European Transport Research Review

european transport research review journal

Subject Area and Category

  • Automotive Engineering
  • Mechanical Engineering
  • Transportation

Springer Verlag

Publication type

18668887, 18670717

Information

How to publish in this journal

[email protected]

european transport research review journal

The set of journals have been ranked according to their SJR and divided into four equal groups, four quartiles. Q1 (green) comprises the quarter of the journals with the highest values, Q2 (yellow) the second highest values, Q3 (orange) the third highest values and Q4 (red) the lowest values.

CategoryYearQuartile
Automotive Engineering2010Q3
Automotive Engineering2011Q4
Automotive Engineering2012Q3
Automotive Engineering2013Q2
Automotive Engineering2014Q2
Automotive Engineering2015Q2
Automotive Engineering2016Q2
Automotive Engineering2017Q2
Automotive Engineering2018Q1
Automotive Engineering2019Q1
Automotive Engineering2020Q1
Automotive Engineering2021Q1
Automotive Engineering2022Q1
Automotive Engineering2023Q1
Mechanical Engineering2010Q3
Mechanical Engineering2011Q4
Mechanical Engineering2012Q3
Mechanical Engineering2013Q2
Mechanical Engineering2014Q2
Mechanical Engineering2015Q2
Mechanical Engineering2016Q2
Mechanical Engineering2017Q2
Mechanical Engineering2018Q2
Mechanical Engineering2019Q1
Mechanical Engineering2020Q1
Mechanical Engineering2021Q1
Mechanical Engineering2022Q1
Mechanical Engineering2023Q1
Transportation2010Q3
Transportation2011Q4
Transportation2012Q3
Transportation2013Q3
Transportation2014Q3
Transportation2015Q3
Transportation2016Q3
Transportation2017Q2
Transportation2018Q2
Transportation2019Q2
Transportation2020Q2
Transportation2021Q2
Transportation2022Q2
Transportation2023Q2

The SJR is a size-independent prestige indicator that ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a measure of scientific influence of journals that accounts for both the number of citations received by a journal and the importance or prestige of the journals where such citations come from It measures the scientific influence of the average article in a journal, it expresses how central to the global scientific discussion an average article of the journal is.

YearSJR
20100.164
20110.113
20120.260
20130.421
20140.425
20150.394
20160.419
20170.510
20180.595
20190.704
20200.741
20210.747
20221.029
20231.106

Evolution of the number of published documents. All types of documents are considered, including citable and non citable documents.

YearDocuments
200921
201020
201120
201220
201320
201444
201534
201627
201755
201863
201950
202065
202161
202250
202346

This indicator counts the number of citations received by documents from a journal and divides them by the total number of documents published in that journal. The chart shows the evolution of the average number of times documents published in a journal in the past two, three and four years have been cited in the current year. The two years line is equivalent to journal impact factor ™ (Thomson Reuters) metric.

Cites per documentYearValue
Cites / Doc. (4 years)20090.000
Cites / Doc. (4 years)20100.714
Cites / Doc. (4 years)20110.537
Cites / Doc. (4 years)20120.770
Cites / Doc. (4 years)20130.914
Cites / Doc. (4 years)20141.238
Cites / Doc. (4 years)20151.240
Cites / Doc. (4 years)20161.280
Cites / Doc. (4 years)20171.888
Cites / Doc. (4 years)20182.400
Cites / Doc. (4 years)20192.927
Cites / Doc. (4 years)20203.226
Cites / Doc. (4 years)20214.365
Cites / Doc. (4 years)20225.138
Cites / Doc. (4 years)20236.031
Cites / Doc. (3 years)20090.000
Cites / Doc. (3 years)20100.714
Cites / Doc. (3 years)20110.537
Cites / Doc. (3 years)20120.770
Cites / Doc. (3 years)20130.867
Cites / Doc. (3 years)20141.067
Cites / Doc. (3 years)20151.143
Cites / Doc. (3 years)20161.276
Cites / Doc. (3 years)20171.933
Cites / Doc. (3 years)20182.655
Cites / Doc. (3 years)20192.634
Cites / Doc. (3 years)20203.202
Cites / Doc. (3 years)20214.191
Cites / Doc. (3 years)20225.415
Cites / Doc. (3 years)20235.585
Cites / Doc. (2 years)20090.000
Cites / Doc. (2 years)20100.714
Cites / Doc. (2 years)20110.537
Cites / Doc. (2 years)20120.575
Cites / Doc. (2 years)20130.825
Cites / Doc. (2 years)20141.025
Cites / Doc. (2 years)20150.938
Cites / Doc. (2 years)20161.192
Cites / Doc. (2 years)20172.410
Cites / Doc. (2 years)20182.317
Cites / Doc. (2 years)20192.754
Cites / Doc. (2 years)20202.991
Cites / Doc. (2 years)20214.278
Cites / Doc. (2 years)20224.643
Cites / Doc. (2 years)20235.757

Evolution of the total number of citations and journal's self-citations received by a journal's published documents during the three previous years. Journal Self-citation is defined as the number of citation from a journal citing article to articles published by the same journal.

CitesYearValue
Self Cites20090
Self Cites20101
Self Cites20110
Self Cites20121
Self Cites20132
Self Cites20144
Self Cites20153
Self Cites20168
Self Cites201713
Self Cites201829
Self Cites201927
Self Cites202017
Self Cites202118
Self Cites202229
Self Cites202349
Total Cites20090
Total Cites201015
Total Cites201122
Total Cites201247
Total Cites201352
Total Cites201464
Total Cites201596
Total Cites2016125
Total Cites2017203
Total Cites2018308
Total Cites2019382
Total Cites2020538
Total Cites2021746
Total Cites2022953
Total Cites2023983

Evolution of the number of total citation per document and external citation per document (i.e. journal self-citations removed) received by a journal's published documents during the three previous years. External citations are calculated by subtracting the number of self-citations from the total number of citations received by the journal’s documents.

CitesYearValue
External Cites per document20090
External Cites per document20100.667
External Cites per document20110.537
External Cites per document20120.754
External Cites per document20130.833
External Cites per document20141.000
External Cites per document20151.107
External Cites per document20161.194
External Cites per document20171.810
External Cites per document20182.405
External Cites per document20192.448
External Cites per document20203.101
External Cites per document20214.090
External Cites per document20225.250
External Cites per document20235.307
Cites per document20090.000
Cites per document20100.714
Cites per document20110.537
Cites per document20120.770
Cites per document20130.867
Cites per document20141.067
Cites per document20151.143
Cites per document20161.276
Cites per document20171.933
Cites per document20182.655
Cites per document20192.634
Cites per document20203.202
Cites per document20214.191
Cites per document20225.415
Cites per document20235.585

International Collaboration accounts for the articles that have been produced by researchers from several countries. The chart shows the ratio of a journal's documents signed by researchers from more than one country; that is including more than one country address.

YearInternational Collaboration
20094.76
201030.00
201130.00
201225.00
201310.00
201418.18
201520.59
201640.74
201727.27
201833.33
201926.00
202026.15
202121.31
202228.00
202328.26

Not every article in a journal is considered primary research and therefore "citable", this chart shows the ratio of a journal's articles including substantial research (research articles, conference papers and reviews) in three year windows vs. those documents other than research articles, reviews and conference papers.

DocumentsYearValue
Non-citable documents20090
Non-citable documents20102
Non-citable documents20112
Non-citable documents20122
Non-citable documents20130
Non-citable documents20140
Non-citable documents20151
Non-citable documents20162
Non-citable documents20173
Non-citable documents20186
Non-citable documents201910
Non-citable documents202011
Non-citable documents202110
Non-citable documents20227
Non-citable documents20236
Citable documents20090
Citable documents201019
Citable documents201139
Citable documents201259
Citable documents201360
Citable documents201460
Citable documents201583
Citable documents201696
Citable documents2017102
Citable documents2018110
Citable documents2019135
Citable documents2020157
Citable documents2021168
Citable documents2022169
Citable documents2023170

Ratio of a journal's items, grouped in three years windows, that have been cited at least once vs. those not cited during the following year.

DocumentsYearValue
Uncited documents20090
Uncited documents201013
Uncited documents201126
Uncited documents201236
Uncited documents201332
Uncited documents201425
Uncited documents201537
Uncited documents201629
Uncited documents201732
Uncited documents201833
Uncited documents201946
Uncited documents202036
Uncited documents202131
Uncited documents202228
Uncited documents202317
Cited documents20090
Cited documents20108
Cited documents201115
Cited documents201225
Cited documents201328
Cited documents201435
Cited documents201547
Cited documents201669
Cited documents201773
Cited documents201883
Cited documents201999
Cited documents2020132
Cited documents2021147
Cited documents2022148
Cited documents2023159

Evolution of the percentage of female authors.

YearFemale Percent
200927.91
201037.74
201136.00
201232.00
201322.45
201425.66
201537.23
201630.34
201736.84
201828.41
201934.81
202034.00
202132.54
202233.83
202335.51

Evolution of the number of documents cited by public policy documents according to Overton database.

DocumentsYearValue
Overton20098
Overton201010
Overton20116
Overton20125
Overton20139
Overton201413
Overton201519
Overton20169
Overton201727
Overton201818
Overton201914
Overton202021
Overton202119
Overton20228
Overton20231

Evoution of the number of documents related to Sustainable Development Goals defined by United Nations. Available from 2018 onwards.

DocumentsYearValue
SDG201847
SDG201931
SDG202035
SDG202140
SDG202236
SDG202335

Scimago Journal & Country Rank

Leave a comment

Name * Required

Email (will not be published) * Required

* Required Cancel

The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.

Scimago Lab

Follow us on @ScimagoJR Scimago Lab , Copyright 2007-2024. Data Source: Scopus®

european transport research review journal

Cookie settings

Cookie Policy

Legal Notice

Privacy Policy

 
| | | | | |
 
 

The European Transport Research Review–An Open Access Journal (ETRR) is an online scientific platform aiming at disseminating research results in the field of transport. The main scope and mission of the Journal is to provide a forum for the publication of high quality scientific papers in the field of transport in general, and a dissemination medium for new ideas and developments that originate in, or are of interest to, the European transport research community. 

There are three aspects of the Journal’s concept that mark a distinct difference to the other journals in the field of transport; first, it is the open access configuration that makes it easily and widely available through the internet with a minimum of constraints and costs; second, it provides focus on issues of special interest to European transport research, its funding bodies and supervising organisations; third, it is clearly oriented towards researchers and practitioners as well.
The Journal considers primarily research papers in English, on both theorical as well as applied research, whose excellence and content represent an important contribution to transport research in Europe.

For the first issue of the journal, the was opened until 19 September 2008. Authors were notified of acceptance or rejection by 31 October 2008 and final versions of accepted papers were submitted by 14 November 2008.
The first papers were online in January/March 2009. After this first issue, the journal has adopted a permanent submission system. In July 2009, the second issue was published, including a by EU-Commissioner for Science and Research Janez Potocnik. End of 2013, 20 ETRR publications were issued, which represents a total of 128 articles in 5 volumes.

ETRR has an  indexed in the following   products and services:

Proposals should be submitted through the “Online Submission System”, which is accessible .

The ETRR leaflet can be downloaded , and the Springer ETRR leaflet .

Check also the .

Read the

The journal website is available online at

For more information, please contact the Editor-in-Chief, ( ).

s from the University of Twente (The Netherlands) is the appointed Editor in Chief of the journal as of January 1st 2017. Prof. Geurs has previously been involved in ETRR as Associate Editor.

, is Research Director at the 
-HIT (Greece) and is appointed Chair of the Advisory Board as of 1 July 2016. She has been involved in the ETRR Advisory Board since 2011.

The of the ETRR is available.

Menu

Lack- und Pulvertreff

Nasslackieren und pulverbeschichten

Der Kongress am  15. / 16. Oktober 2024 in Heidelberg  informiert umfassend über neue lack-, anlagen- und verfahrens­technische Entwicklungen und deren Umsetzung in die Praxis.

Springer Professional

European transport research review.

An Open Access Journal

european transport research review journal

  • Alle Ausgaben

Aktuelle Ausgaben

european transport research review journal

European Transport Research Review 1/2024

european transport research review journal

European Transport Research Review 1/2023

european transport research review journal

European Transport Research Review 1/2022

european transport research review journal

European Transport Research Review 1/2021

european transport research review journal

European Transport Research Review 1/2020

european transport research review journal

European Transport Research Review 1/2019

european transport research review journal

European Transport Research Review 2/2018

european transport research review journal

European Transport Research Review 1/2018

european transport research review journal

European Transport Research Review 4/2017

european transport research review journal

European Transport Research Review 3/2017

Scrollen für mehr

Benutzen Sie die Pfeiltasten für mehr

Scrollen oder Pfeiltasten für mehr

Über diese Zeitschrift

European Transport Research Review (ETRR) is a peer-reviewed open access journal publishing original high-quality scholarly research and developments in areas related to transportation science, technologies, policy and practice. Established in 2008 by the European Conference of Transport Research Institutes (ECTRI), the Journal provides researchers and practitioners around the world with an authoritative forum for the dissemination and critical discussion of new ideas and methodologies that originate in, or are of special interest to, the European transport research community. The journal is unique in its field, as it covers all modes of transport and addresses both the engineering and the social science perspective, offering a truly multidisciplinary platform for researchers, practitioners, engineers and policymakers.

ETRR covers the following main areas of interest:

· Freight transport and logistics

· Transportation infrastructure

· Mobility and transport behavior

· Transportation ergonomics and human factors

· Transportation safety and security

· Transportation planning and policy

· Transportation economics

· Transportation system management, including Intelligent Transportation Systems (ITS)

· Environmental issues in transportation and climate change

· Vehicle design & technology

Highway engineering, railway engineering, waterway transportation and air transport also fall into the journal’s scope. Of particular interest are topics like: transportation sustainability; accessibility and equity; technologies for improving network and vehicle efficiency; advances in integrated transport systems and intermodal transportation; traffic flow theory and modeling; IT technologies for transport data collection and analysis; innovative vehicle design; and strategies for vehicle-to-vehicle communications. The Journal encourages thematic collections of related articles from major European transport research projects, major conferences such as the TRA, ETC and WCTR, and international networks such as NECTAR.

European Transport Research Review is aimed at a readership including researchers, practitioners in the design and operation of transportation systems, and policymakers at the international, national, regional and local levels. While its focus is on Europe, it will be of interest to anyone wishing to learn from European experience or to develop new applications for European practice.

  • Webinare Technik
  • Webinare Wirtschaft
  • Veranstaltungskalender
  • MyNewsletter
  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko
  • Organisationspsychologie
  • Projektmanagement
  • Smart Manufacturing
  • Zeitschriften
  • Jetzt Einzelzugang starten
  • Zugang für Unternehmen
  • Referenzkunden
  • Lackier- und Pulvertreff 2024

Discover scientific knowledge and stay connected to the world of science

Discover research.

Access over 160 million publication pages and stay up to date with what's happening in your field.

Connect with your scientific community

Share your research, collaborate with your peers, and get the support you need to advance your career.

Visit Topic Pages

Measure your impact.

Get in-depth stats on who's been reading your work and keep track of your citations.

Advance your research and join a community of 25 million scientists

Researchgate business solutions.

Hire professionals

Scientific Recruitment

Advertise to scientific community

Marketing Solutions

European Transport Research Review

Number of papers135
H4-Index
TQCC
Average citations14.244
Median citations
Impact Factor5.100 (based on 2023)

( API-Link )

Impact Factor : 5.100 (based on Web of Science 2023)

  • # 5 / 32 (Q1) in Transportation
  • # 6 / 38 (Q1) in Transportation Science & Technology

Partner: • University Press Alert

MOSCOW - RUSSIA

Ewf b.v east west forwarding.

Edelveis, Right Entrance, 2nd Floor Davidkovskaja, 121352 Moscow, Russia

  • Phone: +7 495 938-99-66
  • Mobile: +7 495-997-0977
  • Fax: +7 495 938-99-67
  • email: [email protected]
  • web: www.eastwestforwarding.com

Company Profile

  • LIST WITH US

The Unique Burial of a Child of Early Scythian Time at the Cemetery of Saryg-Bulun (Tuva)

<< Previous page

Pages:  379-406

In 1988, the Tuvan Archaeological Expedition (led by M. E. Kilunovskaya and V. A. Semenov) discovered a unique burial of the early Iron Age at Saryg-Bulun in Central Tuva. There are two burial mounds of the Aldy-Bel culture dated by 7th century BC. Within the barrows, which adjoined one another, forming a figure-of-eight, there were discovered 7 burials, from which a representative collection of artifacts was recovered. Burial 5 was the most unique, it was found in a coffin made of a larch trunk, with a tightly closed lid. Due to the preservative properties of larch and lack of air access, the coffin contained a well-preserved mummy of a child with an accompanying set of grave goods. The interred individual retained the skin on his face and had a leather headdress painted with red pigment and a coat, sewn from jerboa fur. The coat was belted with a leather belt with bronze ornaments and buckles. Besides that, a leather quiver with arrows with the shafts decorated with painted ornaments, fully preserved battle pick and a bow were buried in the coffin. Unexpectedly, the full-genomic analysis, showed that the individual was female. This fact opens a new aspect in the study of the social history of the Scythian society and perhaps brings us back to the myth of the Amazons, discussed by Herodotus. Of course, this discovery is unique in its preservation for the Scythian culture of Tuva and requires careful study and conservation.

Keywords: Tuva, Early Iron Age, early Scythian period, Aldy-Bel culture, barrow, burial in the coffin, mummy, full genome sequencing, aDNA

Information about authors: Marina Kilunovskaya (Saint Petersburg, Russian Federation). Candidate of Historical Sciences. Institute for the History of Material Culture of the Russian Academy of Sciences. Dvortsovaya Emb., 18, Saint Petersburg, 191186, Russian Federation E-mail: [email protected] Vladimir Semenov (Saint Petersburg, Russian Federation). Candidate of Historical Sciences. Institute for the History of Material Culture of the Russian Academy of Sciences. Dvortsovaya Emb., 18, Saint Petersburg, 191186, Russian Federation E-mail: [email protected] Varvara Busova  (Moscow, Russian Federation).  (Saint Petersburg, Russian Federation). Institute for the History of Material Culture of the Russian Academy of Sciences.  Dvortsovaya Emb., 18, Saint Petersburg, 191186, Russian Federation E-mail:  [email protected] Kharis Mustafin  (Moscow, Russian Federation). Candidate of Technical Sciences. Moscow Institute of Physics and Technology.  Institutsky Lane, 9, Dolgoprudny, 141701, Moscow Oblast, Russian Federation E-mail:  [email protected] Irina Alborova  (Moscow, Russian Federation). Candidate of Biological Sciences. Moscow Institute of Physics and Technology.  Institutsky Lane, 9, Dolgoprudny, 141701, Moscow Oblast, Russian Federation E-mail:  [email protected] Alina Matzvai  (Moscow, Russian Federation). Moscow Institute of Physics and Technology.  Institutsky Lane, 9, Dolgoprudny, 141701, Moscow Oblast, Russian Federation E-mail:  [email protected]

Shopping Cart Items: 0 Cart Total: 0,00 € place your order

Price pdf version

student - 2,75 € individual - 3,00 € institutional - 7,00 €

We accept

Copyright В© 1999-2022. Stratum Publishing House

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

Land use changes in the environs of Moscow

european transport research review journal

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

The management of critical bone defects: outcomes of a systematic approach

  • Original Article
  • Open access
  • Published: 02 August 2024

Cite this article

You have full access to this open access article

european transport research review journal

  • Shao-Ting Jerry Tsang   ORCID: orcid.org/0000-0002-9862-8503 1 ,
  • Adrian Jansen van Rensburg   ORCID: orcid.org/0000-0001-6341-0734 1 ,
  • Jason van Heerden   ORCID: orcid.org/0009-0006-9363-3721 1 ,
  • Gadi Zwe Epstein   ORCID: orcid.org/0000-0002-4753-5024 1 ,
  • Rudolph Venter   ORCID: orcid.org/0000-0003-0022-6969 1 &
  • Nando Ferreira   ORCID: orcid.org/0000-0002-0567-3373 1  

The reconstruction of segmental long bone defects remains one of ‘The holy grails of orthopaedics’. The optimal treatment of which remains a topic of great debate. This study aimed to evaluate the outcomes following the management of critical-sized bone defects using a classification-based treatment algorithm.

A retrospective review of all patients undergoing treatment for segmental diaphyseal defects of long bones at a tertiary-level limb reconstruction unit between January 2016 and December 2021, was performed. The management of the bone defect was standardised as per the classification by Ferreira and Tanwar (2020).

A total of 96 patients (mean age 39.8, SD 15.2) with a minimum six months follow-up were included. Most bone defects were the result of open fractures (75/96) with 67% associated with Gustilo-Anderson IIIB injuries. There was a statistical difference in the likelihood of union between treatment strategies with more than 90% of cases undergoing acute shortening and bone transport achieving union and only 72% of cases undergoing the induced membrane technique consolidating ( p = 0.049). Of those defects that consolidated, there was no difference in the time to bone union between strategies ( p = 0.308) with an overall median time to union 8.33 months (95% CI 7.4 – 9.2 months). The induced membrane technique was associated with a 40% risk of sepsis.

This study reported the outcomes of a standardised approach to the management of critical-sized bone defects. Whilst overall results were supportive of this approach, the outcomes associated with the induced membrane technique require further refinement of its indications in the management of critical-sized bone defects.

Level of evidence

Avoid common mistakes on your manuscript.

Introduction

The reconstruction of segmental long bone defects remains one of ‘The holy grails of orthopaedics’. [ 1 ] The presence of a segmental defect is associated with prolonged treatment and compromised outcomes following trauma [ 2 , 3 ] and fracture-related infection [ 4 ]. One of the most significant advances in this field has been the gradual move towards an accepted definition of “critical-sized” bone defect, with much of this progress due to secondary analysis of the SPRINT trial [ 5 ]. At present, defects larger than 2 cm in length and with more than 50% circumferential bone loss are considered critical bone defects and unlikely to heal without further intervention [ 3 ]. Despite this progress, there remains equipoise within the orthopaedic community regarding the optimal treatment strategy [ 1 ]. Strategies which all require a significant allocation of resources, including time, at the cost to both patient and health care providers [ 6 ].

Ferreira and Tanwar recently proposed a classification system and treatment algorithm in the management of post-traumatic critical-sized bone defects. In this system consideration is given to the following; the size of the bone defect (< 2 cm, 2 – 6 cm, 6 – 12 cm, or > 12 cm), soft tissue quality (no deficit, defect requiring reconstruction, or unreconstructable defect), and host type (no compromise, local or systemic compromise, or treatment would be worse than the disease for the patient) [ 6 ]. It was proposed that treatment strategies should be tailored to address all the elements identified and stratified by the classification system [ 6 ].

This study aimed to evaluate the outcomes following the management of critical-sized bone defects using a classification-based treatment algorithm.

This single-centre retrospective study was performed at a tertiary-level limb reconstruction unit. The records of all patients undergoing treatment for segmental diaphyseal defects of long bones between January 2016 and December 2021 were retrospectively reviewed. Patient demographics, co-morbidities, aetiology and site of defect, defect management technique, follow-up period, and outcomes (clinical and radiological) were collected.

A critical bone defect was defined as a bone defect that will not heal if left untreated, with segmental defects of more than 60mm generally regarded as large defects [ 2 , 5 , 7 ]. Non-union was defined as fractures that failed to unite nine months after the injury or showed no radiological progression to union in three consecutive months. Treatment success was defined as bone union.

Chronic osteomyelitis was defined as an infection of the bone with associated necrosis with a duration of at least 10 days, where the pathogens were thought to have resisted either intracellularly or interstitially in biofilm-or persister-states [ 8 ]. The diagnosis of fracture-related infection was made according to the international consensus definition proposed by Metsemaker et al. and modified by Govaert et al. in 2020 [ 9 , 10 ].

Patients with periarticular bone defects, tumour-related bone defects, or fewer than six months of follow-up were excluded.

The bone defect treatment algorithm used in this present study, depending on host and soft tissue grading, was as described by Ferreira and Tanwar [ 6 ]. In brief;

<20 mm defect: Acute shortening or primary bone grafting

20–60 mm: Induced membrane or acute shortening and lengthening or bone transport

60–120 mm: Bone transport

>120 mm: Bone transport

Statistical analysis was performed using SPSS v25 (IBM Corp, Armonk, NY, USA). Parametric data are reported as mean and standard deviation (SD) with 95% confidence intervals (CI) where appropriate. Non-parametric data are described with median, interquartile range and range. Categorical data are described as frequencies and/or counts, with 95% CI where appropriate. Depending on the distribution, associations were investigated using a one-way analysis of variance (ANOVA) or a Mann-Whitney U/Median test. Pearson Chi-squared test or Fisher’s Exact test, where appropriate was used to detect significant differences between categorical data. Estimation of time to bone union was performed using Kaplan-Meier statistics, and comparisons were made using Log-rank analysis.

The final cohort comprised 96 patients (63 males and 33 females) with a mean age of 39.8 (SD 15.2, range 10–82) years. Patient demographics, co-morbidities, and aetiologies of the bone defects are shown in Table 1 . Thirty-four patients (35%) were classified as A hosts, while 55 (65%) were classified as B hosts; no C hosts underwent bone defect reconstruction in the current cohort. The majority (75/96, 78.1%) of segmental bone defects were a result of open fractures with 50/75 (66.7%) being Gustilo-Anderson IIIB injuries. Soft tissue defects requiring reconstruction (β soft tissue defect) were found in 50 patients (52%) while the remaining patients did not require any soft tissue reconstruction (⍺ soft tissue). The most affected bone was the tibia (70.8%). The full distribution of affected anatomical sites is shown in Fig. 1 .

figure 1

Anatomical distribution of critical bone defects

Bone defect reconstruction strategies included acute shortening ± subsequent lengthening in 34 patients (35%), bone transport in 32 patients (33%), the induced membrane technique in 25 patients (26%) and custom-made intercalary grafts in five patients (5%). The employed treatment strategy according to bone defect size, soft tissue defect type and host category are shown in Table 2 . The five patients who underwent intercalary prosthesis reconstruction of their bone defects were excluded from the union analysis. There was a statistically significant difference in the likelihood of achieving bone union between management strategies ( p = 0.049) (Table 3 ). The lowest likelihood of union was amongst those treated with the induced membrane technique (18/25, 72.0%). There was no statistically significant difference in the likelihood of union between bone transport (29/32 (90.1%)) and acute shortening (32/34, 94.1%) ( p = 0.471).

Kaplan-Meier statistics with log-rank analysis revealed that the overall median time to bone union of the different treatment strategies was 8.33 months (95% CI 7.4 – 9.2 months). There was no statistically significant difference ( p = 0.308) in the median time to bone union between cases managed with acute shortening (7.5 months, 95% CI 7.1 – 7.9), bone transport (9.5 months, 95% CI 6.1 – 12.9), and the induced membrane technique (6.7 months, 95% CI 4.9 – 8.5) (Fig. 2 ).

figure 2

The Kaplan-Meier analysis for critical bone defects treatment strategies. Time to union curve following treatment of critical bone defects (excluding cases treated by Greenbone bone substitute and truss reconstruction)

There was a statistically significant difference in the risk of sepsis between the treatment strategies ( p = 0.026) with 10/25 (40.0%) cases in the induced membrane technique developing secondary infection at the site of the defect.

There was a statistically significant difference in the risk of a resultant leg length discrepancy following reconstruction between the treatment strategies ( p < 0.05). Between-group comparisons revealed statistical differences between acute shortening (28/34, 82.4%) and all other treatment strategies ( p < 0.05). There was no statistical difference ( p = 0.382) between bone transport (10/32, 31.3%) and the induced membrane technique (6/25, 24.0%).

This study reported the outcomes following the management of critical-sized bone defects using a classification-based treatment algorithm. There was a statistical difference in the likelihood of union between treatment strategies with more than 90% of cases undergoing acute shortening and bone transport achieving union and only 72% of cases undergoing the induced membrane technique consolidating (Table 2 ). On analysis of all the cases that achieved consolidation, there was no difference in the time-to-bone union between strategies with an overall median time of 8.3 months (Fig. 2 ). The induced membrane technique was associated with a 40% risk of sepsis. Acute shortening was associated with a clinically significant leg length discrepancy in 82% of cases.

There was a significantly lower likelihood of bone union following the induced membrane technique (72%) in the treatment of critical-sized bone defects. In those that did achieve union with the Masquelet technique, the median time to union was 6.7 months. In a systematic review and meta-analysis of outcomes following the induced membrane technique for the treatment of bone defects that included 48 observational studies (1,386 cases), Fung et al. reported that 82% of cases achieved union after the first grafting procedure, with 87% achieving union after repeated grafting procedures. The mean time to union was 6.6 months (1.4–58.7 months) after bone grafting [ 11 ]. In addition, the meta-analysis reported an 18% risk for unplanned procedures and a 10% risk of secondary infection. A sub-analysis, using logistic regression, identified the presence of pre-operative infection as the primary risk factor for non-union of the defect with larger tibial defects being at greater risk of secondary infection [ 11 ]. A single-centre cohort study conducted after this meta-analysis also found that tibial defects following excision for osteomyelitis were at greater risk of non-union when treated with the induced membrane technique [ 12 ]. In this present study, the underlying aetiology for the bone defect was an infection in 19/96 (20%) cases with 68/96 (71%) cases located in the tibia with a mean defect size of 40.54 mm ± 21.68. Whilst the overall prevalence of secondary infection was 21/96 (22%), 10/25 (40%) cases using the induced membrane technique experienced secondary infection. Similar results have been previously reported in the literature. In a cohort of bone defects in the tibia (mean defect size 58 mm) treated with the induced membrane technique, 60% failed to unite following initial bone grafting and 40% experienced secondary infection [ 13 ]. With a significantly increased risk of non-union and secondary infection associated with the induced membrane technique, particularly with larger defects, those in the tibia, and the presence of pre-existing infection, it would be prudent to reconsider the indications for this technique. Even the original describer of the technique cautioned against its use for defects greater than 100 mm in an instructional review published by the French Society of Orthopaedic Surgery and Traumatology [ 14 , 15 ].

Patients undergoing acute shortening or bone transport in this series experienced bone union in more than 90% of cases with a median time to bone union of 7.5 months and 9.5 months, respectively. The mean bone defect length in patients undergoing acute shortening and bone transport were 31.5 mm and 50.6 mm, respectively. There was a 17% risk of secondary infection and a 12% risk of malalignment associated with these techniques. Within the acute shortening group, 82% had a clinically significant limb length discrepancy for which patients were counselled pre-operatively and managed with a planned re-lengthening procedure as a second stage. Ilizarov techniques, such as acute shortening and re-lengthening or bone transport, are established treatment strategies in the management of bone defects [ 16 ]. The adaptability of circular external fixation also facilitates the simultaneous management of concomitant soft tissue defects and deformities. Aktuglu et al . performed a systematic review and meta-analysis of bone transport used in the treatment of critical-sized bone defects in the tibia; this meta-analysis of 619 patients (27 studies), of which 89% had concomitant infection, found that bone union was achieved in 90% (range 77–100%) cases. The mean bone defect length in the cohort was 6.5 cm and the mean external fixation time was 10.8 (range 2.5–23.2) months [ 17 ]. A further systematic review and meta-analysis of observational studies that reported the outcomes of bone transport with a circular frame in the treatment of infected non-unions of the tibia and femur (590 patients in 24 studies) estimated 97% union with a mean external fixation time of 10.7 months and external fixation index 1.7 months/cm [ 18 ]. The mean length of the bone defect in this aggregated cohort was 6.5 cm in patients with infected tibial non-unions and 8.0 cm in patients with infected femoral non-unions [ 18 ]. Sigmund et al. compared the outcomes of acute shortening and re-lengthening with bone transports in the management of infected segmental defects of the tibia [ 19 ]. Ultimately, there was no difference in the risk of recalcitrant infection or ongoing non-union between the two techniques. However, 15 of 27 bone transport cases required unplanned surgeries, including docking site procedures, to achieve bone union. The two groups had no difference in overall time in the fixator or the external fixator index [ 19 ]. Similar results have been reported in systematic reviews and meta-analyses that have compared the two Ilizarov reconstruction techniques. Using an aggregated cohort of 199 patients from five studies, Wen et al did not find any difference in the likelihood of bone union, risk of overall complications, or function results between the two techniques. However acute shortening was associated with a shorter external fixator index (standard mean difference 0.63) but increased requirement for bone grafting to achieve union [ 20 ].

This study was the first to assess the outcomes of a standardised approach to the management of critical-sized bone defects. In doing so, it highlighted shortcomings in currently used reconstruction strategies, such as the induced membrane technique. The retrospective nature of this study carries with it the expected biases associated with non-randomised comparative studies, namely selection, attrition, and confusion bias [ 21 ]. However, the standardised approach is reflective of current practice and thus allows assessment of these techniques used as they would be applied in a real-world setting, despite the methodological flaws.

Tsang STJ, Ferreira N, RWSimpson AH (2022) The reconstruction of critical bone loss. Bone Joint Res. 11(6):409–12

Article   PubMed   PubMed Central   Google Scholar  

Schemitsch EH (2017) Size Matters: Defining Critical in Bone Defect Size! J Orthop Trauma. 31(5):S20-2

Article   PubMed   Google Scholar  

Keating JF, Simpson AH, Robinson CM (2005) The management of fractures with bone loss. J Bone Joint Surg Br. 87–B(2):142–50

Article   Google Scholar  

Bezstarosti H, Metsemakers WJ, van Lieshout EMM, Voskamp LW, Kortram K, McNally MA et al (2021) Management of critical-sized bone defects in the treatment of fracture-related infection: a systematic review and pooled analysis. Arch Orthop Trauma Surg. 141(7):1215

Article   CAS   PubMed   Google Scholar  

Sanders DW, Bhandari M, Guyatt G, Heels-Ansdell D, Schemitsch EH, Swiontkowski M et al (2014) Critical-sized defect in the tibia: is it critical? Results from the sprint trial. J Orthop Trauma. 28(11):632–5

Ferreira N, Tanwar YS (2020) Systematic approach to the management of post-traumatic segmental diaphyseal long bone defects: treatment algorithm and comprehensive classification system. Strat Traum Limb Reconstr. 15(2):106–16

Roddy E, DeBaun MR, Daoud-Gray A, Yang YP, Gardner MJ (2018) Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol. 28(3):351–62

Lew DP, Waldvogel FA (1997) Osteomyelitis. N Engl J Med. 336(14):999–1007

Metsemakers WJ, Morgenstern M, McNally MA, Moriarty TF, McFadyen I, Scarborough M et al (2018) Fracture-related infection: a consensus on definition from an international expert group. Injury. 49(3):505–10

Govaert GAM, Kuehl R, Atkins BL, Trampuz A, Morgenstern M, Obremskey WT et al (2020) Diagnosing fracture-related infection: current concepts and recommendations. J Orthop Trauma. 34(1):8

Fung B, Hoit G, Schemitsch E, Godbout C, Nauth A (2020) The induced membrane technique for the management of long bone defects. Bone Joint J. 102(12):1723–34

Wang X, Wang S, Xu J, Sun D, Shen J, Xie Z (2021) Antibiotic cement plate composite structure internal fixation after debridement of bone infection. Sci Rep. 11(1):1–6

Google Scholar  

Morris R, Hossain M, Evans A, Pallister I (2017) Induced membrane technique for treating tibial defects gives mixed results. Bone Joint J. 99–B(5):680–5

Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet A-CC (2012) Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res. 98(1):97–102

Rigal S, Merloz P, Le Nen D, Mathevon H, Masquelet AC (2012) Bone transport techniques in posttraumatic bone defects. Orthop Traumatol Surg Res. 98(1):103–8

Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues. Part I. the influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 238:249–81

Aktuglu K, Erol K, Vahabi A (2019) Ilizarov bone transport and treatment of critical-sized tibial bone defects: a narrative review. J Orthop Traumatol. 20:1–14

Yin P, Ji Q, Li T, Li J, Li Z, Liu J et al (2015) A systematic review and meta-analysis of ilizarov methods in the treatment of infected nonunion of tibia and femur. PLoS One. 10(11):e0141973

Sigmund IK, Ferguson J, Govaert GAM, Stubbs D, McNally MA (2020) Comparison of Ilizarov Bifocal, Acute Shortening and Relengthening with Bone Transport in the Treatment of Infected, Segmental Defects of the Tibia. J Clin Med. 9(2):279

Wen H, Zhu S, Li C, Xu Y (2020) Bone transport versus acute shortening for the management of infected tibial bone defects: a meta-analysis. BMC Musculoskelet Disord. 21:1–9

Ramirez-Santana M (2018) Limitations and Biases in Cohort Studies. In: Mauricio Barría R (ed) Cohort Studies in Health Sciences. InTech, London

Download references

Open access funding provided by Stellenbosch University.

Author information

Authors and affiliations.

Division of Orthopaedic Surgery, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa

Shao-Ting Jerry Tsang, Adrian Jansen van Rensburg, Jason van Heerden, Gadi Zwe Epstein, Rudolph Venter & Nando Ferreira

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Nando Ferreira .

Ethics declarations

Conflict of interest.

Shao-Ting Jerry Tsang declares that he has no conflict of interest. Gadi Epstein declares that he has no conflict of interest. Adrian Jansen van Rensburg declares that he has no conflict of interest. Jason van Heerden declares that he has no conflict of interest. Rudolph Venter declares that he has no conflict of interest. Nando Ferreira declares that he has no conflict of interest.

Ethical approval

This retrospective review received ethics approval from the Stellenbosch University Health Research Ethics Committee (N22/01/004)

Informed consent

This retrospective review received a waiver of informed consent from the Stellenbosch University Health Research Ethics Committee(N22/01/007)

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Tsang, ST.J., van Rensburg, A.J., van Heerden, J. et al. The management of critical bone defects: outcomes of a systematic approach. Eur J Orthop Surg Traumatol (2024). https://doi.org/10.1007/s00590-024-04050-1

Download citation

Received : 11 June 2024

Accepted : 21 July 2024

Published : 02 August 2024

DOI : https://doi.org/10.1007/s00590-024-04050-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Open fracture
  • Critical bone defects
  • Reconstruction techniques
  • Find a journal
  • Publish with us
  • Track your research

This website uses cookies to ensure you get the best experience. Learn more about DOAJ’s privacy policy.

Hide this message

You are using an outdated browser. Please upgrade your browser to improve your experience and security.

WeChat QR code

european transport research review journal

  • Open access
  • Published: 25 July 2024

Stem cell therapies for neurological disorders: current progress, challenges, and future perspectives

  • Ramyar Rahimi Darehbagh 1 , 2 , 3 , 4 ,
  • Seyedeh Asrin Seyedoshohadaei 5 ,
  • Rojin Ramezani 1 &
  • Nima Rezaei 6 , 7 , 8  

European Journal of Medical Research volume  29 , Article number:  386 ( 2024 ) Cite this article

441 Accesses

1 Altmetric

Metrics details

Stem cell-based therapies have emerged as a promising approach for treating various neurological disorders by harnessing the regenerative potential of stem cells to restore damaged neural tissue and circuitry. This comprehensive review provides an in-depth analysis of the current state of stem cell applications in primary neurological conditions, including Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), stroke, spinal cord injury (SCI), and other related disorders. The review begins with a detailed introduction to stem cell biology, discussing the types, sources, and mechanisms of action of stem cells in neurological therapies. It then critically examines the preclinical evidence from animal models and early human trials investigating the safety, feasibility, and efficacy of different stem cell types, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). While ESCs have been studied extensively in preclinical models, clinical trials have primarily focused on adult stem cells such as MSCs and NSCs, as well as iPSCs and their derivatives. We critically assess the current state of research for each cell type, highlighting their potential applications and limitations in different neurological conditions. The review synthesizes key findings from recent, high-quality studies for each neurological condition, discussing cell manufacturing, delivery methods, and therapeutic outcomes. While the potential of stem cells to replace lost neurons and directly reconstruct neural circuits is highlighted, the review emphasizes the critical role of paracrine and immunomodulatory mechanisms in mediating the therapeutic effects of stem cells in most neurological disorders. The article also explores the challenges and limitations associated with translating stem cell therapies into clinical practice, including issues related to cell sourcing, scalability, safety, and regulatory considerations. Furthermore, it discusses future directions and opportunities for advancing stem cell-based treatments, such as gene editing, biomaterials, personalized iPSC-derived therapies, and novel delivery strategies. The review concludes by emphasizing the transformative potential of stem cell therapies in revolutionizing the treatment of neurological disorders while acknowledging the need for rigorous clinical trials, standardized protocols, and multidisciplinary collaboration to realize their full therapeutic promise.

Introduction

Neurological disorders encompass a wide range of debilitating conditions that affect the central and peripheral nervous systems, leading to progressive damage and loss of neural tissue. These conditions include neurodegenerative illnesses, which are typified by the build-up of abnormal protein aggregates and the progressive loss of particular neuronal populations. Examples of these illnesses are Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) [ 1 , 2 ]. Other neurological conditions, such as multiple sclerosis (MS) and spinal cord injury (SCI), involve damage to the myelin sheath and axons, disrupting neural transmission and causing functional impairments [ 3 , 4 ]. Cerebrovascular disorders, including stroke and traumatic brain injury (TBI), result in acute neural tissue damage and subsequent neuroinflammation, leading to long-term disability [ 5 , 6 ]. Neurological disorders pose a significant burden on global health, affecting millions of individuals worldwide and leading to substantial healthcare costs and societal impact [ 7 , 8 ].

Current therapeutic approaches for neurological disorders primarily focus on managing symptoms and slowing disease progression rather than addressing the underlying pathology. This is in part because the precise etiology of many neurological conditions remains unknown, limiting our ability to develop targeted disease-modifying therapies. Pharmacological treatments, such as dopaminergic medications for PD, cholinesterase inhibitors for AD, and immunomodulatory drugs for MS, provide symptomatic relief but often have limited efficacy and side effects [ 9 , 10 , 11 ]. Rehabilitation strategies aim to promote functional recovery and adaptations but do not directly restore lost neural tissue [ 12 ]. Surgical interventions, such as deep brain stimulation for PD, can alleviate specific symptoms but do not halt or reverse the neurodegenerative process [ 13 ]. While progress has been made in developing neuroprotective agents and gene therapies, their clinical translation has been challenging, and their long-term efficacy remains to be established [ 14 , 15 ]. Given the limitations of current therapies, there is a pressing need for novel approaches that can effectively regenerate damaged neural tissue, replace lost neurons, and promote functional recovery in neurological disorders.

By utilizing stem cells' capacity for regeneration, stem cell-based therapies have become a viable option for treating the underlying pathophysiology of neurological illnesses. Because of their capacity to self-renew and differentiate into distinct cell types, stem cells are desirable in regenerative medicine [ 16 ]. Numerous stem cell types have been investigated for their potential as therapeutics for neurological illnesses, including induced pluripotent stem cells (iPSCs), neural stem cells (NSCs), mesenchymal stem cells (MSCs), and embryonic stem cells (ESCs) [ 17 , 18 ]. These cells offer a variety of alternatives for cell-based therapeutics since they can be produced from various sources, including adult bone marrow, adipose tissue, embryonic tissue, and reprogrammed somatic cells [ 19 , 20 ]. Stem cells have a variety of therapeutic applications in neurological illnesses, including immunomodulation, cell replacement, paracrine signaling, and stimulation of endogenous repair mechanisms [ 21 , 22 , 23 ]. Preclinical studies in animal models have demonstrated the ability of stem cells to differentiate into neuronal and glial lineages, integrate into host neural circuits, and promote functional recovery in various neurological conditions [ 24 , 25 ]. However, the clinical translation of stem cell therapies faces numerous challenges, including optimizing cell manufacturing, delivery methods, and safety assessments [ 26 ].

This comprehensive review aims to provide an in-depth analysis of the current state of stem cell-based therapies for neurological disorders, focusing on the most recent advances and clinical applications. The review will discuss the biological properties and therapeutic mechanisms of different stem cell types, critically examine the preclinical and clinical evidence for their efficacy and safety, and highlight the challenges and future directions in the field. By synthesizing the latest research findings and expert opinions, this review seeks to inform researchers, clinicians, and stakeholders about the potential and limitations of stem cell therapies in revolutionizing the treatment of neurological disorders.

Stem cell basics

Stem cells are unspecialized cells with the unique ability to self-renew and differentiate into various cell types, making them a valuable tool for regenerative medicine [ 27 ]. Understanding stem cells' fundamental properties and mechanisms is crucial for their therapeutic application in neurological disorders. This section provides an overview of the different types of stem cells, their sources, and their mechanisms of action in neurological therapies.

Based on their potential for differentiation and developmental stage, stem cells can be categorized. All of the body's cell types can be produced by ESCs, pluripotent cells formed from the inner cell mass of blastocysts [ 28 ]. Nevertheless, there are hazards of tumor growth and ethical issues with using ESCs [ 29 ]. Adult stem cells are multipotent cells in bone marrow, adipose tissue, and the central nervous system. Examples of these tissues are MSCs and NSCs [ 30 , 31 ]. Though less contentious and safer than ESCs, these cells have a more constrained capacity for differentiation [ 32 ]. Adult somatic cells are reprogrammed into a pluripotent state using particular transcription factors to create iPSCs [ 33 ]. iPSCs possess similar properties to ESCs but avoid the ethical issues associated with embryonic tissue use [ 34 ]. Other stem cell sources include perinatal tissues, such as umbilical cord blood and amniotic fluid, which contain a mix of multipotent stem cells [ 35 ].

Stem cells exert their therapeutic effects in neurological disorders through multiple mechanisms, broadly categorized into cell replacement, paracrine signaling, immunomodulation, and stimulation of endogenous repair processes.

Cell replacement: Stem cells can differentiate into specific neuronal and glial cell types, potentially replacing damaged or lost neural cells in neurological disorders [ 36 ]. For instance, dopaminergic neurons derived from stem cells can be transplanted into the striatum to replace degenerated neurons in Parkinson's disease [ 37 ]. However, the extent of cell replacement and functional integration of transplanted cells varies across different neurological conditions and requires further optimization [ 38 ].

Paracrine signaling: Stem cells secrete a wide range of bioactive molecules, including growth factors, cytokines, and extracellular vesicles, which can exert neuroprotective, anti-inflammatory, and regenerative effects on the host neural tissue [ 39 , 40 ]. These paracrine factors can promote the survival and regeneration of endogenous neural cells, modulate the immune response, and enhance angiogenesis and neuroplasticity [ 41 , 42 ]. The paracrine mechanisms of stem cells are believed to play a crucial role in their therapeutic efficacy, particularly in conditions where cell replacement alone may not be sufficient [ 43 ].

Immunomodulation: Neuroinflammation is a common feature of many neurological disorders, contributing to neural damage and hindering repair processes [ 44 ]. Stem cells, particularly MSCs, possess immunomodulatory properties that can regulate the immune response and create a more favorable environment for neural repair [ 45 ]. These cells can interact with various immune cells, such as T, B, and microglia, and modulate their activity through direct cell–cell contact and secretion of soluble factors [ 46 , 47 ]. By attenuating neuroinflammation and promoting a pro-regenerative immune response, stem cells can indirectly support neural repair and functional recovery [ 48 ].

Stimulation of endogenous repair: To encourage the proliferation, differentiation, and integration of endogenous stem and progenitor cells into the injured neural tissue, stem cells can activate and mobilize these cells in the brain [ 49 , 50 ]. Growth factors and chemokines that draw endogenous stem cells to the injury site and promote their survival and differentiation can be secreted to do this [ 51 ]. Furthermore, stem cells can expand the brain's neurogenic and angiogenic niches, improving the conditions for endogenous repair mechanisms [ 52 ].

The therapeutic mechanisms of stem cells in neurological disorders are complex and multifaceted, often involving a combination of cell replacement, paracrine signaling, immunomodulation, and stimulation of endogenous repair. The relative contribution of each mechanism may vary depending on the specific neurological condition, the type of stem cells used, and the route and timing of administration [ 53 ]. Understanding these mechanisms is crucial for optimizing stem cell-based therapies and developing targeted approaches for neurological disorders.

However cell-based therapy for neurological illnesses encounters various obstacles despite its considerable potential:

The potential of developing tumours, especially with pluripotent stem cells, is a concern [ 54 ]

Allogeneic cell transplants can be rejected by the immune system [ 55 ]

Cell survival and incorporation in the host tissue are restricted

The possibility of unregulated differentiation or movement [ 56 ]

There are ethical considerations related to the utilisation of embryonic stem cells [ 57 ]

Issues related to scalability and manufacture of cell products that meet clinical-grade standards [ 58 ].

There are questions about the safety of anything over a long period of time, and it is necessary to do additional studies to continue monitoring it [ 59 ].

These constraints highlight the significance of thorough preclinical testing and meticulous clinical trial design. Furthermore, it is imperative for regulatory frameworks to adapt in order to effectively tackle the distinctive obstacles presented by cell-based therapies [ 20 ].

Each type of stem cell has unique benefits and drawbacks when it comes to its use in neurological applications. ESCs possess a significant degree of adaptability, but they can give rise to ethical dilemmas and pose the possibility of developing tumours [ 60 ]. Adult stem cells, such as MSCs and NSCs, have a narrower range of cell types they can develop into, but they may present fewer safety risks [ 61 ]. iPSCs offer a means of obtaining cells that are particular to each patient, but they must undergo thorough analysis to guarantee their safety and effectiveness [ 31 ]. When selecting a cell type, it is important to thoroughly evaluate the individual neurological disease and therapeutic objectives [ 35 ].

Stem cell therapy in specific neurological diseases

Alzheimer’s disease.

Amyloid-beta (Aβ) plaques and neurofibrillary tangles build up in Alzheimer's disease (AD), a progressive neurodegenerative condition that impairs memory, causes neuronal death and declines cognitive function [ 62 ]. Current pharmacological treatments, such as cholinesterase inhibitors and memantine, provide symptomatic relief but do not address the underlying pathology or halt disease progression [ 63 ]. Stem cell-based therapies have been proposed as a potential strategy to address multiple aspects of Alzheimer's disease pathology, including replacing lost neurons, providing neuroprotection, and modulating neuroinflammation [ 64 ].

Preclinical studies

Preclinical studies using animal models of AD have demonstrated the potential of various stem cell types, including MSCs, NSCs, and iPSCs, to ameliorate AD pathology and improve cognitive function. MSCs have been shown to reduce Aβ deposition, attenuate neuroinflammation, and promote neurogenesis and synaptic plasticity in AD mouse models [ 65 , 66 , 67 ]. NSCs derived from human fetal tissue or differentiated from pluripotent stem cells have been reported to differentiate into cholinergic neurons and integrate into the host brain, improving cognitive function in AD animal models [ 68 , 69 ]. However, transplanted cells' long-term survival and functional integration remain challenging [ 70 ]. iPSC-derived neural cells have also shown promise in preclinical studies, with the advantage of allowing patient-specific and genetically corrected cell therapies [ 71 , 72 ].

Clinical trials

To date, only a limited number of small-scale clinical trials have investigated the safety and feasibility of stem cell therapies in AD patients. A phase I trial using human umbilical cord blood-derived MSCs (hUCB-MSCs) demonstrated the safety and tolerability of repeated intravenous infusions in AD patients, with some evidence of stabilization of cognitive function [ 73 ]. Another phase I trial using autologous adipose-derived MSCs (ADSCs) showed safety and potential efficacy in slowing cognitive decline in mild to moderate AD patients [ 74 ]. However, these early-stage trials have limitations, such as small sample sizes, lack of placebo controls, and short follow-up periods, making it difficult to draw definitive conclusions about the efficacy of stem cell therapies in AD [ 75 ].

Challenges and future directions

Obstacles and prospects for the future although the preclinical results show promise, various hurdles must be overcome to successfully apply stem cell therapy in the clinical treatment of AD. These include enhancing the efficiency and quality of stem cells, enhancing the viability and effective integration of transplanted cells, and devising precise delivery techniques to specific brain regions impacted by AD [ 76 ]. Additionally, the optimal timing of intervention, the long-term safety and efficacy, and the potential need for repeated treatments need to be established through well-designed clinical trials [ 67 ].

Future directions in stem cell therapy for AD may involve using genetically modified stem cells to enhance their therapeutic properties, such as increased secretion of neurotrophic factors or Aβ-degrading enzymes [ 77 ]. Combining stem cell therapy with other therapeutic approaches, such as Aβ immunization or small molecule inhibitors of Aβ and tau pathology, may provide synergistic benefits [ 78 ]. 3D organoid models derived from patient-specific iPSCs may also facilitate drug screening and personalized treatment strategies [ 79 ].

Although stem cell therapy shows potential as a disease-modifying treatment for AD, additional research is required to tackle the obstacles and enhance the therapeutic strategy. Thorough preclinical investigations and well-planned clinical trials are necessary to determine stem cell treatments' safety, effectiveness, and long-term advantages in Alzheimer's disease. However, the complex and multifaceted nature of AD presents significant challenges for developing effective cell replacement therapies. AD involves widespread neuronal loss, synaptic dysfunction, protein aggregation, and vascular abnormalities across multiple brain regions. Simple cell replacement is unlikely to address all of these pathological features. Additional research is required to determine if stem cell approaches can tackle the numerous obstacles presented by AD's complexity and enhance therapeutic strategies [ 80 ].

Parkinson’s disease

Parkinson's disease (PD) is a degenerative neurological condition that gradually causes the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). This leads to motor symptoms, including tremors, stiffness, and slowness of movement [ 81 ]. Current treatments, including dopaminergic medications and deep brain stimulation, provide symptomatic relief but do not address the underlying neuronal loss or halt disease progression [ 82 ]. Stem cell-based therapies aim to replace lost dopaminergic neurons and restore motor function in PD [ 83 ]. It is important to note that Parkinson's disease is not simply characterized by the loss of dopaminergic neurons. The pathophysiology is complex, involving multiple neurotransmitter systems, protein aggregation, neuroinflammation, and dysfunction of various neural circuits. For stem cell therapies to be truly disease-modifying or curative, they would need to address these multiple aspects of PD pathology. Recent research has highlighted additional challenges, including the potential spread of alpha-synuclein pathology to transplanted cells and the need to restore broader neural circuit function beyond dopamine replacement [ 84 ].

Preclinical studies using animal models of PD have demonstrated the potential of various stem cell types, particularly ESCs and iPSCs, to differentiate into dopaminergic neurons and improve motor function. Transplantation of human ESC-derived dopaminergic neurons into the striatum of PD animal models has shown survival, integration, and functional recovery [ 85 , 86 ]. Similarly, iPSC-derived dopaminergic neurons have demonstrated the ability to engraft, innervate the host striatum, and ameliorate motor deficits in PD models [ 87 , 88 ]. However, challenges such as variability in differentiation efficiency, graft survival, and potential tumorigenicity need to be addressed [ 89 ]. PD models have also investigated MSCs for their neuroprotective and immunomodulatory properties [ 90 , 91 ].

Several clinical trials have investigated the safety and efficacy of stem cell therapies in PD patients. Early trials using fetal ventral mesencephalic (FVM) tissue grafts demonstrated variable outcomes, with some patients showing long-term clinical benefits and others developing graft-induced dyskinesias [ 92 , 93 ]. More recently, clinical trials using human ESC-derived dopaminergic progenitors have shown promise. A phase 1/2 trial reported the safety and survival of transplanted cells in PD patients, with some evidence of motor improvement [ 94 ]. An ongoing phase 1 trial (NCT03119636) investigates the safety and efficacy of human ESC-derived dopaminergic progenitors in PD patients [ 95 ]. Clinical trials using autologous iPSC-derived dopaminergic neurons are also in the planning stages [ 96 ].

While stem cell therapy for PD has made significant progress, several challenges remain. These include optimizing the differentiation and purification of dopaminergic neurons, ensuring graft survival and functional integration, and minimizing the risk of graft-induced dyskinesias [ 97 ]. Strategies to enhance graft survival, such as co-transplantation with supportive cell types or neuroprotective agents, are being explored [ 95 ]. The development of standardized protocols for cell manufacturing and quality control is also essential for the reproducibility and scalability of stem cell therapies [ 98 ]. Future directions in stem cell therapy for PD may involve gene editing technologies to correct disease-causing mutations in patient-specific iPSCs [ 99 ]. Cell encapsulation or bioengineered scaffolds may improve graft survival and integration [ 100 ]. Combinatorial approaches, such as the co-administration of neurotrophic factors or the use of neuroprotective agents, may enhance the therapeutic efficacy of stem cell therapies [ 101 ].

Stem cell therapy shows potential as a disease-modifying treatment for PD, aiming to replace lost dopaminergic neurons and restore motor function. Although there have been promising findings in preclinical studies and early clinical trials, additional research is required to tackle the obstacles and enhance the therapeutic approach. Continuing and upcoming clinical trials will offer valuable knowledge regarding the safety, effectiveness, and long-term advantages of stem cell therapies in PD.

Multiple sclerosis

Multiple sclerosis (MS) is a long-lasting inflammatory condition of the CNS that involves the immune system attacking and damaging the protective covering of nerve fibers called myelin. This damage results in neurological problems and impairment [ 102 ]. Current therapies for MS primarily focus on immunomodulation and symptom management but do not effectively promote remyelination or prevent progressive neurodegeneration [ 103 ]. Stem cell-based therapies aim to promote remyelination, provide neuroprotection, and modulate the immune response in MS. Among neurological conditions, multiple sclerosis (MS) stands out as having the most advanced clinical applications of stem cell therapy. Autologous hematopoietic stem cell transplantation (aHSCT) is now routinely used in medical centers worldwide to treat aggressive forms of MS. This approach aims to 'reset' the immune system and halt disease progression [ 104 ].

Preclinical studies using animal models of MS, such as experimental autoimmune encephalomyelitis (EAE), have demonstrated the potential of various stem cell types to promote remyelination and ameliorate disease progression. Transplantation of NSCs or oligodendrocyte progenitor cells (OPCs) derived from ESCs or iPSCs has shown the ability to differentiate into mature oligodendrocytes, promote remyelination, and improve functional outcomes in EAE models [ 105 , 106 ]. MSCs have also been extensively studied in MS models for their immunomodulatory and neuroprotective properties [ 107 ]. MSCs have been shown to reduce neuroinflammation, suppress autoreactive T cells, and promote the generation of regulatory T cells, leading to improved clinical outcomes in EAE [ 108 , 109 ].

Several clinical trials have investigated the safety and efficacy of stem cell therapies in MS patients. aHSCT has been explored as a potential treatment for aggressive forms of MS to reset the immune system and halt disease progression. Comparing aHSCT to disease-modifying therapies found that aHSCT was superior in preventing disease progression and achieving sustained improvement in neurological function. Long-term follow-up studies have shown that a significant proportion of patients remain free from disease activity for 5 years or more after treatment [ 110 ]. While some studies have shown promising results, with long-term stabilization or improvement of disability in a subset of patients, the procedure is associated with significant risks. It is currently reserved for select patients with highly active disease [ 111 , 112 ]. Clinical trials using MSCs have also been conducted in MS patients, primarily focusing on safety and feasibility [ 113 ]. Intravenous administration of autologous MSCs is well-tolerated, with evidence of potential efficacy in reducing inflammatory activity and promoting neuroprotection [ 102 , 114 ]. However, more extensive randomized controlled trials are needed to establish the long-term safety and efficacy of MSC-based therapies in MS.

While stem cell therapies hold promise for the treatment of MS, several challenges need to be addressed. One of the main challenges is ensuring the survival, differentiation, and functional integration of transplanted cells in the host CNS [ 115 ]. Strategies to enhance graft survival and promote targeted migration to sites of demyelination are being explored [ 110 ]. Another challenge is the potential for graft rejection or the development of secondary autoimmunity [ 116 ]. The use of autologous or genetically modified stem cells and the development of improved immunosuppressive regimens may help mitigate these risks [ 117 ]. Future directions in stem cell therapy for MS may involve using gene editing technologies to create "off-the-shelf" cell products with enhanced remyelination capacity or immunomodulatory properties [ 118 ]. Developing biomaterials and tissue engineering approaches to create scaffolds that support cell survival and guide axonal regeneration is also an active area of research [ 119 ]. Combination therapies that target multiple aspects of MS pathology, such as neuroinflammation, oxidative stress, and mitochondrial dysfunction, may enhance the therapeutic potential of stem cell transplantation [ 120 ].

Stem cell-based therapies for MS have shown promising results in preclinical studies and early clinical trials. While challenges remain, advances in cell manufacturing, genetic engineering, and biomaterial science are expected to improve the safety, efficacy, and accessibility of stem cell therapies for MS in the future. Further research and well-designed clinical trials are needed to establish the optimal therapeutic approach and long-term benefits of stem cell transplantation in MS. The success of aHSCT in MS has led to its inclusion in treatment guidelines for highly active relapsing–remitting MS that is refractory to conventional therapies. However, patient selection is crucial, as the procedure carries risks and is most beneficial for younger patients with active inflammatory disease. Ongoing research is focused on optimizing aHSCT protocols, reducing treatment-related risks, and exploring its potential in progressive forms of MS. Additionally, other stem cell approaches, such as mesenchymal stem cell therapies, are being investigated for their potential neuroprotective and regenerative properties in MS [ 121 ].

Stroke is a leading cause of death and disability worldwide, characterized by the sudden loss of blood supply to the brain, resulting in neuronal damage and functional impairments [ 122 ]. Current treatments for stroke primarily focus on restoring blood flow and providing supportive care but do not effectively address the long-term neurological deficits [ 123 ]. Stem cell-based therapies promote neuronal repair, modulate inflammation, and enhance functional recovery in stroke [ 124 ].

Animal research investigating stroke has shown that different types of stem cells, such as MSCs, NSCs, and iPSCs, can enhance neuronal repair and functional outcomes. Studies have demonstrated that the transplantation of MSCs can decrease the extent of tissue damage caused by a lack of blood supply, regulate the inflammation of nerves, and improve the growth of new nerve cells and blood vessels in animal stroke models [ 125 , 126 ]. NSCs, either from fetal tissue or generated from induced iPSCs, have shown the capacity to move towards the location of injury, transform into nerve cells and support cells, and enhance the restoration of function in stroke models [ 127 , 128 ]. Nevertheless, the precise timing, method, and amount of stem cell administration and the sustained viability and incorporation of transplanted cells continue to be significant obstacles [ 129 ].

Several clinical trials have investigated the safety and feasibility of stem cell therapies in stroke patients. A meta-analysis of early-phase clinical trials using MSCs in ischemic stroke patients reported a favorable safety profile and potential improvements in functional outcomes [ 130 ]. However, the efficacy of MSC transplantation in stroke remains to be established in larger, randomized controlled trials. The MASTERS trial, a phase 2 study of intravenous administration of bone marrow-derived MSCs in acute ischemic stroke patients, showed no significant improvement in functional outcomes at 90 days compared to placebo [ 128 ]. More recently, the TREASURE trial, a phase 2/3 study of intravenous administration of umbilical cord blood-derived MSCs in acute ischemic stroke patients, also failed to demonstrate a significant improvement in functional outcomes at 90 days [ 131 ]. These results highlight the need for further optimization of stem cell therapies for stroke, including the selection of patients most likely to benefit, the timing and route of administration, and the potential for combination therapies [ 127 ].

While stem cell therapies hold promise for the treatment of stroke, several challenges need to be addressed. One of the main challenges is the limited survival and engraftment of transplanted cells in the ischemic brain [ 132 ]. Strategies to enhance cell survival, such as preconditioning or genetic modification of stem cells, are being explored [ 133 ]. Another challenge is the potential for off-target effects or the development of adverse events, such as tumorigenesis or stroke-associated infection [ 134 ]. The use of highly purified and well-characterized cell populations and rigorous safety monitoring will be essential for the clinical translation of stem cell therapies for stroke [ 135 ]. Future directions in stem cell therapy for stroke may involve using biomaterials and tissue engineering approaches to create a supportive microenvironment for transplanted cells and enhance their survival and differentiation [ 136 ]. Developing cell-free approaches, such as using extracellular vesicles or exosomes derived from stem cells, may also provide a more scalable and safe alternative to cell transplantation [ 137 ]. Combinatorial approaches, such as the co-administration of neuroprotective agents or the use of rehabilitation therapies, may enhance the therapeutic efficacy of stem cell transplantation [ 138 ].

While stem cell-based therapies for stroke have shown promising results in preclinical studies, the clinical translation of these approaches has been challenging. Further research is needed to optimize the therapeutic approach, including selecting the most appropriate stem cell type, the timing and route of delivery, and the potential for combination therapies. Well-designed clinical trials with larger sample sizes and more extended follow-up periods will be essential to establish the safety and efficacy of stem cell therapies for stroke.

Amyotrophic lateral sclerosis

Muscle weakening, paralysis, and eventually death are the results of selective motor neuron loss in the brain and spinal cord that characterizes amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative illness [ 139 ]. There are currently just a few ALS treatments available, and they mainly concentrate on supportive care and symptom control [ 140 ]. The goals of stem cell-based treatments for ALS are to reduce neuroinflammation, restore damaged motor neurons, and offer neuroprotection [ 141 ].

Preclinical studies using animal models of ALS, such as the SOD1 transgenic mouse model, have demonstrated the potential of various stem cell types to delay disease progression and extend survival. Transplantation of NSCs or motor neuron progenitors derived from ESCs or iPSCs has been shown to integrate into the spinal cord, form synaptic connections with host neurons, and improve motor function in ALS models [ 141 , 142 ]. MSCs have also been extensively studied in ALS models for their immunomodulatory and neuroprotective properties [ 143 ]. Intrathecal or intravenous administration of MSCs has been shown to reduce neuroinflammation, protect against motor neuron loss, and prolong survival in ALS mice [ 144 , 145 ]. However, the long-term survival and efficacy of transplanted cells in the diseased microenvironment of ALS remain significant challenges [ 146 ].

Several early-phase clinical trials have investigated the safety and feasibility of stem cell therapies in ALS patients. Intraspinal transplantation of fetal spinal cord-derived NSCs in ALS patients is safe and well-tolerated, with some evidence of potential efficacy in slowing disease progression [ 147 , 148 ]. However, a follow-up phase 2 trial did not significantly improve functional outcomes or survival compared to placebo [ 149 ]. Intrathecal administration of autologous MSCs has also been explored in ALS patients, focusing on safety and tolerability [ 137 , 150 ]. While these early trials have provided proof-of-concept for the feasibility of stem cell transplantation in ALS, more extensive randomized controlled trials are needed to establish the efficacy of these approaches.

Despite the promising preclinical results, the clinical translation of stem cell therapies for ALS faces several challenges. One of the main challenges is the complex and multifactorial nature of ALS pathogenesis, which may limit the therapeutic efficacy of cell replacement alone [ 151 ]. Strategies to enhance the survival, integration, and function of transplanted cells in the hostile microenvironment of ALS are being explored, such as the co-transplantation of supportive glial cells or the use of neuroprotective factors [ 152 ]. Another challenge is the potential for immune rejection or the development of adverse events, such as graft-induced dyskinesias or tumorigenesis [ 153 ]. The use of autologous or genetically modified stem cells and improved immunosuppressive regimens may help mitigate these risks [ 154 ].

Future directions in stem cell therapy for ALS may involve gene editing technologies to correct ALS-causing mutations in patient-specific iPSCs, which could then be differentiated into healthy motor neurons for transplantation [ 155 ]. Using biomaterials and tissue engineering approaches to create scaffolds that support cell survival and guide axonal regeneration is also an active area of research [ 156 ]. Combinatorial approaches, such as the co-administration of neuroprotective agents or the use of anti-inflammatory drugs, may enhance the therapeutic potential of stem cell transplantation [ 157 ]. Developing novel delivery methods, such as intramuscular or intravascular administration of stem cells, may provide a less invasive and more scalable approach for cell therapy in ALS [ 158 ].

Although preclinical research on stem cell-based therapy for ALS has yielded encouraging findings, the practical application of these strategies has been complex. More studies are required on the most suitable stem cell type, administration timing and route, and the possibility of combination therapies to optimize the therapeutic strategy. More significant sample numbers and extended follow-up periods in carefully planned clinical trials will be necessary to confirm the safety and effectiveness of stem cell treatments for ALS. Additionally, the development of successful stem cell-based treatments for this debilitating illness will depend on a deeper comprehension of the underlying mechanisms of ALS pathogenesis and the interactions between transplanted cells and the host milieu.

Huntington’s disease

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a trinucleotide repeat expansion in the huntingtin gene, leading to the production of a mutant huntingtin protein that causes progressive neuronal loss and dysfunction, particularly in the striatum and cortex [ 159 ]. Current treatments for HD are limited and primarily focus on managing symptoms, such as chorea and psychiatric disturbances [ 160 ]. Stem cell-based therapies aim to replace lost neurons, provide neuroprotection, and modulate neuroinflammation in HD [ 161 ].

Preclinical studies using animal models of HD, such as the R6/2 and YAC128 transgenic mouse models, have demonstrated the potential of various stem cell types to improve motor function, reduce neuronal loss, and extend survival. Transplantation of fetal striatal tissue or NSCs derived from ESCs or iPSCs has been shown to integrate into the striatum, form synaptic connections with host neurons, and ameliorate motor deficits in HD mice [ 162 , 163 ]. MSCs have also been explored in HD models for their immunomodulatory and neuroprotective properties [ 164 ]. Intrastriatal or intravenous administration of MSCs has been shown to reduce neuroinflammation, increase neurotrophic factor levels, and improve motor function in HD mice [ 165 , 166 ]. However, the long-term survival and efficacy of transplanted cells in the diseased microenvironment of HD remain significant challenges [ 167 ].

To date, few clinical trials have investigated the safety and feasibility of stem cell therapies in HD patients. A phase 1 trial of fetal striatal tissue transplantation in HD patients demonstrated the safety and feasibility of the approach, with some evidence of graft survival and clinical benefit [ 168 ]. However, a follow-up study found that the transplanted cells developed HD-like pathology over time, suggesting that cell replacement alone may not halt disease progression [ 169 ]. Recently, a phase 1/2 trial of intrastriatal transplantation of human ESC-derived neural progenitors in HD patients has been initiated (NCT03252080) [ 170 ]. This trial aims to assess the approach's safety, tolerability, and preliminary efficacy, with results expected in the coming years.

While stem cell-based therapies for HD hold promise, several challenges must be addressed for successful clinical translation. One of the main challenges is the potential for transplanted cells to acquire HD-related pathology over time due to the presence of the mutant huntingtin protein in the host environment [ 171 ]. Strategies to mitigate this risk, such as genetically corrected autologous iPSCs or the co-transplantation of neuroprotective factors, are being explored [ 172 ]. Another challenge is the need for targeted cell delivery to the affected brain regions, as widespread neuronal loss and circuit dysfunction occur in HD [ 173 ]. Developing advanced imaging techniques and stereotactic surgery methods may help guide precise cell transplantation [ 154 ]. Future directions in stem cell therapy for HD may involve gene editing technologies, such as CRISPR–Cas9, to correct the HTT mutation in patient-specific iPSCs, which could then be differentiated into healthy striatal neurons for transplantation [ 155 ]. Using biomaterials and tissue engineering approaches to create scaffolds that support cell survival and guide axonal regeneration is also an active area of research [ 156 ]. Combinatorial approaches, such as the co-administration of neuroprotective agents or the use of anti-inflammatory drugs, may enhance the therapeutic potential of stem cell transplantation [ 174 ]. Developing novel delivery methods, such as intracerebroventricular or intrathecal administration of stem cells, may provide a less invasive and more widespread approach for cell therapy in HD [ 175 ].

In summary, whereas preclinical research on stem cell-based treatments for Huntington's disease has yielded encouraging outcomes, the clinical application of these strategies is still in its infancy. More studies are required on the most suitable stem cell type, administration timing and route, and the possibility of combination therapies to optimize the therapeutic strategy. To prove that stem cell therapies for HD are safe and effective, well-designed clinical trials with bigger sample sizes and longer follow-up times will be necessary. Additionally, the development of successful stem cell-based treatments for this debilitating illness will depend on a deeper comprehension of the molecular mechanisms driving HD pathogenesis and the interactions between transplanted cells and the host milieu.

Spinal cord injury

A severe disorder known as spinal cord injury (SCI) causes the loss of motor and sensory function below the site of the damage, which frequently leads to permanent paralysis and impairment [ 176 ]. The main goals of current SCI treatments are to stabilize the spine, stop more injury, and encourage recovery [ 177 ]. The goals of stem cell-based treatments for spinal cord injury (SCI) include glia and missing neuron replacement, axonal regeneration, and inflammation response modulation [ 178 ].

The potential of different types of stem cells to support functional recovery and regeneration has been proven in preclinical research utilizing animal models of spinal cord injury. It has been demonstrated that transplanting NSCs or neural progenitor cells (NPCs) derived from ESCs or iPSCs into the injured spinal cord can improve motor function in rodent and primate models of SCI by promoting the differentiation of neurons and glia and forming synaptic connections with host neurons. Since MSCs exhibit immunomodulatory, neuroprotective, and pro-angiogenic qualities, they have also been the subject of substantial research in SCI models [ 179 ]. It has been demonstrated that administering MSCs intravenously or intraspinally to SCI mice can decrease inflammation, encourage tissue sparing, and improve functional recovery [ 180 , 181 ]. Nonetheless, there are still significant obstacles to overcome, including the best time, method, and dosage for delivering stem cells and the integration and long-term survival of transplanted cells [ 182 ].

Several clinical trials have investigated the safety and feasibility of stem cell therapies in SCI patients. A systematic review and meta-analysis of clinical trials using MSCs in SCI patients found no serious adverse events related to cell transplantation and some evidence of functional improvement [ 183 ]. However, the included studies were small, heterogeneous, and lacked appropriate controls, highlighting the need for more extensive, well-designed trials to establish the efficacy of MSC therapy in SCI [ 184 ]. A phase 2 trial of intramedullary transplantation of human ESC-derived oligodendrocyte progenitor cells in subacute SCI patients (NCT02302157) has recently been completed, with results pending publication [ 185 ]. Other ongoing or planned trials investigate the safety and efficacy of various stem cell types in SCI patients, including NSCs, NPCs, and autologous bone marrow-derived MSCs [ 186 ].

While stem cell-based therapies for SCI hold promise, several challenges must be addressed for successful clinical translation. One of the main challenges is the complex and dynamic nature of the injury microenvironment, which may limit the survival, differentiation, and integration of transplanted cells [ 187 ]. Strategies to enhance cell survival and promote targeted differentiation, such as co-delivering neuroprotective factors or biomaterials and tissue engineering approaches, are being explored [ 188 , 189 ]. Another challenge is the potential for adverse events, such as neuropathic pain, autonomic dysreflexia, or tumor formation, following stem cell transplantation [ 190 ]. Careful patient selection, rigorous safety monitoring, and long-term follow-up will be essential to mitigate these risks [ 184 ].

Future directions in stem cell therapy for SCI may involve gene editing technologies to engineer stem cells with enhanced regenerative properties, such as increased neurotrophic factor secretion or improved myelination capacity [ 191 ]. The development of advanced biomaterials and tissue engineering approaches to create scaffolds that mimic the natural extracellular matrix and guide axonal regeneration is also an active area of research [ 154 ]. Combinatorial approaches, such as the co-administration of rehabilitation therapy or the use of electrical stimulation, may enhance the therapeutic potential of stem cell transplantation [ 192 ]. Additionally, identifying reliable biomarkers and imaging techniques to monitor the survival, differentiation, and integration of transplanted cells in vivo will be critical for optimizing and individualizing stem cell therapies for SCI [ 193 ].

Stem cell-based therapies for SCI have shown promising results in preclinical studies, with growing evidence of safety and feasibility in early clinical trials. However, further research is needed to optimize the therapeutic approach, including selecting the most appropriate stem cell type, the timing and route of delivery, and the potential for combination therapies. Well-designed, randomized controlled trials with larger sample sizes, longer follow-up periods, and standardized outcome measures will be essential to establish the efficacy of stem cell therapies for SCI. Additionally, a deeper understanding of the molecular mechanisms underlying SCI pathophysiology and the interactions between transplanted cells and the host microenvironment will be critical for developing safe and effective stem cell-based therapies for this devastating condition.

Traumatic brain injury

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, resulting from sudden physical damage to the brain due to external forces, such as falls, vehicle accidents, or violence [ 194 ]. The primary injury initiates a cascade of secondary injury mechanisms, including neuroinflammation, oxidative stress, excitotoxicity, and apoptosis, leading to progressive neuronal loss and dysfunction [ 195 ]. Current treatments for TBI primarily focus on minimizing secondary injury, managing intracranial pressure, and providing rehabilitation to promote functional recovery [ 196 ]. However, there are no effective therapies to reverse the damage and restore function in chronic TBI patients [ 197 ]. Stem cell-based therapies aim to replace lost neurons and glia, modulate the inflammatory response, and promote neurogenesis and angiogenesis in TBI [ 198 ].

Preclinical studies using animal models of TBI have demonstrated the potential of various stem cell types, including neural stem/progenitor cells (NSPCs), MSCs, and HSCs, to promote functional recovery after TBI. Transplantation of NSPCs derived from ESCs or iPSCs into the injured brain has been shown to differentiate into neurons and glia, form synaptic connections with host neurons, and improve cognitive and motor function in rodent models of TBI [ 199 , 200 ]. MSCs have also been extensively studied in TBI models for their immunomodulatory, neuroprotective, and pro-angiogenic properties [ 201 ]. Intravenous or intracerebral administration of MSCs has been shown to reduce inflammation, promote neurogenesis and angiogenesis, and enhance functional recovery in TBI animals [ 202 , 203 ]. HSCs mobilized from the bone marrow have been shown to migrate to the injured brain, differentiate into microglia and neurons, and improve cognitive function in rodent models of TBI [ 204 ]. While preclinical studies of stem cell therapies for TBI have shown promise, significant challenges remain in translating these approaches to clinical practice. Further research is needed to optimize cell types, delivery methods, and timing of intervention. Importantly, the complex and heterogeneous nature of TBI may require combinatorial approaches rather than relying solely on cell replacement strategies.

Several early-phase clinical trials have investigated the safety and feasibility of stem cell therapies in TBI patients. A phase 1/2a study of intravenous administration of autologous bone marrow-derived mononuclear cells (BMMNCs) in acute severe TBI patients demonstrated safety and a trend towards improved neurological outcomes [ 205 ]. Another phase 1 study of intracerebral transplantation of human NSCs in chronic TBI patients showed safety and feasibility, with some evidence of improved neurological function [ 206 ]. However, more extensive randomized controlled trials are needed to establish the efficacy of these approaches in improving functional outcomes and quality of life in TBI patients [ 207 ].

While stem cell-based therapies for TBI hold promise, several challenges must be addressed for successful clinical translation. One of the main challenges is the heterogeneity of TBI, which can vary in terms of the mechanism, location, and severity of injury, as well as the age and comorbidities of the patient [ 208 ]. Developing personalized stem cell therapies tailored to each patient's specific needs may be necessary to maximize therapeutic efficacy [ 209 ]. Another challenge is the potential for adverse events, such as seizures, infection, or tumorigenesis, following stem cell transplantation [ 190 ]. Careful patient selection, rigorous safety monitoring, and long-term follow-up will be essential to mitigate these risks [ 210 ].

Future directions in stem cell therapy for TBI may involve gene editing technologies to enhance the regenerative properties of transplanted cells, such as overexpressing neurotrophic factors or anti-inflammatory cytokines [ 211 ]. Research is also being done using biomaterials and tissue engineering techniques to make scaffolds that resemble the extracellular matrix seen in nature and offer a favorable environment for cell survival and development [ 212 ]. The therapeutic potential of stem cell transplantation may be increased by combinatorial techniques, including co-administration of neuroprotective drugs, neurorestorative treatments, or rehabilitation [ 213 ]. Furthermore, developing noninvasive imaging modalities like PET and MRI to track the migration, survival, and differentiation of transplanted cells in vivo would be essential for customizing and streamlining stem cell treatments for traumatic brain injury [ 214 ].

Stem cell-based therapies for TBI have shown promising results in preclinical studies, with early evidence of safety and feasibility in clinical trials. However, further research is needed to optimize the therapeutic approach, including selecting the most appropriate stem cell type, the timing and route of delivery, and the potential for combination therapies. Well-designed, randomized controlled trials with larger sample sizes, longer follow-up periods, and standardized outcome measures will be essential to establish the efficacy of stem cell therapies for TBI. Additionally, a deeper understanding of the complex pathophysiology of TBI and the mechanisms underlying the therapeutic effects of stem cells will be critical for developing safe and effective regenerative medicine approaches for this devastating condition.

Repeated, unprovoked seizures are a hallmark of epilepsy, a chronic neurological illness caused by abnormally high levels of aberrant brain neuronal activity [ 215 ]. Even though antiepileptic medications (AEDs) are the cornerstone of epilepsy treatment, over one-third of patients still do not respond to medication [ 216 ]. Intending to reestablish the proper balance between excitement and inhibition in the epileptic brain, stem cell-based therapies have become a viable adjunctive or alternative therapeutic option for drug-resistant epilepsy [ 217 ].

Preclinical studies using animal models of epilepsy have demonstrated the potential of various stem cell types, particularly GABAergic interneuron progenitors and MSCs, to suppress seizures and modify the underlying disease pathology. Transplantation of GABAergic interneuron progenitors derived from ESCs or iPSCs into the hippocampus or other seizure-prone regions has been shown to engraft, differentiate into functional GABAergic interneurons, and reduce seizure frequency and severity in rodent models of epilepsy [ 218 , 219 ]. These effects are mediated by the synaptic integration of the transplanted cells into the host circuitry and the enhancement of inhibitory neurotransmission [ 220 ]. MSCs have also shown promise in preclinical epilepsy models, exerting anticonvulsant and neuroprotective effects through the secretion of neurotrophic factors and the modulation of inflammatory responses [ 221 , 222 ]. However, the long-term efficacy and safety of stem cell therapies in epilepsy remain to be established [ 223 ].

To date, few clinical trials have investigated the safety and efficacy of stem cell therapies in epilepsy patients. A phase 1 trial of autologous bone marrow-derived mononuclear cells (BMMNCs) administered intravenously in children with refractory epilepsy demonstrated safety and feasibility, with some evidence of reduced seizure frequency [ 224 ]. Another pilot study of intracerebral transplantation of autologous BMMNCs in adult patients with drug-resistant mesial temporal lobe epilepsy also showed safety and potential efficacy in reducing seizure frequency [ 225 ]. However, these early-stage trials are limited by small sample sizes, lack of control groups, and short follow-up periods, highlighting the need for larger, well-designed, randomized controlled trials to establish the efficacy of stem cell therapies in epilepsy [ 226 ].

While stem cell-based therapies for epilepsy hold promise, several challenges must be addressed for successful clinical translation. One of the main challenges is the complex and multifactorial nature of epilepsy, which may require tailored stem cell therapies targeting specific epileptogenic mechanisms in each patient [ 227 ]. Another challenge is the potential for adverse events, such as graft rejection, tumor formation, or worsening of seizures, following stem cell transplantation [ 228 ]. Careful patient selection, rigorous safety monitoring, and long-term follow-up will be essential to mitigate these risks [ 210 ].

Future directions in stem cell therapy for epilepsy may involve gene editing technologies to create stem cell-derived GABAergic interneurons with enhanced anticonvulsant properties or reduced immunogenicity [ 229 ]. The development of advanced delivery methods, such as stereotactic surgery or convection-enhanced delivery, to achieve targeted and controlled transplantation of stem cells into the epileptic focus is also an active area of research [ 230 ]. Combinatorial approaches, such as the co-administration of neuroprotective agents or the use of gene therapy to overexpress seizure-suppressing molecules, may enhance the therapeutic potential of stem cell transplantation [ 231 ]. Additionally, identifying reliable biomarkers and advanced neuroimaging techniques to guide patient selection, monitor the fate of transplanted cells, and assess the efficacy of stem cell therapies in vivo will be critical for optimizing and individualizing stem cell-based treatments for epilepsy [ 232 ].

Stem cell-based therapies for epilepsy have shown promise in preclinical studies, with some evidence of safety and feasibility in early clinical trials. However, further research is needed to optimize the therapeutic approach, including selecting the most appropriate stem cell type, the timing and route of delivery, and the potential for combination therapies. Well-designed, randomized controlled trials with larger sample sizes, longer follow-up periods, and standardized outcome measures will be essential to establish the efficacy of stem cell therapies for epilepsy. Additionally, a deeper understanding of the complex pathophysiology of epilepsy and the mechanisms underlying the therapeutic effects of stem cells will be critical for developing safe and effective regenerative medicine approaches for this challenging neurological disorder.

Other emerging applications

In addition to the neurological disorders discussed above, stem cell-based therapies have shown potential for the treatment of various other neurological conditions, such as cerebral palsy, autism spectrum disorder (ASD), and peripheral nerve injuries.

Cerebral palsy

A set of lifelong mobility abnormalities known as cerebral palsy are brought on by harm to the developing brain and first manifest in early childhood [ 233 ]. Current treatments for cerebral palsy primarily focus on managing symptoms and improving function through physical therapy, occupational therapy, and medications [ 234 ]. Stem cell-based therapies, particularly umbilical cord blood (UCB) cells and MSCs, have shown promise in preclinical and early clinical studies for cerebral palsy [ 235 ]. These cells have been shown to exert neuroprotective, anti-inflammatory, and pro-angiogenic effects, promoting brain repair and functional recovery [ 236 , 237 ]. However, more extensive randomized controlled trials are needed to establish stem cell therapies' efficacy and long-term safety for cerebral palsy [ 238 ].

Autism spectrum disorder

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and interaction, along with restricted and repetitive patterns of behavior [ 239 ]. While behavioral and educational interventions are the mainstay of treatment for ASD, there are no effective pharmacological therapies to address the core symptoms [ 240 ]. Stem cell-based therapies, particularly MSCs and NSCs, have shown potential in preclinical studies to modulate the immune system, promote synaptic plasticity, and improve behavioral outcomes in animal models of ASD [ 241 , 242 ]. A few small clinical studies have investigated the safety and feasibility of stem cell therapies in ASD patients, with some evidence of improved behavioral and cognitive function [ 243 , 244 ]. However, these studies are limited by small sample sizes, lack of control groups, and short follow-up periods, highlighting the need for larger, well-designed clinical trials to establish the efficacy and safety of stem cell therapies for ASD [ 245 ].

Peripheral nerve injuries

Peripheral nerve injuries caused by trauma, surgery, or disease can lead to sensory and motor deficits, neuropathic pain, and reduced quality of life [ 246 ]. Current treatments for peripheral nerve injuries primarily focus on surgical repair, physical therapy, and pain management [ 246 ]. Stem cell-based therapies, particularly Schwann cells, MSCs, and adipose-derived stem cells (ADSCs), have shown promise in preclinical studies to promote nerve regeneration, remyelination, and functional recovery [ 247 , 248 , 249 ]. These cells can be transplanted directly into the injured nerve or delivered through nerve guidance conduits or other biomaterial scaffolds [ 250 ]. A few early-stage clinical trials have investigated the safety and feasibility of stem cell therapies for peripheral nerve injuries, with some evidence of improved sensory and motor function [ 176 , 251 ]. However, further research is needed to optimize the therapeutic approach and establish stem cell therapies' long-term efficacy and safety for peripheral nerve injuries [ 247 ].

While stem cell-based therapies for these neurological disorders hold promise, several challenges must be addressed for successful clinical translation. These include the heterogeneity of the patient population, the complex and multifactorial nature of the underlying pathology, and the potential for adverse events following stem cell transplantation [ 252 ]. Future directions may involve the development of personalized stem cell therapies tailored to each patient's specific needs, the use of gene editing technologies to enhance the therapeutic properties of stem cells, and the exploration of combinatorial approaches to enhance the efficacy of stem cell transplantation [ 253 , 254 , 255 ].

Stem cell-based therapies have shown potential for treating neurological disorders beyond the well-studied conditions discussed earlier. However, further preclinical and clinical research is needed to establish these approaches' safety, efficacy, and long-term benefits. As regenerative medicine advances, it is hoped that stem cell-based therapies will become a viable treatment option for a wide range of neurological disorders, improving the quality of life for patients and their families.

Conclusion and future perspectives

Stem cell-based therapies for neurological disorders have made significant progress in recent years, with promising results from preclinical studies and early clinical trials. As highlighted in this comprehensive review, various stem cell types, including NSCs, MSCs, and iPSCs, have shown potential for the treatment of a wide range of neurological conditions, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, stroke, spinal cord injury, and traumatic brain injury.

The therapeutic potential of stem cells in neurological disorders is primarily attributed to their ability to replace lost or damaged neural cells, modulate the immune system, promote endogenous repair mechanisms, and provide trophic support to the injured or diseased nervous system. However, the exact mechanisms underlying the therapeutic effects of stem cells are not fully understood. They may vary depending on the specific neurological condition and the type of stem cells used.

Despite the encouraging progress, several challenges need to be addressed to realize the full potential of stem cell-based therapies for neurological disorders. These include optimizing stem cell sources, differentiation protocols, and delivery methods to ensure the therapeutic approach's safety, efficacy, and reproducibility. The potential for tumorigenicity, immune rejection, and other adverse events following stem cell transplantation also requires careful consideration and long-term monitoring. Furthermore, the complex and multifactorial nature of many neurological disorders may require combinatorial approaches that target multiple pathogenic mechanisms, such as gene therapy, neuroprotective agents, or rehabilitation in conjunction with stem cell transplantation.

Several critical research areas must be prioritized to address these challenges and accelerate the clinical translation of stem cell-based therapies for neurological disorders. These include the development of standardized protocols for the generation, characterization, and banking of clinical-grade stem cells, the establishment of robust preclinical models that more accurately recapitulate human neurological disorders, and the design of well-controlled clinical trials with appropriate patient populations, outcome measures, and follow-up periods.

In addition to technological advancements, the successful clinical translation of stem cell-based therapies for neurological disorders will require a collaborative and multidisciplinary approach involving basic scientists, clinicians, industry partners, regulatory agencies, and patient advocates. Ethical, legal, and social implications of stem cell research and therapy must also be carefully addressed through ongoing dialogue and public engagement.

Looking to the future, the field of stem cell-based therapies for neurological disorders is poised for exciting developments and breakthroughs. The convergence of stem cell biology with other cutting-edge technologies, such as gene editing, single-cell genomics, organoid models, and advanced neuroimaging, holds great promise for developing personalized and targeted therapies for neurological disorders. The increasing understanding of the complex interplay between the nervous system, immune system, and microbiome may also open up new avenues for stem cell-based therapies that harness the body's intrinsic regenerative capacity.

In conclusion, while stem cell-based therapies for neurological disorders are still in their early stages of development, the progress made so far is encouraging and holds great promise for the future. With continued research, collaboration, and innovation, it is hoped that stem cell-based therapies will become a safe, effective, and accessible treatment option for millions worldwide affected by neurological disorders, improving their quality of life and reducing the burden on healthcare systems. As the field continues to evolve, it will be essential to maintain a balanced and evidence-based perspective, acknowledging both the potential and the limitations of stem cell-based therapies and to ensure that the interests of patients and the public are always at the forefront of scientific endeavors.

Data availability

No datasets were generated or analysed during the current study.

GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459–80. https://doi.org/10.1016/S1474-4422(18)30499-X .

Article   Google Scholar  

Feigin VL, Vos T, Nichols E, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020;19(3):255–65. https://doi.org/10.1016/S1474-4422(19)30411-9 .

Article   PubMed   Google Scholar  

Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391(10130):1622–36. https://doi.org/10.1016/S0140-6736(18)30481-1 .

Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3:17018. https://doi.org/10.1038/nrdp.2017.18 .

Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–23. https://doi.org/10.1016/S0140-6736(08)60694-7 .

Article   CAS   PubMed   Google Scholar  

Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16(12):987–1048. https://doi.org/10.1016/S1474-4422(17)30371-X .

GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017;16(11):877–97. https://doi.org/10.1016/S1474-4422(17)30299-5 .

Gooch CL, Pracht E, Borenstein AR. The burden of neurological disease in the United States: a summary report and call to action. Ann Neurol. 2017;81(4):479–84. https://doi.org/10.1002/ana.24897 .

Lang AE, Espay AJ. Disease modification in Parkinson’s disease: current approaches, challenges, and future considerations. Mov Disord. 2018;33(5):660–77.

Nichols E, Szoeke CEI, Vollset SE, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):88–106. https://doi.org/10.1016/S1474-4422(18)30403-4 .

Arthur KC, Calvo A, Price TR, Geiger JT, Chiò A, Traynor BJ. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat Commun. 2016;7:12408. https://doi.org/10.1038/ncomms12408 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Nagappan PG, Chen H, Wang DY. Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Milit Med Res. 2020;7:1–6.

Google Scholar  

Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement (N Y). 2020;6(1): e12050. https://doi.org/10.1002/trc2.12050 .

Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 2017;16(10):837–47. https://doi.org/10.1016/S1474-4422(17)30280-6 .

Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68. https://doi.org/10.1186/s13287-019-1165-5 .

Dulak J, Szade K, Szade A, Nowak W, Józkowicz A. Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol. 2015;62(3):329–37. https://doi.org/10.18388/abp.2015_1023 .

Tabar V, Studer L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet. 2014;15(2):82–92. https://doi.org/10.1038/nrg3563 .

Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95. https://doi.org/10.1091/mbc.e02-02-0105 .

Menaa F, Shahrokhi S, Prasad SV. Impact and challenges of mesenchymal stem cells in medicine: an overview of the current knowledge. Stem Cells Int. 2018;2018:5023925. https://doi.org/10.1155/2018/5023925 .

Article   PubMed   PubMed Central   Google Scholar  

Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22. https://doi.org/10.1016/j.stem.2015.06.007 .

Abdi S, Javanmehr N, Ghasemi-Kasman M, Bali HY, Pirzadeh M. Stem cell-based therapeutic and diagnostic approaches in Alzheimer’s disease. Curr Neuropharmacol. 2022;20(6):1093.

Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009;30(4):379–87. https://doi.org/10.1038/aps.2009.24 .

Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances. Brain. 2024;147(3):766–93.

Madhavan L, Daley BF, Paumier KL, Collier TJ. Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson’s disease. J Comp Neurol. 2009;515(1):102–15. https://doi.org/10.1002/cne.22033 .

Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17(3):194–200. https://doi.org/10.1038/nrm.2016.10 .

Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441(7097):1094–6. https://doi.org/10.1038/nature04960 .

Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7. https://doi.org/10.1126/science.282.5391.1145 .

Golchin A, Chatziparasidou A, Ranjbarvan P, Niknam Z, Ardeshirylajimi A. Embryonic stem cells in clinical trials: current overview of developments and challenges. Cell Biology and Translational Medicine, Volume 11: Stem Cell Therapy-Potential and Challenges. 2020 Nov 7:19–37.

Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8. https://doi.org/10.1126/science.287.5457.1433 .

Wu H, Fan Y, Zhang M. Advanced progress in the role of adipose-derived mesenchymal stromal/stem cells in the application of central nervous system disorders. Pharmaceutics. 2023;15(11):2637.

Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36. https://doi.org/10.1038/nri2395 .

Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. https://doi.org/10.1016/j.cell.2007.11.019 .

Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16(2):115–30. https://doi.org/10.1038/nrd.2016.245 .

Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour A, Yousefi M. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: a novel therapeutic paradigm. J Cell Physiol. 2020;235(2):706–17. https://doi.org/10.1002/jcp.29004 .

Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders–time for clinical translation? J Clin Invest. 2010;120(1):29–40. https://doi.org/10.1172/JCI40543 .

Rodríguez-Pallares J, García-Garrote M, Parga JA, Labandeira-García JL. Combined cell-based therapy strategies for the treatment of Parkinson’s disease: focus on mesenchymal stromal cells. Neural Regen Res. 2023;18(3):478–84.

Sonntag KC, Song B, Lee N, et al. Pluripotent stem cell-based therapy for Parkinson’s disease: current status and future prospects. Prog Neurobiol. 2018;168:1–20. https://doi.org/10.1016/j.pneurobio.2018.04.005 .

Drago D, Cossetti C, Iraci N, et al. The stem cell secretome and its role in brain repair. Biochimie. 2013;95(12):2271–85. https://doi.org/10.1016/j.biochi.2013.06.020 .

Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23(9):1045–59. https://doi.org/10.3727/096368913X667709 .

Zhang Y, Chopp M, Meng Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122(4):856–67. https://doi.org/10.3171/2014.11.JNS14770 .

Xiong Y, Mahmood A, Chopp M. Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regen Res. 2017;12(1):19–22. https://doi.org/10.4103/1673-5374.198966 .

Li M, Jiang Y, Hou Q, Zhao Y, Zhong L, Fu X. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell Res Ther. 2022;13(1):146.

Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023;8(1):267.

Bátiz LF, Castro MA, Burgos PV, et al. Exosomes as novel regulators of adult neurogenic niches. Front Cell Neurosci. 2016;9:501. https://doi.org/10.3389/fncel.2015.00501 .

Basmaeil YS, Algudiri D, Alenzi R, et al. Mesenchymal stem cell therapy of Parkinson’s disease: a review of the current status and future perspectives. Stem Cells Int. 2020;2020:5701920. https://doi.org/10.1155/2020/5701920 .

Article   CAS   Google Scholar  

Brummer T, Zipp F, Bittner S. T cell–neuron interaction in inflammatory and progressive multiple sclerosis biology. Curr Opin Neurobiol. 2022;1(75): 102588.

Gugliandolo A, Bramanti P, Mazzon E. Mesenchymal stem cells: a potential therapeutic approach for amyotrophic lateral sclerosis? Stem Cells Int. 2019;2019:3675627. https://doi.org/10.1155/2019/3675627 .

Mao AS, Özkale B, Shah NJ, et al. Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proc Natl Acad Sci U S A. 2019;116(31):15392–7. https://doi.org/10.1073/pnas.1819415116 .

Gilbert EA, Lakshman N, Lau KS, Morshead CM. Regulating endogenous neural stem cell activation to promote spinal cord injury repair. Cells. 2022;11(5):846.

Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7(1):92.

Geranmayeh MH, Nourazarian A, Avci ÇB, Rahbarghazi R, Farhoudi M. Stem cells as a promising tool for the restoration of brain neurovascular unit and angiogenic orientation. Mol Neurobiol. 2017;54:7689–705.

Hess DC, Wechsler LR, Clark WM, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16(5):360–8. https://doi.org/10.1016/S1474-4422(17)30046-7 .

Roda AR, Serra-Mir G, Montoliu-Gaya L, Tiessler L, Villegas S. Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s disease. Neural Regen Res. 2022;17(8):1666–74.

Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19(8):998–1004.

Wood KJ, Issa F, Hester J. Understanding stem cell immunogenicity in therapeutic applications. Trends Immunol. 2016;37(1):5–16.

Lindvall O, Kokaia Z. Stem cell research in stroke: how far from the clinic? Stroke. 2011;42(8):2369–75.

Kirchhof K, Feldmann A, Schnabel J, Adler T, Grüschow M, Kögel D, et al. Uncontrolled differentiation is a major risk factor in cell-based therapies for neurodegenerative diseases. Front Cell Dev Biol. 2021;9: 650856.

Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30(3):204–13.

Rivière I, Roy K. Perspectives on manufacturing of high-quality cell therapies. Mol Ther. 2017;25(5):1067–8.

Barker RA, Carpenter MK, Forbes S, Goldman SA, Jamieson C, Murry CE, et al. The challenges of first-in-human stem cell clinical trials: what does this mean for ethics and institutional review boards? Stem Cell Rep. 2018;10(5):1429–31.

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

Pardo-Moreno T, González-Acedo A, Rivas-Domínguez A, García-Morales V, García-Cozar FJ, Ramos-Rodríguez JJ, Melguizo-Rodríguez L. Therapeutic approach to Alzheimer’s disease: current treatments and new perspectives. Pharmaceutics. 2022;14(6):1117.

Zhang G, Li Y, Reuss JL, et al. Stable intracerebral transplantation of neural stem cells for the treatment of paralysis due to ischemic stroke. Stem Cells Transl Med. 2019;8(10):999–1007. https://doi.org/10.1002/sctm.18-0220 .

Liang H, Zhao H, Gleichman A, Machnicki M, Telang S, Tang S. Region-specific and activity-dependent regulation of SVZ neurogenesis and recovery after stroke. Proc Natl Acad Sci USA. 2019;116(27):13621–30. https://doi.org/10.1073/pnas.1811825116 .

Armijo E, Edwards G, Flores A, Vera J, Shahnawaz M, Moda F, Gonzalez C, Sanhueza M, Soto C. Induced pluripotent stem cell-derived neural precursors improve memory, synaptic and pathological abnormalities in a mouse model of Alzheimer’s disease. Cells. 2021;10(7):1802.

Skok M. Mesenchymal stem cells as a potential therapeutic tool to cure cognitive impairment caused by neuroinflammation. World J Stem Cells. 2021;13(8):1072.

Liu XY, Yang LP, Zhao L. Stem cell therapy for Alzheimer’s disease. World J Stem Cells. 2020;12(8):787.

Zhao L, Liu JW, Shi HY, Ma YM. Neural stem cell therapy for brain disease. World J Stem Cells. 2021;13(9):1278.

Si Z, Wang X. Stem cell therapies in Alzheimer’s disease: applications for disease modeling. J Pharmacol Exp Ther. 2021;377(2):207–17.

Sun Y, Feng L, Liang L, Stacey GN, Wang C, Wang Y, Hu B. Neuronal cell-based medicines from pluripotent stem cells: development, production, and preclinical assessment. Stem Cells Transl Med. 2021;10(S2):S31-40.

Appelt-Menzel A, Oerter S, Mathew S, Haferkamp U, Hartmann C, Jung M, Neuhaus W, Pless O. Human iPSC-derived blood-brain barrier models: valuable tools for preclinical drug discovery and development? Curr Protoc Stem Cell Biol. 2020;55(1): e122.

Park EH, Lim HS, Lee S, Roh K, Seo KW, Kang KS, Shin K. Intravenous infusion of umbilical cord blood-derived mesenchymal stem cells in rheumatoid arthritis: a phase Ia clinical trial. Stem Cells Transl Med. 2018;7(9):636–42.

Reis C, Akyol O, Ho WM, et al. Phase I and phase II therapies for acute ischemic stroke: an update on currently studied drugs in clinical research. Biomed Res Int. 2017;2017:4863079. https://doi.org/10.1155/2017/4863079 .

Thomsen GM, Gowing G, Svendsen S, Svendsen CN. The past, present and future of stem cell clinical trials for ALS. Exp Neurol. 2014;1(262):127–37.

Zhang Y, Zhang Y, Chopp M, et al. Treatment of traumatic brain injury in rats with N-acetyl-seryl-aspartyl-lysyl-proline. J Neurosurg. 2017;126(3):782–95. https://doi.org/10.3171/2016.3.JNS152699 .

Cao Z, Kong F, Ding J, Chen C, He F, Deng W. Promoting Alzheimer’s disease research and therapy with stem cell technology. Stem Cell Res Ther. 2024;15(1):1–34.

Alipour M, Nabavi SM, Arab L, Vosough M, Pakdaman H, Ehsani E, Shahpasand K. Stem cell therapy in Alzheimer’s disease: possible benefits and limiting drawbacks. Mol Biol Rep. 2019;1(46):1425–46.

Novelli G, Spitalieri P, Murdocca M, Centanini E, Sangiuolo F. Organoid factory: the recent role of the human induced pluripotent stem cells (hiPSCs) in precision medicine. Front Cell Dev Biol. 2023;9(10):1059579.

Kumar S, Goyal L, Singh S. Tremor and rigidity in patients with Parkinson’s disease: emphasis on epidemiology, pathophysiology and contributing factors. CNS Neurol Disord Drug Targets. 2022;21(7):596–609.

Cao J, Hou J, Ping J, Cai D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol Neurodegener. 2018;13:1–20.

Heo JY, Nam MH, Yoon HH, Kim J, Hwang YJ, Won W, Woo DH, Lee JA, Park HJ, Jo S, Lee MJ. Aberrant tonic inhibition of dopaminergic neuronal activity causes motor symptoms in animal models of Parkinson’s disease. Curr Biol. 2020;30(2):276–91.

Camilo Jurado-Coronel J, Ávila-Rodriguez M, Capani F, Gonzalez J, Echeverria Moran V, Barreto GE. Targeting the nicotinic acetylcholine receptors (nAChRs) in astrocytes as a potential therapeutic target in Parkinson’s disease. Curr Pharm Design. 2016;22(10):1305–11.

Peng J, Liu Q, Rao MS, Zeng X. Survival and engraftment of dopaminergic neurons manufactured by a Good Manufacturing Practice-compatible process. Cytotherapy. 2014;16(9):1305–12.

Marsili L, Sharma J, Outeiro TF, Colosimo C. Stem cell therapies in movement disorders: lessons from clinical trials. Biomedicines. 2023;11(2):505.

Francis NL, Zhao N, Calvelli HR, Saini A, Gifford JJ, Wagner GC, Cohen RI, Pang ZP, Moghe PV. Peptide-based scaffolds for the culture and transplantation of human dopaminergic neurons. Tissue Eng Part A. 2020;26(3–4):193–205.

Cardoso T, Adler AF, Mattsson B, Hoban DB, Nolbrant S, Wahlestedt JN, Kirkeby A, Grealish S, Björklund A, Parmar M. Target-specific forebrain projections and appropriate synaptic inputs of hESC-derived dopamine neurons grafted to the midbrain of Parkinsonian rats. J Comp Neurol. 2018;526(13):2133–46.

Wakeman DR, Hiller BM, Marmion DJ, McMahon CW, Corbett GT, Mangan KP, Ma J, Little LE, Xie Z, Perez-Rosello T, Guzman JN. Cryopreservation maintains functionality of human iPSC dopamine neurons and rescues Parkinsonian phenotypes in vivo. Stem Cell Rep. 2017;9(1):149–61.

Petrus-Reurer S, Kumar P, Padrell Sánchez S, Aronsson M, André H, Bartuma H, Plaza Reyes A, Nandrot EF, Kvanta A, Lanner F. Preclinical safety studies of human embryonic stem cell-derived retinal pigment epithelial cells for the treatment of age-related macular degeneration. Stem Cells Transl Med. 2020;9(8):936–53.

Reboussin É, Buffault J, Brignole-Baudouin F, Réaux-Le Goazigo A, Riancho L, Olmiere C, Sahel JA, Mélik Parsadaniantz S, Baudouin C. Evaluation of neuroprotective and immunomodulatory properties of mesenchymal stem cells in an ex vivo retinal explant model. J Neuroinflamm. 2022;19(1):63.

Shokravi S, Borisov V, Zaman BA, Niazvand F, Hazrati R, Khah MM, Thangavelu L, Marzban S, Sohrabi A, Zamani A. Mesenchymal stromal cells (MSCs) and their exosome in acute liver failure (ALF): a comprehensive review. Stem Cell Res Ther. 2022;13(1):192.

Kordower JH, Vinuela A, Chu Y, Isacson O, Redmond DE Jr. Parkinsonian monkeys with prior levodopa-induced dyskinesias followed by fetal dopamine precursor grafts do not display graft-induced dyskinesias. J Comp Neurol. 2017;525(3):498–512.

Greene PE, Fahn S, Eidelberg D, Bjugstad KB, Breeze RE, Freed CR. Persistent dyskinesias in patients with fetal tissue transplantation for Parkinson disease. Npj Parkinson’s Dis. 2021;7(1):38.

Christine CW, Richardson RM, Van Laar AD, Thompson ME, Fine EM, Khwaja OS, Li C, Liang GS, Meier A, Roberts EW, Pfau ML. Safety of AADC gene therapy for moderately advanced Parkinson disease: three-year outcomes from the PD-1101 trial. Neurology. 2022;98(1):e40-50.

Wang YK, Zhu WW, Wu MH, Wu YH, Liu ZX, Liang LM, Sheng C, Hao J, Wang L, Li W, Zhou Q. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson’s disease. Stem Cell Rep. 2018;11(1):171–82.

Nakamura R, Nonaka R, Oyama G, Jo T, Kamo H, Nuermaimaiti M, Akamatsu W, Ishikawa KI, Hattori N. A defined method for differentiating human iPSCs into midbrain dopaminergic progenitors that safely restore motor deficits in Parkinson’s disease. Front Neurosci. 2023;12(17):1202027.

Moon H, Kim B, Kwon I, Oh Y. Challenges involved in cell therapy for Parkinson’s disease using human pluripotent stem cells. Front Cell Dev Biol. 2023;11:1288168.

Li Z, Liu F, He X, Yang X, Shan F, Feng J. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol. 2019;67:268–80. https://doi.org/10.1016/j.intimp.2018.12.001 .

Wang TY, Bruggeman KF, Kauhausen JA, Rodriguez AL, Nisbet DR, Parish CL. Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson’s disease. Biomaterials. 2016;1(74):89–98.

Flachsbarth K, Jankowiak W, Kruszewski K, Helbing S, Bartsch S, Bartsch U. Pronounced synergistic neuroprotective effect of GDNF and CNTF on axotomized retinal ganglion cells in the adult mouse. Exp Eye Res. 2018;1(176):258–65.

Fymat AL. Multiple sclerosis: I. Symptomatology and etiology. J Neurol Psychol Res. 2023;4:1.

Cadenas-Fernández J, Ahumada-Pascual P, Andreu LS, Velasco A. Recent advances on immunosuppressive drugs and remyelination enhancers for the treatment of multiple sclerosis. Curr Pharm Des. 2021;27(30):3273–80.

Yang G, Van Kaer L. Therapeutic targeting of immune cell autophagy in multiple sclerosis: Russian roulette or silver bullet? Front Immunol. 2021;31(12): 724108.

Zveik O, Fainstein N, Rechtman A, Haham N, Ganz T, Lavon I, Brill L, Vaknin-Dembinsky A. Cerebrospinal fluid of progressive multiple sclerosis patients reduces differentiation and immune functions of oligodendrocyte progenitor cells. Glia. 2022;70(6):1191–209.

Motavaf M, Sadeghizadeh M, Babashah S, Zare L, Javan M. Dendrosomal nanocurcumin promotes remyelination through induction of oligodendrogenesis in experimental demyelination animal model. J Tissue Eng Regen Med. 2020;14(10):1449–64.

Yao R, Wang B, Ren C, Qu X, Luo M, Zhang Q, Wang H, Dong F, Wu X, Yang L, Yu H. Olig2 overexpression accelerates the differentiation of mouse embryonic stem cells into oligodendrocyte progenitor cells in vitro. Dev Growth Differ. 2014;56(7):511–7.

Sargent A, Shano G, Karl M, Garrison E, Miller C, Miller RH. Transcriptional profiling of mesenchymal stem cells identifies distinct neuroimmune pathways altered by CNS disease. Int J Stem Cells. 2018;11(1):48.

Kurte M, Luz-Crawford P, Vega-Letter AM, Contreras RA, Tejedor G, Elizondo-Vega R, Martinez-Viola L, Fernández-O’Ryan C, Figueroa FE, Jorgensen C, Djouad F. IL17/IL17RA as a novel signaling axis driving mesenchymal stem cell therapeutic function in experimental autoimmune encephalomyelitis. Front Immunol. 2018;30(9):802.

Patti F, Chisari CG, Toscano S, Arena S, Finocchiaro C, Cimino V, Milone G. Autologous hematopoietic stem cell transplantation in multiple sclerosis patients: monocentric case series and systematic review of the literature. J Clin Med. 2022;11(4):942.

Mohammadi R, Aryan A, Omrani MD, Ghaderian SM, Fazeli Z. Autologous hematopoietic stem cell transplantation (AHSCT): an evolving treatment avenue in multiple sclerosis. Biol Targets Ther. 2021;15:53–9.

Bose G, Thebault S, Rush CA, Atkins HL, Freedman MS. Autologous hematopoietic stem cell transplantation for multiple sclerosis: a current perspective. Mult Scler J. 2021;27(2):167–73.

Gugliandolo A, Bramanti P, Mazzon E. Mesenchymal stem cells in multiple sclerosis: recent evidence from pre-clinical to clinical studies. Int J Mol Sci. 2020;21(22):8662.

Cohen JA, Imrey PB, Planchon SM, Bermel RA, Fisher E, Fox RJ, Bar-Or A, Sharp SL, Skaramagas TT, Jagodnik P, Karafa M. Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult Scler J. 2018;24(4):501–11.

Horak J, Nalos L, Martinkova V, Tegl V, Vistejnova L, Kuncova J, Kohoutova M, Jarkovska D, Dolejsova M, Benes J, Stengl M. Evaluation of mesenchymal stem cell therapy for sepsis: a randomized controlled porcine study. Front Immunol. 2020;7(11):126.

Yuan TF, Dong Y, Zhang L, Qi J, Yao C, Wang Y, Chai R, Liu Y, So KF. Neuromodulation-based stem cell therapy in brain repair: recent advances and future perspectives. Neurosci Bull. 2021;37:735–45.

Wens I, Janssens I, Derdelinckx J, Meena M, Willekens B, Cools N. Made to measure: patient-tailored treatment of multiple sclerosis using cell-based therapies. Int J Mol Sci. 2021;22(14):7536.

Barati S, Tahmasebi F, Faghihi F. Effects of mesenchymal stem cells transplantation on multiple sclerosis patients. Neuropeptides. 2020;1(84): 102095.

Tupone MG, d’Angelo M, Castelli V, Catanesi M, Benedetti E, Cimini A. A state-of-the-art of functional scaffolds for 3D nervous tissue regeneration. Front Bioeng Biotechnol. 2021;18(9): 639765.

Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int J Mol Sci. 2019;20(23):6055.

Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 pathway in ischemic stroke: a review. Molecules. 2021;26(16):5001.

Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci. 2020;21(20):7609.

Wu L, Lu J, Lan T, Zhang D, Xu H, Kang Z, Peng F, Wang J. Stem cell therapies: a new era in the treatment of multiple sclerosis. Front Neurol. 2024;9(15):1389697.

Erning K, Segura T. Materials to promote recovery after stroke. Curr Opin Biomed Eng. 2020;1(14):9–17.

Choi YK, Urnukhsaikhan E, Yoon HH, Seo YK, Park JK. Effect of human mesenchymal stem cell transplantation on cerebral ischemic volume-controlled photothrombotic mouse model. Biotechnol J. 2016;11(11):1397–404.

Saffari TM, Bedar M, Hundepool CA, Bishop AT, Shin AY. The role of vascularization in nerve regeneration of nerve graft. Neural Regen Res. 2020;15(9):1573–9.

Zhai QY, Ren YQ, Ni QS, Song ZH, Ge KL, Guo YL. Transplantation of human umbilical cord mesenchymal stem cells-derived neural stem cells pretreated with Neuregulin1β ameliorate cerebral ischemic reperfusion injury in rats. Biomolecules. 2022;12(3):428.

Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov. 2023;9(1):215.

Garcia-Sanchez D, Fernandez D, Rodríguez-Rey JC, Pérez-Campo FM. Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells. World J Stem Cells. 2019;11(10):748.

Li Z, Dong X, Tian M, Liu C, Wang K, Li L, Liu Z, Liu J. Stem cell-based therapies for ischemic stroke: a systematic review and meta-analysis of clinical trials. Stem Cell Res Ther. 2020;11:1–3.

Jaillard A, Hommel M, Moisan A, Zeffiro TA, Favre-Wiki IM, Barbieux-Guillot M, Vadot W, Marcel S, Lamalle L, Grand S, Detante O. Autologous mesenchymal stem cells improve motor recovery in subacute ischemic stroke: a randomized clinical trial. Transl Stroke Res. 2020;11:910–23.

Elshaer SL, Bahram SH, Rajashekar P, Gangaraju R, El-Remessy AB. Modulation of mesenchymal stem cells for enhanced therapeutic utility in ischemic vascular diseases. Int J Mol Sci. 2021;23(1):249.

Shafiq M, Jung Y, Kim SH. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials. 2016;1(90):85–115.

Zera KA, Buckwalter MS. The local and peripheral immune responses to stroke: implications for therapeutic development. Neurotherapeutics. 2020;17(2):414–35.

Weber R. Stem Cell Therapy for Stroke Recovery (Doctoral dissertation, University of Zurich).

Sheikh AM, Hossain S, Tabassum S. Advances in stem cell therapy for stroke: mechanisms, challenges, and future directions. Regen Med Rep. 2024. https://doi.org/10.4103/RMR.REGENMED-D-23-00002 .

Pan W, Chen H, Wang A, Wang F, Zhang X. Challenges and strategies: scalable and efficient production of mesenchymal stem cells-derived exosomes for cell-free therapy. Life Sci. 2023;15(319): 121524.

Popa-Wagner A, Sandu RE, Ciobanu O. Co-transplantation Strategies and Combination Therapies for Stroke. Bone marrow stem cell therapy for stroke. 2017:167–200.

Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918–29.

Kiernan MC, Vucic S, Talbot K, McDermott CJ, Hardiman O, Shefner JM, Al-Chalabi A, Huynh W, Cudkowicz M, Talman P, Van den Berg LH. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol. 2021;17(2):104–18.

Mazzini L, Ferrari D, Andjus PR, Buzanska L, Cantello R, De Marchi F, Gelati M, Giniatullin R, Glover JC, Grilli M, Kozlova EN. Advances in stem cell therapy for amyotrophic lateral sclerosis. Expert Opin Biol Ther. 2018;18(8):865–81.

Kondo T, Funayama M, Tsukita K, Hotta A, Yasuda A, Nori S, Kaneko S, Nakamura M, Takahashi R, Okano H, Yamanaka S. Focal transplantation of human iPSC-derived glial-rich neural progenitors improves lifespan of ALS mice. Stem Cell Rep. 2014;3(2):242–9.

Das MM, Avalos P, Suezaki P, Godoy M, Garcia L, Chang CD, Vit JP, Shelley B, Gowing G, Svendsen CN. Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats. Exp Neurol. 2016;1(280):41–9.

Sironi F, Vallarola A, Violatto MB, Talamini L, Freschi M, De Gioia R, Capelli C, Agostini A, Moscatelli D, Tortarolo M, Bigini P. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice. Stem Cell Research. 2017;1(25):166–78.

Ciervo Y, Gatto N, Allen C, Grierson A, Ferraiuolo L, Mead RJ, Shaw PJ. Adipose-derived stem cells protect motor neurons and reduce glial activation in both in vitro and in vivo models of ALS. Mol Ther Methods Clin Dev. 2021;11(21):413–33.

Chiarotto GB, Cartarozzi LP, Perez M, Tomiyama AL, de Castro MV, Duarte AS, Luzo ÂC, de Oliveira AL. Delayed onset, immunomodulation, and lifespan improvement of SOD1G93A mice after intravenous injection of human mesenchymal stem cells derived from adipose tissue. Brain Res Bull. 2022;1(186):153–64.

Zhu Q, Lu P. Stem cell transplantation for amyotrophic lateral sclerosis. Stem Cell-Based Ther Neurodegener Dis. 2020:71–97.

Vasques JF, Pinheiro LC, de Jesus Gonçalves RG, Mendez-Otero R, Gubert F. Cell-based research and therapy for amyotrophic lateral sclerosis: promises and challenges. Exon Publications. 2021;25:121–39.

Cho BC, Abreu DR, Hussein M, Cobo M, Patel AJ, Secen N, Lee KH, Massuti B, Hiret S, Yang JC, Barlesi F. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 2022;23(6):781–92.

Je G, Keyhanian K, Ghasemi M. Overview of stem cells therapy in amyotrophic lateral sclerosis. Neurol Res. 2021;43(8):616–32.

Sironi F, De Marchi F, Mazzini L, Bendotti C. Cell therapy in ALS: an update on preclinical and clinical studies. Brain Res Bull. 2023;1(194):64–81.

Liu B, Li M, Zhang L, Chen Z, Lu P. Motor neuron replacement therapy for amyotrophic lateral sclerosis. Neural Regen Res. 2022;17(8):1633–9.

Reekmans K, Praet J, Daans J, Reumers V, Pauwels P, Van der Linden A, Berneman ZN, Ponsaerts P. Current challenges for the advancement of neural stem cell biology and transplantation research. Stem Cell Rev Rep. 2012;8:262–78.

Stanaszek L, Rogujski P, Drela K, Fiedorowicz M, Walczak P, Lukomska B, Janowski M. Transplantation of human glial progenitors to immunodeficient neonatal mice with amyotrophic lateral sclerosis (SOD1/rag2). Antioxidants. 2022;11(6):1050.

Zhao A, Pan Y, Cai S. Patient-specific cells for modeling and decoding amyotrophic lateral sclerosis: advances and challenges. Stem Cell Rev Rep. 2020;16(3):482–502.

Sensharma P, Madhumathi G, Jayant RD, Jaiswal AK. Biomaterials and cells for neural tissue engineering: current choices. Mater Sci Eng, C. 2017;1(77):1302–15.

Cheng Y, Zhang Y, Li P. Co-transplantation of autologous treg cells: a groundbreaking cell therapy for brain diseases. J Cereb Blood Flow Meta. 2024. https://doi.org/10.1177/0271678X241245633 .

Ng NN, Thakor AS. Locoregional delivery of stem cell–based therapies. Sci Transl Med. 2020;12(547): eaba4564.

Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol. 2020;16(10):529–46.

Eje O, Ogbonna CV, Onoyima CS, Nduka FO. Huntington Disease: mechanism of Pathogenesis and recent developments in its therapeutic strategies: a review. J Chem Rev. 2023;5(2):129–42.

CAS   Google Scholar  

Palaiogeorgou AM, Papakonstantinou E, Golfinopoulou R, Sigala M, Mitsis T, Papageorgiou L, Diakou I, Pierouli K, Dragoumani K, Spandidos DA, Bacopoulou F. Recent approaches on Huntington’s disease. Biomed Rep. 2023;18(1):1–7.

Islam J, So KH, Kc E, Moon HC, Kim A, Hyun SH, Kim S, Park YS. Transplantation of human embryonic stem cells alleviates motor dysfunction in AAV2-Htt171-82Q transfected rat model of Huntington’s disease. Stem Cell Res Ther. 2021;12:1–4.

Al-Gharaibeh A, Culver R, Stewart AN, Srinageshwar B, Spelde K, Frollo L, Kolli N, Story D, Paladugu L, Anwar S, Crane A. Induced pluripotent stem cell-derived neural stem cell transplantations reduced behavioral deficits and ameliorated neuropathological changes in YAC128 mouse model of Huntington’s disease. Front Neurosci. 2017;10(11):628.

Kim SU, Lee HJ, Kim YB. Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology. 2013;33(5):491–504.

Yu-Taeger L, Stricker-Shaver J, Arnold K, Bambynek-Dziuk P, Novati A, Singer E, Lourhmati A, Fabian C, Magg J, Riess O, Schwab M. Intranasal administration of mesenchymal stem cells ameliorates the abnormal dopamine transmission system and inflammatory reaction in the R6/2 mouse model of Huntington disease. Cells. 2019;8(6):595.

Pollock K, Dahlenburg H, Nelson H, Fink KD, Cary W, Hendrix K, Annett G, Torrest A, Deng P, Gutierrez J, Nacey C. Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in Huntington’s disease mouse models. Mol Ther. 2016;24(5):965–77.

Shariati A, Nemati R, Sadeghipour Y, Yaghoubi Y, Baghbani R, Javidi K, Zamani M, Hassanzadeh A. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: a promising frontier. Eur J Cell Biol. 2020;99(6): 151097.

Barker RA, Mason SL, Harrower TP, Swain RA, Ho AK, Sahakian BJ, Mathur R, Elneil S, Thornton S, Hurrelbrink C, Armstrong RJ. The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington’s disease. J Neurol Neurosurg Psychiatry. 2013;84(6):657–65.

Daviaud N, Garbayo E, Schiller PC, Perez-Pinzon M, Montero-Menei CN. Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol. 2013;1(248):429–40.

Zimmermann T, Remmers F, Lutz B, Leschik J. ESC-derived BDNF-overexpressing neural progenitors differentially promote recovery in Huntington’s disease models by enhanced striatal differentiation. Stem Cell Rep. 2016;7(4):693–706.

Benraiss A, Wang S, Herrlinger S, Li X, Chandler-Militello D, Mauceri J, Burm HB, Toner M, Osipovitch M, Jim XuQ, Ding F. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat Commun. 2016;7(1):11758.

Wu S, FitzGerald KT, Giordano J. On the viability and potential value of stem cells for repair and treatment of central neurotrauma: overview and speculations. Front Neurol. 2018;13(9): 338168.

Caron NS, Dorsey ER, Hayden MR. Therapeutic approaches to Huntington disease: from the bench to the clinic. Nat Rev Drug Discovery. 2018;17(10):729–50.

Cole KL, Findlay MC, Kundu M, Johansen C, Rawanduzy C, Lucke-Wold B. The role of advanced imaging in neurosurgical diagnosis. Journal of modern medical imaging. 2023;1.

Csobonyeiova M, Polak S, Danisovic L. Recent overview of the use of iPSCs Huntington’s disease modeling and therapy. Int J Mol Sci. 2020;21(6):2239.

Quadri SA, Farooqui M, Ikram A, Zafar A, Khan MA, Suriya SS, Claus CF, Fiani B, Rahman M, Ramachandran A, Armstrong II. Recent update on basic mechanisms of spinal cord injury. Neurosurg Rev. 2020;43:425–41.

Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG. Traumatic spinal cord injury—repair and regeneration. Neurosurgery. 2017;80(3S):S9-22.

Zipser CM, Cragg JJ, Guest JD, Fehlings MG, Jutzeler CR, Anderson AJ, Curt A. Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol. 2022;21(7):659–70.

Pfister BJ, Gordon T, Loverde JR, Kochar AS, Mackinnon SE, Cullen DK. Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Crit Rev Biomed Eng. 2011;39(2):81–124. https://doi.org/10.1615/critrevbiomedeng.v39.i2.20 .

Tomita K, Madura T, Mantovani C, Terenghi G. Differentiated adipose-derived stem cells promote myelination and enhance functional recovery in a rat model of chronic denervation. J Neurosci Res. 2012;90(7):1392–402. https://doi.org/10.1002/jnr.23002 .

Chen SY, Yang RL, Wu XC, Zhao DZ, Fu SP, Lin FQ, Li LY, Yu LM, Zhang Q, Zhang T. mesenchymal stem cell transplantation: neuroprotection and nerve regeneration after spinal cord injury. J Inflamm Res. 2023;31:4763–76.

Subramani P, Kannaiyan J, Khare S, Balaji PA, Oyouni AA, Aljohani SAS, Alsulami MO, Al-Amer OM, Alzahrani OR, Altayar MA, Allah Alsulami AA. Toxicity, safety, and efficacy studies on mesenchymal stem cells derived from Decidua basalis in Wistar albino rats by intravenous and subcutaneous routes. Curr Issues Mol Biol. 2022;44(9):4045–58.

Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX. Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci. 2020;10:1–7.

Pang QM, Deng KQ, Zhang M, Wu XC, Yang RL, Fu SP, Lin FQ, Zhang Q, Ao J, Zhang T. Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury. Biomed Pharmacother. 2023;1(157): 114011.

Xu P, Yang X. The efficacy and safety of mesenchymal stem cell transplantation for spinal cord injury patients: a meta-analysis and systematic review. Cell Transplant. 2019;28(1):36–46.

de Araújo LT, Macêdo CT, Damasceno PK, das Neves ÍG, de Lima CS, Santos GC, de Santana TA, Sampaio GL, Silva DN, Villarreal CF, Chaguri AC. Clinical trials using mesenchymal stem cells for spinal cord injury: challenges in generating evidence. Cells. 2022;11(6):1019.

Jin MC, Medress ZA, Azad TD, Doulames VM, Veeravagu A. Stem cell therapies for acute spinal cord injury in humans: a review. Neurosurg Focus. 2019;46(3):E10.

Yamazaki K, Kawabori M, Seki T, Houkin K. Clinical trials of stem cell treatment for spinal cord injury. Int J Mol Sci. 2020;21(11):3994.

Zhao X, Li Q, Guo Z, Li Z. Constructing a cell microenvironment with biomaterial scaffolds for stem cell therapy. Stem Cell Res Ther. 2021;12:1–3.

Rocha LA, Silva D, Barata-Antunes S, Cavaleiro H, Gomes ED, Silva NA, Salgado AJ. Cell and tissue instructive materials for central nervous system repair. Adv Func Mater. 2020;30(44):1909083.

Letko Khait N, Ho E, Shoichet MS. Wielding the double-edged sword of inflammation: building biomaterial-based strategies for immunomodulation in ischemic stroke treatment. Adv Func Mater. 2021;31(44):2010674.

Davoudi-Monfared E, Abolghasemi R, Allahyari F, Farzanegan G. Adverse events of cell therapy clinical trials in human chronic spinal cord injury, a systematic review and meta-analysis. Regener Ther. 2024;1(27):381–97.

Zeng CW. Multipotent mesenchymal stem cell-based therapies for spinal cord injury: current progress and future prospects. Biology. 2023;12(5):653.

Tashiro S, Nakamura M, Okano H. Regenerative rehabilitation and stem cell therapy targeting chronic spinal cord injury: a review of preclinical studies. Cells. 2022;11(4):685.

Hejrati N, Wong R, Khazaei M, Fehlings MG. How can clinical safety and efficacy concerns in stem cell therapy for spinal cord injury be overcome? Expert Opin Biol Ther. 2023;23(9):883–99.

Ahmed S, Venigalla H, Mekala HM, Dar S, Hassan M, Ayub S. Traumatic brain injury and neuropsychiatric complications. Indian J Psychol Med. 2017;39(2):114–21.

Khatri N, Sumadhura B, Kumar S, Kaundal RK, Sharma S, Datusalia AK. The complexity of secondary cascade consequent to traumatic brain injury: pathobiology and potential treatments. Curr Neuropharmacol. 2021;19(11):1984.

Marklund N, Bellander BM, Godbolt AK, Levin H, McCrory P, Thelin EP. Treatments and rehabilitation in the acute and chronic state of traumatic brain injury. J Intern Med. 2019;285(6):608–23.

Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant. 2017;26(7):1118–30.

Chrostek MR, Fellows EG, Guo WL, Swanson WJ, Crane AT, Cheeran MC, Low WC, Grande AW. Efficacy of cell-based therapies for traumatic brain injuries. Brain Sci. 2019;9(10):270.

Liu S, Shi L, Huang T, Luo Y, Chen Y, Li S, Wang Z. Neural stem cells transplanted into rhesus monkey cortical traumatic brain injury can survive and differentiate into neurons. Int J Mol Sci. 2024;25(3):1642.

Laterza C, Uoshima N, Tornero D, Wilhelmsson U, Stokowska A, Ge R, Pekny M, Lindvall O, Kokaia Z. Attenuation of reactive gliosis in stroke-injured mouse brain does not affect neurogenesis from grafted human iPSC-derived neural progenitors. PLoS ONE. 2018;13(2): e0192118.

Brooks B, Ebedes D, Usmani A, Gonzales-Portillo JV, Gonzales-Portillo D, Borlongan CV. Mesenchymal stromal cells in ischemic brain injury. Cells. 2022;11(6):1013.

Guo S, Zhen Y, Wang A. Transplantation of bone mesenchymal stem cells promotes angiogenesis and improves neurological function after traumatic brain injury in mouse. Neuropsychiatr Dis Treat. 2017;6:2757–65.

Yang Y, Ye Y, Su X, He J, Bai W, He X. MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front Cell Neurosci. 2017;28(11):55.

Lengel D, Sevilla C, Romm ZL, Huh JW, Raghupathi R. Stem cell therapy for pediatric traumatic brain injury. Front Neurol. 2020;2(11): 601286.

Cox CS Jr, Notrica DM, Juranek J, Miller JH, Triolo F, Kosmach S, Savitz SI, Adelson PD, Pedroza C, Olson SD, Scott MC. Autologous bone marrow mononuclear cells to treat severe traumatic brain injury in children. Brain. 2024;147(5):1914–25.

Wang Z, Luo Y, Chen L, Liang W. Safety of neural stem cell transplantation in patients with severe traumatic brain injury. Exp Ther Med. 2017;13(6):3613–8.

PubMed   PubMed Central   Google Scholar  

O’Carroll GC, King SL, Carroll S, Perry JL, Vanicek N. The effects of exercise to promote quality of life in individuals with traumatic brain injuries: a systematic review. Brain Inj. 2020;34(13–14):1701–13.

Covington NV, Duff MC. Heterogeneity is a hallmark of traumatic brain injury, not a limitation: a new perspective on study design in rehabilitation research. Am J Speech Lang Pathol. 2021;30(2S):974–85.

Paik DT, Chandy M, Wu JC. Patient and disease–specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacol Rev. 2020;72(1):320–42.

Trifirò G, Crisafulli S. A new era of pharmacovigilance: future challenges and opportunities. Front Drug Saf Regul. 2022;25(2):1.

Cozene B, Sadanandan N, Farooq J, Kingsbury C, Park YJ, Wang ZJ, Moscatello A, Saft M, Cho J, Gonzales-Portillo B, Borlongan CV. Mesenchymal stem cell-induced anti-neuroinflammation against traumatic brain injury. Cell Transplant. 2021;23(30):09636897211035715.

Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioactive mater. 2022;1(10):15–31.

Zarepour A, Öztürk AB, Irmak DK, Yaşayan G, Gökmen A, Karaöz E, Zarepour A, Zarrabi A, Mostafavi E. Combination therapy using nanomaterials and stem cells to treat spinal cord injuries. Eur J Pharm Biopharm. 2022;1(177):224–40.

Mosilhy EA, Alshial EE, Eltaras MM, Rahman MM, Helmy HI, Elazoul AH, Hamdy O, Mohammed HS. Non-invasive transcranial brain modulation for neurological disorders treatment: a narrative review. Life Sci. 2022;15(307): 120869.

Adiga U, Nandit PB. An overview of pathogenesis of epilepsy. Int Neurourol J. 2023;27(4):88–94.

Johannessen Landmark C, Johannessen SI, Patsalos PN. Therapeutic drug monitoring of antiepileptic drugs: current status and future prospects. Expert Opin Drug Metab Toxicol. 2020;16(3):227–38.

Ching J. Identifying novel therapeutic targets for seizures and brain cancers (Doctoral dissertation, University of Plymouth).

Rosell-Valle C, Martínez-Losa M, Matas-Rico E, Castilla-Ortega E, Zambrana-Infantes E, Gómez-Conde AI, Sánchez-Salido L, Ladrón de Guevara-Miranda D, Pedraza C, Serrano-Castro PJ, Chun J. GABAergic deficits in absence of LPA 1 receptor, associated anxiety-like and coping behaviors, and amelioration by interneuron precursor transplants into the dorsal hippocampus. Brain Struct Funct. 2021;226:1479–95.

Arshad MN, Pinto A, van Praag H, Naegele JR. Altered connectomes of adult-born granule cells following engraftment of GABAergic progenitors in the mouse hippocampus. Prog Neurobiol. 2023;1(226): 102450.

Anderson NC, Van Zandt MA, Shrestha S, Lawrence DB, Gupta J, Chen CY, Harrsch FA, Boyi T, Dundes CE, Aaron G, Naegele JR. Pluripotent stem cell-derived interneuron progenitors mature and restore memory deficits but do not suppress seizures in the epileptic mouse brain. Stem Cell Res. 2018;1(33):83–94.

Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, Gorter JA, Henshall DC, Kaufer D, Koh S, Löscher W, Louboutin JP. Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia. 2017;58:27–38.

Salem NA, El-Shamarka M, Khadrawy Y, El-Shebiney S. New prospects of mesenchymal stem cells for ameliorating temporal lobe epilepsy. Inflammopharmacology. 2018;26:963–72.

Alayli A, Lockard G, Gordon J, Connolly J, Monsour M, Schimmel S, Dela Peña I, Borlongan CV. Stem cells: recent developments redefining epilepsy therapy. Cell Transplant. 2023;32:09636897231158967.

Nguyen QT, Thanh LN, Hoang VT, Phan TT, Heke M, Hoang DM. Bone marrow-derived mononuclear cells in the treatment of neurological diseases: knowns and unknowns. Cell Mol Neurobiol. 2023;43(7):3211–50.

Milczarek O, Jarocha D, Starowicz-Filip A, Kwiatkowski S, Badyra B, Majka M. Multiple autologous bone marrow-derived CD271+ mesenchymal stem cell transplantation overcomes drug-resistant epilepsy in children. Stem Cells Transl Med. 2018;7(1):20–33.

Ribeiro BF, da Cruz BC, de Sousa BM, Correia PD, David N, Rocha C, Almeida RD, Ribeiro da Cunha M, Marques Baptista AA, Vieira SI. Cell therapies for spinal cord injury: a review of the clinical trials and cell-type therapeutic potential. Brain. 2023;146(7):2672–93.

Billakota S, Devinsky O, Kim KW. Why we urgently need improved epilepsy therapies for adult patients. Neuropharmacology. 2020;15(170): 107855.

Mirgh S, Khattry N. Acute complications in stem cell transplantation. Contemporary Bone Marrow Transplantation. 2021:511–44.

Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A. Stem-cell-based therapy: the celestial weapon against neurological disorders. Cells. 2022;11:3476.

Aquilina K, Chakrapani A, Carr L, Kurian MA, Hargrave D. Convection-enhanced delivery in children: techniques and applications. Adv Tech Stand Neurosurg. 2022;45(18):199–228.

Ramos AG. Enhancing neuronal inhibition by cell and gene therapy as a novel treatment for Epilepsy.

Rahman MM, Islam MR, Islam MT, Harun-Or-Rashid M, Islam M, Abdullah S, Uddin MB, Das S, Rahaman MS, Ahmed M, Alhumaydhi FA. Stem cell transplantation therapy and neurological disorders: current status and future perspectives. Biology. 2022;11(1):147.

Chin EM, Johnson TL, Hoon Jr AH. Cerebral palsy: epidemiology, neurobiology, and lifespan management.

Vitrikas K, Dalton H, Breish D. Cerebral palsy: an overview. Am Fam Physician. 2020;101(4):213–20.

PubMed   Google Scholar  

Nitkin CR, Rajasingh J, Pisano C, Besner GE, Thébaud B, Sampath V. Stem cell therapy for preventing neonatal diseases in the 21st century: current understanding and challenges. Pediatr Res. 2020;87(2):265–76.

Um S, Ha J, Choi SJ, Oh W, Jin HJ. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World J Stem Cells. 2020;12(12):1511.

Nguyen T, Purcell E, Smith MJ, Penny TR, Paton MC, Zhou L, Jenkin G, Miller SL, McDonald CA, Malhotra A. Umbilical cord blood-derived cell therapy for perinatal brain injury: a systematic review & meta-analysis of preclinical studies. Int J Mol Sci. 2023;24(5):4351.

Lv ZY, Li Y, Liu J. Progress in clinical trials of stem cell therapy for cerebral palsy. Neural Regen Res. 2021;16(7):1377–82.

Bhat AN. Motor impairment increases in children with autism spectrum disorder as a function of social communication, cognitive and functional impairment, repetitive behavior severity, and comorbid diagnoses: A SPARK study report. Autism Res. 2021;14(1):202–19.

Aishworiya R, Valica T, Hagerman R, Restrepo B. An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics. 2023;19(1):248–62.

Aragón-González A, Shaw PJ, Ferraiuolo L. Blood-brain barrier disruption and its involvement in neurodevelopmental and neurodegenerative disorders. Int J Mol Sci. 2022;23(23):15271.

Guerreiro S, Maciel P. Transition from animal-based to human induced pluripotent stem cells (iPSCs)-based models of neurodevelopmental disorders: opportunities and challenges. Cells. 2023;12(4):538.

Pistollato F, Forbes-Hernández TY, Iglesias RC, Ruiz R, Zabaleta ME, Cianciosi D, Giampieri F, Battino M. Pharmacological, non-pharmacological and stem cell therapies for the management of autism spectrum disorders: a focus on human studies. Pharmacol Res. 2020;1(152): 104579.

Villarreal-Martínez L, González-Martínez G, Sáenz-Flores M, Bautista-Gómez AJ, González-Martínez A, Ortiz-Castillo M, Robles-Sáenz DA, Garza-López E. Stem cell therapy in the treatment of patients with autism spectrum disorder: a systematic review and meta-analysis. Stem Cell Rev Rep. 2022;1:1.

Nasiri M, Parmoon Z, Farahmand Y, Moradi A, Farahmand K, Moradi K, Basti FA, Mohammadi MR, Akhondzadeh S. l-carnitine adjunct to risperidone for treatment of autism spectrum disorder-associated behaviors: a randomized, double-blind clinical trial. Int Clin Psychopharmacol. 2023;7:10–97.

Lopes B, Sousa P, Alvites R, Branquinho M, Sousa AC, Mendonça C, Atayde LM, Luís AL, Varejão AS, Maurício AC. Peripheral nerve injury treatments and advances: one health perspective. Int J Mol Sci. 2022;23(2):918.

de Assis AC, Reis AL, Nunes LV, Ferreira LF, Bilal M, Iqbal HM, Soriano RN. Stem cells and tissue engineering-based therapeutic interventions: promising strategies to improve peripheral nerve regeneration. Cell Mol Neurobiol. 2023;43(2):433–54.

Saffari S, Saffari TM, Ulrich DJ, Hovius SE, Shin AY. The interaction of stem cells and vascularity in peripheral nerve regeneration. Neural Regen Res. 2021;16(8):1510–7.

Saremi J, Mahmoodi N, Rasouli M, Ranjbar FE, Mazaheri EL, Akbari M, Hasanzadeh E, Azami M. Advanced approaches to regenerate spinal cord injury: the development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother. 2022;1(146): 112529.

Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods. Acta Biomater. 2020;1(106):54–69.

Lavorato A, Raimondo S, Boido M, Muratori L, Durante G, Cofano F, Vincitorio F, Petrone S, Titolo P, Tartara F, Vercelli A. Mesenchymal stem cell treatment perspectives in peripheral nerve regeneration: systematic review. Int J Mol Sci. 2021;22(2):572.

Diesch-Furlanetto T, Gabriel M, Zajac-Spychala O, Cattoni A, Hoeben BA, Balduzzi A. Late effects after haematopoietic stem cell transplantation in ALL, long-term follow-up and transition: a step into adult life. Front Pediatr. 2021;24(9): 773895.

Aderinto N, Abdulbasit MO, Olatunji D. Stem cell-based combinatorial therapies for spinal cord injury: a narrative review of current research and future directions. Ann Med Surg. 2023;85(8):3943–54.

Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020;5(1):1.

Rahimi Darehbagh R, Mahmoodi M, Amini N, Babahajiani M, Allavaisie A, Moradi Y. The effect of nanomaterials on embryonic stem cell neural differentiation: a systematic review. Eur J Med Res. 2023;28(1):576.

Download references

No financial support has been received from any organization.

Author information

Authors and affiliations.

Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran

Ramyar Rahimi Darehbagh & Rojin Ramezani

Nanoclub Elites Association, Tehran, Iran

Ramyar Rahimi Darehbagh

Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran

Kurdistan University of Medical Sciences, Sanandaj, Iran

Seyedeh Asrin Seyedoshohadaei

Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran

Nima Rezaei

Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran

Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

You can also search for this author in PubMed   Google Scholar

Contributions

RRD and NR conceived the idea for the review article. RRD, RR, and SAS performed the literature search and data collection. RRD, SAS, and NR analyzed and interpreted the data. RRD drafted the initial manuscript. All authors critically revised the manuscript for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nima Rezaei .

Ethics declarations

Ethics approval and consent participate.

This article reviews the existing literature and contains no studies with human participants or animals performed by authors. Therefore, no ethical approval was required for this work.

Declaration of generative AI in scientific writing

While preparing this work, the authors used “Claude 3” AI to check the grammar issues and make the text more narrative. After using this tool, the authors reviewed and edited the content as needed and took full responsibility for the publication's content.

Permission to reproduce material from other sources

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Rahimi Darehbagh, R., Seyedoshohadaei, S.A., Ramezani, R. et al. Stem cell therapies for neurological disorders: current progress, challenges, and future perspectives. Eur J Med Res 29 , 386 (2024). https://doi.org/10.1186/s40001-024-01987-1

Download citation

Received : 29 May 2024

Accepted : 17 July 2024

Published : 25 July 2024

DOI : https://doi.org/10.1186/s40001-024-01987-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Stem cell therapy
  • Neurological disorders
  • Paracrine effects
  • Immunomodulation
  • Clinical translation

European Transport Research Review

  • Journal Search
  • Journal Details

Note: The following journal information is for reference only. Please check the journal website for updated information prior to submission.

EUR TRANSP RES REV

TRANSPORTATION SCIENCE & TECHNOLOGY

TRANSPORTATION

Category Quartile Rank
Engineering - Mechanical Engineering Q1 #50/672
Engineering - Automotive Engineering Q1 #10/125
Engineering - Transportation Q1 #25/141
Science Citation Index Expanded (SCIE) Social Sciences Citation Index (SSCI)
Indexed Indexed
Category (Journal Citation Reports 2024) Quartile
TRANSPORTATION Q1
TRANSPORTATION SCIENCE & TECHNOLOGY Q1
  • Popular journals in the same field
  • Recent articles

Find Funding. Review Successful Grants.

Explore over 25,000 new funding opportunities and over 6,000,000 successful grants.

Ask a Question. Answer a Question.

Quickly pose questions to the entire community. Debate answers and get clarity on the most important issues facing researchers.

An Open Access Journal

European Transport Research Review Cover Image

Preparing your manuscript

European Transport Research Review publishes the following article types:

  • Original Article

Click the relevant link to find style and formatting information for the article you are going to submit.

Manuscripts should conform to the following reporting guidelines:

  • Systematic Reviews and Meta-Analyses: PRISMA
  • Randomized Clinical Trials: CONSORT
  • Observational studies:  STROBE
  • Studies of diagnostic accuracy:  STARD
  • Animal pre-clinical studies: ARRIVE
  • Other types of health-related research: Consult the  EQUATOR  web site for appropriate reporting guidelines.
  • Editorial Board
  • Sign up for article alerts and news from this journal

Affiliated with

ECTRI logo © ECTRI

European Transport Research Review is affiliated with the European Conference of Transport Research Institutes  (ECTRI).

  • Follow us on Twitter
  • Follow us on Facebook

Annual Journal Metrics

Citation Impact 2023 Journal Impact Factor: 5.1 5-year Journal Impact Factor: 4.8 Source Normalized Impact per Paper (SNIP): 1.640 SCImago Journal Rank (SJR): 1.106

Speed 2023 Submission to first editorial decision (median days): 24 Submission to acceptance (median days): 251

Usage 2023 Downloads: 786,682 Altmetric mentions: 136

  • More about our metrics

On the blog

Developing Mobility as a Service: user, operator and governance perspectives

Developing Mobility as a Service: user, operator and governance perspectives

17 August 2021

Human factors of digitalized mobility forms and services

Human factors of digitalized mobility forms and services

12 August 2020

Rethinking Transport: Highlights of the Transport Research Arena 2020

Rethinking Transport: Highlights of the Transport Research Arena 2020

10 August 2020

Selecting an APC payment method

All details on how to select your article-processing charge payment method during submission can be found here .

Institutional membership

european transport research review journal

Article Menu

european transport research review journal

  • Subscribe SciFeed
  • Recommended Articles
  • Author Biographies
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

An outlook on platinum-based active ingredients for dermatologic and skincare applications.

european transport research review journal

1. Introduction

2. synthesis and functionalization of platinum-based active ingredients.

Click here to enlarge figure

3. Biological Effects of Pt-Based Active Ingredients

3.1. antioxidant properties, 3.2. anti-inflammatory effects and antibacterial properties, 3.3. promotion of collagen synthesis, 3.4. effects on melanogenesis, 4. applications in dermatology and skincare, 4.1. platinum in cosmetic skincare, 4.2. platinum in the treatment of skin inflammation, 5. safety and sustainability of pt-based materials, 6. conclusions and outlook, author contributions, data availability statement, conflicts of interest, abbreviations.

5,6-DHI5,6-Dihydroxyindole
5,6-DHICA5,6-dihydroxyindole-2-carboxylic acid
ACP-PtNPsPlatinum nanoparticles synthesized by acid phosphatase
ANOVAAnalysis of variance
AgNPsSilver nanoparticles
ATPAdenosine triphosphate
AuGold
AuNPsGold nanoparticles
AuPtNPsGold and platinum bimetallic nanoparticles
CATCatalase
COX-2Cyclooxygenase-2
CP-Au/PtCitrate- and pectin-protected gold-platinum bimetallic nanoparticles
CP-PtCitrate- and pectin-protected platinum nanoparticles
DPPH2,2-diphenyl-1-picrylhydrazyl
DNADeoxyribonucleic acid
DSPE-PEG1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol
ERKExtracellular signal-regulated kinase
GPxGlutathione peroxidase
GSHGlutathione
HepG2Human hepatocellular carcinomas
HLBHydrophilic–lipophilic balance
H PtCl Chloroplatinic acid
IFN-γInterferon-γ
IMQImiquimod
iNOSInducible nitric oxide synthase
JNKc-Jun NH (2)-terminal kinase
LPtNPLarge platinum nanoparticle
L1-PtNPsPlatinum nanoparticles synthesized with a 1:1 ratio of chloroplatinic acid to N. tetragona
L4-PtNPsPlatinum nanoparticles synthesized with a 1:4 ratio of chloroplatinic acid to N. tetragona
MAPKsMitogen-activated protein kinases
MNsMicroneedles
NF-κBNuclear factor kappa-light-chain-enhancer of activated B cells
NQO1NAD(P)H quinone dehydrogenase 1
O Superoxide anions
OH Hydroxyl
PdPalladium
PdNPsPalladium nanoparticles
PEGPolyethylene glycol
PGEsPlatinum group elements
PLGAPoly(d,l-lactic-co-glycolic acid)
PODPeroxidase
PtPlatinum
Pt (0)Platinum (0)
Pt (IV)Platinum (IV)
Pt-apoPlatinum nanoparticles encased in apoferritin protein
Pt-BSA-RSV NPsPlatinum nanoparticles coated with bovine serum albumin and resveratrol
PtNPsPlatinum nanoparticles
PtNWsPlatinum nanowires
PtNZPlatinum-based nanozyme
RhNPsRhodium nanoparticles
RNARibonucleic acid
ROSReactive oxygen species
SODSuperoxide dismutase
SPtNPSmall platinum nanoparticle
TGF-βTransforming growth factor-beta
TOABTetra-n-octylammonium bromide
UVUltraviolet
UVAUltraviolet A
UVBUltraviolet B
ZnONPsZinc oxide nanoparticles
  • Hughes, A.E.; Haque, N.; Northey, S.A.; Giddey, S. Platinum group metals: A review of resources, production and usage with a focus on catalysts. Resources 2021 , 10 , 93. [ Google Scholar ] [ CrossRef ]
  • Kane, A.A.; Sheps, T.; Branigan, E.T.; Apkarian, V.A.; Cheng, M.H.; Hemminger, J.C.; Hunt, S.R.; Collins, P.G. Graphitic electrical contacts to metallic single-walled carbon nanotubes using Pt electrodes. Nano Lett. 2009 , 9 , 3586–3591. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Zhang, B.; Li, R.; Luo, J.; Chen, Y.; Zou, H.; Liang, M. Epoxy-silicone copolymer synthesis via efficient hydrosilylation reaction catalyzed by high-activity platinum and its effect on structure and performance of silicone rubber coatings. Polym. Bull. 2018 , 75 , 2105–2124. [ Google Scholar ] [ CrossRef ]
  • Azharuddin, M.; Zhu, G.H.; Das, D.; Ozgur, E.; Uzun, L.; Turner, A.P.; Patra, H.K. A repertoire of biomedical applications of noble metal nanoparticles. Chem. Commun. 2019 , 55 , 6964–6996. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Shi, Y.; Ma, Z.-R.; Xiao, Y.-Y.; Yin, Y.-C.; Huang, W.-M.; Huang, Z.-C.; Zheng, Y.-Z.; Mu, F.-Y.; Huang, R.; Shi, G.-Y. Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021 , 12 , 3021. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Cao, X.; Wang, N.; Han, Y.; Gao, C.; Xu, Y.; Li, M.; Shao, Y. PtAg bimetallic nanowires: Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells. Nano Energy 2015 , 12 , 105–114. [ Google Scholar ] [ CrossRef ]
  • Yan, Z.; Li, B.; Yang, D.; Ma, J. Pt nanowire electrocatalysts for proton exchange membrane fuel cells. Chin. J. Catal. 2013 , 34 , 1471–1481. [ Google Scholar ] [ CrossRef ]
  • Yang, M.; Qu, F.; Lu, Y.; He, Y.; Shen, G.; Yu, R. Platinum nanowire nanoelectrode array for the fabrication of biosensors. Biomaterials 2006 , 27 , 5944–5950. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Qu, F.; Yang, M.; Shen, G.; Yu, R. Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis. Biosens. Bioelectron. 2007 , 22 , 1749–1755. [ Google Scholar ] [ CrossRef ]
  • Koga, H.; Umemura, Y.; Tomoda, A.; Suzuki, R.; Kitaoka, T. In situ synthesis of platinum nanocatalysts on a microstructured paperlike matrix for the catalytic purification of exhaust gases. ChemSusChem 2010 , 3 , 604–608. [ Google Scholar ] [ CrossRef ]
  • Abed, A.; Derakhshan, M.; Karimi, M.; Shirazinia, M.; Mahjoubin-Tehran, M.; Homayonfal, M.; Hamblin, M.R.; Mirzaei, S.A.; Soleimanpour, H.; Dehghani, S. Platinum nanoparticles in biomedicine: Preparation, anti-cancer activity, and drug delivery vehicles. Front. Pharmacol. 2022 , 13 , 797804. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Gutiérrez de la Rosa, S.Y.; Muñiz Diaz, R.; Villalobos Gutiérrez, P.T.; Patakfalvi, R.; Gutiérrez Coronado, Ó. Functionalized platinum nanoparticles with biomedical applications. Int. J. Mol. Sci. 2022 , 23 , 9404. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ahmad, F.; Salem-Bekhit, M.M.; Khan, F.; Alshehri, S.; Khan, A.; Ghoneim, M.M.; Wu, H.-F.; Taha, E.I.; Elbagory, I. Unique properties of surface-functionalized nanoparticles for bio-application: Functionalization mechanisms and importance in application. Nanomaterials 2022 , 12 , 1333. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Rixe, O.; Ortuzar, W.; Alvarez, M.; Parker, R.; Reed, E.; Paull, K.; Fojo, T. Oxaliplatin, tetraplatin, cisplatin, and carboplatin: Spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute’s Anticancer Drug Screen panel. Biochem. Pharmacol. 1996 , 52 , 1855–1865. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007 , 7 , 573–584. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Raszewska-Famielec, M.; Flieger, J. Nanoparticles for topical application in the treatment of skin dysfunctions—An overview of dermo-cosmetic and dermatological products. Int. J. Mol. Sci. 2022 , 23 , 15980. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Thakor, A.S.; Gambhir, S.S. Nanooncology: The future of cancer diagnosis and therapy. CA Cancer J. Clin. 2013 , 63 , 395–418. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Liu, J.; Jiang, X.; Wang, L.; Hu, Z.; Wen, T.; Liu, W.; Yin, J.; Chen, C.; Wu, X. Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress. Nano Res. 2015 , 8 , 4024–4037. [ Google Scholar ] [ CrossRef ]
  • Song, Y.; You, Q.; Chen, X. Transition metal-based therapies for inflammatory diseases. Adv. Mater. 2023 , 35 , 2212102. [ Google Scholar ] [ CrossRef ]
  • Kajita, M.; Hikosaka, K.; Iitsuka, M.; Kanayama, A.; Toshima, N.; Miyamoto, Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic. Res. 2009 , 41 , 615–626. [ Google Scholar ] [ CrossRef ]
  • Yoshihisa, Y.; Honda, A.; Zhao, Q.L.; Makino, T.; Abe, R.; Matsui, K.; Shimizu, H.; Miyamoto, Y.; Kondo, T.; Shimizu, T. Protective effects of platinum nanoparticles against UV-light-induced epidermal inflammation. Exp. Dermatol. 2010 , 19 , 1000–1006. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Narayanan, K.B.; Park, H.H. Pleiotropic functions of antioxidant nanoparticles for longevity and medicine. Adv. Colloid Interface Sci. 2013 , 201–202 , 30–42. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Bardi, G.; Boselli, L.; Pompa, P.P. Anti-inflammatory potential of platinum nanozymes: Mechanisms and perspectives. Nanoscale 2023 , 15 , 14284–14300. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Hashimoto, M.; Kawai, K.; Kawakami, H.; Imazato, S. Matrix metalloproteases inhibition and biocompatibility of gold and platinum nanoparticles. J. Biomed. Mater. Res. Part A 2016 , 104 , 209–217. [ Google Scholar ] [ CrossRef ]
  • Suchorski, Y.; Rupprechter, G. Catalysis by imaging: From meso-to nano-scale. Top. Catal. 2020 , 63 , 1532–1544. [ Google Scholar ] [ CrossRef ]
  • Khan, M.A.R.; Mamun, M.S.A.; Ara, M.H. Review on platinum nanoparticles: Synthesis, characterization, and applications. Microchem. J. 2021 , 171 , 106840. [ Google Scholar ] [ CrossRef ]
  • Pandey, S.; Mishra, S.B. Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydr. Polym. 2014 , 113 , 525–531. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Samadi, A.; Klingberg, H.; Jauffred, L.; Kjær, A.; Bendix, P.M.; Oddershede, L.B. Platinum nanoparticles: A non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering. Nanoscale 2018 , 10 , 9097–9107. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Akbarzadeh, H.; Abbaspour, M.; Mehrjouei, E.; Kamrani, M. AgPd@ Pt nanoparticles with different morphologies of cuboctahedron, icosahedron, decahedron, octahedron, and Marks-decahedron: Insights from atomistic simulations. Inorg. Chem. Front. 2018 , 5 , 870–878. [ Google Scholar ] [ CrossRef ]
  • Long, N.V.; Chien, N.D.; Hayakawa, T.; Hirata, H.; Lakshminarayana, G.; Nogami, M. The synthesis and characterization of platinum nanoparticles: A method of controlling the size and morphology. Nanotechnology 2009 , 21 , 035605. [ Google Scholar ] [ CrossRef ]
  • Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q.N.; Xia, Y. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2020 , 121 , 649–735. [ Google Scholar ] [ CrossRef ]
  • Chen, M.; Wu, B.; Yang, J.; Zheng, N. Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv. Mater. 2012 , 24 , 862–879. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Tian, N.; Zhou, Z.-Y.; Sun, S.-G. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles. J. Phys. Chem. C 2008 , 112 , 19801–19817. [ Google Scholar ] [ CrossRef ]
  • Zhang, J.; Kuang, Q.; Jiang, Y.; Xie, Z. Engineering high-energy surfaces of noble metal nanocrystals with enhanced catalytic performances. Nano Today 2016 , 11 , 661–677. [ Google Scholar ] [ CrossRef ]
  • Czubacka, E.; Czerczak, S. Are platinum nanoparticles safe to human health? Med. Pr. 2019 , 70 , 487–495. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Elechiguerra, J.; Larios-Lopez, L.; Jose-Yacaman, M. Controlled synthesis of platinum submicron and nanometric particles with novel shapes. Appl. Phys. A 2006 , 84 , 11–19. [ Google Scholar ] [ CrossRef ]
  • Yu, K.; Groom, D.J.; Wang, X.; Yang, Z.; Gummalla, M.; Ball, S.C.; Myers, D.J.; Ferreira, P.J. Degradation mechanisms of platinum nanoparticle catalysts in proton exchange membrane fuel cells: The role of particle size. Chem. Mater. 2014 , 26 , 5540–5548. [ Google Scholar ] [ CrossRef ]
  • Chen, J.; Lim, B.; Lee, E.P.; Xia, Y. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009 , 4 , 81–95. [ Google Scholar ] [ CrossRef ]
  • Peng, Z.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009 , 4 , 143–164. [ Google Scholar ] [ CrossRef ]
  • Islam, M.A.; Bhuiya, M.A.K.; Islam, M.S. A review on chemical synthesis process of platinum nanoparticles. Asia Pac. J. Energy Environ. 2014 , 1 , 103–116. [ Google Scholar ] [ CrossRef ]
  • Salzemann, C.; Kameche, F.; Ngo, A.-T.; Andreazza, P.; Calatayud, M.; Petit, C. Platinum and platinum based nanoalloys synthesized by wet chemistry. Faraday Discuss. 2015 , 181 , 19–36. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ramli, N.H.; Nor, N.M.; Hakimi, A.; Zakaria, N.D.; Lockman, Z.; Razak, K.A. Platinum-based nanoparticles: A review of synthesis methods, surface functionalization, and their applications. Microchem. J. 2024 , 200 , 110280. [ Google Scholar ] [ CrossRef ]
  • Liu, Y.; Li, D.; Sun, S. Pt-based composite nanoparticles for magnetic, catalytic, and biomedical applications. J. Mater. Chem. 2011 , 21 , 12579–12587. [ Google Scholar ] [ CrossRef ]
  • Leong, G.J.; Schulze, M.C.; Strand, M.B.; Maloney, D.; Frisco, S.L.; Dinh, H.N.; Pivovar, B.; Richards, R.M. Shape-directed platinum nanoparticle synthesis: Nanoscale design of novel catalysts. Appl. Organomet. Chem. 2014 , 28 , 1–17. [ Google Scholar ] [ CrossRef ]
  • Zhang, L.; Roling, L.T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.-I.; Park, J.; Herron, J.A.; Xie, Z. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015 , 349 , 412–416. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Yuan, X.; Luo, Z.; Zhang, Q.; Zhang, X.; Zheng, Y.; Lee, J.Y.; Xie, J. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011 , 5 , 8800–8808. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Le Guével, X.; Trouillet, V.; Spies, C.; Jung, G.; Schneider, M. Synthesis of yellow-emitting platinum nanoclusters by ligand etching. J. Phys. Chem. C 2012 , 116 , 6047–6051. [ Google Scholar ] [ CrossRef ]
  • Papst, S.; Brimble, M.A.; Evans, C.W.; Verdon, D.J.; Feisst, V.; Dunbar, P.R.; Tilley, R.D.; Williams, D.E. Cell-targeted platinum nanoparticles and nanoparticle clusters. Org. Biomol. Chem. 2015 , 13 , 6567–6572. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Danilenko, M.; Guterman, V.; Novomlinskiy, I.; Pankov, I. The effect of a gas atmosphere on the formation of colloidal platinum nanoparticles in liquid phase synthesis. Colloid Polym. Sci. 2023 , 301 , 433–443. [ Google Scholar ] [ CrossRef ]
  • Wu, J.; Gross, A.; Yang, H. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett. 2011 , 11 , 798–802. [ Google Scholar ] [ CrossRef ]
  • Díaz-Álvarez, A.E.; Cadierno, V. Glycerol: A promising green solvent and reducing agent for metal-catalyzed transfer hydrogenation reactions and nanoparticles formation. Appl. Sci. 2013 , 3 , 55–69. [ Google Scholar ] [ CrossRef ]
  • Kang, S.; Kang, K.; Chae, A.; Kim, Y.-K.; Jang, H.; Min, D.-H. Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells. Nanoscale 2019 , 11 , 15173–15183. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Bommersbach, P.; Chaker, M.; Mohamedi, M.; Guay, D. Physico-chemical and electrochemical properties of platinum− tin nanoparticles synthesized by pulsed laser Ablation for ethanol oxidation. J. Phys. Chem. C 2008 , 112 , 14672–14681. [ Google Scholar ] [ CrossRef ]
  • Rakshit, R.; Bose, S.; Sharma, R.; Budhani, R.; Vijaykumar, T.; Neena, S.; Kulkarni, G. Correlations between morphology, crystal structure, and magnetization of epitaxial cobalt-platinum films grown with pulsed laser ablation. J. Appl. Phys. 2008 , 103 , 023915. [ Google Scholar ] [ CrossRef ]
  • Paschos, O.; Choi, P.; Efstathiadis, H.; Haldar, P. Synthesis of platinum nanoparticles by aerosol assisted deposition method. Thin Solid Films 2008 , 516 , 3796–3801. [ Google Scholar ] [ CrossRef ]
  • Ke, X.; Bittencourt, C.; Bals, S.; Van Tendeloo, G. Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM. Beilstein J. Nanotechnol. 2013 , 4 , 77–86. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Büchel, R.; Strobel, R.; Krumeich, F.; Baiker, A.; Pratsinis, S.E. Influence of Pt location on BaCO 3 or Al 2 O 3 during NO x storage reduction. J. Catal. 2009 , 261 , 201–207. [ Google Scholar ] [ CrossRef ]
  • Choi, I.D.; Lee, H.; Shim, Y.-B.; Lee, D. A one-step continuous synthesis of carbon-supported Pt catalysts using a flame for the preparation of the fuel electrode. Langmuir 2010 , 26 , 11212–11216. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Sadrolhosseini, A.R.; Mahdi, M.A.; Alizadeh, F.; Rashid, S.A. Laser ablation technique for synthesis of metal nanoparticle in liquid. In Laser Technology and Its Applications ; IntechOpen: London, UK, 2019; pp. 63–83. [ Google Scholar ]
  • Lewis, B.B.; Stanford, M.G.; Fowlkes, J.D.; Lester, K.; Plank, H.; Rack, P.D. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition. Beilstein J. Nanotechnol. 2015 , 6 , 907–918. [ Google Scholar ] [ CrossRef ]
  • Merchan-Merchan, W.; Jimenez, W.C.; Coria, O.R.; Wallis, C. Flame synthesis of nanostructured transition metal oxides: Trends, developments, and recent advances. In Nanomaterials Synthesis ; Elsevier: Amsterdam, The Netherlands, 2019; pp. 201–263. [ Google Scholar ]
  • Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.-H.; Kim, J.-H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials 2019 , 9 , 1719. [ Google Scholar ] [ CrossRef ]
  • Dhand, C.; Dwivedi, N.; Loh, X.J.; Ying, A.N.J.; Verma, N.K.; Beuerman, R.W.; Lakshminarayanan, R.; Ramakrishna, S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Adv. 2015 , 5 , 105003–105037. [ Google Scholar ] [ CrossRef ]
  • Fahmy, S.A.; Preis, E.; Bakowsky, U.; Azzazy, H.M.E. Platinum nanoparticles: Green synthesis and biomedical applications. Molecules 2020 , 25 , 4981. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Chen, A.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010 , 110 , 3767–3804. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Brayner, R.; Barberousse, H.; Hemadi, M.; Djedjat, C.; Yéprémian, C.; Coradin, T.; Livage, J.; Fiévet, F.; Couté, A. Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J. Nanosci. Nanotechnol. 2007 , 7 , 2696–2708. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Velmurugan, P.; Shim, J.; Kim, K.; Oh, B.-T. Prunus× yedoensis tree gum mediated synthesis of platinum nanoparticles with antifungal activity against phytopathogens. Mater. Lett. 2016 , 174 , 61–65. [ Google Scholar ] [ CrossRef ]
  • Leo, A.J.; Oluwafemi, O.S. Plant-mediated synthesis of platinum nanoparticles using water hyacinth as an efficient biomatrix source–An eco-friendly development. Mater. Lett. 2017 , 196 , 141–144. [ Google Scholar ]
  • Rashamuse, K.; Whiteley, C. Bioreduction of Pt(IV) from aqueous solution using sulphate-reducing bacteria. Appl. Microbiol. Biotechnol. 2007 , 75 , 1429–1435. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Riddin, T.; Govender, Y.; Gericke, M.; Whiteley, C. Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme Microb. Technol. 2009 , 45 , 267–273. [ Google Scholar ] [ CrossRef ]
  • Jan, H.; Gul, R.; Andleeb, A.; Ullah, S.; Shah, M.; Khanum, M.; Ullah, I.; Hano, C.; Abbasi, B.H. A detailed review on biosynthesis of platinum nanoparticles (PtNPs), their potential antimicrobial and biomedical applications. J. Saudi Chem. Soc. 2021 , 25 , 101297. [ Google Scholar ] [ CrossRef ]
  • Oostingh, G.J.; Casals, E.; Italiani, P.; Colognato, R.; Stritzinger, R.; Ponti, J.; Pfaller, T.; Kohl, Y.; Ooms, D.; Favilli, F. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part. Fibre Toxicol. 2011 , 8 , 8. [ Google Scholar ] [ CrossRef ]
  • Jagwani, D.; Krishna, P.H. Nature’s nano-assets: Green synthesis, characterization techniques and applications–a graphical review. Mater. Today Proc. 2021 , 46 , 2307–2317. [ Google Scholar ] [ CrossRef ]
  • Banik, B.; Borkotoky, S.; Das, M.K. Biosynthesized colloidal metallic nanoparticles-based nanocosmetic formulations. In Nanocosmeceuticals ; Elsevier Inc.: Amsterdam, The Netherlands, 2022; pp. 369–388. [ Google Scholar ]
  • Hansen, H.E.; Seland, F.; Sunde, S.; Burheim, O.S.; Pollet, B.G. Two routes for sonochemical synthesis of platinum nanoparticles with narrow size distribution. Mater. Adv. 2021 , 2 , 1962–1971. [ Google Scholar ] [ CrossRef ]
  • Obreja, L.; Pricop, D.; Foca, N.; Melnig, V. Platinum nanoparticles synthesis by sonoelectrochemical methods. Mater. Plast 2010 , 47 , 42–47. [ Google Scholar ]
  • Mendivil Palma, M.I.; Krishnan, B.; Rodriguez, G.A.C.; Das Roy, T.K.; Avellaneda, D.A.; Shaji, S. Synthesis and properties of platinum nanoparticles by pulsed laser ablation in liquid. J. Nanomater. 2016 , 2016 , 9651637. [ Google Scholar ] [ CrossRef ]
  • Prasetya, O.D.; Khumaeni, A. Synthesis of Colloidal Platinum Nanoparticles Using Pulse Laser Ablation Method. AIP Conf. Proc. 2018 , 2014 , 020050. [ Google Scholar ]
  • Kocak, Y.; Aygun, A.; Altuner, E.E.; Ozdemir, S.; Gonca, S.; Berikten, D.; Tiri, R.N.E.; Sen, F. Eco-friendly production of platinum nanoparticles: Physicochemical properties, evaluation of biological and catalytic activities. Int. J. Environ. Sci. Technol. 2023 , 21 , 51–62. [ Google Scholar ] [ CrossRef ]
  • Fanoro, O.T.; Parani, S.; Maluleke, R.; Lebepe, T.C.; Varghese, R.J.; Mgedle, N.; Mavumengwana, V.; Oluwafemi, O.S. Biosynthesis of smaller-sized platinum nanoparticles using the leaf extract of Combretum erythrophyllum and its antibacterial activities. Antibiotics 2021 , 10 , 1275. [ Google Scholar ] [ CrossRef ]
  • Al-Radadi, N.S.; Adam, S.I. Green biosynthesis of Pt-nanoparticles from Anbara fruits: Toxic and protective effects on CCl4 induced hepatotoxicity in Wister rats. Arab. J. Chem. 2020 , 13 , 4386–4403. [ Google Scholar ] [ CrossRef ]
  • Naseer, A.; Ali, A.; Ali, S.; Mahmood, A.; Kusuma, H.; Nazir, A.; Yaseen, M.; Khan, M.; Ghaffar, A.; Abbas, M. Biogenic and eco-benign synthesis of platinum nanoparticles (Pt NPs) using plants aqueous extracts and biological derivatives: Environmental, biological and catalytic applications. J. Mater. Res. Technol. 2020 , 9 , 9093–9107. [ Google Scholar ] [ CrossRef ]
  • Castro-Longoria, E.; Moreno-Velasquez, S.D.; Vilchis-Nestor, A.R.; Arenas-Berumen, E.; Avalos-Borja, M. Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J. Microbiol. Biotechnol. 2012 , 22 , 1000–1004. [ Google Scholar ] [ CrossRef ]
  • Gaidhani, S.V.; Yeshvekar, R.K.; Shedbalkar, U.U.; Bellare, J.H.; Chopade, B.A. Bio-reduction of hexachloroplatinic acid to platinum nanoparticles employing Acinetobacter calcoaceticus. Process Biochem. 2014 , 49 , 2313–2319. [ Google Scholar ] [ CrossRef ]
  • Sarathy, K.V.; Raina, G.; Yadav, R.; Kulkarni, G.; Rao, C. Thiol-derivatized nanocrystalline arrays of gold, silver, and platinum. J. Phys. Chem. B 1997 , 101 , 9876–9880. [ Google Scholar ] [ CrossRef ]
  • Yang, J.; Lee, J.Y.; Deivaraj, T.; Too, H.-P. An improved procedure for preparing smaller and nearly monodispersed thiol-stabilized platinum nanoparticles. Langmuir 2003 , 19 , 10361–10365. [ Google Scholar ] [ CrossRef ]
  • Perez, H.; Pradeau, J.-P.; Albouy, P.-A.; Perez-Omil, J. Synthesis and characterization of functionalized platinum nanoparticles. Chem. Mater. 1999 , 11 , 3460–3463. [ Google Scholar ] [ CrossRef ]
  • Ling, D.; Hackett, M.J.; Hyeon, T. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today 2014 , 9 , 457–477. [ Google Scholar ] [ CrossRef ]
  • Wand, P.; Bartl, J.D.; Heiz, U.; Tschurl, M.; Cokoja, M. Functionalization of small platinum nanoparticles with amines and phosphines: Ligand binding modes and particle stability. J. Colloid Interface Sci. 2016 , 478 , 72–80. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Mishra, P.; Lee, J.; Kumar, D.; Louro, R.O.; Costa, N.; Pathania, D.; Kumar, S.; Lee, J.; Singh, L. Engineered nanoenzymes with multifunctional properties for next-generation biological and environmental applications. Adv. Funct. Mater. 2022 , 32 , 2108650. [ Google Scholar ] [ CrossRef ]
  • Yu, T.; Kim, D.Y.; Zhang, H.; Xia, Y. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew. Chem. Int. Ed. 2011 , 50 , 2773–2777. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Bratlie, K.M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G.A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007 , 7 , 3097–3101. [ Google Scholar ] [ CrossRef ]
  • Bloch, K.; Pardesi, K.; Satriano, C.; Ghosh, S. Bacteriogenic platinum nanoparticles for application in nanomedicine. Front. Chem. 2021 , 9 , 624344. [ Google Scholar ] [ CrossRef ]
  • Lacroix, L.-M.; Gatel, C.; Arenal, R.; Marcelot, C.; Lachaize, S.; Blon, T.; Warot-Fonrose, B.; Snoeck, E.; Chaudret, B.; Viau, G. Tuning complex shapes in platinum nanoparticles: From cubic dendrites to fivefold stars. Angew. Chem. Int. Ed. 2012 , 51 , 4690–4694. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Paiva-Santos, A.C.; Herdade, A.M.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Paranhos, A.; Veiga, F. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int. J. Pharm. 2021 , 597 , 120311. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Pedone, D.; Moglianetti, M.; De Luca, E.; Bardi, G.; Pompa, P.P. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev. 2017 , 46 , 4951–4975. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020 , 94 , 651–715. [ Google Scholar ] [ CrossRef ]
  • Huang, X.; He, D.; Pan, Z.; Luo, G.; Deng, J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater. Today Bio. 2021 , 11 , 100124. [ Google Scholar ] [ CrossRef ]
  • D‘Autréaux, B.; Toledano, M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007 , 8 , 813–824. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013 , 13 , 349–361. [ Google Scholar ] [ CrossRef ]
  • Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009 , 8 , 579–591. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Fraisl, P.; Aragonés, J.; Carmeliet, P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat. Rev. Drug Discov. 2009 , 8 , 139–152. [ Google Scholar ] [ CrossRef ]
  • Lu, Y.; Cao, C.; Pan, X.; Liu, Y.; Cui, D. Structure design mechanisms and inflammatory disease applications of nanozymes. Nanoscale 2023 , 15 , 14–40. [ Google Scholar ] [ CrossRef ]
  • Kedare, S.B.; Singh, R. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011 , 48 , 412–422. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Nakkala, J.R.; Mata, R.; Sadras, S.R. The antioxidant and catalytic activities of green synthesized gold nanoparticles from Piper longum fruit extract. Process Saf. Environ. Prot. 2016 , 100 , 288–294. [ Google Scholar ] [ CrossRef ]
  • Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009 , 113 , 1202–1205. [ Google Scholar ] [ CrossRef ]
  • Patil, M.P.; Kang, M.J.; Niyonizigiye, I.; Singh, A.; Kim, J.O.; Seo, Y.B.; Kim, G.D. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171(T) and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf. B Biointerfaces 2019 , 183 , 110455. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ramachandiran, D.; Elangovan, M.; Rajesh, K. Structural, optical, biological and photocatalytic activities of platinum nanoparticles using salixtetrasperma leaf extract via hydrothermal and ultrasonic methods. Optik 2021 , 244 , 167494. [ Google Scholar ] [ CrossRef ]
  • Gupta, K.; Chundawat, T.S. Bio-inspired synthesis of platinum nanoparticles from fungus Fusarium oxysporum: Its characteristics, potential antimicrobial, antioxidant and photocatalytic activities. Mater. Res. Express 2019 , 6 , 1050d1056. [ Google Scholar ] [ CrossRef ]
  • Sathiyaraj, G.; Vinosha, M.; Sangeetha, D.; Manikandakrishnan, M.; Palanisamy, S.; Sonaimuthu, M.; Manikandan, R.; You, S.; Prabhu, N.M. Bio-directed synthesis of Pt-nanoparticles from aqueous extract of red algae Halymenia dilatata and their biomedical applications. Colloids Surf. A 2021 , 618 , 126434. [ Google Scholar ] [ CrossRef ]
  • Selvi, A.M.; Palanisamy, S.; Jeyanthi, S.; Vinosha, M.; Mohandoss, S.; Tabarsa, M.; You, S.; Kannapiran, E.; Prabhu, N.M. Synthesis of Tragia involucrata mediated platinum nanoparticles for comprehensive therapeutic applications: Antioxidant, antibacterial and mitochondria-associated apoptosis in HeLa cells. Process Biochem. 2020 , 98 , 21–33. [ Google Scholar ] [ CrossRef ]
  • Tsung, C.-K.; Kuhn, J.N.; Huang, W.; Aliaga, C.; Hung, L.-I.; Somorjai, G.A.; Yang, P. Sub-10 nm platinum nanocrystals with size and shape control: Catalytic study for ethylene and pyrrole hydrogenation. J. Am. Chem. Soc. 2009 , 131 , 5816–5822. [ Google Scholar ] [ CrossRef ]
  • Bayindir, Z.; Duchesne, P.; Cook, S.; MacDonald, M.; Zhang, P. X-ray spectroscopy studies on the surface structural characteristics and electronic properties of platinum nanoparticles. J. Chem. Phys. 2009 , 131 , 244716. [ Google Scholar ] [ CrossRef ]
  • Chen, R.; Wu, S.; Meng, C. Size-tunable green synthesis of platinum nanoparticles using chlorogenic acid. Res. Chem. Intermed. 2021 , 47 , 1775–1787. [ Google Scholar ] [ CrossRef ]
  • Rehman, K.u.; Khan, S.U.; Tahir, K.; Zaman, U.; Khan, D.; Nazir, S.; Khan, W.U.; Khan, M.I.; Ullah, K.; Anjum, S.I.; et al. Sustainable and green synthesis of novel acid phosphatase mediated platinum nanoparticles (ACP-PtNPs) and investigation of its in vitro antibacterial, antioxidant, hemolysis and photocatalytic activities. J. Environ. Chem. Eng. 2022 , 10 , 107623. [ Google Scholar ] [ CrossRef ]
  • Hosny, M.; Fawzy, M.; El-Fakharany, E.M.; Omer, A.M.; Abd El-Monaem, E.M.; Khalifa, R.E.; Eltaweil, A.S. Biogenic synthesis, characterization, antimicrobial, antioxidant, antidiabetic, and catalytic applications of platinum nanoparticles synthesized from Polygonum salicifolium leaves. J. Environ. Chem. Eng. 2022 , 10 , 106806. [ Google Scholar ] [ CrossRef ]
  • Anju, A.; Gupta, K.; Chundawat, T.S. In vitro antimicrobial and antioxidant activity of biogenically synthesized palladium and platinum nanoparticles using Botryococcus braunii. Turk. J. Pharm. Sci. 2020 , 17 , 299. [ Google Scholar ]
  • Sivasankar, P.; Seedevi, P.; Poongodi, S.; Sivakumar, M.; Murugan, T.; Sivakumar, L.; Sivakumar, K.; Balasubramanian, T. Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72. Carbohydr. Polym. 2018 , 181 , 752–759. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Salehi, S.; Shandiz, S.A.; Ghanbar, F.; Darvish, M.R.; Ardestani, M.S.; Mirzaie, A.; Jafari, M. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int. J. Nanomed. 2016 , 11 , 1835–1846. [ Google Scholar ] [ CrossRef ]
  • Kharat, S.N.; Mendhulkar, V.D. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater. Sci. Eng. C 2016 , 62 , 719–724. [ Google Scholar ] [ CrossRef ]
  • Niraimathi, K.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B 2013 , 102 , 288–291. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Muthukumar, M. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 2015 , 6 , 755–766. [ Google Scholar ] [ CrossRef ]
  • Tahir, K.; Nazir, S.; Li, B.; Khan, A.U.; Khan, Z.U.H.; Gong, P.Y.; Khan, S.U.; Ahmad, A. Nerium oleander leaves extract mediated synthesis of gold nanoparticles and its antioxidant activity. Mater. Lett. 2015 , 156 , 198–201. [ Google Scholar ] [ CrossRef ]
  • Hosny, M.; Fawzy, M. Instantaneous phytosynthesis of gold nanoparticles via Persicaria salicifolia leaf extract, and their medical applications. Adv. Powder Technol. 2021 , 32 , 2891–2904. [ Google Scholar ] [ CrossRef ]
  • Bakur, A.; Niu, Y.; Kuang, H.; Chen, Q. Synthesis of gold nanoparticles derived from mannosylerythritol lipid and evaluation of their bioactivities. AMB Express 2019 , 9 , 62. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Geremew, A.; Carson, L.; Woldesenbet, S.; Wang, H.; Reeves, S.; Brooks Jr, N.; Saganti, P.; Weerasooriya, A.; Peace, E. Effect of zinc oxide nanoparticles synthesized from Carya illinoinensis leaf extract on growth and antioxidant properties of mustard ( Brassica juncea ). Front. Plant Sci. 2023 , 14 , 1108186. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Faisal, S.; Tariq, M.H.; Abdullah; Zafar, S.; Un Nisa, Z.; Ullah, R.; Ur Rahman, A.; Bari, A.; Ullah, K.; Khan, R.U. Bio synthesis, comprehensive characterization, and multifaceted therapeutic applications of BSA-Resveratrol coated platinum nanoparticles. Sci. Rep. 2024 , 14 , 7875. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wroński, A.; Wójcik, P. Impact of ROS-dependent lipid metabolism on psoriasis pathophysiology. Int. J. Mol. Sci. 2022 , 23 , 12137. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Pleńkowska, J.; Gabig-Cimińska, M.; Mozolewski, P. Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int. J. Mol. Sci. 2020 , 21 , 6206. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Bickers, D.R.; Athar, M. Oxidative stress in the pathogenesis of skin disease. J. Investig. Dermatol. 2006 , 126 , 2565–2575. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Shurygina, I.A.; Shurygin, M.G. Nanoparticles in wound healing and regeneration. In Metal Nanoparticles in Pharma ; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 21–37. [ Google Scholar ]
  • Tajima, K. Antioxidant activity of PAPLAL a colloidal mixture of Pt and Pd metal to superoxide anion radical as studied by quantitative spin trapping ESR measurements. Clin. Pharmacol. Ther. 2005 , 15 , 635. [ Google Scholar ]
  • Tajima, K. Chemical reactivity of Pd-, and Pt-colloid lnvolved in PAPLAL to solvated oxygen and hydroxyl radical. Clin. Pharmacol. Ther. 2009 , 19 , 397. [ Google Scholar ]
  • Shibuya, S.; Ozawa, Y.; Watanabe, K.; Izuo, N.; Toda, T.; Yokote, K.; Shimizu, T. Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS ONE 2014 , 9 , e109288. [ Google Scholar ] [ CrossRef ]
  • Tsuji, G.; Hashimoto-Hachiya, A.; Takemura, M.; Kanemaru, T.; Ichihashi, M.; Furue, M. Palladium and platinum nanoparticles activate AHR and NRF2 in human keratinocytes-implications in vitiligo therapy. J. Investig. Dermatol. 2017 , 137 , 1582–1586. [ Google Scholar ] [ CrossRef ]
  • Kleszczyński, K.; Ernst, I.M.; Wagner, A.E.; Kruse, N.; Zillikens, D.; Rimbach, G.; Fischer, T.W. Sulforaphane and phenylethyl isothiocyanate protect human skin against UVR-induced oxidative stress and apoptosis: Role of Nrf2-dependent gene expression and antioxidant enzymes. Pharmacol. Res. 2013 , 78 , 28–40. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Tahir, K.; Nazir, S.; Ahmad, A.; Li, B.; Khan, A.U.; Khan, Z.U.H.; Khan, F.U.; Khan, Q.U.; Khan, A.; Rahman, A.U. Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. J. Photochem. Photobiol. B Biol. 2017 , 166 , 246–251. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Pan, X.; Redding, J.E.; Wiley, P.A.; Wen, L.; McConnell, J.S.; Zhang, B. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 2010 , 79 , 113–116. [ Google Scholar ] [ CrossRef ]
  • Wang, S.; Lawson, R.; Ray, P.C.; Yu, H. Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol. Ind. Health. 2011 , 27 , 547–554. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Liu, L.; Jing, Y.; Guo, A.; Li, X.; Li, Q.; Liu, W.; Zhang, X. Biosynthesis of Platinum Nanoparticles with Cordyceps Flower Extract: Characterization, Antioxidant Activity and Antibacterial Activity. Nanomaterials 2022 , 12 , 1904. [ Google Scholar ] [ CrossRef ]
  • Chwalibog, A.; Sawosz, E.; Hotowy, A.; Szeliga, J.; Mitura, S.; Mitura, K.; Grodzik, M.; Orlowski, P.; Sokolowska, A. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int. J. Nanomed. 2010 , 5 , 1085–1094. [ Google Scholar ] [ CrossRef ]
  • Iyer, J.K.; Dickey, A.; Rouhani, P.; Kaul, A.; Govindaraju, N.; Singh, R.N.; Kaul, R. Nanodiamonds facilitate killing of intracellular uropathogenic E. coli in an in vitro model of urinary tract infection pathogenesis. PLoS ONE 2018 , 13 , e0191020. [ Google Scholar ] [ CrossRef ]
  • Carezzano, M.E.; Sotelo, J.P.; Primo, E.; Reinoso, E.B.; Paletti Rovey, M.F.; Demo, M.S.; Giordano, W.F.; Oliva, M.d.l.M. Inhibitory effect of Thymus vulgaris and Origanum vulgare essential oils on virulence factors of phytopathogenic Pseudomonas syringae strains. Plant Biol. 2017 , 19 , 599–607. [ Google Scholar ] [ CrossRef ]
  • Xian, W.; Yang, F.; Li, D.; Sun, T.; Shang, P.; Zheng, J.; Peng, Y. A study of bacterial distribution and drug resistance in skin and soft tissue infection. Zhonghua Yi Xue Za Zhi 2019 , 99 , 829–833. [ Google Scholar ]
  • Boomi, P.; Prabu, H.G.; Mathiyarasu, J. Synthesis and characterization of polyaniline/Ag–Pt nanocomposite for improved antibacterial activity. Colloids Surf. B 2013 , 103 , 9–14. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kumar, P.V.; Jelastin Kala, S.M.; Prakash, K.S. Green synthesis derived Pt-nanoparticles using Xanthium strumarium leaf extract and their biological studies. J. Environ. Chem. Eng. 2019 , 7 , 103146. [ Google Scholar ] [ CrossRef ]
  • Ayaz Ahmed, K.B.; Raman, T.; Anbazhagan, V. Platinum nanoparticles inhibit bacteria proliferation and rescue zebrafish from bacterial infection. RSC Adv. 2016 , 6 , 44415–44424. [ Google Scholar ] [ CrossRef ]
  • Mukherjee, S.; Bollu, V.S.; Roy, A.; Nethi, S.K.; Madhusudana, K.; Kumar, J.M.; Sistla, R.; Patra, C.R. Acute toxicity, biodistribution, and pharmacokinetics studies of pegylated platinum nanoparticles in mouse model. Adv. NanoBiomed. Res. 2021 , 1 , 2000082. [ Google Scholar ] [ CrossRef ]
  • Gatoo, M.A.; Naseem, S.; Arfat, M.Y.; Mahmood Dar, A.; Qasim, K.; Zubair, S. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed. Res. Int. 2014 , 2014 , 498420. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Zhao, Y.; Ye, C.; Liu, W.; Chen, R.; Jiang, X. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew. Chem. Int. Ed. 2014 , 53 , 8127–8131. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Nejdl, L.; Kudr, J.; Moulick, A.; Hegerova, D.; Ruttkay-Nedecky, B.; Gumulec, J.; Cihalova, K.; Smerkova, K.; Dostalova, S.; Krizkova, S. Platinum nanoparticles induce damage to DNA and inhibit DNA replication. PLoS ONE 2017 , 12 , e0180798. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Gholami-Shabani, M.; Sotoodehnejadnematalahi, F.; Shams-Ghahfarokhi, M.; Eslamifar, A.; Razzaghi-Abyaneh, M. Platinum nanoparticles as potent anticancer and antimicrobial agent: Green synthesis, physical characterization, and in-vitro biological activity. J. Cluster Sci. 2023 , 34 , 501–516. [ Google Scholar ] [ CrossRef ]
  • Brown, A.L.; Kai, M.P.; DuRoss, A.N.; Sahay, G.; Sun, C. Biodistribution and toxicity of micellar platinum nanoparticles in mice via intravenous administration. Nanomaterials 2018 , 8 , 410. [ Google Scholar ] [ CrossRef ]
  • Kim, M.; Park, Y.G.; Lee, H.-J.; Lim, S.J.; Nho, C.W. Youngiasides A and C isolated from Youngia denticulatum inhibit UVB-Induced MMP expression and promote type I procollagen production via repression of MAPK/AP-1/NF-κB and activation of AMPK/Nrf2 in HaCaT cells and human dermal fibroblasts. J. Agric. Food Chem. 2015 , 63 , 5428–5438. [ Google Scholar ] [ CrossRef ]
  • Kim, C.-R.; Kim, Y.-M.; Lee, M.-K.; Kim, I.-H.; Choi, Y.-H.; Nam, T.-J. Pyropia yezoensis peptide promotes collagen synthesis by activating the TGF-β/Smad signaling pathway in the human dermal fibroblast cell line Hs27. Int. J. Mol. Med. 2017 , 39 , 31–38. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Alshamrani, M. Broad-spectrum theranostics and biomedical application of functionalized nanomaterials. Polymers 2022 , 14 , 1221. [ Google Scholar ] [ CrossRef ]
  • Zhang, Y.; Cheng, S.; Jia, H.; Zhou, J.; Xi, J.; Wang, J.; Chen, X.; Wu, L. Green synthesis of platinum nanoparticles by Nymphaea tetragona flower extract and their skin lightening, antiaging effects. Arab. J. Chem. 2023 , 16 , 104391. [ Google Scholar ] [ CrossRef ]
  • Liang, X.W.; Xu, Z.P.; Grice, J.; Zvyagin, A.V.; Roberts, M.S.; Liu, X. Penetration of nanoparticles into human skin. Curr. Pharm. Des. 2013 , 19 , 6353–6366. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Mauro, M.; Crosera, M.; Bianco, C.; Adami, G.; Montini, T.; Fornasiero, P.; Jaganjac, M.; Bovenzi, M.; Filon, F.L. Permeation of platinum and rhodium nanoparticles through intact and damaged human skin. J. Nanopart. Res. 2015 , 17 , 253. [ Google Scholar ] [ CrossRef ]
  • Baroli, B.; Ennas, M.G.; Loffredo, F.; Isola, M.; Pinna, R.; López-Quintela, M.A. Penetration of metallic nanoparticles in human full-thickness skin. J. Investig. Dermatol. 2007 , 127 , 1701–1712. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Jung, S.; Patzelt, A.; Otberg, N.; Thiede, G.; Sterry, W.; Lademann, J. Strategy of topical vaccination with nanoparticles. J. Biomed. Opt. 2009 , 14 , 021001–021007. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Cornwell, P.A.; Tubek, J.; van Gompel, H.A.; Little, C.J.; Wiechers, J.W. Glyceryl monocaprylate/caprate as a moderate skin penetration enhancer. Int. J. Pharm. 1998 , 171 , 243–255. [ Google Scholar ] [ CrossRef ]
  • Wohlrab, J.; Klapperstück, T.; Reinhardt, H.-W.; Albrecht, M. Interaction of epicutaneously applied lipids with stratum corneum depends on the presence of either emulsifiers or hydrogenated phosphatidylcholine. Skin Pharmacol. Physiol. 2010 , 23 , 298–305. [ Google Scholar ] [ CrossRef ]
  • Coulman, S.A.; Anstey, A.; Gateley, C.; Morrissey, A.; McLoughlin, P.; Allender, C.; Birchall, J.C. Microneedle mediated delivery of nanoparticles into human skin. Int. J. Pharm. 2009 , 366 , 190–200. [ Google Scholar ] [ CrossRef ]
  • McAllister, D.V.; Wang, P.M.; Davis, S.P.; Park, J.-H.; Canatella, P.J.; Allen, M.G.; Prausnitz, M.R. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proc. Natl. Acad. Sci. USA 2003 , 100 , 13755–13760. [ Google Scholar ] [ CrossRef ]
  • Zhang, W.; Gao, J.; Zhu, Q.; Zhang, M.; Ding, X.; Wang, X.; Hou, X.; Fan, W.; Ding, B.; Wu, X. Penetration and distribution of PLGA nanoparticles in the human skin treated with microneedles. Int. J. Pharm. 2010 , 402 , 205–212. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Birchall, J.; Coulman, S.; Anstey, A.; Gateley, C.; Sweetland, H.; Gershonowitz, A.; Neville, L.; Levin, G. Cutaneous gene expression of plasmid DNA in excised human skin following delivery via microchannels created by radio frequency ablation. Int. J. Pharm. 2006 , 312 , 15–23. [ Google Scholar ] [ CrossRef ]
  • Banga, A.K.; Bose, S.; Ghosh, T.K. Iontophoresis and electroporation: Comparisons and contrasts. Int. J. Pharm. 1999 , 179 , 1–19. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Jadoul, A.; Bouwstra, J.; Preat, V. Effects of iontophoresis and electroporation on the stratum corneum: Review of the biophysical studies. Adv. Drug Deliv. Rev. 1999 , 35 , 89–105. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Lopez, R.F.; Seto, J.E.; Blankschtein, D.; Langer, R. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials 2011 , 32 , 933–941. [ Google Scholar ] [ CrossRef ]
  • Tezel, A.; Sens, A.; Mitragotri, S. A theoretical analysis of low-frequency sonophoresis: Dependence of transdermal transport pathways on frequency and energy density. Pharm. Res. 2002 , 19 , 1841–1846. [ Google Scholar ] [ CrossRef ]
  • Choi, E.H.; Lee, S.H.; Ahn, S.K.; Hwang, S.M. The pretreatment effect of chemical skin penetration enhancers in transdermal drug delivery using iontophoresis. Skin Pharmacol. Physiol. 1999 , 12 , 326–335. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kim, Y.-C.; Park, J.-H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012 , 64 , 1547–1568. [ Google Scholar ] [ CrossRef ]
  • Kashkooli, F.M.; Jakhmola, A.; Hornsby, T.K.; Tavakkoli, J.J.; Kolios, M.C. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J. Control. Release 2023 , 355 , 552–578. [ Google Scholar ] [ CrossRef ]
  • Lane, M.E. Skin penetration enhancers. Int. J. Pharm. 2013 , 447 , 12–21. [ Google Scholar ] [ CrossRef ]
  • Chen, Y.; Feng, X. Gold nanoparticles for skin drug delivery. Int. J. Pharm. 2022 , 625 , 122122. [ Google Scholar ] [ CrossRef ]
  • Wani, T.U.; Mohi-ud-Din, R.; Majeed, A.; Kawoosa, S.; Pottoo, F.H. Skin permeation of nanoparticles: Mechanisms involved and critical factors governing topical drug delivery. Curr. Pharm. Des. 2020 , 26 , 4601–4614. [ Google Scholar ] [ CrossRef ]
  • Trommer, H.; Neubert, R. Overcoming the stratum corneum: The modulation of skin penetration: A review. Skin Pharmacol. Physiol. 2006 , 19 , 106–121. [ Google Scholar ] [ CrossRef ]
  • Bastos, E.L.; Quina, F.H.; Baptista, M.S. Endogenous photosensitizers in human skin. Chem. Rev. 2023 , 123 , 9720–9785. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Thawabteh, A.M.; Jibreen, A.; Karaman, D.; Thawabteh, A.; Karaman, R. A comprehensive review on skin pigmentation-types, causes, and treatment. Molecules 2023 , 28 , 4839. [ Google Scholar ] [ CrossRef ]
  • Goenka, S.; Toussaint, J. Citrate-coated platinum nanoparticles exhibit a primary particle-size dependent effect on stimulating melanogenesis in human melanocytes. Cosmetics 2020 , 7 , 88. [ Google Scholar ] [ CrossRef ]
  • Fitzpatrick, T.B.; Becker Jr, S.W.; Lerner, A.B.; Montgomery, H. Tyrosinase in human skin: Demonstration of its presence and of its role in human melanin formation. Science 1950 , 112 , 223–225. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Hu, S.; Zheng, Z.; Zhang, X.; Chen, F.; Wang, M. Oxyresveratrol and trans-dihydromorin from the twigs of Cudrania tricuspidata as hypopigmenting agents against melanogenesis. J. Funct. Foods. 2015 , 13 , 375–383. [ Google Scholar ] [ CrossRef ]
  • Denat, L.; Kadekaro, A.L.; Marrot, L.; Leachman, S.A.; Abdel-Malek, Z.A. Melanocytes as instigators and victims of oxidative stress. J. Investig. Dermatol. 2014 , 134 , 1512–1518. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Govindarajan, B.; Klafter, R.; Miller, M.S.; Mansur, C.; Mizesko, M.; Bai, X.; LaMontagne, K.; Arbiser, J.L. Reactive oxygen-induced carcinogenesis causes hypermethylation of p16 Ink4a and activation of MAP kinase. Mol. Med. 2002 , 8 , 1–8. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Gavalas, N.G.; Akhtar, S.; Gawkrodger, D.J.; Watson, P.F.; Weetman, A.P.; Kemp, E.H. Analysis of allelic variants in the catalase gene in patients with the skin depigmenting disorder vitiligo. Biochem. Biophys. Res. Commun. 2006 , 345 , 1586–1591. [ Google Scholar ] [ CrossRef ]
  • Fried, L.; Arbiser, J.L. The reactive oxygen-driven tumor: Relevance to melanoma. Pigm. Cell Melanoma Res. 2008 , 21 , 117–122. [ Google Scholar ] [ CrossRef ]
  • Guan, C.P.; Zhou, M.N.; Xu, A.E.; Kang, K.F.; Liu, J.F.; Wei, X.D.; Li, Y.W.; Zhao, D.K.; Hong, W.S. The susceptibility to vitiligo is associated with NF-E2-related factor2 (Nrf2) gene polymorphisms: A study on Chinese Han population. Exp. Dermatol. 2008 , 17 , 1059–1062. [ Google Scholar ] [ CrossRef ]
  • Chaudhary, M.; Khan, A.; Gupta, M. Skin ageing: Pathophysiology and current market treatment approaches. Curr. Aging Sci. 2020 , 13 , 22–30. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kokubo, H.; Kawano, K. EEG measurements on relaxation caused by essence of colloidal platinum for skin care a discussion using dB analysis. J. Int. Soc. Life Inf. Sci. 2016 , 34 , 109–119. [ Google Scholar ]
  • Griffiths, C.E.M.; Armstrong, A.W.; Gudjonsson, J.E.; Barker, J. Psoriasis. Lancet 2021 , 397 , 1301–1315. [ Google Scholar ] [ CrossRef ]
  • van Zuuren, E.J. Rosacea. N. Engl. J. Med. 2017 , 377 , 1754–1764. [ Google Scholar ] [ CrossRef ]
  • Tisma, V.S.; Basta-Juzbasic, A.; Jaganjac, M.; Brcic, L.; Dobric, I.; Lipozencic, J.; Tatzber, F.; Zarkovic, N.; Poljak-Blazi, M. Oxidative stress and ferritin expression in the skin of patients with rosacea. J. Am. Acad. Dermatol. 2009 , 60 , 270–276. [ Google Scholar ] [ CrossRef ]
  • Hu, J.; Bian, Q.; Ma, X.; Xu, Y.; Gao, J. A double-edged sword: ROS related therapies in the treatment of psoriasis. Asian J. Pharm. 2022 , 17 , 798–816. [ Google Scholar ] [ CrossRef ]
  • Lin, X.; Huang, T. Oxidative stress in psoriasis and potential therapeutic use of antioxidants. Free Radic. Res. 2016 , 50 , 585–595. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Hebert, A.A. Oxidative stress as a treatment target in atopic dermatitis: The role of furfuryl palmitate in mild-to-moderate atopic dermatitis. Int. J. Womens Dermatol. 2020 , 6 , 331–333. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Dobrică, E.C.; Cozma, M.A.; Gaman, M.A.; Voiculescu, V.M.; Gaman, A.M. The involvement of oxidative stress in psoriasis: A systematic review. Antioxidants 2022 , 11 , 282. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Zhao, H.; Zhao, H.; Li, M.; Tang, Y.; Xiao, X.; Cai, Y.; He, F.; Huang, H.; Zhang, Y.; Li, J. Twin defect-rich Pt ultrathin nanowire nanozymes alleviate inflammatory skin diseases by scavenging reactive oxygen species. Redox Biol. 2024 , 70 , 103055. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Tuchayi, S.M.; Makrantonaki, E.; Ganceviciene, R.; Dessinioti, C.; Feldman, S.R.; Zouboulis, C.C. Acne vulgaris. Nat. Rev. Dis. Primers. 2015 , 1 , 15029. [ Google Scholar ] [ CrossRef ]
  • Ghodsi, S.Z.; Orawa, H.; Zouboulis, C.C. Prevalence, severity, and severity risk factors of acne in high school pupils: A community-based study. J. Investig. Dermatol. 2009 , 129 , 2136–2141. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Thiboutot, D. New treatments and therapeutic strategies for acne. Arch. Fam. Med. 2000 , 9 , 179. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kim, H.S.; Lee, D.Y. Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers 2018 , 10 , 961. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003 , 3 , 380–387. [ Google Scholar ] [ CrossRef ]
  • Han, H.S.; Choi, K.Y. Advances in nanomaterial-mediated photothermal cancer therapies: Toward clinical applications. Biomedicines 2021 , 9 , 305. [ Google Scholar ] [ CrossRef ]
  • Cho, Y.H.; Oh, S.M.; Choi, J.Y.; Jeong, K.H. Acne treatment based on selective photothermolysis with topically delivered light-absorbing platinum nanoparticles. Lasers Med. Sci. 2023 , 38 , 125. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kerscher, M. Prinzipien der Behandlung und Schutz für empfindliche Haut. Hautarzt 2011 , 12 , 906–913. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Heinicke, I.R.; Adams, D.H.; Barnes, T.M.; Greive, K.A. Evaluation of a topical treatment for the relief of sensitive skin. Clin. Cosmet. Investig. Dermatol. 2015 , 8 , 405–412. [ Google Scholar ] [ PubMed ]
  • Isoda, K.; Seki, T.; Inoue, Y.; Umeda, K.; Nishizaka, T.; Tanabe, H.; Takagi, Y.; Ishida, K.; Mizutani, H. Efficacy of the combined use of a facial cleanser and moisturizers for the care of mild acne patients with sensitive skin. J. Dermatol. 2015 , 42 , 181–188. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Jiao, Y.; Wang, X.; Chen, J.-H. Biofabrication of AuNPs using Coriandrum sativum leaf extract and their antioxidant, analgesic activity. Sci. Total Environ. 2021 , 767 , 144914. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Zheng, B.; Kong, T.; Jing, X.; Odoom-Wubah, T.; Li, X.; Sun, D.; Lu, F.; Zheng, Y.; Huang, J.; Li, Q. Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. J. Colloid Interface Sci. 2013 , 396 , 138–145. [ Google Scholar ] [ CrossRef ]
  • Chaudhary, R.G.; Bhusari, G.S.; Tiple, A.D.; Rai, A.R.; Somkuvar, S.R.; Potbhare, A.K.; Lambat, T.L.; Ingle, P.P.; Abdala, A.A. Metal/metal oxide nanoparticles: Toxicity, applications, and future prospects. Curr. Pharm. Des. 2019 , 25 , 4013–4029. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Alvarez, R.A.; Cortez-Valadez, M.; Bueno, L.O.N.; Hurtado, R.B.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C.; Serrano-Corrales, L.I.; Arizpe-Chávez, H.; Flores-Acosta, M. Vibrational properties of gold nanoparticles obtained by green synthesis. Phys. E 2016 , 84 , 191–195. [ Google Scholar ] [ CrossRef ]
  • Gahlawat, G.; Choudhury, A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019 , 9 , 12944–12967. [ Google Scholar ] [ CrossRef ]
  • Mondal, A.; Umekar, M.S.; Bhusari, G.S.; Chouke, P.B.; Lambat, T.; Mondal, S.; Chaudhary, R.G.; Mahmood, S.H. Biogenic synthesis of metal/metal oxide nanostructured materials. Curr. Pharm. Biotechnol. 2021 , 22 , 1782–1793. [ Google Scholar ] [ CrossRef ]
  • Siddiqi, K.S.; Husen, A. Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res. Lett. 2016 , 11 , 482. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Khan, A.U.; Malik, N.; Khan, M.; Cho, M.H.; Khan, M.M. Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst. Eng. 2018 , 41 , 1–20. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • El-Seedi, H.R.; El-Shabasy, R.M.; Khalifa, S.A.; Saeed, A.; Shah, A.; Shah, R.; Iftikhar, F.J.; Abdel-Daim, M.M.; Omri, A.; Hajrahand, N.H. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Adv. 2019 , 9 , 24539–24559. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Raut, R.W.; Haroon, A.S.M.; Malghe, Y.S.; Nikam, B.T.; Kashid, S.B. Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of Asparagus racemosus Linn. Adv. Mater. Lett. 2013 , 4 , 650–654. [ Google Scholar ] [ CrossRef ]
  • Moglianetti, M.; De Luca, E.; Pedone, D.; Marotta, R.; Catelani, T.; Sartori, B.; Amenitsch, H.; Retta, S.F.; Pompa, P.P. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model. Nanoscale 2016 , 8 , 3739–3752. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Adil, S.F.; Assal, M.E.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Liz-Marzán, L.M. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Trans. 2015 , 44 , 9709–9717. [ Google Scholar ] [ CrossRef ]
  • Horie, M.; Kato, H.; Endoh, S.; Fujita, K.; Nishio, K.; Komaba, L.K.; Fukui, H.; Nakamura, A.; Miyauchi, A.; Nakazato, T. Evaluation of cellular influences of platinum nanoparticles by stable medium dispersion. Metallomics 2011 , 3 , 1244–1252. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Shiny, P.; Mukherjee, A.; Chandrasekaran, N. Haemocompatibility assessment of synthesised platinum nanoparticles and its implication in biology. Bioprocess Biosyst. Eng. 2014 , 37 , 991–997. [ Google Scholar ] [ CrossRef ]
  • Hoyt, H.L.; Gewanter, H.L. Citrate. In Detergents ; Springer: Berlin/Heidelberg, Germany, 1992; pp. 229–242. [ Google Scholar ]
  • Lin, C.S.; Khan, M.R.; Lin, S.D. The preparation of Pt nanoparticles by methanol and citrate. J. Colloid Interface Sci. 2006 , 299 , 678–685. [ Google Scholar ] [ CrossRef ]
  • Foyer, C.H. Ascorbic acid. In Antioxidants in Higher Plants ; CRC Press: Boca Raton, FL, USA, 2017; pp. 31–58. [ Google Scholar ]
  • Moglianetti, M.; Solla-Gullon, J.; Donati, P.; Pedone, D.; Debellis, D.; Sibillano, T.; Brescia, R.; Giannini, C.; Montiel, V.; Feliu, J.M.; et al. Citrate-coated, size-tunable octahedral platinum nanocrystals: A novel route for advanced electrocatalysts. ACS Appl. Mater. Interfaces 2018 , 10 , 41608–41617. [ Google Scholar ] [ CrossRef ]
  • Labrador-Rached, C.J.; Browning, R.T.; Braydich-Stolle, L.K.; Comfort, K.K. Toxicological implications of platinum nanoparticle exposure: Stimulation of intracellular stress, inflammatory response, and akt signaling in vitro. J. Toxicol. 2018 , 2018 , 1367801. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Gehrke, H.; Pelka, J.; Hartinger, C.G.; Blank, H.; Bleimund, F.; Schneider, R.; Gerthsen, D.; Bräse, S.; Crone, M.; Türk, M. Platinum nanoparticles and their cellular uptake and DNA platination at non-cytotoxic concentrations. Arch. Toxicol. 2011 , 85 , 799–812. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Rehman, M.U.; Yoshihisa, Y.; Miyamoto, Y.; Shimizu, T. The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflamm. Res. 2012 , 61 , 1177–1185. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Zhang, L.; Laug, L.; Munchgesang, W.; Pippel, E.; Gosele, U.; Brandsch, M.; Knez, M. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett. 2010 , 10 , 219–223. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Colombo, C.; Monhemius, A.J.; Plant, J.A. The estimation of the bioavailabilities of platinum, palladium and rhodium in vehicle exhaust catalysts and road dusts using a physiologically based extraction test. Sci. Total Environ. 2008 , 389 , 46–51. [ Google Scholar ] [ CrossRef ]
  • Fuchs, W.A.; Rose, A.W. The geochemical behavior of platinum and palladium in the weathering cycle in the Stillwater Complex, Montana. Econ. Geol. 1974 , 69 , 332–346. [ Google Scholar ] [ CrossRef ]
  • Zereini, F.; Skerstupp, B.; Alt, F.; Helmers, E.; Urban, H. Geochemical behaviour of platinum-group elements (PGE) in particulate emissions by automobile exhaust catalysts: Experimental results and environmental investigations. Sci. Total Environ. 1997 , 206 , 137–146. [ Google Scholar ] [ CrossRef ]
  • Vidmar, J.; Martinčič, A.; Milačič, R.; Ščančar, J. Speciation of cisplatin in environmental water samples by hydrophilic interaction liquid chromatography coupled to inductively coupled plasma mass spectrometry. Talanta 2015 , 138 , 1–7. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Savignan, L.; Faucher, S.; Chéry, P.; Lespes, G. Platinum group elements contamination in soils: Review of the current state. Chemosphere 2021 , 271 , 129517. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Nowack, B.; Bucheli, T.D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007 , 150 , 5–22. [ Google Scholar ] [ CrossRef ]
  • Holsapple, M.P.; Farland, W.H.; Landry, T.D.; Monteiro-Riviere, N.A.; Carter, J.M.; Walker, N.J.; Thomas, K.V. Research strategies for safety evaluation of nanomaterials, part II: Toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol. Sci. 2005 , 88 , 12–17. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Manikandan, M.; Hasan, N.; Wu, H.-F. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials 2013 , 34 , 5833–5842. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Konieczny, P.; Goralczyk, A.G.; Szmyd, R.; Skalniak, L.; Koziel, J.; Filon, F.L.; Crosera, M.; Cierniak, A.; Zuba-Surma, E.K.; Borowczyk, J.; et al. Effects triggered by platinum nanoparticles on primary keratinocytes. Int. J. Nanomed. 2013 , 8 , 3963–3975. [ Google Scholar ] [ CrossRef ]
  • Lademann, J.; Richter, H.; Teichmann, A.; Otberg, N.; Blume-Peytavi, U.; Luengo, J.; Weiss, B.; Schaefer, U.F.; Lehr, C.-M.; Wepf, R. Nanoparticles–an efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm. 2007 , 66 , 159–164. [ Google Scholar ] [ PubMed ]
  • Alvarez-Román, R.; Naik, A.; Kalia, Y.; Guy, R.H.; Fessi, H. Skin penetration and distribution of polymeric nanoparticles. J. Control. Release 2004 , 99 , 53–62. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ryman-Rasmussen, J.P.; Riviere, J.E.; Monteiro-Riviere, N.A. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol. Sci. 2006 , 91 , 159–165. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Avan, A.; Postma, T.J.; Ceresa, C.; Avan, A.; Cavaletti, G.; Giovannetti, E.; Peters, G.J. Platinum-induced neurotoxicity and preventive strategies: Past, present, and future. Oncologist 2015 , 20 , 411–432. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Du-Harpur, X.; Watt, F.; Luscombe, N.; Lynch, M. What is AI? Applications of artificial intelligence to dermatology. Br. J. Dermatol. 2020 , 183 , 423–430. [ Google Scholar ] [ PubMed ]
  • Tao, H.; Wu, T.; Aldeghi, M.; Wu, T.C.; Aspuru-Guzik, A.; Kumacheva, E. Nanoparticle synthesis assisted by machine learning. Nat. Rev. Mater. 2021 , 6 , 701–716. [ Google Scholar ] [ CrossRef ]
  • Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Digital innovation enabled nanomaterial manufacturing; machine learning strategies and green perspectives. Nanomaterials 2022 , 12 , 2646. [ Google Scholar ] [ CrossRef ]
  • Fernandez, M.; Barron, H.; Barnard, A.S. Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles. RSC Adv. 2017 , 7 , 48962–48971. [ Google Scholar ] [ CrossRef ]
  • Parker, A.J.; Opletal, G.; Barnard, A.S. Classification of platinum nanoparticle catalysts using machine learning. J. Appl. Phys. 2020 , 128 , 014301. [ Google Scholar ] [ CrossRef ]
  • Newsam, J.M.; King-Smith, D.; Jain, A.; Karande, P.; Feygin, I.; Burbaum, J.; Gowrishankar, T.; Sergeeva, M.; Mitragotri, S. Screening soft materials for their effect on skin barrier function by high throughput experimentation. J. Mater. Chem. 2005 , 15 , 3061–3068. [ Google Scholar ] [ CrossRef ]
Synthesis MethodsReducing Agents/Stabilizers/Synthesis ConditionsSize and ShapeDispersive StateChemical Stability/ToxicityRef.
Chemical reductionSodium borohydride (NaBH ) used as a reducing agent in aqueous solution.3.00 ± 0.50 nm, irregularAgglomeratedNot specified[ ]
Sonoelectrochemical synthesis2.0 mmol dm PtCl in 0.8 mol dm 96% ethanol, sonicated at 20 kHz and 408 kHz.2.20 ± 0.50 nm (20 kHz), 2.30 ± 0.40 nm (408 kHz), sphericalWell-dispersedNot specified[ ]
A 10 M solution of chloroplatinic acid with 0.1% w/w poly(amide-hydroxyurethane) as the electrolyte, sonicated at 20 kHz with a 10% amplitude mode.10.00–42.00 nm, sphericalWell-dispersed, capped by poly(amide-hydroxyurethane)Not specified[ ]
Pulsed laser ablationHigh-purity platinum metal sheet was ablated using a pulse laser beam (Nd: YAG laser, 532 nm wavelength, 230 mJ/pulse) in acetone, ethanol, and methanol, with energy fluxes of 25, 19, and 9 J/cm , respectively.~1.90–4.60 nm in acetone.
~2.10–4.30 nm in ethanol.
~2.30–3.30 nm in methanol.
Spherical or cubic.
Agglomeration in ethanol and methanolAcetone provides better stability (7 weeks)[ ]
High-purity platinum metal sheet was ablated using a pulse laser beam (Nd: YAG laser, 1064 nm wavelength, 30 mJ/pulse) at repetition rates of 10 and 15 Hz.8.00 nm at 10 Hz, 9.00 nm at 15 Hz, sphericalAgglomerated, more agglomerated at higher repetition ratesNot specified[ ]
Biosynthesis using plant extractVitis vinifera extract used as reducing agents.1.51 ± 0.35 nm, sphericalWell-dispersedStable colloidal systems[ ]
Extract of Combretum erythrophyllum plant leaves used as both bio-reductants and stabilizing agents.1.04 ± 0.26 nm, sphericalWell-dispersed−34.1 mV zeta potential, good colloidal stability[ ]
Phoenix dactylifera L. fruit extract used as bio-reductants.2.30–3.00 nm, quasi-sphericalWell-dispersedNon-toxic in rat studies[ ]
Nigellasativa L. seed extract used as reducing agents1.00–6.00 nm, sphericalPartially aggregatedToxic to MDA-MB-231 and HeLa cancer cells[ ]
Biosynthesis using fungiNeurospora crassa fungal biomass and extracts used as reducing agents.17.00–76.00 nm, sphericalAggregatedNot specified[ ]
Biosynthesis using bacteriaAcinetobacter calcoaceticus PUCM 1011 used as reducing agents.2.00–3.50 nm, cuboidalPartially aggregated, embedded in organic layersStabilized particles[ ]
MaterialSynthesis MethodMorphologyAverage Size (nm)Concentration (µg/mL)DPPH Scavenging Activity (%)Ref.
PdNPsBiosynthesized using extracts of the green alga Botryococcus braunii.Spherical4.892582.27[ ]
AgNPsBiosynthesized using purified microbial exopolysaccharides.Spherical30.005089.50[ ]
AgNPsBiosynthesized using an extract from the aerial parts of Artemisia marschalliana Sprengel.Spherical5.00–50.0045061.00[ ]
AgNPsBiosynthesized using leaf extracts of the medicinal plant Elephantopus scaber L.Spherical50.0025085.90[ ]
AgNPsBiosynthesized using aqueous extract of Alternanthera sessilis Linn. Irregular shape30.0050062.00[ ]
AgNPsBiosynthesized using Helicteres isora root extract.Spherical38.2310090.00[ ]
AuNPsBiosynthesized using Nerium oleander leaf extract.Nearly spherical2.00–10.00100075.00[ ]
AuNPsBiosynthesized using the aqueous extract of P. salicifolia leaves.Spherical5.00–23.0030057.70[ ]
AuNPsBiosynthesized using microbial glycolipid mannosylerythritol lipid produced from Ustilago maydis CGMCC 5.203.Spherical20.3312555.00[ ]
AuNPsBiosynthesized using marine bacterium Paracoccus haeundaensis BC74171T.Spherical20.93  ±  3.46 32073.04[ ]
ZnONPsBiosynthesized using pecan (Carya illinoinensis) leaf extractStar shape84.5020097.00[ ]
PtNPsBiosynthesized using extracts of the green alga Botryococcus braunii.Spherical86.962578.14[ ]
PtNPsBiosynthesized using aqueous extract of P. salicifolium leaves.Spherical1.00–3.005089.29[ ]
PtNPsBiosynthesized using Tragia involucrata leaf extract.Spherical10.00100064.00[ ]
PtNPsBiosynthesized using red algae Halymenia dilatata.Spherical15.00 ± 1.7010059.72[ ]
PtNPsBiosynthesized using Salix Tetraspeama Leaf extract.Spherical18.00 via hydrothermal-assisted synthesis; 12.00 via ultrasound-assisted synthesis10069.00[ ]
PtNPsBiosynthesized using extracts of the fungus Fusarium oxysporum.Cubical, spherical, and truncated triangular28.962579.14[ ]
PtNPsBiosynthesized using acid phosphatase from Rumex dentatus seed extract.Spherical1.00–7.00100088.00[ ]
PtNPsBiosynthesized using chlorogenic acid.Spherical7.50–16.90 depending on the initial molar ratios of reagentsNot specified95.00[ ]
PtNPsBiosynthesized using Vitis vinifera extractSpherical1.51 ± 0.3520074.30[ ]
Pt-BSA-RSV NPsBiosynthesized using Enterobacter cloacae and coated with bovine serum albumin (BSA) and resveratrol (RSV)Irregular quasi-spherical aggregation states222.9040085.00[ ]
Product TypeClaimed Main Effects of Pt-Based Active Ingredients
Antioxidant maskNeutralize free radicals, alleviate oxidative stress, and shield the skin from environmental pollutants and UV damage, enhancing anti-aging benefits.
Whitening serumRegulate melanin production, lighten skin discoloration, and promote a uniform, brighter skin tone.
Anti-aging face/eye creamEnhance collagen production, improve skin elasticity and firmness, and diminish signs of aging such as wrinkles and fine lines.
Repairing maskStimulate epidermal cell proliferation and collagen synthesis, accelerating skin repair.
BrandsSeries ProductClaimed Main Effects
La PrairiePlatinum Rare Haute-RejuvenationContains exclusive platinum multi-peptides that reduce wrinkles and enhance skin elasticity.
Perricone MDCold Plasma Plus+ Platinum TrioContains platinum-based active ingredients that smooth wrinkles, firm skin, and visibly correct discoloration and redness.
Elizabeth GrantCollagen Re-Inforce Platinum 24 Hour Firming CremeContains platinum-based active ingredients that promote collagen production, providing all-day firming and moisturizing.
Cada SuissesseStem Cellue Nano Platinum Skin Rejuvenating CreamUtilizes platinum nanoconjugates to rejuvenate aging skin, improve elasticity, and diminish wrinkles.
Skin AdvancedPlatinum LiposomeUtilizes non-nano-sized platinum liposomes to boost antioxidant levels, hydrate, strengthen the skin barrier, and reduce redness.
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Li, S.; Liu, Y.; Wu, Y.; Ren, L.; Lu, Y.; Yamaguchi, S.; Lu, Q.; Hu, C.; Li, D.; Jiang, N. An Outlook on Platinum-Based Active Ingredients for Dermatologic and Skincare Applications. Nanomaterials 2024 , 14 , 1303. https://doi.org/10.3390/nano14151303

Li S, Liu Y, Wu Y, Ren L, Lu Y, Yamaguchi S, Lu Q, Hu C, Li D, Jiang N. An Outlook on Platinum-Based Active Ingredients for Dermatologic and Skincare Applications. Nanomaterials . 2024; 14(15):1303. https://doi.org/10.3390/nano14151303

Li, Shining, Yizhou Liu, Ying Wu, Lu Ren, Yongjie Lu, Shuji Yamaguchi, Qipeng Lu, Chuangang Hu, Dongcui Li, and Naisheng Jiang. 2024. "An Outlook on Platinum-Based Active Ingredients for Dermatologic and Skincare Applications" Nanomaterials 14, no. 15: 1303. https://doi.org/10.3390/nano14151303

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

IMAGES

  1. Volumes and issues

    european transport research review journal

  2. (PDF) Experiences of rail intermodal freight transport for low-density

    european transport research review journal

  3. European Transport Research Review_影响因子(IF)_中科院分区_SCI期刊投稿经验_爱科学

    european transport research review journal

  4. Transportation Research, Part E: Logistics and Transportation Review

    european transport research review journal

  5. (PDF) The European transport policy: Its main issues

    european transport research review journal

  6. TU Delft OPEN Journals

    european transport research review journal

VIDEO

  1. Trams in Daugavpils (July 2024) 🇱🇻

  2. Ex. Vienna buses in Vilnius

  3. Huktra European Logistics

  4. Transport Research Arena (TRA) takes place in Dublin, Ireland

  5. EUROPEAN TRANSPORT SYSTEMS[1990-2010]

  6. How Europe's Replacing Planes With Trains

COMMENTS

  1. Home

    European Transport Research Review (ETRR) is a peer-reviewed open access journal publishing original high-quality scholarly research and developments in areas related to transportation science, technologies, policy and practice. Established in 2008 by the European Conference of Transport Research Institutes (ECTRI), the Journal provides researchers and practitioners around the world with an ...

  2. Articles

    Jenny Milne, Mark Beecroft, John D. Nelson, Philip Greening, Caitlin Cottrill and Steve Wright. European Transport Research Review 2024 16 :5. Original Paper Published on: 12 January 2024. The Correction to this article has been published in European Transport Research Review 2024 16 :31. Full Text.

  3. About

    European Transport Research Review (ETRR) is a peer-reviewed open access journal publishing original high-quality scholarly research and developments in areas related to transportation science, technologies, policy and practice. Established in 2008 by the European Conference of Transport Research Institutes (ECTRI), the Journal provides researchers and practitioners around the world with an ...

  4. European Transport Research Review

    Scope. European Transport Research Review (ETRR) is a peer-reviewed open access journal publishing original high-quality scholarly research and developments in areas related to transportation science, technologies, policy and practice. Established in 2008 by the European Conference of Transport Research Institutes (ECTRI), the Journal provides ...

  5. ETRR Journal

    The European Transport Research Review (ETRR) is an online scientific platform aiming at disseminating research results in the field of transport. The main scope and mission of the Journal is to provide a forum for the publication of high quality scientific papers in the field of transport in general, and a dissemination medium for new ideas ...

  6. European Transport Research Review

    A peer-reviewed, open access journal in transportation, logistics, vehicle design & transportation systems. ... European Transport Research Review This journal has been awarded the DOAJ Seal. 1867-0717 (Print) / 1866-8887 (Online) ... European Conference of Transport Research Institutes (ECTRI) Manuscripts accepted in

  7. European Transport Research Review

    European Transport Research Review (ETRR) is a peer-reviewed open access journal publishing original high-quality scholarly research and developments in areas ...

  8. Etrr

    The European Transport Research Review-An Open Access Journal (ETRR) is an online scientific platform aiming at disseminating research results in the field of transport. The main scope and mission of the Journal is to provide a forum for the publication of high quality scientific papers in the field of transport in general, and a ...

  9. European Transport Research Review

    European Transport Research Review (ETRR) is a peer-reviewed open access journal publishing original high-quality scholarly research and developments in areas related to transportation science, technologies, policy and practice. Established in 2008 by the European Conference of Transport Research Institutes (ECTRI), the Journal provides ...

  10. European Transport Research Review

    European Transport Research Review. Published by Springer Nature. Online ISSN: 1866-8887. ·. Print ISSN: 1867-0717. Articles. Investigating the accelerated deterioration of flexible pavement ...

  11. European Transport Research Review

    The impact factor of European Transport Research Review, and other metrics like the H-Index and TQCC, alongside relevant research trends, citation patterns, altmetric scores, Twitter account and similar journals. ... (Based on citations to the other journals in the most recent 30 papers in this journal, at least if metadata about citations were ...

  12. European Transport Research Review

    The ISSN of European Transport Research Review journal is 18668887, 18670717. An International Standard Serial Number (ISSN) is a unique code of 8 digits. It is used for the recognition of journals, newspapers, periodicals, and magazines in all kind of forms, be it print-media or electronic.

  13. European Transport Research Review

    European Transport Research Review EUR TRANSP RES REV ISSN / eISSN. 1867-0717 / 1866-8887 ... the European transport research community. The journal is unique in its field, as it covers all modes of transport and addresses both the engineering and the social science perspective, offering a truly multidisciplinary platform for researchers ...

  14. Submission guidelines

    European Transport Research Review publishes the following article types: Original Article Review Commentary ... Journal Impact Factor: 5.1 5-year Journal Impact Factor: 4.8 Source Normalized Impact per Paper (SNIP): 1.640 SCImago Journal Rank (SJR): 1.106. Speed 2023

  15. European Transport Research Review

    The main emphasis of the journal is the research on Public transport, emphasizing the topic of Mode choice. Transport engineering (31.79%) Public transport (10.66%) ... European Transport Research Review holds forums on Operations research that merges themes from other disciplines such as Mode (statistics), Consistency (database systems ...

  16. A Review of Electrospun Carbon‐based Nanofibers Materials Used in

    Chemistry - A European Journal showcases fundamental research and topical reviews in all areas of the chemical sciences around the world. ... This review presents the most recent research findings on electrospun carbon-based nanofibers materials serving as sulfur hosts and interlayer components in Li-S batteries. We analyzed the impact of the ...

  17. European Transport Research Review

    A peer-reviewed, open access journal in transportation, logistics, vehicle design & transportation systems. ... European Transport Research Review This journal has been awarded the DOAJ Seal. 1867-0717 (Print) / 1866-8887 (Online) Website ISSN Portal ...

  18. Ewf b.v East West Forwarding

    EWF B.V EAST WEST FORWARDING. Edelveis, Right Entrance, 2nd Floor Davidkovskaja, 121352 Moscow, Russia. Phone: +7 495 938-99-66; Mobile: +7 495-997-0977

  19. The Unique Burial of a Child of Early Scythian Time at the Cemetery of

    Burial 5 was the most unique, it was found in a coffin made of a larch trunk, with a tightly closed lid. Due to the preservative properties of larch and lack of air access, the coffin contained a well-preserved mummy of a child with an accompanying set of grave goods. The interred individual retained the skin on his face and had a leather ...

  20. Land use changes in the environs of Moscow

    Enter the email address you signed up with and we'll email you a reset link.

  21. Aims and scope

    European Transport Research Review (ETRR) is a peer-reviewed open access journal publishing original high-quality scholarly research and developments in areas related to transportation science, technologies, policy and practice. Established in 2008 by the European Conference of Transport Research Institutes (ECTRI), the Journal provides researchers and practitioners around the world with an ...

  22. The management of critical bone defects: outcomes of a systematic

    A further systematic review and meta-analysis of observational studies that reported the outcomes of bone transport with a circular frame in the treatment of infected non-unions of the tibia and femur (590 patients in 24 studies) estimated 97% union with a mean external fixation time of 10.7 months and external fixation index 1.7 months/cm .

  23. Definition of The Strategic Directions for Regional Economic

    Dmitriy V. Mikheev, Karina A. Telyants, Elena N. Klochkova, Olga V. Ledneva; Affiliations Dmitriy V. Mikheev

  24. Forbion leads $60M investment in Cambridge RNA editing biotech

    The RNA-editing startup is headquartered in Cambridge and has its research operations in Tübingen, Germany. Airna, a biotech working on RNA editing treatments, has raised a $60 million financing ...

  25. Safety evaluation of an extension of use of the food enzyme pullulanase

    The food enzyme pullulanase (pullulan 6-α-glucanohydrolase; EC 3.2.1.41) is produced with the non-genetically modified Pullulanibacillus naganoensis strain AE-PL by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in one food manufacturing process.

  26. Stem cell therapies for neurological disorders: current progress

    Stem cell-based therapies have emerged as a promising approach for treating various neurological disorders by harnessing the regenerative potential of stem cells to restore damaged neural tissue and circuitry. This comprehensive review provides an in-depth analysis of the current state of stem cell applications in primary neurological conditions, including Parkinson's disease (PD), Alzheimer ...

  27. Regulation

    Official Journal of the European Union. EN. L series. 2024/1689. ... media, sports, culture, infrastructure management, energy, transport and logistics, public services, security, justice, resource and energy efficiency, environmental monitoring, the conservation and restoration of biodiversity and ecosystems and climate change mitigation and ...

  28. European Transport Research Review

    EUR TRANSP RES REV. ISSN / eISSN. 1867-0717 / 1866-8887. Aims and Scope. European Transport Research Review (ETRR) is a peer-reviewed open access journal publishing original high-quality scholarly research and developments in areas related to transportation science, technologies, policy and practice. Established in 2008 by the European ...

  29. Preparing your manuscript

    European Transport Research Review publishes the following article types: Original Article Review Commentary ... Journal Impact Factor: 5.1 5-year Journal Impact Factor: 4.8 Source Normalized Impact per Paper (SNIP): 1.640 SCImago Journal Rank (SJR): 1.106. Speed 2023

  30. Nanomaterials

    Platinum-based materials exhibit a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and pro-collagen synthesis properties, making them particularly useful for various biomedical applications. This review summarizes the biological effects and therapeutic potential of platinum-based active ingredients in dermatological and skincare applications ...