevant variables have been identified as well as the conditions under which the data should be collected. • “What is the average number of passengers departing on international flights on weekday evenings in July at a given airport?” • “How many men use a given restroom at a particular location at a given time?” Test (Experimental and Quasi-experimental Research and Modeling) Often, the intent of the research is not simply to describe something, but to test the impact of some intervention. In an airport environment, such research might be initiated to evaluate the relative effectiveness of a security screening technology in accurately detecting contraband. It is similar in approach to research conducted to assess the relative effectiveness of an experimental drug in comparison to a control (placebo) or another drug. Variables are often manipulated and controlled. This research lies largely outside the scope of this guidebook and, as such, will not receive much attention. Examples of questions that might be asked in this type of research include the following: • “What is the impact of posting airline personnel near check-in waiting lines on the average passenger waiting time?” In addition to the classic “experiment,” simulation modeling might be used, employing rep- resentative data to help answer questions such as the following: • “What would be the impact on processing time of a new security measure being considered?” • “How many agents are needed to keep passenger waiting time below an average of 10 min?” Evaluate (Evaluative Research) Sometimes, the intent of the research is to assess performance against some standard or stated requirement. Basically, evaluation research is concerned with seeing how well something is work- ing, with an eye toward improving performance, as illustrated by the following two questions: • “Is the performance of a given piece of equipment in the field consistent with manufacturer’s specifications?” • “On average, what proportion of passengers waits in a security checkpoint line longer than the 10-minute maximum threshold specified by an airline?” Defining the Research: Purpose, Focus, and Potential Uses 21

Predict Finally, research might be initiated to attempt to predict or anticipate potential emerging pat- terns before they occur. This is related to environmental scanning, insofar as it represents a delib- erate attempt to monitor potential trends and their impact. For example, in the early 1970s, one might have posed the following question: • “What would be the impact of an increase in the number of women in the workforce on air- port design?” There are numerous documented approaches to answering questions such as these. While well beyond the scope of this guidebook, here is one as illustrative: scenario planning. This method involves convening persons with relevant expertise to identify those areas that might most impact the industry (e.g., regulation, fuel costs, demographic changes), and then to systemati- cally consider what the best, worst, and might likely scenarios might be. The principal value of such an approach is that it facilitates deliberate consideration of future trends, and in so doing, presumably leaves people better prepared. When the goal of the research is to predict, data from multiple sources might be sought. The scenario planning example relies, to an extent, on the judgments of experts. Probabilities can also be drawn from historical data to help identify patterns and trends. Exhibit 3-7 is a summary of the key characteristics of each research type. 3.4 Developing the Research Plan Large research studies, particularly when funding is being requested, often require the researchers to adhere to a specific set of technical requirements. The Research Team is aware that the ad hoc and short timeline of many airport-planning research efforts makes developing a “for- mal” research plan impracticable. Nonetheless, even though you might not have the “luxury” of 22 Airport Passenger-Related Processing Rates Guidebook Research Purpose Characteristics Explore Primary purpose: to better define or understand a situation. Data will help answer the research question. The benefit of conducting the research justifies the cost. Qualitative data are recorded, using observation. Describe Primary purpose: to provide descriptive information about something. Test Primary purpose: to assess the impact of a proposed change in procedure or policy. Evaluate Primary purpose: to assess performance against requirements. Predict Primary purpose: to consider possible future circumstances with the purpose of being better prepared for emerging trends. Exhibit 3-7. Summary of research types.

developing such a plan, there are benefits to considering the issues described in this section, as well as documenting basic information. The following are the three major elements the Research Team believes worth documenting, regardless of the size of the research endeavor.6 1. Goals or aims. 2. Background and significance. 3. Research design and methods. Each is described in the sections that follow. 3.4.1 Goals or Aims Specify the question the research is intended to help answer or the specific purpose of the research. The experience of having to translate an intended purpose into words can help clarify your intent. In addition, a written statement can serve as a way of ensuring that your understand- ing of the purpose of the research is consistent with that of the sponsor and other stakeholders. Two examples follow: Statement of Purpose—Example 1 The purpose of this study is to aid decision makers in determining if extending the dwell time of the airport’s automated guideway transit system (AGTS) vehicles from 30 sec to 35 sec at the Concourse C station might improve overall system capacity by providing more boarding time for passengers. Statement of Purpose—Example 2 The goal of this study is to provide airport management with recent data showing the percent- age of arriving flights whose first checked bag reaches the claim device within the airport’s goal of 15 min. 3.4.2 Background and Significance Document what is already known, and specify how the proposed research initiative will add to this knowledge. Consider a “devil’s advocate” perspective by asking what the consequences of not doing the research might be. 3.4.3 Research Design and Methods In this section, describe how you will go about collecting and analyzing data. Additional infor- mation about these issues, including sampling strategies and sample size, is presented in Chapter 5 and in Appendix C. The research plan does not need be lengthy. It should, however, capture key information that, were it not documented and those familiar with the research were not available, would be diffi- cult to ascertain. Defining the Research: Purpose, Focus, and Potential Uses 23 6 This section is partly based on guidelines published by the Agency for Healthcare Research and Quality, Department of Health and Human Services. http://www.ahrq.gov/fund/esstplan.htm.

TRB’s Airport Cooperative Research Program (ACRP) Report 23: Airport Passenger-Related Processing Rates Guidebook provides guidance on how to collect accurate passenger-related processing data for evaluating facility requirements to promote efficient and cost-effective airport terminal design.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Banner

* Research Basics *

  • Introduction

So What Do We Mean By “Formal Research?”

  • Guide License
  • Types of Research
  • Secondary Research | Literature Review
  • Developing Your Topic
  • Using and Evaluating Sources
  • Ethics & Responsible Conduct of Research
  • More Information

Paul V. Galvin Library

what is research purpose of research

email: [email protected]

Chat with us:

Make a research appointment:, search our faq:.

Research is formalized curiosity. It is poking and prying with a purpose. - Zora Neale Hurston

A good working definition of research might be:

Research is the deliberate, purposeful, and systematic gathering of data, information, facts, and/or opinions for the advancement of personal, societal, or overall human knowledge.

Based on this definition, we all do research all the time. Most of this research is casual research. Asking friends what they think of different restaurants, looking up reviews of various products online, learning more about celebrities; these are all research.

Formal research includes the type of research most people think of when they hear the term “research”: scientists in white coats working in a fully equipped laboratory. But formal research is a much broader category that just this. Most people will never do laboratory research after graduating from college, but almost everybody will have to do some sort of formal research at some point in their careers.

Casual research is inward facing: it’s done to satisfy our own curiosity or meet our own needs, whether that’s choosing a reliable car or figuring out what to watch on TV. Formal research is outward facing. While it may satisfy our own curiosity, it’s primarily intended to be shared in order to achieve some purpose. That purpose could be anything: finding a cure for cancer, securing funding for a new business, improving some process at your workplace, proving the latest theory in quantum physics, or even just getting a good grade in your Humanities 200 class.

What sets formal research apart from casual research is the documentation of where you gathered your information from. This is done in the form of “citations” and “bibliographies.” Citing sources is covered in the section "Citing Your Sources."

Formal research also follows certain common patterns depending on what the research is trying to show or prove. These are covered in the section “Types of Research.”

Creative Commons License

  • Next: TL;DR >>
  • Last Updated: Jul 24, 2024 4:33 PM
  • URL: https://guides.library.iit.edu/research_basics

Library & Information Science Education Network

What is Research? – Definition, Objectives & Types of Research

Md. Ashikuzzaman

Introduction: Research is a systematic and structured investigation that seeks to expand knowledge, uncover new insights, and provide evidence-based understanding in various fields. It is vital in advancing human understanding, addressing complex problems, and driving innovation. Research encompasses a wide range of methodologies, including empirical studies, experiments, surveys, and theoretical analyses, conducted by researchers across academic, scientific, and professional domains. New discoveries are made through research, theories are developed and tested, and practical solutions are generated. The impact of research is far-reaching, influencing advancements in technology, healthcare, social sciences, environmental conservation, and more. It drives progress, informs policy decisions, and shapes the future by providing a solid foundation of reliable and verified knowledge. The importance of research cannot be overstated, as it drives human knowledge forward and fosters societal development and improvement. Types of Research

What is Research?

Types of Research

The primary objective of the research is to contribute to the existing body of knowledge by uncovering new insights, validating existing theories, or challenging prevailing assumptions. It is driven by the pursuit of truth, accuracy, and evidence-based understanding.

Research can take various forms, depending on the discipline and the nature of the inquiry. It can be empirical, involving the collection and analysis of data through experiments, surveys, observations, or interviews. It can also be theoretical, involving the critical analysis of existing literature and concepts to develop new frameworks or models.

The research process is characterized by systematic and organized steps. It begins with identifying a research problem or topic of interest, followed by an extensive literature review to understand the existing knowledge and identify gaps. Research questions or hypotheses are formulated, and a research design is developed to guide data collection and analysis.

Data collection methods can vary widely, ranging from quantitative approaches such as surveys or experiments to qualitative approaches such as interviews or case studies. Researchers analyze the collected data using appropriate statistical or qualitative analysis techniques to draw meaningful conclusions.

One of the key aspects of research is its emphasis on objectivity and rigor. Researchers strive to minimize bias, ensure the reliability and validity of findings, and maintain ethical standards in their research practices.

The impact of research extends far beyond the academic realm. Research findings inform decision-making processes in various sectors, including healthcare, policy development, business strategies, environmental conservation, and social sciences. It drives technological advancements, fosters innovation, and provides the foundation for evidence-based practices.

Furthermore, research is an iterative process, with new studies building upon and refining existing knowledge. It is a collaborative endeavor, often involving interdisciplinary collaborations and the exchange of ideas among researchers worldwide.

Definitions of Research:

Research is a systematic and organized investigation conducted to expand knowledge, gain a deeper understanding, and generate new insights in a specific field. It involves rigorous and organized data collection, analysis, and interpretation to address research questions or hypotheses. The pursuit of new information drives research, the validation of existing theories, or the exploration of new perspectives. It employs various methodologies to gather and analyze data, including empirical studies, experiments, surveys, interviews, or theoretical analyses. The ultimate goal of the research is to contribute to the existing body of knowledge, advance understanding, and inform decision-making processes across academic, scientific, and professional domains.

Kasi (2009) 1 defines “Research is, therefore, a method for investigating and collecting information aimed at the discovery of new facts or interpretation of existing information, to discover or revise facts, theories, and applications.”

Research is stated by Gina Wisker 1 as “Research is about asking and beginning to answer questions, seeking knowledge and understanding of the world and its processes, and testing assumptions and beliefs.”

Redman and Mory define research as a “systematized effort to gain new knowledge.” 2

Burns (1997) defines research as “a systematic investigation to find answers to a problem.” 2

“The word research is composed of two syllables, re and search. The dictionary defines the former as a prefix meaning again, anew, or over again and the latter as a verb meaning to examine closely and carefully, to test and try, or to probe. Together, they form a noun describing a careful, systematic, patient study and investigation in some field of knowledge undertaken to establish facts or principles.” (Grinnell 1993) 2

Objectives of Research:

The research objectives can vary depending on the specific field of study, the nature of the research, and the researcher’s goals. However, some common purposes of the research include:

  • Answer questions: Research aims to provide answers to specific questions or hypotheses. It seeks to investigate and uncover information, data, or insights about a particular topic or issue.
  • Solve problems: Research is often conducted to address real-world issues or challenges. It aims to identify innovative solutions, strategies, or approaches that can help overcome obstacles and improve existing systems or practices.
  • Generate new knowledge: Research endeavors to contribute to the existing body of knowledge by uncovering new information, theories, or perspectives. It involves exploring uncharted territory or expanding upon existing knowledge in various fields of study.
  • Improve understanding: Research aims to deepen our understanding of complex phenomena, processes, or concepts. It seeks to clarify misconceptions, explore underlying mechanisms, or uncover relationships between variables, leading to a more comprehensive and accurate understanding of the subject.
  • Add value: Research brings value by providing practical or theoretical benefits. It can lead to technological advancements, policies or practices, enhanced decision-making processes, or the development of new products, services, or theories.

Types of Research:

C.R. Kothari, a renowned Indian researcher and author, has proposed several types of research in his book Research Methodology: Methods and Techniques . According to Kothari, research can be categorized into the following types:

  • Descriptive Research: Descriptive research is a method of investigation that provides an accurate and comprehensive description of a specific phenomenon, situation, or population. It involves collecting data through various methods, such as surveys, interviews, or observations, and analyzing the data to identify patterns, characteristics, or trends. Descriptive research does not aim to establish causal relationships or manipulate variables but instead aims to answer questions about what is happening or the current state of the research subject. This type of research is valuable in generating a foundational understanding of a topic, informing decision-making processes, and providing a basis for further research in various fields of study.
  • Analytical Research: Analytical research focuses on critically examining and interpreting existing data, information, or theories to gain deeper insights and understanding. It involves analyzing and evaluating data or literature to identify patterns, relationships, or underlying causes. Analytical research aims to go beyond descriptive findings and delves into the reasons and explanations behind observed phenomena. This type of research often involves rigorous statistical analysis, comparative studies, or theoretical frameworks to draw conclusions and make inferences. Analytical research is crucial in advancing knowledge, refining theories, and providing evidence-based insights that can inform decision-making and policy development in various fields of study.
  • Applied Research: Applied research is a type of research that is conducted to address practical problems or improve existing practices. It focuses on directly applying knowledge and theories to real-world situations and aims to provide actionable solutions. Applied research often involves collaborating with stakeholders, such as industry professionals or policymakers, to ensure the research outcomes have practical relevance. This type of research emphasizes implementing and evaluating interventions, strategies, or technologies to solve specific issues. The results of applied research can potentially impact society, leading to advancements in technology, policy improvements, or enhanced practices in various domains, including healthcare, education, business, and engineering.
  • Fundamental Research: Fundamental research, also known as basic research or pure research, is a type of inquiry that aims to expand knowledge and understanding in a particular field. It explores theoretical concepts, principles, and fundamental laws without immediate practical application. Fundamental research is driven by curiosity and the desire to explore new frontiers of knowledge. It often involves the formulation of hypotheses, experimentation, and rigorous data analysis. The fundamental research findings may not have immediate or direct practical implications. Still, they lay the groundwork for applied research and can lead to significant breakthroughs, innovations, and advancements in various scientific disciplines. Fundamental research is essential for pushing the boundaries of knowledge and fostering a deeper understanding of the world around us.
  • Qualitative Research: Qualitative research is an exploratory approach to understanding individuals’ or groups’ meaning, context, and subjective experiences. It involves collecting and analyzing non-numerical data, such as interviews, observations, or textual analysis, to gain deep insights into complex social phenomena. Qualitative research focuses on uncovering underlying motivations, beliefs, attitudes, and cultural influences that shape human behavior. It emphasizes the richness, depth, and complexity of human experiences and seeks to provide a detailed and holistic understanding of a research topic. Qualitative research methods allow for flexibility and adaptability, enabling researchers to capture nuances and explore emerging themes. This type of research is valuable in fields such as anthropology, sociology, psychology, and education, where a deep understanding of human behavior and social processes is sought.
  • Quantitative Research: Quantitative research systematically gathers and analyzes numerical data to uncover patterns, trends, and relationships. It involves collecting structured data through surveys, experiments, or observations and applying statistical techniques for data analysis. Quantitative research aims to quantify variables, measure phenomena, and draw objective conclusions based on statistical evidence. This type of research focuses on obtaining precise and measurable results, often using large sample sizes to increase the generalizability of findings. Quantitative research is prevalent in social sciences, economics, psychology, and market research, where numerical data and statistical analysis provide a rigorous and quantifiable approach to understanding and explaining phenomena.

Significance of Research:

The significance of research cannot be overstated, as it serves as the cornerstone of progress and development in various fields. Whether in science, technology, social sciences, or humanities, research is vital in advancing knowledge, addressing problems, and shaping society.

One of the primary significances of research is its ability to expand our understanding and knowledge base. Through rigorous investigation, research uncovers new information, theories, and insights that contribute to the existing body of knowledge. It allows us to delve deeper into complex phenomena, explore uncharted territories, and uncover hidden connections. This expansion of knowledge forms the basis for innovation, development, and the evolution of society.

Research also serves as a powerful tool for problem-solving. It enables us to identify and address pressing issues, whether they are in healthcare, education, economics, or any other field. By systematically examining problems, collecting and analyzing relevant data, and developing evidence-based solutions, research provides the means to overcome challenges and improve existing practices. It empowers us to make informed decisions, develop effective strategies, and allocate resources wisely.

Furthermore, research plays a critical role in informing decision-making processes. Policymakers, business leaders, and organizations rely on research findings to guide their choices, shape policies, and plan for the future. Research provides reliable and credible information, allowing decision-makers to navigate complex issues more confidently and accurately. It serves as a bridge between theory and practice, translating abstract concepts into tangible outcomes that benefit society.

Innovation and improvement are other significant outcomes of research. Research drives innovation by exploring new ideas, pushing boundaries, and challenging established norms. It leads to the developing of new technologies, products, and services that improve our quality of life. Research also fosters improvements in existing practices and processes by identifying inefficiencies, gaps, and areas for enhancement. Through research, we continuously strive to find better, more efficient ways of doing things.

Research has a profound impact on society as a whole. It addresses social issues, informs public policies, and promotes positive social change. Research provides evidence-based solutions that address societal challenges, from healthcare interventions to educational reforms. It influences public opinion, shapes cultural norms, and contributes to communities’ well-being and progress.

Moreover, research plays a crucial role in validating and challenging existing knowledge. It provides empirical evidence that supports or challenges established theories and concepts. Through rigorous scrutiny and critical analysis, research ensures that knowledge constantly evolves, grows, and adapts to new information. It encourages intellectual discourse, promotes healthy skepticism, and encourages a culture of lifelong learning.

References: 

  • Kasi, P. (2009). Research: What, Why and How? AuthorHouse.
  • Kothari, C. R. (2004). Research Methodology: Methods and Techniques . New Age International.

Related Posts

What is citation, what is scholarly communication, literature review, patent: an overview, thesaurus construction and its role in indexing, what are bibliometrics.

Save my name, email, and website in this browser for the next time I comment.

Type above and press Enter to search. Press Esc to cancel.

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

what is research purpose of research

What is Research?

Research is an often-misused term, its usage in everyday language very different from the strict scientific meaning.

This article is a part of the guide:

  • Definition of Research
  • Research Basics
  • Steps of the Scientific Method
  • Purpose of Research
  • What is the Scientific Method?

Browse Full Outline

  • 1 Research Basics
  • 2.1 What is Research?
  • 2.2 What is the Scientific Method?
  • 2.3 Empirical Research
  • 3.1 Definition of Research
  • 3.2 Definition of the Scientific Method
  • 3.3 Definition of Science
  • 4 Steps of the Scientific Method
  • 5 Scientific Elements
  • 6 Aims of Research
  • 7 Purpose of Research
  • 8 Science Misconceptions

In the field of science, it is important to move away from the looser meaning and use it only in its proper context. Scientific research adheres to a set of strict protocols and long established structures.

Definition of the Scientific Method

Often, we will talk about conducting internet research or say that we are researching in the library. In everyday language, it is perfectly correct grammatically, but in science , it gives a misleading impression. The correct and most common term used in science is that we are conducting a literature review .

what is research purpose of research

The Guidelines

What is research ? For a successful career in science, you must understand the methodology behind any research and be aware of the correct protocols.

Science has developed these guidelines over many years as the benchmark for measuring the validity of the results obtained.

Failure to follow the guidelines will prevent your findings from being accepted and taken seriously. These protocols can vary slightly between scientific disciplines, but all follow the same basic structure.

what is research purpose of research

Aims of Research

The general aims of research are:

Observe and Describe

Determination of the Causes

Purpose of Research - Why do we conduct research? Why is it necessary?

Steps of the Scientific Process

The steps of the scientific process has a structure similar to an hourglass - The structure starts with general questions, narrowing down to focus on one specific aspect , then designing research where we can observe and analyze this aspect. At last, the hourglass widens and the researcher concludes and generalizes the findings to the real world.

Steps of the Scientific Method

  • Summary of the Elements in Scientific Research

1) Setting a Goal

Research in all disciplines and subjects, not just science, must begin with a clearly defined goal . This usually, but not always, takes the form of a hypothesis .

For example, an anthropological study may not have a specific hypothesis or principle, but does have a specific goal, in studying the culture of a certain people and trying to understand and interpret their behavior.

The whole study is designed around this clearly defined goal, and it should address a unique issue, building upon previous research and scientifically accepted fundamentals. Whilst nothing in science can be regarded as truth, basic assumptions are made at all stages of the research, building upon widely accepted knowledge.

2) Interpretation of the Results

Research does require some interpretation and extrapolation of results.

In scientific research, there is always some kind of connection between data (information gathered) and why the scientist think that the data looks as it does. Often the researcher looks at the data gathered, and then comes to a conclusion of why the data looks like it does.

A history paper, for example, which just reorganizes facts and makes no commentary on the results, is not research but a review .

If you think of it this way, somebody writing a school textbook is not performing research and is offering no new insights. They are merely documenting pre-existing data into a new format.

If the same writer interjects their personal opinion and tries to prove or disprove a hypothesis , then they are moving into the area of genuine research. Science tends to use experimentation to study and interpret a specific hypothesis or question, allowing a gradual accumulation of knowledge that slowly becomes a basic assumption.

3) Replication and Gradual Accumulation

For any study, there must be a clear procedure so that the experiment can be replicated and the results verified.

Again, there is a bit of a grey area for observation-based research , as is found in anthropology, behavioral biology and social science, but they still fit most of the other criteria.

Planning and designing the experimental method , is an important part of the project and should revolve around answering specific predictions and questions . This will allow an exact duplication and verification by independent researchers, ensuring that the results are accepted as real.

Most scientific research looks at an area and breaks it down into easily tested pieces.

The gradual experimentation upon these individual pieces will allow the larger questions to be approached and answered, breaking down a large and seemingly insurmountable problem, into manageable chunks.

True research never gives a definitive answer but encourages more research in another direction. Even if a hypothesis is disproved, that will give an answer and generate new ideas, as it is refined and developed.

Research is cyclical, with the results generated leading to new areas or a refinement of the original process.

4) Conclusion

The term, research , is much stricter in science than in everyday life.

It revolves around using the scientific method to generate hypotheses and provide analyzable results. All scientific research has a goal and ultimate aim , repeated and refined experimentation gradually reaching an answer.

These results are a way of gradually uncovering truths and finding out about the processes that drive the universe around us. Only by having a rigid structure to experimentation, can results be verified as acceptable contributions to science.

Some other areas, such as history and economics, also perform true research, but tend to have their own structures in place for generating solid results. They also contribute to human knowledge but with different processes and systems.

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (Feb 2, 2008). What is Research?. Retrieved Sep 01, 2024 from Explorable.com: https://explorable.com/what-is-research

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Save this course for later.

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

what is research purpose of research

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • Research Objectives | Definition & Examples

Research Objectives | Definition & Examples

Published on July 12, 2022 by Eoghan Ryan . Revised on November 20, 2023.

Research objectives describe what your research is trying to achieve and explain why you are pursuing it. They summarize the approach and purpose of your project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement . They should:

  • Establish the scope and depth of your project
  • Contribute to your research design
  • Indicate how your project will contribute to existing knowledge

Table of contents

What is a research objective, why are research objectives important, how to write research aims and objectives, smart research objectives, other interesting articles, frequently asked questions about research objectives.

Research objectives describe what your research project intends to accomplish. They should guide every step of the research process , including how you collect data , build your argument , and develop your conclusions .

Your research objectives may evolve slightly as your research progresses, but they should always line up with the research carried out and the actual content of your paper.

Research aims

A distinction is often made between research objectives and research aims.

A research aim typically refers to a broad statement indicating the general purpose of your research project. It should appear at the end of your problem statement, before your research objectives.

Your research objectives are more specific than your research aim and indicate the particular focus and approach of your project. Though you will only have one research aim, you will likely have several research objectives.

Prevent plagiarism. Run a free check.

Research objectives are important because they:

  • Establish the scope and depth of your project: This helps you avoid unnecessary research. It also means that your research methods and conclusions can easily be evaluated .
  • Contribute to your research design: When you know what your objectives are, you have a clearer idea of what methods are most appropriate for your research.
  • Indicate how your project will contribute to extant research: They allow you to display your knowledge of up-to-date research, employ or build on current research methods, and attempt to contribute to recent debates.

Once you’ve established a research problem you want to address, you need to decide how you will address it. This is where your research aim and objectives come in.

Step 1: Decide on a general aim

Your research aim should reflect your research problem and should be relatively broad.

Step 2: Decide on specific objectives

Break down your aim into a limited number of steps that will help you resolve your research problem. What specific aspects of the problem do you want to examine or understand?

Step 3: Formulate your aims and objectives

Once you’ve established your research aim and objectives, you need to explain them clearly and concisely to the reader.

You’ll lay out your aims and objectives at the end of your problem statement, which appears in your introduction. Frame them as clear declarative statements, and use appropriate verbs to accurately characterize the work that you will carry out.

The acronym “SMART” is commonly used in relation to research objectives. It states that your objectives should be:

  • Specific: Make sure your objectives aren’t overly vague. Your research needs to be clearly defined in order to get useful results.
  • Measurable: Know how you’ll measure whether your objectives have been achieved.
  • Achievable: Your objectives may be challenging, but they should be feasible. Make sure that relevant groundwork has been done on your topic or that relevant primary or secondary sources exist. Also ensure that you have access to relevant research facilities (labs, library resources , research databases , etc.).
  • Relevant: Make sure that they directly address the research problem you want to work on and that they contribute to the current state of research in your field.
  • Time-based: Set clear deadlines for objectives to ensure that the project stays on track.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

what is research purpose of research

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Research objectives describe what you intend your research project to accomplish.

They summarize the approach and purpose of the project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement .

Your research objectives indicate how you’ll try to address your research problem and should be specific:

Once you’ve decided on your research objectives , you need to explain them in your paper, at the end of your problem statement .

Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one.

I will compare …

A research aim is a broad statement indicating the general purpose of your research project. It should appear in your introduction at the end of your problem statement , before your research objectives.

Research objectives are more specific than your research aim. They indicate the specific ways you’ll address the overarching aim.

Scope of research is determined at the beginning of your research process , prior to the data collection stage. Sometimes called “scope of study,” your scope delineates what will and will not be covered in your project. It helps you focus your work and your time, ensuring that you’ll be able to achieve your goals and outcomes.

Defining a scope can be very useful in any research project, from a research proposal to a thesis or dissertation . A scope is needed for all types of research: quantitative , qualitative , and mixed methods .

To define your scope of research, consider the following:

  • Budget constraints or any specifics of grant funding
  • Your proposed timeline and duration
  • Specifics about your population of study, your proposed sample size , and the research methodology you’ll pursue
  • Any inclusion and exclusion criteria
  • Any anticipated control , extraneous , or confounding variables that could bias your research if not accounted for properly.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, November 20). Research Objectives | Definition & Examples. Scribbr. Retrieved August 30, 2024, from https://www.scribbr.com/research-process/research-objectives/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, writing strong research questions | criteria & examples, how to write a problem statement | guide & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Study Site Homepage

  • Request new password
  • Create a new account

Doing Research in Education: Theory and Practice

Student resources, 1. the purpose of research: why do we do it.

Select SAGE Journal articles are available to give you even more insight into chapter topics. These are also an ideal resource to help support your literature reviews, dissertations and assignments.

Click on the following links which will open in a new window.

Brace, M., Herriotts, P., Mccullagh, A. and Nzegwu, F. (2007) ‘Why research — what research should be done?: Report of a collaborative workshop in the UK to discuss social research priorities on visual impairment’, British Journal of Visual Impairment , 25(2): 178–189.

Hannah, D.R. and Lautsch, B.A. (2010) ‘Counting in Qualitative Research: Why to Conduct it, When to Avoid it, and When to Closet it’, in Journal of Management Inquiry , 20(1): 14–22.

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

what is research purpose of research

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

22k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Career Development
  • Find Internship or Research Experience
  • Getting started with research

What is Research?

Research is the pursuit of new knowledge through the process of discovery. Scientific research involves diligent inquiry and systematic observation of phenomena. Most scientific research projects involve experimentation, often requiring testing the effect of changing conditions on the results. The conditions under which specific observations are made must be carefully controlled, and records must be meticulously maintained. This ensures that observations and results can be are reproduced. Scientific research can be basic (fundamental) or applied. What is the difference? The National Science Foundation uses the following definitions in its resource surveys:

Basic research:

The objective of basic research is to gain more comprehensive knowledge or understanding of the subject under study, without specific applications in mind. In industry, basic research is defined as research that advances scientific knowledge but does not have specific immediate commercial objectives, although it may be in fields of present or potential commercial interest.

Applied research:

Applied research is aimed at gaining knowledge or understanding to determine the means by which a specific, recognized need may be met. In industry, applied research includes investigations oriented to discovering new scientific knowledge that has specific commercial objectives with respect to products, processes, or services.

What is research at the undergraduate level?

At the undergraduate level, research is self-directed work under the guidance and supervision of a mentor/advisor ― usually a university professor. A gradual transition towards independence is encouraged as a student gains confidence and is able to work with minor supervision. Students normally participate in an ongoing research project and investigate phenomena of interest to them and their advisor.

  • What Can I do with a Major In...
  • Career Mapping System
  • Personalize Your Career Plan
  • Build a Professional Profile
  • Internships and Research
  • Job Search Resources
  • Programs & Events
  • Additional Career Resources
  • Archived Newsletters
  • Applying to Graduate School
  • Reporting Your Post-Grad Plans
  • Post-Graduation Data
  • Alumni Profiles

Purdue University College of Science, 475 Stadium Mall Drive, West Lafayette, IN 47907 • Phone: (765) 494-1729, Fax: (765) 494-1736

Purdue University Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202

Student Advising Office: (765) 494-1771, Fax: (765) 496-3015 • Science IT : (765) 494-4488

© 2024 Purdue University | An equal access/equal opportunity university | Copyright Complaints | DOE Degree Scorecards

Trouble with this page? Accessibility issues ? Please contact the College of Science .

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Arab J Urol
  • v.12(1); 2014 Mar

Why should I do research? Is it a waste of time?

Athanasios dellis.

a 2nd Department of Surgery, Aretaieion Hospital, University of Athens, Greece

Andreas Skolarikos

b 2nd Department of Urology, Sismanogleion Hospital, University of Athens, Greece

Athanasios G. Papatsoris

  • • In medicine, research is the search for scientific knowledge, which is crucial for the development of novel medications and techniques.
  • • Conducting research provides a deeper understanding of several scientific topics of the specialty of each doctor.
  • • Research through RCTs represents the principal methodological approach.
  • • There are two main research processes; qualitative and quantitative studies.
  • • It is important to develop Research Units in hospitals and medical centres.
  • • Ethics and the high quality of research are ensured by committees (i.e., Internal Board Review, Ethics Research Committee).
  • • Research sessions could be implemented in the job plans of doctors.
  • • Research is not a waste of time, but a scientific investment.

To answer the questions ‘Why should I do research? Is it a waste of time?’ and present relevant issues.

Medline was used to identify relevant articles published from 2000 to 2013, using the following keywords ‘medicine’, ‘research’, ‘purpose’, ‘study’, ‘trial’, ‘urology’.

Research is the most important activity to achieve scientific progress. Although it is an easy process on a theoretical basis, practically it is a laborious process, and full commitment and dedication are of paramount importance. Currently, given that the financial crisis has a key influence in daily practice, the need to stress the real purpose of research is crucial.

Research is necessary and not a waste of time. Efforts to improving medical knowledge should be continuous.

What is research?

Research is a general term that covers all processes aiming to find responses to worthwhile scientific questions by means of a systematic and scientific approach. In fact, research is the search for scientific knowledge, a systematically formal process to increase the fund of knowledge and use it properly for the development of novel applications.

There are several types of research, such as basic science laboratory research, translational research, and clinical and population-based research. Medical research through randomised clinical trials (RCTs) represents the principal methodological approach for the structured assessment of medical outcomes. RCTs provide prospective and investigator-controlled studies, representing the highest level of evidence (LoE) and grade of recommendation, and define the ultimate practice guideline [1] . However, many constraints, such as ethical, economic and/or social issues, render the conduct of RCTs difficult and their application problematic. For instance, in one of the largest RCTs in urology, on preventing prostate cancer with finasteride, the LoE was 1 [2] . In this RCT, after 7 years of finasteride chemoprevention, the rate of cancer decreased from 24.4% to 18.4%. Based on this study, it could be postulated that finasteride chemoprevention should be offered to men in the general population in an attempt to reduce the risk of prostate cancer. However, the findings of this RCT could not be implemented universally due to financial issues [3] .

There are two main research processes, i.e., qualitative and quantitative studies. Although very different in structure and methods, these studies represent two arms of the same research body. Qualitative studies are based mainly on human experience, using notions and theoretical information without quantifying variables, while quantitative studies record information obtained from participants in a numerical form, to enable a statistical analysis of the data. Therefore, quantitative studies can be used to establish the existence of associative or causal relationships between variables.

From a practical perspective, adding a Research Unit to a Medical Department would ultimately enhance clinical practice and education. As such, almost all hospitals in Western countries have research and development (R&D) departments, where the R&D can be linked with clinical innovation. Basic areas in this field include business planning, sales policies and activities, model design, and strategic propositions and campaign development. However, if researchers are not motivated, the research could be counterproductive, and the whole process could ultimately be a waste of time and effort [4] .

The ethics and the high quality of research are ensured by committees, such as the Internal Review Board, and Ethics Research Committees, especially in academic hospitals. They consist of highly educated and dedicated scientists of good faith as well as objectivity, to be the trustees of ethical and properly designed and performed studies.

Do we need research?

Research is the fuel for future progress and it has significantly shaped perspectives in medicine. In urology there are numerous examples showing that current practice has rapidly changed as a result of several key research findings. For example, from the research of Huggins and Hodges (who won the Nobel Prize in 1966), hormone therapy has become the standard treatment for patients with advanced/metastatic prostate cancer. The use of ESWL to treat stones in the urinary tract is another example of research that has improved practice in urology. The current trend in urology to use robotic assistance in surgery is a relatively recent example of how constant research worldwide improves everyday clinical practice [5] . Furthermore, in a more sophisticated field, research is used to identify factors influencing decision-making, clarify the preferred alternatives, and encourage the selection of a preferred screening option in diseases such as prostate cancer [6,7] .

Conducting research provides a deeper understanding of several scientific topics within the specialty of each doctor. Furthermore, it helps doctors of a particular specialty to understand better the scientific work of other colleagues. Despite the different areas of interest between the different specialties, there are common research methods.

In a University, PhD and MSc students concentrate their efforts at higher research levels. Apart from having to produce a challenging and stimulating thesis, young researchers try to develop their analytical, conceptual and critical thinking skills to the highest academic level. Also, postgraduate students thus prepare themselves for a future job in the global market.

During the research process several approaches can be tested and compared for their safety and efficacy, while the results of this procedure can be recorded and statistically analysed to extract the relevant results. Similarly, any aspects of false results and side-effects, e.g., for new medications, can be detected and properly evaluated to devise every possible improvement. Hence, research components under the auspices of dedicated supervisors, assisted by devoted personnel, are of utmost importance. Also, funding is a catalyst for the optimum progress of the research programme, and it must be independent from any other financial source with a possible conflict. Unfortunately, in cases of economic crisis in a hospital, the first department that is trimmed is research.

Is research time a waste of time?

Even if the right personnel are appointed and the funding is secured, it would be a great mistake to believe that the results are guaranteed. Full commitment and dedication are of utmost importance for successful research. Also, these questions are raised in relation to the scientific papers that are accepted for publication in medical journals. About US$ 160 billion is spent every year on biomedical research [8] . Recently, in the Lancet [9] it was estimated that 85% of research is wasteful or inefficient, with deficiencies presented in the following questions: (1) is the research question relevant for clinicians or patients?; (2) are the design and methods appropriate?; (3) is the full report accessible?; (4) is it unbiased and clinically meaningful? Such questions about the importance, purpose and impact of research should surely be answered during the research. The view of the general public is that the purpose of medical research is to advance knowledge for the good of society, to invent new substances to fight disease, to create diagnostic and therapeutic algorithms, to improve public health, to prevent diseases, to improve the quality of life and to prolong overall survival.

Pharmaceutical companies that sponsor research are financially orientated. This fact leads to a sole result, i.e., profit, as a return on their investment. In this framework it would be impossible for academic institutions to operate on any other basis but finance. Economic indicators, even better benefits and the commercial potential of research are important for their survival. Nevertheless, the purpose of research is more than that. It is time to reframe the way research is done and rewarded, leaving profits in second place. We need to remind ourselves about the real purpose of scientific research. Moreover, we need to decide what research is needed and what impact it is likely to have. Researchers and those who benefit from research (i.e., patients, practising doctors) have a crucial role in the research process. Academic institutions should assess and reward researchers on a long-term basis, and help them to concentrate on meaningful research. Researchers must defend their selection of topics as being those appropriate to benefit public health.

Each medical specialty has a different working plan, and surgical specialties such as urology are characterised by a lack of time for research. It is suggested that specific sessions for research could be implemented in the job plan of urologists, and for other doctors. This is more important for the ‘academic doctor’, but even non-academic doctors could undertake research, if only of the current updated medical literature.

Last but not least is the issue of teaching research to junior doctors. This is very important, as the sooner each doctor is involved in the research process the better for his or her career. Even for junior doctors who are not interested in an academic career, understanding the research process helps them to develop their scientific skills. Young doctors should be motivated to understand and undertake research. However, it is important to guide them through the basic principles of research and to mentor them during their first scientific projects. Furthermore, specific academic training opportunities should be offered within developing programmes, such as the academic specialist registrar’s career pathways in the UK [10] .

In conclusion, research is necessary and not a waste of time. All relevant components of the research engine should co-operate to achieve scientific progress that will help patients and the general population.

Take-home messages

  • • Ethics and the high quality of research are ensured by committees (i.e. Internal Board Review, Ethical Research Committee).

Conflict of interest

Source of funding.

Peer review under responsibility of Arab Association of Urology.

An external file that holds a picture, illustration, etc.
Object name is fx1.jpg

More From Forbes

The role of research at universities: why it matters.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

(Photo by William B. Plowman/Getty Images)

Teaching and learning, research and discovery, synthesis and creativity, understanding and engagement, service and outreach. There are many “core elements” to the mission of a great university. Teaching would seem the most obvious, but for those outside of the university, “research” (taken to include scientific research, scholarship more broadly, as well as creative activity) may be the least well understood. This creates misunderstanding of how universities invest resources, especially those deriving from undergraduate tuition and state (or other public) support, and the misperception that those resources are being diverted away from what is believed should be the core (and sole) focus, teaching. This has led to a loss of trust, confidence, and willingness to continue to invest or otherwise support (especially our public) universities.

Why are universities engaged in the conduct of research? Who pays? Who benefits? And why does it all matter? Good questions. Let’s get to some straightforward answers. Because the academic research enterprise really is not that difficult to explain, and its impacts are profound.

So let’s demystify university-based research. And in doing so, hopefully we can begin building both better understanding and a better relationship between the public and higher education, both of which are essential to the future of US higher education.   

Why are universities engaged in the conduct of research?

Universities engage in research as part of their missions around learning and discovery. This, in turn, contributes directly and indirectly to their primary mission of teaching. Universities and many colleges (the exception being those dedicated exclusively to undergraduate teaching) have as part of their mission the pursuit of scholarship. This can come in the form of fundamental or applied research (both are most common in the STEM fields, broadly defined), research-based scholarship or what often is called “scholarly activity” (most common in the social sciences and humanities), or creative activity (most common in the arts). Increasingly, these simple categorizations are being blurred, for all good reasons and to the good of the discovery of new knowledge and greater understanding of complex (transdisciplinary) challenges and the creation of increasingly interrelated fields needed to address them.

It goes without saying that the advancement of knowledge (discovery, innovation, creation) is essential to any civilization. Our nation’s research universities represent some of the most concentrated communities of scholars, facilities, and collective expertise engaged in these activities. But more importantly, this is where higher education is delivered, where students develop breadth and depth of knowledge in foundational and advanced subjects, where the skills for knowledge acquisition and understanding (including contextualization, interpretation, and inference) are honed, and where students are educated, trained, and otherwise prepared for successful careers. Part of that training and preparation derives from exposure to faculty who are engaged at the leading-edge of their fields, through their research and scholarly work. The best faculty, the teacher-scholars, seamlessly weave their teaching and research efforts together, to their mutual benefit, and in a way that excites and engages their students. In this way, the next generation of scholars (academic or otherwise) is trained, research and discovery continue to advance inter-generationally, and the cycle is perpetuated.

Best High-Yield Savings Accounts Of 2024

Best 5% interest savings accounts of 2024.

University research can be expensive, particularly in laboratory-intensive fields. But the responsibility for much (indeed most) of the cost of conducting research falls to the faculty member. Faculty who are engaged in research write grants for funding (e.g., from federal and state agencies, foundations, and private companies) to support their work and the work of their students and staff. In some cases, the universities do need to invest heavily in equipment, facilities, and personnel to support select research activities. But they do so judiciously, with an eye toward both their mission, their strategic priorities, and their available resources.

Medical research, and medical education more broadly, is expensive and often requires substantial institutional investment beyond what can be covered by clinical operations or externally funded research. But universities with medical schools/medical centers have determined that the value to their educational and training missions as well as to their communities justifies the investment. And most would agree that university-based medical centers are of significant value to their communities, often providing best-in-class treatment and care in midsize and smaller communities at a level more often seen in larger metropolitan areas.

Research in the STEM fields (broadly defined) can also be expensive. Scientific (including medical) and engineering research often involves specialized facilities or pieces of equipment, advanced computing capabilities, materials requiring controlled handling and storage, and so forth. But much of this work is funded, in large part, by federal agencies such as the National Science Foundation, National Institutes of Health, US Department of Energy, US Department of Agriculture, and many others.

Research in the social sciences is often (not always) less expensive, requiring smaller amount of grant funding. As mentioned previously, however, it is now becoming common to have physical, natural, and social scientist teams pursuing large grant funding. This is an exciting and very promising trend for many reasons, not the least of which is the nature of the complex problems being studied.

Research in the arts and humanities typically requires the least amount of funding as it rarely requires the expensive items listed previously. Funding from such organizations as the National Endowment for the Arts, National Endowment for the Humanities, and private foundations may be able to support significant scholarship and creation of new knowledge or works through much more modest grants than would be required in the natural or physical sciences, for example.

Philanthropy may also be directed toward the support of research and scholarly activity at universities. Support from individual donors, family foundations, private or corporate foundations may be directed to support students, faculty, labs or other facilities, research programs, galleries, centers, and institutes.

Who benefits?

Students, both undergraduate and graduate, benefit from studying in an environment rich with research and discovery. Besides what the faculty can bring back to the classroom, there are opportunities to engage with faculty as part of their research teams and even conduct independent research under their supervision, often for credit. There are opportunities to learn about and learn on state-of-the-art equipment, in state-of-the-art laboratories, and from those working on the leading edge in a discipline. There are opportunities to co-author, present at conferences, make important connections, and explore post-graduate pathways.

The broader university benefits from active research programs. Research on timely and important topics attracts attention, which in turn leads to greater institutional visibility and reputation. As a university becomes known for its research in certain fields, they become magnets for students, faculty, grants, media coverage, and even philanthropy. Strength in research helps to define a university’s “brand” in the national and international marketplace, impacting everything from student recruitment, to faculty retention, to attracting new investments.

The community, region, and state benefits from the research activity of the university. This is especially true for public research universities. Research also contributes directly to economic development, clinical, commercial, and business opportunities. Resources brought into the university through grants and contracts support faculty, staff, and student salaries, often adding additional jobs, contributing directly to the tax base. Research universities, through their expertise, reputation, and facilities, can attract new businesses into their communities or states. They can also launch and incubate startup companies, or license and sell their technologies to other companies. Research universities often host meeting and conferences which creates revenue for local hotels, restaurants, event centers, and more. And as mentioned previously, university medical centers provide high-quality medical care, often in midsize communities that wouldn’t otherwise have such outstanding services and state-of-the-art facilities.

(Photo by Justin Sullivan/Getty Images)

And finally, why does this all matter?

Research is essential to advancing society, strengthening the economy, driving innovation, and addressing the vexing and challenging problems we face as a people, place, and planet. It’s through research, scholarship, and discovery that we learn about our history and ourselves, understand the present context in which we live, and plan for and secure our future.

Research universities are vibrant, exciting, and inspiring places to learn and to work. They offer opportunities for students that few other institutions can match – whether small liberal arts colleges, mid-size teaching universities, or community colleges – and while not right for every learner or every educator, they are right for many, if not most. The advantages simply cannot be ignored. Neither can the importance or the need for these institutions. They need not be for everyone, and everyone need not find their way to study or work at our research universities, and we stipulate that there are many outstanding options to meet and support different learning styles and provide different environments for teaching and learning. But it’s critically important that we continue to support, protect, and respect research universities for all they do for their students, their communities and states, our standing in the global scientific community, our economy, and our nation.

David Rosowsky

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

Forage

What Is Research? Types and Methods

McKayla Girardin

  • Share on Twitter Share on Twitter
  • Share on Facebook Share on Facebook
  • Share on LinkedIn Share on LinkedIn

What is research? Types and Methods of Research

Forage puts students first. Our blog articles are written independently by our editorial team. They have not been paid for or sponsored by our partners. See our full  editorial guidelines .

Research is the process of examining a hypothesis to make discoveries. Practically every career involves research in one form or another. Accountants research their client’s history and financial documents to understand their financial situation, and data scientists perform research to inform data-driven decisions. 

In this guide, we’ll go over: 

Research Definition

Types of research , research methods, careers in research, showing research skills on resumes.

Research is an investigation into a topic or idea to discover new information. There’s no all-encompassing definition for research because it’s an incredibly varied approach to finding discoveries. For example, research can be as simple as seeking to answer a question that already has a known answer, like reading an article to learn why the sky is blue. 

Research can also be much broader, seeking to answer questions that have never before been asked. For instance, a lot of research looks for ways to deepen our collective understanding of social, physical, and biological phenomena. Besides broadening humanity’s knowledge, research is a great tool for businesses and individuals to learn new things.

Why Does Research Matter?

While some research seeks to uncover ground-breaking information on its own, other research forms building blocks that allow for further development. For example, Tony Gilbert of the Masonic Medical Research Institute (MMRI) says that Dr. Gordon K. Moe, a co-founder and director of research at MMRI, led early studies of heart rhythms and arrhythmia.  

Gilbert notes that this research “allowed other scientists and innovators to develop inventions like the pacemaker and defibrillator (AED). So, while Dr. Moe did not invent the pacemaker or the AED, the basic research produced at the MMRI lab helped make these devices possible, and this potentially benefitted millions of people.”

Of course, not every researcher is hunting for medical innovations and cures for diseases. In fact, most companies, regardless of industry or purpose, use research every day.  

“Access to the latest information enables you to make informed decisions to help your business succeed,” says Andrew Pickett, trial attorney at Andrew Pickett Law, PLLC.

Showcase new skills

Build the confidence and practical skills that employers are looking for with Forage’s free job simulations.

Scientific Research

Scientific research utilizes a systematic approach to test hypotheses. Researchers plan their investigation ahead of time, and peers test findings to ensure the analysis was performed accurately. 

Foundational research in sciences, often referred to as “basic science,” involves much of the research done at medical research organizations. Research done by the MMRI falls into this category, seeking to uncover “new information and insights for scientists and medical researchers around the world.”

Scientific research is a broad term; studies can be lab-based, clinical, quantitative, or qualitative. Studies can also switch between different settings and methods, like translational research. 

“Translational research moves research from lab-settings to the settings in which they will provide direct impact (for example, moving bench science to clinical settings),” says Laren Narapareddy, faculty member and researcher at Emory University.

Historical Research

Historical research involves studying past events to determine how they’ve affected the course of time, using historical data to explain or anticipate current and future events, and filling in gaps in history. Researchers can look at past socio-political events to hypothesize how similar events could pan out in the future.  

However, historical research can also focus on figuring out what actually happened at a moment in time, like reading diary entries to better understand life in England in the 14th century. 

In many ways, research by data, financial, and marketing analysts can be considered historical because these analysts look at past trends to predict future outcomes and make business decisions. 

User Research

User research is often applied in business and marketing to better understand a customer base. Researchers and analysts utilize surveys, interviews, and feedback channels to evaluate their clients’ and customers’ wants, needs, and motivations. Analysts may also apply user research techniques to see how customers respond to a product’s user experience (UX) design and test the efficacy of marketing campaigns. 

Market Research

Market research utilizes methods similar to user research but seeks to look at a customer base more broadly. Studies of markets take place at an intersection between economic trends and customer decision-making. 

Market research “allows you to stay up-to-date with industry trends and changes so that you can adjust your business strategies accordingly,” says Pickett. 

A primary goal in market research is finding competitive advantages over other businesses. Analysts working in market research may conduct surveys, focus groups, or historical analysis to predict how a demographic will act (and spend) in the future. 

Other Types of Research

The world of research is constantly expanding. New technologies bring new ways to ask and answer unique questions, creating the need for different types of research. Additionally, certain studies or questions may not be easily answered by one kind of research alone, and researchers can approach hypotheses from a variety of directions. So, more niche types of research seek to solve some of the more complex questions. 

For instance, “multidisciplinary research brings experts in different disciplines together to ask and answer questions at the intersection of their fields,” says Narapareddy.

Research doesn’t happen in a bubble, though. To foster better communication between researchers and the public, types of research exist that bring together both scientists and non-scientists. 

“Community-based participatory research is a really important and equitable model of research that involves partnerships among researchers, communities and organizations at all stages of the research process,” says Narapareddy.

Regardless of the type of research or the study’s primary goal, researchers usually use quantitative or qualitative methods. 

Qualitative Methods

Qualitative research focuses on descriptive information, such as people’s beliefs and emotional responses. Researchers often use focus groups, interviews, and surveys to gather qualitative data. 

This approach to research is popular in sociology, political science, psychology, anthropology, and software engineering . For instance, determining how a user feels about a website’s look isn’t easily put into numbers (quantitative data). So, when testing UX designs, software engineers rely on qualitative research. 

Quantitative Methods

Quantitative research methods focus on numerical data like statistics, units of time, or percentages. Researchers use quantitative methods to determine concrete things, like how many customers purchased a product. Analysts and researchers gather quantitative data using surveys, censuses, A/B tests, and random data sampling. 

Practically every industry or field uses quantitative methods. For example, a car manufacturer testing the effectiveness of new airbag technology looks for quantitative data on how often the airbags deploy properly. Additionally, marketing analysts look for increased sales numbers to see if a marketing campaign was successful. 

J.P.Morgan bank corporation headquarters glass building concept. JP Morgan banking company symbol on front facade 3d illustration.

JPMorgan Quantitative Research

Discover how bankers use quantitative methods to analyze businesses and industry trends with this free job simulation.

Avg. Time: 4-6 hours

Skills you’ll build: Programming, data analysis, Python, critical thinking, statistics, dynamic programming

Mixed-Methods

Answering a question or testing a hypothesis may require a mixture of qualitative and quantitative methods. To see if your customers like your website, for instance, you’ll likely apply qualitative methods, like asking them how they feel about the site’s look and visual appeal, and quantitative methods, like seeing how many customers use the website daily. Research that involves qualitative and quantitative methods is called mixed-method research. 

Researching ideas and hypotheses is a common task in many different careers. For example, working in sales requires understanding quantitative research methods to determine if certain actions improve sales numbers. Some research-intensive career paths include:

  • Data science
  • Investment banking
  • Product management
  • Civil rights law
  • Actuarial science  

A group of people consulting

OliverWyman Financial Services: Climate Change

Perform net-zero emissions research and see how risk management combined and climate science can facilitate a smooth transition to a low-carbon economy in this free job simulation.

Avg. Time: 4 to 5 hours

Skills you’ll build: Research, critical thinking, data analysis, communication

Working in Research

Once you have the fundamentals of researching down, the subject matter may evolve or change over the course of your career. 

“My first research experience was assessing fall risk in firefighters — and I now use multi-omic methods [a type of molecular cell analysis] to understand fertility and reproductive health outcomes in women,” notes Narapareddy.

For those considering a career in research, it’s important to “take the time to explore different research methods and techniques to gain a better understanding of what works best for them,” says Pickett. 

Remember that research is exploratory by nature, so don’t be afraid to fail. 

“The work of scientists who came before us helps guide the path for future research, including both their hits and misses,” says Gilbert.

You can show off your research skills on your resume by listing specific research methods in your skills section. You can also call out specific instances you used research skills, and the impact your research had, in the description of past job or internship experiences. For example, you could talk about a time you researched competitors’ marketing strategies and used your findings to suggest a new campaign. 

Your cover letter is another great place to discuss your experience with research. Here, you can talk about large-scale research projects you completed during school or at previous jobs and explain how your research skills would help you in the job you’re applying for. If you have experience collecting and collating data from research surveys during college, for instance, that can translate into data analysis and organizational skills. 

Grow your skills and get job-ready with Forage’s free job simulations . 

Image credit: Canva

McKayla Girardin

Related Posts

6 negotiation skills to level up your work life, how to build conflict resolution skills: case studies and examples, what is github uses and getting started.

The Purpose of Research and Its Characteristics (3-5 min read)

The Purpose of Research and Its Characteristics (3-5 min read)

data profile image

by ForeignAdmits

Updated on March 31, 2023

The purpose of research is to enhance society by advancing knowledge through scientific theories, concepts and ideas. A research purpose is met through forming hypotheses, collecting data, analysing, etc.  It summarizes the research study’s specific topic and goals, providing readers with an accurate, concrete understanding of the findings, the purpose of research and its characteristics. The basic properties of the research purpose are given below:

  • The research purpose should be Specific and precise – not general, broad or obscure.
  • It should be defined concisely (within one or two sentences)
  • The research goal should be apparent. It should not be vague, ambiguous or confusing to the readers.
  • All the statements should be Goal-oriented and also stated in terms of desired outcomes.

what is research purpose of research

Example: Research on the effect of learning an additional language on children

United College of Engineering and Research [2021 Update]

Here are some key points to remember for the purpose of research and its characteristics.

1. State the general purpose of the Study:

The study’s overall purpose is to examine the effect of learning a foreign language early and how it will affect them.

2. Identify the specific purpose of every key variable:

How they grasp, reading fluency, reading comprehension, vocabulary, and interest in the language are the particular variables.

3. State the specific purposes for the research study:

  • Identify how often parents enrol their children in learning a foreign language or how often does school teaches.
  • Determine the effect of learning a foreign language on the children’s reading fluency of their mother language.
  • Ascertain the effect of learning a foreign language on the children’s reading comprehension of their mother language.
  • Determine the effect of learning a foreign language on children’s vocabulary of their mother language.

Characteristics of Research

The investigation of the research topic can be classified into eight types:

1. Empirical Research

Research proves scientific methods derived from real-life observations. It is also a way of gaining knowledge using direct and indirect observation or experience. There are two ways to examine Empirical Evidence – quantitative and qualitative. Many researchers can easily quantify the given evidence or challenge the evidence and make sense of it in its qualitative form.

2. Logical Research

This research methodology follows sequential procedures based on valid principles. Analytical research implies that the study goes by logical reasoning rules and the logical process of induction and deduction. Induction is the reasoning process from a part to the whole, whereas deduction is reasoning from the premise.

3. Cyclic Research

As the name suggests, the cyclic research starts and ends with a question.  It is a cyclical process of steps that typically begins with identifying a research problem or study issue. It then involves reviewing the literature, specifying a purpose for the study, collecting and analysing data, and forming an interpretation of information.

4. Analytical Research

In this type of research, data is generated, recorded and analysed using proven techniques to ensure high accuracy and repeatability while minimizing potential errors. A variety of people, including students, doctors and psychologists, use analytical research during studies to find the most relevant information. A person finds out necessary details from analytical research to add new ideas to the material being produced.

Is a career in analytics and research good for you?

5. Controlled Research

Controlled research investigates with vigorous measures by keeping all research variables constant, excluding the variables under investigation. IN simpler words, it compares results from a treated group and a control group. The control group may receive no treatment, a placebo, or a different treatment.

6. Research-based on Objective

The researcher uses sound judgment to ensure that the research findings are valid. Objective-based types of Research can be classified as descriptive, co-relational, explanatory and exploratory.

7. Research-based on statistical treatment

Researchers apply statistical methods to a data set to transform it from a group of meaningless numbers into meaningful output. The mathematical treatment is involved in turning the available data into something more meaningful from which information can be derived.

8. Hypothesis-based Research

This research is a statement about a scientific study’s expected outcome (a dissertation or thesis). This statement needs to have three attributes – specificity, testability, and falsifiability for a genuine research hypothesis. The hypothesis-based research design produces evidence that satisfies the research objectives and can prove or refute the hypothesis.

what is research purpose of research

This is all about the purpose of research and its characteristics.

Board of Governors Graduate Students Research Scholarship in the University of Lethbridge, Canada

Important FAQs

Q1. What are the characteristics of research methodology?

Try to usually collect data at sight, where the participants are experiencing issues or problems. These are real-time data and rarely bring the participants out of the geographic locations to collect information.

Q 2. What is the primary purpose or goal of research?

The ultimate goal of research within any scientific area is to understand how things work. The results of a study can then be put to use to create advanced possibilities for further research.

At ForeignAdmits, we understand how important this decision is. We are here to help you every step of the way, from finding the right school to getting admitted and securing scholarships.

We have a team of experienced counselors who can provide you with customized guidance based on your individual needscontact us today to get started. We look forward to helping you achieve your educational and career goals!

Q3. What is the nature of research?

Establishing hypotheses, gathering data, evaluating, and so on all contribute to achieving a research purpose. It explains the particular topic and aims of the research study, giving readers with a precise, clear grasp of the outcomes.

Q4. What are the three primary goals of research? Exploration, explanation and description are three most significant and prevalent study goals.

Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Home

Academic Research and the Expert-Novice Gap: Helping Students Understand the Purpose of Research (Virtual Event)

October 3, 2024 12:00 PM - 1:00 PM Save to Calendar

Experienced researchers tend to think about research as an ongoing and iterative process in which individual researchers contribute their findings to an ongoing conversation within or across disciplines. However, as novice researchers, students may have a very different understanding of the purpose of research. The lack of a shared understanding of the goals and process of research may contribute to the frustration that students and instructors often have related to student performance on research or inquiry-based assignments.

This free virtual workshop will explore the expert-novice gap in relation to the purpose and process of academic research. Participants will learn strategies and activities that they can use to help students develop their understanding of the purpose and process of research.

For those affiliated with Ohio State, this workshop counts as credit toward the  Teaching Information Literacy endorsement  from the Drake Institute for Teaching and Learning.

This virtual program will include automated captioning. If you require an accommodation such as live captioning or interpretation to participate in this event, please email  [email protected]  as soon as possible. Requests made at least one week prior to the event will generally allow us to provide seamless access, but the university will make every effort to meet requests made after this date.

Event Organizer

Photo of Jane Hammons

H.R. 9436: To establish a National Science Foundation grant program to provide and strengthen opportunities for peer-led research regarding autism spectrum disorder and its characteristics in women, and for other purposes.

React to this bill with an emoji, save your opinion on this bill on a six-point scale from strongly oppose to strongly support.

(Shared on panel .)

Widget for your website

Get a bill status widget »

Follow GovTrack on social media for more updates:

Visit us on Mastodon

  • Study Guide

Add a note about this bill. Your note is for you and will not be shared with anyone.

Because you are a member of panel , your positions on legislation and notes below will be shared with the panel administrators. ( More Info )

How well do you know H.R. 9436? Use this study guide to find out.

You can find answers to most of the questions below here on GovTrack.us, including on the overview, details, and text tabs for this bill at the top of this page.

What would this bill do?

  • In a few words, what would you say is the subject of this bill?

This question is asking you to determine what areas of policy this bill is meant to impact. Doing so is an important first step in analyzing the intentions behind the policy and its possible effects. To start, look at the bill’s title and see if it helps.

At the top of the details tab , you can find the committee assignments of this bill. Those will likely give a clue about the substance of the policy in the bill, as committees usually only look at bills within a certain jurisdiction.

  • The text of this bill is not available yet. How else might you learn about what the bill would do?

It’s hard to learn about legislation when the text isn’t available. The best way to do it is to gather context by looking to see if anyone is talking about this bill.

Try entering the name of the bill into your favorite search engine. Do you find any articles about it? Have any Members of Congress given hints as to what the bill would do? However, if the text isn’t available and no one has anything to say about this bill, it may be better to look at other legislation.

  • Who is this bill likely to impact? Is this bill important?

These questions are related. Be sure to answer the first question before you answer the second. Even if you think this bill looks boring, is there anyone who would say otherwise?

Participating in a democracy isn’t just about representing your own interests; it’s also about understanding and empathizing with the interests of your peers. When you look at a bill before Congress you should consider who it will impact and how. Then you can make a judgment about whether the bill matters and whether you support it.

Try coming up with a list of who will be affected by this bill and how. When you think you’re done with your list, ask yourself one more time: Is this bill important?

What else do you know about this bill?

  • What do you know about the sponsor? Is this the kind of bill you would expect from them? Why or why not?

The bill’s primary sponsor is displayed at the top of the overview tab . The sponsor's GovTrack page provides information about their history and recent actions in Congress. Similarly, you’ll find a list of cosponsors at the top of the details tab .

The most immediate thing you might notice about the sponsor is their party. Here are some other factors to consider when thinking about the bill’s sponsor, all of which can be found on the sponsor’s page:

Where do they represent? Is this bill uniquely important to the sponsor’s constituents?

What committees are they on? If they are on a committee this bill was assigned to, they will have greater influence over its passage.

Where do they fall on the GovTrack Ideology-Leadership Chart? We publish an analysis of members’ cosponsorships to give an idea of where each member falls on the political spectrum, and how much influence they have in Congress. This information could be helpful context for understanding the bill.

These are only a few of the factors at play when a member chooses to sponsor legislation. What wasn’t on this list that should be?

  • Step away from GovTrack for a moment. Is anyone talking about this bill? How does their perspective help you understand the bill?

It’s important to compare information from various sources. What other resources could you use to put the information on GovTrack into context? Has anyone else written about the bill? Try putting the name of the bill into your favorite search engine to see what comes up. You might find there is already a conversation going on around the bill, or perhaps this bill isn’t getting much attention.

If you can, you should look at multiple sources with varying perspectives. Don’t take what any news article or organization says for granted without comparing it to a few other sources.

  • What kind of expert would be able to tell you more about the policies this bill would impact?

Congress often calls in expert witnesses to explain nuanced policy issues. Members of Congress on whichever committee has been assigned to review the bill will seek out these experts depending on the legislative topic. For example, legislation about nuclear power plants might be referred to the House Committee on Energy and Commerce. Since most of the representatives who serve on that committee are likely not nuclear scientist, they will call in those scientists to explain important details about nuclear energy.

By now you should have an idea of the policies, or at least areas of policy, in this bill. Given that knowledge, what type of experts would you want to hear from to learn more about this bill? Try to get as specific as you can.

What can you do about this bill?

  • How can you impact your government?

Start with the basics. What are some of the tools available for Americans to interact with their government? How would you apply those tools to this bill?

Keep in mind that bills sometimes get reintroduced to multiple sessions of Congress before ever getting a vote. Odds are good that a given bill won’t get passed, but maybe there are ways you can help give it another shot. If you think this bill is not likely to pass in the current session of Congress, how might you try to get it reintroduced in the next one?

  • What can your Member of Congress do to impact this bill? (Hint: Are your representative or senators on a committee this bill was assigned to?)

In our representative democracy, each member of Congress has an obligation to their constituents. That means your representatives are the most likely to be responsive to your concerns, since they care about your vote. What can you ask of them?

At a minimum, they can vote for a bill if the chance comes up. But maybe they have more power than that. Is your representative on a committee this bill was assigned to? If so, they can push for the bill to get a floor vote. Is your representative in a leadership position? Maybe they can trade favors with another Member of Congress to help advance this bill.

If you aren’t sure who your representatives are, you can find them by entering your address here . Then try looking at their GovTrack pages to see information such as their committee positions, leadership scores, and frequent cosponsors to get a sense of what they can do.

  • What organizations are working to impact the passage of this bill?

The best way to impact a bill is to get help. It’s nigh impossible for one person to make a significant change in a democracy, but as a group you can make a difference. Advocacy organizations, think tanks, caucuses and other legislative stakeholders are constantly working to influence whether a bill passes. Are there any organizations interested in this bill? Try using your favorite search engine to find out.

If there are, and you agree with their positions and methods, you may want to join or support that organization. You can help that organization accomplish its goals by volunteering for them or donating some money.

If there isn’t an organization you like, maybe you need to do the next best thing: Make one! Grassroots movements form all the time when many people care about an issue that isn’t getting enough attention. Do you know many other people who care as much about this bill as you do? Starting a grassroots movement is a challenging task, but if there are a lot of people who care about this issue who aren’t being heard, it can be worth the effort.

Each bill’s study guide is a little different — we automatically choose which questions to include based on the information we have available about the bill.

[error message]

  • CLASSIFIEDS
  • Advanced search

American Board of Family Medicine

American Board of Family Medicine

Advanced Search

The Priority Updates from the Research Literature (PURLs) Methodology

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Figures & Data
  • Info & Metrics
  • Evidence-Based Medicine
  • Family Practice
  • Primary Health Care

Priority Updates from the Research Literature (PURLs) is a product of the Family Practice Inquiries Network (FPIN) designed to alert practicing primary care clinicians about new discoveries that could cause them to change their practice. 1 The purpose of PURLs is to leverage an organized surveillance system to rapidly scan a large amount of medical literature relevant to primary care, identify the small percentage of that literature that represents a potential change in practice, complete a thorough review process to determine if it should change practice, and succinctly summarize that evidence for busy clinicians. 2 The purpose of this article is to illuminate the rigorous process by which FPIN identifies, evaluates, and publishes a PURL.

  • The PURLs Surveillance Team

The identification of a potential PURL starts with the PURLs Surveillance Team. This team is a group of highly motivated primary care clinicians interested in new research that could represent practice-changing findings. The team is led by an FPIN staff member and the PURLs Editor-in-Chief (EIC). Volunteers from this group agree to monitor over 20 medical journals that are likely to publish findings relevant to practicing family physicians. With a relatively small number of volunteers, a large amount of new primary care literature can be monitored on a regular basis. When one of these volunteers, or any member of the Surveillance Team, identifies a new article that they believe may represent a potential change in practice, they can nominate the article by posting the abstract along with their reasoning behind nominating it. The nomination is then commented on by the individual members of the PURLs Surveillance Team where members share their opinion on whether the article is a potential PURL. Based on the robust discussion by the PURLs Surveillance Team, the PURLs EIC makes a final determination as to whether the nominated article should continue forward in the process. If it is determined that it should move forward, it is noted as a potential PURL and prepared for an in-depth review by a PURL Jam Site.

  • PURL Jam Sessions

Potential PURLs are assigned to one of a handful of family medicine residencies (PURL Jam Sites) for systematic review at events called “PURL Jam Sessions.” PURL Jam Sites are members of FPIN who have gone through an application process with the PURLs EIC and have been approved based on their significant critical appraisal experience, faculty availability, and program buy-in. A PURL Jam Session is a highly structured and rigorous journal club. PURL Jams are led by a local expert in evidence-based medicine and include a small number of faculty and residents. In addition to a thorough evaluation of the article in question, PURL Jams represent a valuable learning experience for the participants as they practice critical appraisal of the literature. The PURL Jam Site utilizes a structured Potential PURL Review Form (PPRF) to evaluate each article. There are different PPRFs, with tailored questions to address the nuances of various study designs. The PPRF form provides a series of structured critical appraisal questions for the PURL Jam Site to consider, with the goal of determining whether or not the article is a “PURL.” An article can only be declared a PURL if it meets all 6 PURLs criteria, which are explained in Table 1 . Once the PPRF is completed, the PURL Jam Site prepares a Diving for PURL (DfP) manuscript that summarizes the article and includes an explanation for each PURL criteria. Both the PPRF and DfP manuscript are submitted to FPIN.

  • View inline

PURLs Criteria

  • First Round of Peer and Editorial Review

The PURLs EIC reviews the first draft and may request edits from the author team. Once the EIC is satisfied with the DfP manuscript, it is sent to the local expert at another PURL Jam Site for peer review. The PURLs EIC then reviews the peer reviewer’s feedback and asks the authors to incorporate pertinent feedback from the reviewer. If the author states the article met all 6 PURLs criteria, and the peer reviewer or PURLs EIC disagrees, the PURLs EIC makes the determination as to whether the manuscript will proceed as a PURL. If the PURLs EIC does not agree with the author that it is a PURL, the author will be asked to revise. If the manuscript does not meet all 6 PURLs criteria, it then proceeds to publication as a DfP in Evidence-Based Practice so readers can understand why the particular article may not result in a change in practice.

  • Second Round of Peer and Editorial Review

Once the PURLs EIC has approved the DfP manuscript and agrees the article is a PURL, the PURL Jam Site expands the DfP manuscript into a PURL manuscript and completes Speaker Notes. The PURL manuscript has additional components including the practice change, an illustrative case, clinical context, caveats, and potential challenges. Speaker Notes are a critical appraisal worksheet utilized in FPIN’s Journal Club product. Once the PURL Jam Site submits the PURL manuscript, it goes through an additional peer review. A PURL Deputy Editor then edits the manuscript, incorporates peer review feedback into the manuscript, and requests that the authors revise. If the peer reviewer does not agree that the article meets all 6 PURLs criteria, the PURLs Deputy Editor reviews their reasoning and determines whether they believe it meets all 6 PURLs criteria. If the PURL Deputy Editor does not think the article is a PURL, it is sent to FPIN’s Vice President of Publications to decide if the manuscript will continue as a PURL, or if the DfP will be published in Evidence-Based Practice instead. If the Vice President of Publications states it is a PURL, the manuscript will be revised by the authors and continue in the editorial review process. The PURL Deputy Editor reviews the authors’ revision and either requests additional edits or approves the PURL manuscript for publication.

  • Publication

Finalized PURL manuscripts are sent to a family medicine journal for publication. The PURLs format provides an easy-to-read synthesis of the standardized review process. Published PURLs review the evidence and explain why the findings are compelling enough to warrant providers changing their practice. The finalized PURL has been reviewed by at least 4 experts in the PURL methodology before the manuscript completing an additional round of peer review with the journal before final publication, which is represented by Figure 1 . The final product then has completed a rigorous evaluation process that includes the scrutiny of many PURL experts resulting in a brief, easy-to-read synopsis of the evidence for an immediate impact on patient care.

  • Download figure
  • Open in new tab

PURL decision workflow.

  • Acknowledgments

The authors thank Dean Seehusen, MD, MPH and Corey Lyon, DO for their contributions to developing the PURLs methodology.

This article was externally peer reviewed.

This is the Ahead of Print version of the article.

Funding: None.

Conflict of interest: None.

To see this article online, please go to: http://jabfm.org/content/00/00/000.full .

  • Received for publication November 9, 2023.
  • Accepted for publication February 26, 2024.
  • Ewigman B ,
  • 2. ↵ FPIN. What Are PURLS? Available at: https://fpin.memberclicks.net/what-are-purls .

In this issue

The Journal of the American Board of Family   Medicine: 37 (3)

  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)

Thank you for your interest in spreading the word on American Board of Family Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager

Twitter logo

  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

Related articles.

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.

More in this TOC Section

  • Less Aggressive Hydration May Be More in Acute Pancreatitis?
  • Shoring Up Osteoporosis Management: A Fresh Start?

Similar Articles

U.S. flag

An official website of the United States government

Here's how you know

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

APOE Genetics as a Major Determinant of Alzheimer’s Disease Pathobiology

On this page:

Purpose and Background

Registration, contact information.

Alzheimer's Disease and Related Dementia (AD/ADRD) physicians and biologists, and scientists interested in brain aging, neurodegenerative diseases, genetics, whole genome sequencing, global and local genetic ancestry analyses, single-cell genomic analyses, neurons-astrocytes-microglia interactions, and genetically driven therapeutic targets.

September 5, 2024 | 8:00 a.m. – 5:00 p.m. ET September 6, 2024 | 8:00 a.m. – 3:00 p.m. ET

This is a hybrid workshop. Participants can attend virtually via Zoom, or In Person on NIH Main Campus:

John Edwards Porter Neuroscience Research Center, Building 35 9000 Rockville Pike, Bethesda, MD 20892

This workshop will bring together investigators who have intensely investigated the effects of APOE on the brain, and the mechanism of disease to engage with the audience on new technologies centered on APOE for the successful identification of genetically driven therapeutic approaches. The expertise of investigators ranging from genetics, molecular biology, functional genomics, and AI/ML fields will also present the latest findings across diverse populations both in terms of global and local genetic ancestries. Discussion of supported research will for example examine why APOE4 risk differs dramatically among populations and how these differences can be leveraged to better understand AD pathobiology. During the two-day meeting participants will explore the best next steps to develop study approaches that will pinpoint the molecular, genetic, and epigenetic factors associated with APOE risk for AD. Information provided at this workshop is expected to generate new mechanistic insights into APOE impact in the brain and its multivariate cell types. 

Pease register in advance for this webinar.

Register for this workshop

All times are in Eastern Daylight Time.

Day 1 | Thursday, September 5

8:00 a.m. Welcome

8:10 a.m. NIA Opening Remarks, Eliezer Masliah, M.D., National Institute on Aging (NIA)

8:30 a.m. Keynote Lecture, APOE4 as a toxic gain of function molecule, David M. Holtzman, M.D., Washington University 

9:00 a.m. Session 1 | APOE genetics (Part 1) Session Moderator: Jeffery (Jeff) Vance, M.D., Ph.D., University of Miami 

  • The APOE4 Story: From Discovery to Diversity, Peggy Pericak-Vance, Ph.D., University of Miami
  • Local versus global ancestry in APOE: African and African American, Hispanic, and Asian populations, Farid Rajabli, Ph.D., University of Miami
  • Differential APOE effects on gene expression in different human brain cell types, Anthony (Tony) Griswold, Ph.D., University of Miami  

10:20 a.m.   Break

10:35 a.m. Session 1 | APOE genetics (Part 1 Continued)

  • Dissecting APOE biology by CRISPR-based functional genomics, Martin Kampmann, Ph.D., University of California, San Francisco
  • South Asians in India (LASI-DAD): Impact of APOE4 with Social Determinants of Health (SDOH), Sharon Kardia, Ph.D., University of Michigan
  • A Genetic Modifier of ε4/AD Association and APOE Expression, Lindsay Farrer, Ph.D., Boston University 

11:35 a.m. Session 2 | APOE genetics (Part 2) Moderator: Jeffery (Jeff) Vance, M.D., Ph.D., University of Miami 

  • PSG haplotype is protective for APOE4, Jeffery (Jeff) Vance, M.D., Ph.D., University of Miami
  • Fibronectin 1 and APOE- ε4, Richard Mayeux, M.D., Columbia University 
  • Interaction of Haptoglobin and APOE in Alzheimer Disease, Jonathan Haines, Ph.D., Case Western Reserve University 

12:30 p.m. Lunch

1:15p.m. Session 2 | APOE genetics (Part 2 Continued)

  • APOE ε2 Allele and Protective Variants in APOE ε4/ε4 Carriers on Alzheimer’s Disease Risk, Gyungah Jun, Ph.D., Boston University
  • Rare Protective APOE Variants, Michael Greicius, M.D., MPH., Stanford University

1:55 p.m. Session 3 | Mechanisms of Disease-APOE Moderator: Takahisa Kanekiyo, M.D., Ph.D., Mayo Clinic, Jacksonville, FL 

  • APOE-Genotype Dependent Single-Cell Transcriptomics of Alzheimer's Disease, Li Hui Tsai, Ph.D., Massachusetts Institute of Technology 
  • The role of APOE genotype in microglial behavior and gene expression, Alison Goate, D.Phil., Mount Sinai 
  • The role of APOE genetics in glial lipid metabolism and inflammation, Julia TCW, Ph.D., Boston University 
  • The role of genetic variants and their influence on the immune response in myeloid cells/microglia, Christopher (Chris) Glass, M.D., Ph.D., University of California, San Diego 

3:15 p.m. Break

3:30 p.m. Session 3 | Mechanisms of Disease-APOE (Continued)

  • An allelic series of lipidated ApoE drives CNS lipofuscinosis , Gilbert (Gil) Di Paolo, Ph.D., Denali Therapeutics 
  • APOE4/4 is linked to damaging lipid droplets in Alzheimer's disease microglia, Michael Haney, Ph.D., University of Pennsylvania
  • Biology of APOE Protective Variants, Yadong Huang, M.D., Ph.D., Gladstone Institute/ University of California, San Francisco 
  • Biological effects of APOE3ch on amyloid-induced tau seeding/spreading, Yun Chen, Washington University 

4:50 p.m. Wrap Up

5:00 p.m. Adjourn

Day 2 | Friday, September 6

8:00 a.m. Session 4 | New technologies and moving towards therapeutics of APOE4 Moderator:  Julia TCW, Ph.D., Boston University  

  • (Machine) Learning Features of the Alzheimer’s Disease Landscape, Olivier Lichtarge, M.D., Ph.D., Baylor College of Medicine
  • Leveraging deep molecular profiling to understand APOE dependent and independent pathology, Carlos Cruchage, Ph.D., Washington University in St. Louis
  • APOE4 impact on vasculature, Sally Temple, Ph.D., Neural Stem Cell Institute
  • ApoeE2 and its role in plaque deposition, neuroinflammation, and neurodegeneration, Bradley (Brad) Hyman, M.D., Ph.D., Massachusetts General Hospital
  • Clinical trial of APOE2 gene therapy, Ronald Crystal, M.D., Weill Cornell Medical College

9:50 a.m. Break

10:10 a.m. Session 4 | New technologies and moving towards therapeutics of APOE4 (Continued)

  • Potential therapeutic role for peripheral APOE, Guojun Bu, Ph.D., Hong Kong University of Science and Technology  
  • Antisense oligonucleotides for Alzheimer’s disease – a focus on APOE, Hien Zhao, Ph.D., Ionis Pharmaceuticals
  • RNAi Modulation of ApoE: Delicate Balance between Plague Clearance and Glia Activation, Anastasia Khvorova, Ph.D., University of Massachusetts
  • Combination therapy in NACC and ADNI Alzheimer’s participants: Impact of APOE genotype and Sex, Francesca Vitali, Ph.D., University of Arizona 
  • Using biomarkers in persons with different APOE variants to inform the study, treatment and prevention of AD, Eric Reiman, M.D., Banner Health
  • Therapeutic Correction of ApoE4-Mediated Endolysosomal Dysfunction in Alzheimer's Disease, Joachim Herz, M.D., University of Texas Southwestern Medical Center 

12:00 p.m. Lunch

1:00 p.m. Session 5 | Brainstorm Moderator: David M. Holtzman, M.D., Washington University and Jeffery (Jeff) Vance, M.D., Ph.D., University of Miami 

  • What are the therapeutic implications of lowering or raising APOE variants?
  • What more do we need to understand from a mechanistic standpoint?
  • What else needs to be understood about APOE variants and the effect in different ancestries?
  • How does APOE variant impact Aβ immunotherapy and other diseases?

2:45 p.m. Wrap Up: Discussion Summary and Meeting Outcomes

3:00 p.m. Adjourn

Please contact Marilyn Miller at [email protected] , Michael Bennani at [email protected] , and Tiffany Rolle at  [email protected] for questions you may have about the workshop.

Reasonable Accommodations: If you need reasonable accommodation to participate in this event, please contact the meeting organizer listed under Contact information. Please make your request no later than 1 week before the event.

nia.nih.gov

An official website of the National Institutes of Health

IMAGES

  1. Introduction to Research and 10 Purposes of Research

    what is research purpose of research

  2. PPT

    what is research purpose of research

  3. What is Research?

    what is research purpose of research

  4. Purpose of Research

    what is research purpose of research

  5. Free Research Purpose Statement Generator for High School & College

    what is research purpose of research

  6. Types of Research By Purpose

    what is research purpose of research

VIDEO

  1. Importance of Research

  2. What is Research?

  3. How to Write Research Purpose by Dr.Shahid Bashir, PhD

  4. Research Meaning

  5. LECTURE 1. THE MEANING OF RESEARCH

  6. What is research

COMMENTS

  1. What is Research?

    The purpose of research is to further understand the world and to learn how this knowledge can be applied to better everyday life. It is an integral part of problem solving. Although research can take many forms, there are three main purposes of research: Exploratory: Exploratory research is the first research to be conducted around a problem ...

  2. Purpose of Research

    The purpose of research can vary depending on the field of study, the research question, and the intended audience. In general, research can be used to: Generate new knowledge and theories. Test existing theories or hypotheses. Identify trends or patterns. Gather information for decision-making. Evaluate the effectiveness of programs, policies ...

  3. What is Research

    Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.".

  4. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  5. Research

    In the simplest of terms, the research definition is a process of seeking out knowledge. This knowledge can be new, or it can support an already known fact. The purpose of research is to inform ...

  6. What is Research? Definition, Types, Methods, and Examples

    The research process collects accurate information systematically. Logic is used to analyze the collected data and find insights. Checking the collected data thoroughly ensures accuracy. Research also leads to new questions using existing data. Accuracy is key in research, which requires precise data collection and analysis.

  7. Purpose of Research

    The purpose of research can be a complicated issue and varies across different scientific fields and disciplines. At the most basic level, science can be split, loosely, into two types, 'pure research' and 'applied research'. This article is a part of the guide:

  8. Chapter 3

    A variable is, not surprisingly, some- thing that can vary, or assume different values. In the next section, illustrative questions are given, categorized by the purpose of research with which they are best matched. The five research purposes are presented as the following: 1. Explore, 2. Describe, 3. Test, 4. Evaluate, and 5. Predict.

  9. Research

    The purpose of the original research is to produce new knowledge rather than present the existing knowledge in a new form (e.g., summarized or classified). [7] [8] Original research can take various forms, depending on the discipline it pertains to.

  10. What Is Research?

    Research is the deliberate, purposeful, and systematic gathering of data, information, facts, and/or opinions for the advancement of personal, societal, or overall human knowledge. Based on this definition, we all do research all the time. Most of this research is casual research. Asking friends what they think of different restaurants, looking ...

  11. What is Research?

    The research objectives can vary depending on the specific field of study, the nature of the research, and the researcher's goals. However, some common purposes of the research include: Answer questions: Research aims to provide answers to specific questions or hypotheses. It seeks to investigate and uncover information, data, or insights ...

  12. What Is Research and Why We Do It

    Research can span a broad range of approaches, from purely theoretical to practice-oriented; different approaches often coexist and fertilize each other. Research ignites human progress and societal change. In turn, society drives and supports research. The specific role of research in Informatics is discussed.

  13. What is Research? Definition and steps of the scientific method

    The term, research, is much stricter in science than in everyday life. It revolves around using the scientific method to generate hypotheses and provide analyzable results. All scientific research has a goal and ultimate aim, repeated and refined experimentation gradually reaching an answer. These results are a way of gradually uncovering ...

  14. Research: Meaning and Purpose

    20) "Research is a process step used to collect and analyze information to increase our understanding of a topic or issue. It consists of three steps: pose a question, collect data to answer questions, present an answer to the question". Creswell (2008 p. 03)

  15. Research Objectives

    A research aim is a broad statement indicating the general purpose of your research project. It should appear in your introduction at the end of your problem statement, before your research objectives. Research objectives are more specific than your research aim. They indicate the specific ways you'll address the overarching aim.

  16. The purpose of qualitative research

    Qualitative research enables us to make sense of reality, to describe and explain the social world and to develop explanatory models and theories. It is the primary means by which the theoretical foundations of social sciences may be constructed or re-examined.

  17. 1. The Purpose of Research: Why do we do it?

    by Ioanna Palaiologou, David Needham and Trevor Male. 1. The Purpose of Research: Why do we do it? Select SAGE Journal articles are available to give you even more insight into chapter topics. These are also an ideal resource to help support your literature reviews, dissertations and assignments. Click on the following links which will open in ...

  18. What Is Research, and Why Do People Do It?

    And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community. If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand, not just to describe or evaluate or ...

  19. What is Research?

    Research is the pursuit of new knowledge through the process of discovery. Scientific research involves diligent inquiry and systematic observation of phenomena. Most scientific research projects involve experimentation, often requiring testing the effect of changing conditions on the results. The conditions under which specific observations ...

  20. What is Scientific Research and How Can it be Done?

    Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new ...

  21. Why should I do research? Is it a waste of time?

    Nevertheless, the purpose of research is more than that. It is time to reframe the way research is done and rewarded, leaving profits in second place. We need to remind ourselves about the real purpose of scientific research. Moreover, we need to decide what research is needed and what impact it is likely to have.

  22. The Role Of Research At Universities: Why It Matters

    Strength in research helps to define a university's "brand" in the national and international marketplace, impacting everything from student recruitment, to faculty retention, to attracting ...

  23. What Is Research? Types and Methods

    Research is the process of examining a hypothesis to make discoveries. Practically every career involves research in one form or another. Accountants research their client's history and financial documents to understand their financial situation, and data scientists perform research to inform data-driven decisions.. In this guide, we'll go over:

  24. Research Paper Purpose Statement Examples

    A purpose statement clearly defines the objective of your qualitative or quantitative research. Learn how to create one through unique and real-world examples.

  25. The Purpose of Research and Its Characteristics (3-5 min read)

    A research purpose is met through forming hypotheses, collecting data, analysing, etc. It summarizes the research study's specific topic and goals, providing readers with an accurate, concrete understanding of the findings, the purpose of research and its characteristics. The basic properties of the research purpose are given below:

  26. Home

    What is the Research Lifecycle? Within the context of this guide, we will be referring to the research lifecycle as the steps taken to fund, plan, design, deliver, and disseminate a research project from start to finish. For reference, you can also consult the Harvard Biomedical Data Management page to see this process of research data management.

  27. Academic Research and the Expert-Novice Gap: Helping Students

    The lack of a shared understanding of the goals and process of research may contribute to the frustration that students and instructors often have related to student performance on research or inquiry-based assignments. This free virtual workshop will explore the expert-novice gap in relation to the purpose and process of academic research.

  28. Questions for H.R. 9436: To establish a National Science Foundation

    H.R. 9436: To establish a National Science Foundation grant program to provide and strengthen opportunities for peer-led research regarding autism spectrum disorder and its characteristics in women, and for other purposes.

  29. The Priority Updates from the Research Literature (PURLs) Methodology

    PURLs. Priority Updates from the Research Literature (PURLs) is a product of the Family Practice Inquiries Network (FPIN) designed to alert practicing primary care clinicians about new discoveries that could cause them to change their practice. 1 The purpose of PURLs is to leverage an organized surveillance system to rapidly scan a large amount of medical literature relevant to primary care ...

  30. APOE Genetics as a Major Determinant of Alzheimer's Disease

    Purpose and Background. ... Discussion of supported research will for example examine why APOE4 risk differs dramatically among populations and how these differences can be leveraged to better understand AD pathobiology. During the two-day meeting participants will explore the best next steps to develop study approaches that will pinpoint the ...