Renewable Energy Explained

Solar, wind, hydroelectric, biomass, and geothermal power can provide energy without the planet-warming effects of fossil fuels.

Chemistry, Conservation, Earth Science, Engineering

Braes of Doune Wind Farm

As of 2017, wind turbines, like the Braes of Doune wind farm near Stirling, Scotland, are now producing 539,000 megawatts of power around the world—22 times more than 16 years before. Unfortunately, this renewable, clean energy generator isn't perfect.

Photograph by Jim Richardson

As of 2017, wind turbines, like the Braes of Doune wind farm near Stirling, Scotland, are now producing 539,000 megawatts of power around the world—22 times more than 16 years before. Unfortunately, this renewable, clean energy generator isn't perfect.

In any discussion about climate change , renewable energy usually tops the list of changes the world can implement to stave off the worst effects of rising temperatures. That's because renewable energy sources, such as solar and wind, don't emit carbon dioxide and other greenhouse gases that contribute to global warming. Clean energy has far more to recommend it than just being "green." The growing sector creates jobs, makes electric grids more resilient, expands energy access in developing countries, and helps lower energy bills. All of those factors have contributed to a renewable energy renaissance in recent years, with wind and solar setting new records for electricity generation. For the past 150 years or so, humans have relied heavily on coal, oil, and other fossil fuels to power everything from light bulbs to cars to factories. Fossil fuels are embedded in nearly everything we do, and as a result, the greenhouse gases released from the burning of those fuels have reached historically high levels. As greenhouse gases trap heat in the atmosphere that would otherwise escape into space, average temperatures on the surface are rising. Global warming is one symptom of climate change, the term scientists now prefer to describe the complex shifts affecting our planet’s weather and climate systems. Climate change encompasses not only rising average temperatures but also extreme weather events, shifting wildlife populations and habitats, rising seas, and a range of other impacts. Of course, renewables—like any source of energy—have their own trade-offs and associated debates. One of them centers on the definition of renewable energy. Strictly speaking, renewable energy is just what you might think: perpetually available, or as the United States Energy Information Administration puts it, "virtually inexhaustible." But "renewable" doesn't necessarily mean sustainable, as opponents of corn-based ethanol or large hydropower dams often argue. It also doesn't encompass other low- or zero-emissions resources that have their own advocates, including energy efficiency and nuclear power. Types of Renewable Energy Sources Hydropower: For centuries, people have harnessed the energy of river currents, using dams to control water flow. Hydropower is the world's biggest source of renewable energy by far, with China, Brazil, Canada, the U.S., and Russia being the leading hydropower producers. While hydropower is theoretically a clean energy source replenished by rain and snow, it also has several drawbacks. Large dams can disrupt river ecosystems and surrounding communities, harming wildlife, and displacing residents. Hydropower generation is vulnerable to silt buildup, which can compromise capacity and harm equipment. Drought can also cause problems. In the western U.S., carbon dioxide emissions over a 15-year period were 100 megatons higher than they would have been with normal precipitation levels, according to a 2018 study, as utilities turned to coal and gas to replace hydropower lost to drought. Even hydropower at full capacity bears its own emissions problems, as decaying organic material in reservoirs releases methane. Dams aren't the only way to use water for power: Tidal and wave energy projects around the world aim to capture the ocean's natural rhythms. Marine energy projects currently generate an estimated 500 megawatts of power—less than one percent of all renewables—but the potential is far greater. Programs like Scotland’s Saltire Prize have encouraged innovation in this area. Wind: Harnessing the wind as a source of energy started more than 7,000 years ago. Now, electricity-generating wind turbines are proliferating around the globe, and China, the U.S., and Germany are the world's leading wind-energy producers. From 2001 to 2017, cumulative wind capacity around the world increased to more than 539,000 megawatts from 23,900 megawatts—more than 22 fold. Some people may object to how wind turbines look on the horizon and to how they sound, but wind energy, whose prices are declining, is proving too valuable a resource to deny. While most wind power comes from onshore turbines, offshore projects are appearing too, with the most in the United Kingdom and Germany. The first U.S. offshore wind farm opened in 2016 in Rhode Island, and other offshore projects are gaining momentum. Another problem with wind turbines is that they’re a danger for birds and bats, killing hundreds of thousands annually, not as many as from glass collisions and other threats like habitat loss and invasive species, but enough that engineers are working on solutions to make them safer for flying wildlife. Solar: From home rooftops to utility-scale farms, solar power is reshaping energy markets around the world. In the decade from 2007 and 2017 the world's total installed energy capacity from photovoltaic panels increased a whopping 4,300 percent. In addition to solar panels, which convert the sun's light to electricity, concentrating solar power (CSP) plants use mirrors to concentrate the sun's heat, deriving thermal energy instead. China, Japan, and the U.S. are leading the solar transformation, but solar still has a long way to go, accounting for around just two percent of the total electricity generated in the U.S. in 2017. Solar thermal energy is also being used worldwide for hot water, heating, and cooling. Biomass: Biomass energy includes biofuels, such as ethanol and biodiesel, wood, wood waste, biogas from landfills, and municipal solid waste. Like solar power, biomass is a flexible energy source, able to fuel vehicles, heat buildings, and produce electricity. But biomass can raise thorny issues. Critics of corn-based ethanol, for example, say it competes with the food market for corn and supports the same harmful agricultural practices that have led to toxic algae blooms and other environmental hazards. Similarly, debates have erupted over whether it's a good idea to ship wood pellets from U.S. forests over to Europe so that it can be burned for electricity. Meanwhile, scientists and companies are working on ways to more efficiently convert corn stover, wastewater sludge, and other biomass sources into energy, aiming to extract value from material that would otherwise go to waste. Geothermal: Used for thousands of years in some countries for cooking and heating, geothermal energy is derived from Earth’s internal heat. On a large scale, underground reservoirs of steam and hot water can be tapped through wells that can go a two kilometers deep or more to generate electricity. On a smaller scale, some buildings have geothermal heat pumps that use temperature differences several meters below ground for heating and cooling. Unlike solar and wind energy, geothermal energy is always available, but it has side effects that need to be managed, such as the rotten-egg smell that can accompany released hydrogen sulfide. Ways To Boost Renewable Energy Cities, states, and federal governments around the world are instituting policies aimed at increasing renewable energy. At least 29 U.S. states have set renewable portfolio standards—policies that mandate a certain percentage of energy from renewable sources. More than 100 cities worldwide now boast receiving at least 70 percent of their energy from renewable sources, and still others are making commitments to reach 100 percent. Other policies that could encourage renewable energy growth include carbon pricing, fuel economy standards, and building efficiency standards. Corporations are making a difference too, purchasing record amounts of renewable power in 2018. Wonder whether your state could ever be powered by 100 percent renewables? No matter where you live, scientist Mark Jacobson believes it's possible. That vision is laid out here , and while his analysis is not without critics , it punctuates a reality with which the world must now reckon. Even without climate change, fossil fuels are a finite resource, and if we want our lease on the planet to be renewed, our energy will have to be renewable.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

June 21, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

  • ENVIRONMENT

Renewable energy, explained

Solar, wind, hydroelectric, biomass, and geothermal power can provide energy without the planet-warming effects of fossil fuels.

In any discussion about climate change , renewable energy usually tops the list of changes the world can implement to stave off the worst effects of rising temperatures. That's because renewable energy sources such as solar and wind don't emit carbon dioxide and other greenhouse gases that contribute to global warming .

Clean energy has far more to recommend it than just being "green." The growing sector creates jobs , makes electric grids more resilient, expands energy access in developing countries, and helps lower energy bills. All of those factors have contributed to a renewable energy renaissance in recent years, with wind and solar setting new records for electricity generation .

For the past 150 years or so, humans have relied heavily on coal, oil, and other fossil fuels to power everything from light bulbs to cars to factories. Fossil fuels are embedded in nearly everything we do, and as a result, the greenhouse gases released from the burning of those fuels have reached historically high levels .

As greenhouse gases trap heat in the atmosphere that would otherwise escape into space, average temperatures on the surface are rising . Global warming is one symptom of climate change, the term scientists now prefer to describe the complex shifts affecting our planet’s weather and climate systems. Climate change encompasses not only rising average temperatures but also extreme weather events, shifting wildlife populations and habitats, rising seas , and a range of other impacts .

Of course, renewables—like any source of energy—have their own trade-offs and associated debates. One of them centers on the definition of renewable energy. Strictly speaking, renewable energy is just what you might think: perpetually available, or as the U.S. Energy Information Administration puts it, " virtually inexhaustible ." But "renewable" doesn't necessarily mean sustainable, as opponents of corn-based ethanol or large hydropower dams often argue. It also doesn't encompass other low- or zero-emissions resources that have their own advocates, including energy efficiency and nuclear power.

Types of renewable energy sources

Hydropower: For centuries, people have harnessed the energy of river currents, using dams to control water flow. Hydropower is the world's biggest source of renewable energy by far, with China, Brazil, Canada, the U.S., and Russia the leading hydropower producers . While hydropower is theoretically a clean energy source replenished by rain and snow, it also has several drawbacks.

Become a subscriber and support our award-winning editorial features, videos, photography, and much more.

For as little as $2/mo.

Large dams can disrupt river ecosystems and surrounding communities , harming wildlife and displacing residents. Hydropower generation is vulnerable to silt buildup, which can compromise capacity and harm equipment. Drought can also cause problems. In the western U.S., carbon dioxide emissions over a 15-year period were 100 megatons higher than they normally would have been, according to a 2018 study , as utilities turned to coal and gas to replace hydropower lost to drought. Even hydropower at full capacity bears its own emissions problems, as decaying organic material in reservoirs releases methane.

Dams aren't the only way to use water for power: Tidal and wave energy projects around the world aim to capture the ocean's natural rhythms. Marine energy projects currently generate an estimated 500 megawatts of power —less than one percent of all renewables—but the potential is far greater. Programs like Scotland’s Saltire Prize have encouraged innovation in this area.

Wind: Harnessing the wind as a source of energy started more than 7,000 years ago . Now, electricity-generating wind turbines are proliferating around the globe, and China, the U.S., and Germany are the leading wind energy producers. From 2001 to 2017 , cumulative wind capacity around the world increased to more than 539,000 megawatts from 23,900 mw—more than 22 fold.

Some people may object to how wind turbines look on the horizon and to how they sound, but wind energy, whose prices are declining , is proving too valuable a resource to deny. While most wind power comes from onshore turbines, offshore projects are appearing too, with the most in the U.K. and Germany. The first U.S. offshore wind farm opened in 2016 in Rhode Island, and other offshore projects are gaining momentum . Another problem with wind turbines is that they’re a danger for birds and bats, killing hundreds of thousands annually , not as many as from glass collisions and other threats like habitat loss and invasive species, but enough that engineers are working on solutions to make them safer for flying wildlife.

You May Also Like

what does renewable energy mean essay

Can energy harnessed from Earth’s interior help power the world?

what does renewable energy mean essay

How the historic climate bill will dramatically reduce U.S. emissions

what does renewable energy mean essay

We took the Great American Road Trip—in electric cars

Solar: From home rooftops to utility-scale farms, solar power is reshaping energy markets around the world. In the decade from 2007 and 2017 the world's total installed energy capacity from photovoltaic panels increased a whopping 4,300 percent .

In addition to solar panels, which convert the sun's light to electricity, concentrating solar power (CSP) plants use mirrors to concentrate the sun's heat, deriving thermal energy instead. China, Japan, and the U.S. are leading the solar transformation, but solar still has a long way to go, accounting for around two percent of the total electricity generated in the U.S. in 2017. Solar thermal energy is also being used worldwide for hot water, heating, and cooling.

Biomass: Biomass energy includes biofuels such as ethanol and biodiesel , wood and wood waste, biogas from landfills, and municipal solid waste. Like solar power, biomass is a flexible energy source, able to fuel vehicles, heat buildings, and produce electricity. But biomass can raise thorny issues.

Critics of corn-based ethanol , for example, say it competes with the food market for corn and supports the same harmful agricultural practices that have led to toxic algae blooms and other environmental hazards. Similarly, debates have erupted over whether it's a good idea to ship wood pellets from U.S. forests over to Europe so that it can be burned for electricity. Meanwhile, scientists and companies are working on ways to more efficiently convert corn stover , wastewater sludge , and other biomass sources into energy, aiming to extract value from material that would otherwise go to waste.

Geothermal: Used for thousands of years in some countries for cooking and heating, geothermal energy is derived from the Earth’s internal heat . On a large scale, underground reservoirs of steam and hot water can be tapped through wells that can go a mile deep or more to generate electricity. On a smaller scale, some buildings have geothermal heat pumps that use temperature differences several feet below ground for heating and cooling. Unlike solar and wind energy, geothermal energy is always available, but it has side effects that need to be managed, such as the rotten egg smell that can accompany released hydrogen sulfide.

Ways to boost renewable energy

Cities, states, and federal governments around the world are instituting policies aimed at increasing renewable energy. At least 29 U.S. states have set renewable portfolio standards —policies that mandate a certain percentage of energy from renewable sources, More than 100 cities worldwide now boast at least 70 percent renewable energy, and still others are making commitments to reach 100 percent . Other policies that could encourage renewable energy growth include carbon pricing, fuel economy standards, and building efficiency standards. Corporations are making a difference too, purchasing record amounts of renewable power in 2018.

Wonder whether your state could ever be powered by 100 percent renewables? No matter where you live, scientist Mark Jacobson believes it's possible. That vision is laid out here , and while his analysis is not without critics , it punctuates a reality with which the world must now reckon. Even without climate change, fossil fuels are a finite resource, and if we want our lease on the planet to be renewed, our energy will have to be renewable.

Related Topics

  • SUSTAINABILITY
  • RENEWABLE ENERGY
  • GEOTHERMAL ENERGY
  • SOLAR POWER
  • HYDROELECTRIC POWER
  • CLIMATE CHANGE

what does renewable energy mean essay

5 environmental victories from 2021 that offer hope

what does renewable energy mean essay

Activists fear a new threat to biodiversity—renewable energy

what does renewable energy mean essay

3 ways COVID-19 is making us rethink energy and emissions

what does renewable energy mean essay

How the Ukraine war is accelerating Germany's renewable energy transition

what does renewable energy mean essay

Let’s not waste this crucial moment: We need to stop abusing the planet

  • Environment
  • Paid Content

History & Culture

  • History & Culture
  • Mind, Body, Wonder
  • Adventures Everywhere
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

You are using an outdated browser. Please upgrade your browser or activate Google Chrome Frame to improve your experience.

Global Citizen

Thanks for signing up as a global citizen. In order to create your account we need you to provide your email address. You can check out our Privacy Policy to see how we safeguard and use the information you provide us with. If your Facebook account does not have an attached e-mail address, you'll need to add that before you can sign up.

This account has been deactivated.

Please contact us at [email protected] if you would like to re-activate your account.

Energy lies at the core of the climate challenge — and holds the key to its solution. Most greenhouse gasses responsible for causing global warming are produced by burning fossil fuels for electricity and heat.

Scientists widely agree that it's crucial to cut global greenhouse gas emissions by nearly half by 2030 . They also emphasize the importance of achieving net zero emissions by 2050 to address the severe consequences of the climate crisis . This requires shifting away from fossil fuels and investing in clean, accessible, affordable, sustainable, and reliable alternative energy sources.

Renewable energy sources are naturally replenished and emit minimal greenhouse gasses and pollutants. Examples of renewable energy sources include the sun, wind, water, and waste.

What Is Renewable Energy?

Renewable energy refers to energy that comes from naturally regenerating sources. These energy sources are sustainable because they can be used without running out of resources or causing major harm to the environment.

Examples of renewable energy include wind power, solar power, bioenergy (generated from organic matter known as biomass) and hydroelectric, including wave and tidal energy.

Renewable energy sources have many advantages. Crucially, they reduce greenhouse gas emissions and help mitigate climate change, but they also promote energy independence, and create jobs. They also contribute to a more sustainable and resilient energy system.

3 Key Facts to Know About Renewable Energy 

  • Iceland is the world leader, with 87% of its energy generated from renewable sources; followed by Norway and Sweden.
  • Nearly 75% of global greenhouse gas emissions come from burning fossil fuels for energy.
  • Renewable energy is increasing but still only makes up about 4% of total global energy consumption. 

$(function() { var contentListProps = { contentList: JSON.parse('[{\u0022id\u0022:24917,\u0022thumbnails\u0022:{\u0022medium\u0022:{\u0022landscape\u0022:\u0022https://media.globalcitizen.org/thumbnails/90/38/90385c0b\u002D4d99\u002D497a\u002D97ee\u002Da6e35d3e24fa/ipcc\u002Dclimate\u002Dreport\u002Dstate\u002Dof\u002Dthe\u002Dworld\u002Dextreme\u002Dweather.jpg__800x600_q85_crop_subsampling\u002D2.jpg\u0022,\u0022portrait\u0022:\u0022https://media.globalcitizen.org/thumbnails/90/38/90385c0b\u002D4d99\u002D497a\u002D97ee\u002Da6e35d3e24fa/ipcc\u002Dclimate\u002Dreport\u002Dstate\u002Dof\u002Dthe\u002Dworld\u002Dextreme\u002Dweather.jpg__600x800_q85_crop_subsampling\u002D2.jpg\u0022,\u0022landscape_16_9\u0022:\u0022https://media.globalcitizen.org/thumbnails/90/38/90385c0b\u002D4d99\u002D497a\u002D97ee\u002Da6e35d3e24fa/ipcc\u002Dclimate\u002Dreport\u002Dstate\u002Dof\u002Dthe\u002Dworld\u002Dextreme\u002Dweather.jpg__800x450_q85_crop_subsampling\u002D2.jpg\u0022},\u0022large\u0022:{\u0022landscape_16_9\u0022:\u0022https://media.globalcitizen.org/thumbnails/90/38/90385c0b\u002D4d99\u002D497a\u002D97ee\u002Da6e35d3e24fa/ipcc\u002Dclimate\u002Dreport\u002Dstate\u002Dof\u002Dthe\u002Dworld\u002Dextreme\u002Dweather.jpg__1600x900_q85_crop_subsampling\u002D2.jpg\u0022},\u0022credits\u0022:{\u0022caption\u0022:\u0022A firefighter tries to extinguish the flames as a local resident holds a water hose during a wildfire at Ellinika village on Evia island, about 176 kilometers (110 miles) north of Athens, Greece, Aug. 9, 2021.\u0022,\u0022author\u0022:\u0022Petros Karadjias/AP\u0022,\u0022description\u0022:\u0022\u0022}},\u0022title\u0022:\u0022Climate Change: What You Need to Know\u0022,\u0022url\u0022:\u0022https://www.globalcitizen.org/en/content/climate\u002Dchange\u002Deverything\u002Dyou\u002Dneed\u002Dto\u002Dknow/\u0022}]'), unorderedWithImage: true, v3Styles: true, v3Classes: "bst-container-fluid", showDescription: false, showMobileImage: true, thumbnailLinkTabIndex: "-1" }; bindComponentToDiv( "related-stories-content-list--843651", ContentList, contentListProps ); var pageHeadlineProps = { h5: "Related Stories", className: "pt-0 pb-3 my-0" }; bindComponentToDiv( "related-stories-plugin-headline--843651", PageHeadlines, pageHeadlineProps ); });

How many people could switching to renewable energy impact.

Renewable energy has the potential to impact the entire global population of over 7.88 billion people. It could positively impact billions of lives by addressing the climate emergency, and improving energy access — about 770 million people right now don’t have access to electricity.

It also can enhance public health, create job opportunities, and promote sustainable economic development. It offers a cleaner, more sustainable, and equitable future for people around the world.

Over 75% of global greenhouse gas emissions result from burning fossil fuels for energy. That makes transitioning to clean energy sources a vital step in slowing emissions.

Who Would See the Most Benefits from Switching to Renewable Energy? 

The benefits of renewable energy are widespread and would impact many groups of people. 

Many communities in low-income regions, particularly in rural and remote areas, lack access to reliable electricity. About 770 million people around the world lack access to electricity — mainly in Africa and Asia. Renewable energy offers a huge opportunity to bridge this energy gap and ensure electricity for those who currently lack it. 

Making electricity generated by renewables more accessible — for example, through off-grid solar power solutions — will play a vital role in ending poverty. These off-grid renewable energy solutions include solar lighting, solar home systems, and mini-grids. They can bring clean and affordable electricity to underserved communities, and also improve quality of life, education, health care, and economic opportunities.

Plus, the renewable energy sector is a growing source of job prospects across skill levels. It benefits both those seeking employment and those already working in related industries. According to a recent study, investing in distributed renewable energy systems generates 30 times more jobs compared to a comparative investment in fossil fuels.

What’s the Connection Between Poverty and Renewable Energy?

This is a biggie. We can make real strides in ending extreme poverty by making sure that everyone can rely on clean energy from renewable sources to fight energy poverty, which is the lack of access to electricity. 

Addressing crucial areas like health care, food security, clean water, and education is necessary to combat extreme poverty — and each of these areas are included in the UN roadmap to ending extreme poverty, the UN Global Goals . 

But access to electricity is a big first step forward across all these other areas. It is described as a catalyst issue — something necessary to make other things happen.

What Action Can We Take Now for Renewable Energy?

We urgently need to shift away from fossil fuels and transition to clean, renewable energy sources to prevent the most severe impacts of the global climate crisis.

There is some good news — for example, as highlighted by UN Secretary-General António Guterres, renewable energy technologies (like wind and solar) already exist and, in most cases, are cheaper than coal and other fossil fuels. 

Meanwhile, the bulk of new energy generation capacity — 83% — added in 2022 came from renewable energy sources, according to a report from the International Renewable Energy Agency (IRENA). So the world is moving in the right direction.

Yet there’s a whole lot more still to do. 

According to The World Counts , it’s expected that renewables will generate about 30% of the world’s electricity by 2024. But electricity only makes up about 18% of total world energy — with much of the remaining 82% being heat and transportation. 

So we need to see a massive increase in renewables for providing heat and transportation, alongside that increase in renewable generation for electricity. 

We can all do our bit — particularly those in high-income countries where our carbon emissions are highest — to transition our own lives away from fossil fuels, and generally reduce our own carbon footprints . 

But what we really need is investment in the shift to renewable energy — including from governments, philanthropists, and the private sector — and greater ambition and willpower from our world leaders who have the power to make the change happen on a global scale. 

You can join the movement of Global Citizens who are taking action right now to urge world leaders and the private sector to ditch fossil fuels in a move to a low-carbon future, and step up to ensure a just transition to renewable energy can be achieved. Get started by heading here to take action . 

Global Citizen Explains

Defend the Planet

Renewable Energy: Everything You Need to Know

July 5, 2023

The Understand Energy Learning Hub is a cross-campus effort of the Precourt Institute for Energy .

Understand Energy Learning Hub

Introduction to Renewable Energy

Exploring our content.

Fast Facts View our summary of key facts and information. ( Printable PDF, 270 KB )

Before You Watch Our Lecture Maximize your learning experience by reviewing these carefully curated readings we assign to our students.

Our Lecture Watch the Stanford course lecture.

Additional Resources Find out where to explore beyond our site.

Orange sunset with wind turbines on the horizon

Fast Facts About Renewable Energy

Principle Energy Uses: Electricity, Heat Forms of Energy: Kinetic, Thermal, Radiant, Chemical

The term “renewable” encompasses a wide diversity of energy resources with varying economics, technologies, end uses, scales, environmental impacts, availability, and depletability. For example, fully “renewable” resources are not depleted by human use, whereas “semi-renewable” resources must be properly managed to ensure long-term availability. The most renewable type of energy is energy efficiency, which reduces overall consumption while providing the same energy service. Most renewable energy resources have significantly lower environmental and climate impacts than their fossil fuel counterparts.

The data in these Fast Facts do not reflect two important renewable energy resources: traditional biomass, which is widespread but difficult to measure; and energy efficiency, a critical strategy for reducing energy consumption while maintaining the same energy services and quality of life. See the Biomass and Energy Efficiency pages to learn more.

Significance

14% of world 🌎 9% of US 🇺🇸

Electricity Generation

30% of world 🌎 21% of US 🇺🇸

Global Renewable Energy Uses

Electricity 65% Heat 26% Transportation 9%

Global Consumption of Renewable Electricity Change

Increase: ⬆ 33% (2017 to 2022)

Energy Efficiency

Energy efficiency measures such as LED light bulbs reduce the need for energy in the first place

Renewable Resources

Wind Solar Ocean

Semi-Renewable Resources

Hydro Geothermal Biomass

Renewable Energy Has Vast Potential to Meet Global Energy Demand

Solar >1,000x global demand Wind ~3x global demand

Share of Global Energy Demand Met by Renewable Resources

Hydropower 7% Wind 3% Solar 2% Biomass <2%  

Share of Global Electricity Generation Met by Renewable Resources

Hydropower 15% Wind 7% Solar 5% Biomass & Geothermal <3%

Global Growth

Hydropower generation increase ⬆6% Wind generation increase ⬆84% Solar generation increase ⬆197% Biofuels consumption increase ⬆23% (2017-2022)

Largest Renewable Energy Producers

China 34% 🇨🇳 US 10% 🇺🇸 of global renewable energy

Highest Penetration of Renewable Energy

Norway 72% 🇳🇴 of the country’s primary energy is renewable

(China is at 16%, the US is at 11%)

Largest Renewable Electricity Producers

China 31% 🇨🇳 US 11% 🇺🇸 of global renewable electricity

Highest Penetration of Renewable Electricity

Albania, Bhutan, CAR, Lesotho, Nepal, & Iceland 100%

Iceland, Ethiopia, Paraguay, DRC, Norway, Costa Rica, Uganda, Namibia, Eswatini, Zambia, Tajikistan, & Sierra Leone > 90% of the country’s primary electricity is renewable

(China is at 31%, the US is at 22%)

Share of US Energy Demand Met by Renewable Resources

Biomass 5% Wind 2% Hydro 1% Solar 1%

Share of US Electricity Generation Met by Renewable Resources

Wind 10% Hydropower 6% Solar 3% Biomass 1%

US States That Produce the Most Renewable Electricity

Texas 21% California 11% of US renewable energy production

US States With Highest Penetration of Renewable Electricity

Vermont >99% South Dakota 84% Washington 76% Idaho 75% of state’s total generation comes from renewable fuels

Renewable Energy Expansion Policies

The Inflation Reduction Act continued tax credits for new renewable energy projects in the US.

Production Tax Credit (PTC)

Tax credit of $0.0275/kWh of electricity produced at qualifying renewable power generation sites

Investment Tax Credit (ITC)

Tax credit of 30% of the cost of a new qualifying renewable power generation site

To read more about the credit qualifications, visit this EPA site .

LCOE of US Resources, 2023: Renewable Resources
Resource (Renewables)Unsubsidized LCOE*LCOE with ITC/PTC Tax Subsidy
Wind (Onshore)$24 - $75$0 - $66 (PTC)
Solar PV (Utility Scale)$24 - $96

$16 - $80 (ITC)

$0 - $77 (PTC)

Solar + Storage (Utility Scale)$46 - $102$31 - $88 (ITC)
Geothermal$61 - $102$37 - $87
Wind (Offshore)$72 - $140$56 - $114 (PTC)
Solar PV (Rooftop Residential)$177 - $282$74 - $229 (ITC)
Wind + Storage (Onshore)$24 - $75$0 - $66 (PTC)
LCOE of US Resources, 2023: Non-Renewable Resources.
(The ITC/PTC program does not provide subsidies for non-renewable resources. Fossil fuel and nuclear resources have significant subsidies from other policies.)
Resource (Non-Renewables)Unsubsidized LCOE*
Natural Gas (combined cycle)$39 - $101
Natural Gas Peaker Plants$115 - $221
Coal$68 - $166
Nuclear$141 - $221

*LCOE (levelized cost of electricity) - price for which a unit of electricity must be sold for system to break even

Important Factors for Renewable Site Selection

  • Resource availability
  • Environmental constraints and sensitivities, including cultural and archeological sites
  • Transmission infrastructure
  • Power plant retirements
  • Transmission congestion and prices
  • Electricity markets
  • Load growth driven by population and industry
  • Policy support
  • Land rights and permitting
  • Competitive and declining costs of wind, solar, and energy storage
  • Lower environmental and climate impacts (social costs) than fossil fuels
  • Expansion of competitive wholesale electricity markets
  • Governmental clean energy and climate targets and policies
  • Corporate clean energy targets and procurement of renewable energy
  • No fuel cost or fuel price volatility
  • Retirements of old and/or expensive coal and nuclear power plants
  • Most renewable resources are abundant, undepletable
  • Permitting hurdles and NIMBY/BANANA* concerns
  • Competition from subsidized fossil fuels and a lack of price for their social cost (e.g., price on carbon)
  • Site-specific resources means greater need to transport energy/electricity to demand
  • High initial capital expenditure requirements required to access fuel cost/operating savings
  • Intermittent resources
  • Inconsistent governmental incentives and subsidies
  • Managing environmental impacts to the extent that they exist

*NIMBY - not in my backyard; BANANA - build absolutely nothing anywhere near anything

Climate Impact: Low to High

what does renewable energy mean essay

  • Solar, wind, geothermal, and ocean have low climate impacts with near-zero emissions; hydro and biomass can have medium to high climate impact
  • Hydro: Some locations have greenhouse gas emissions due to decomposing flooded vegetation
  • Biomass: Some crops require significant energy inputs, land use change can release carbon dioxide and methane

Environmental Impact: Low to High

  • Most renewable energy resources have low environmental impacts, particularly relative to fossil fuels; some, like biomass, can have more significant impacts
  • No air pollution with the exception of biomass from certain feedstocks
  • Can have land and habitat disruption for biomass production, solar, and hydro
  • Potential wildlife impacts from wind turbines (birds and bats)
  • Modest environmental impacts during manufacturing, transportation, and end of life

Updated January 2024

Before You Watch Our Lecture on Introduction to Renewable Energy

We assign videos and readings to our Stanford students as pre-work for each lecture to help contextualize the lecture content. We strongly encourage you to review the Essential reading below before watching our lecture on  Introduction to Renewable Energy . Include the Optional and Useful readings based on your interests and available time.

  • The Sustainable Energy in America 2024 Factbook (Executive Summary pp. 5-10) . Bloomberg New Energy Finance. 2024. (6 pages) Provides valuable year-over-year data and insights on the American energy transformation.

Optional and Useful

  • Renewables 2024 Global Status Report (Global Overview pp. 10-39) . REN21. 2024. (30 pages)  Documents the progress made in the renewable energy sector and highlights the opportunities afforded by a renewable-based economy and society.

Our Lecture on Introduction to Renewable Energy

This is our Stanford University Understand Energy course lecture that introduces renewable energy. We strongly encourage you to watch the full lecture to gain foundational knowledge about renewable energy and important context for learning more about specific renewable energy resources. For a complete learning experience, we also encourage you to review the Essential reading we assign to our students before watching the lecture.

Kirsten Stasio

Presented by: Kirsten Stasio , Adjunct Lecturer, Civil and Environmental Engineering, Stanford University; CEO, Nevada Clean Energy Fund (NCEF) Recorded on:  May 15, 2024  Duration: 68 minutes

Table of Contents

(Clicking on a timestamp will take you to YouTube.) 00:00 Introduction  02:06 What Does “Renewable” Mean?  15:29 What Role Do Renewables Play in Our Energy Use?  27:12 What Factors Affect Renewable Energy Project Development?

Lecture slides available upon request .

Additional Resources About Renewable Energy

Stanford university.

  • Precourt Institute for Energy Renewable Energy , Energy Efficiency
  • Stanford Energy Club
  • Energy Modeling Forum
  • Sustainable Stanford
  • Sustainable Finance Initiative
  • Mark Jacobson - Renewable energy
  • Michael Lepech - Life-cycle analysis
  • Leonard Ortolano - Environmental and water resource planning
  • Chris Field - Climate change, land use, bioenergy, solar energy
  • David Lobell - Climate change, agriculture, biofuels, land use
  • Sally Benson - Climate change, energy, carbon capture and storage

Government and International Organizations

  • International Energy Agency (IEA) Renewables Renewables 2022 Report .
  • National Renewable Energy Laboratory (NREL)
  • US Department of Energy (DOE) Office of Energy Efficiency & Renewable Energy (EERE)
  • US Energy Information Administration (EIA) Renewable Energy Explained
  • US Energy Information Administration (EIA) Energy Kids Renewable Energy
  • US Energy Information Administration (EIA) Today in Energy Renewables

Other Organizations and Resources

  • REN21: Renewable Energy Policy Network for the 21st Century
  • REN21 Renewables 2023 Global Status Report Renewables in Energy Supply
  • BloombergNEF (BNEF)
  • Carnegie Institution for Science  Biosphere Sciences and Engineering
  • The Solutions Project
  • Renewable Energy World
  • World of Renewables
  • Energy Upgrade California

Next Topic: Energy Efficiency Other Energy Topics to Explore

Fast Facts Sources

  • Energy Mix (World 2022): Energy Institute. Statistical Review of World Energy . 2023.
  • Energy Mix (US 2022): US Energy Information Agency (EIA). Total Energy: Energy Overview, Table 1.3 . 
  • Electricity Mix (World 2022): Energy Institute. Statistical Review of World Energy . 2023.
  • Electricity Mix (US 2022): US Energy Information Agency (EIA). Total Energy: Electricity, Table 7.2a.  
  • Global Solar Use (2022): REN21. Renewables 2023 Global Status Report: Renewables in Energy Supply , page 42. 2023
  • Global Consumption of Renewable Electricity Change (2017-2022): Energy Institute. Statistical Review of World Energy . 2023.
  • Renewable Energy Potential: Perez & Perez. A Fundamental Look at Energy Reserves for the Planet . 2009
  • Share of Global Energy Demand (2022): Energy Institute. Statistical Review of World Energy . 2023.
  • Share of Global Electricity Demand (2022): Energy Institute. Statistical Review of World Energy . 2023.
  • Global Growth (2017-2022): Energy Institute. Statistical Review of World Energy . 2023.
  • Largest Renewable Energy Producers (World 2022): International Renewable Energy Agency (IRENA). Renewable Capacity Statistics 2023 . 2023.
  • Highest Penetration Renewable Energy (World 2022): Our World in Data. Renewable Energy . 2023.
  • Largest Renewable Electricity Producers (World 2022):   Energy Institute. Statistical Review of World Energy . 2023.
  • Highest Penetration Renewable Electricity (World 2022): Our World in Data. Renewable Energy . 2023.
  • Share of US Energy Demand (2022): Energy Information Administration (EIA). Electric Power Monthly. 2023.
  • Share of Electricity Generation (2022): Energy Information Administration (EIA). Electric Power Monthly. 2023.
  • States with Highest Generation (2022): Energy Information Administration (EIA). Electric Power Monthly. 2023.
  • States with Highest Penetration (2021): Energy Information Administration (EIA). State Profile and Energy Estimates. 2023.
  • LCOE of US Renewable Resources: Lazard. LCOE. April 2023.
  • LCOE of US Non Renewable Resources: Lazard. LCOE. April 2023.

More details available on request . Back to Fast Facts

Accept cookies?

We use cook ies  to give you the best online experience and to show personalised content and marketing. We use them to improve our website and content as well as to tailor our digital advertising on third-party platforms. You can change your preferences at any time.  

Popular search terms:

  • British wildlife
  • Wildlife Photographer of the Year
  • Explore the Museum
  • Anthropocene

British Wildlife

Collections

Human evolution

What on Earth?

Wind turbines scattered across a landscape of fields, tree plantations and a lake

Aerial view of a wind farm at Pen y Cymoedd in south Wales, UK. Wind-generated power in the UK increased by 83% between 2015 and 2020 to provide nearly a quarter of our electricity . It's also one of the fastest-growing renewable energy technologies globally. © Richard Whitcombe/ Shutterstock

During Beta testing articles may only be saved for seven days.

Create a list of articles to read later. You will be able to access your list from any article in Discover.

You don't have any saved articles.

Renewable energy and its importance for tackling climate change

Replacing fossil fuel-reliant power stations with renewable energy sources, such as wind and solar, is a vital part of stabilising climate change and achieving net zero carbon emissions.

Professor Magda Titirici , Chair in Sustainable Energy Materials at Imperial College London, offers an introduction to renewable energy and the future of clean, green power in the UK.

What is renewable energy?

Renewable energy comes from sources that replenish naturally and continually within a human lifetime. Renewable energy is often called sustainable energy.

Major sources of renewable energy include solar, wind, hydroelectric, tidal, geothermal and biomass energy, which is derived from burning plant or animal matter and waste.

Switching our reliance on fossil fuels to renewable energy sources that produce lower or no greenhouse gas emissions is critically important in tackling the climate crisis .

Clean, green or renewable - what's the difference?

Clean energy doesn't produce any pollution once installed. Nor does green energy, which comes from natural sources such as the Sun and is produced without any major negative impacts on the environment. Renewable energy refers to sources that are constantly replenished.

While there is often overlap between these definitions and most renewable energy sources can also be considered clean and green, it's not always the case.

Nuclear energy doesn't release greenhouse gases into the atmosphere, so some people consider it to be clean - providing the radioactive waste is stored safely and doesn't escape into the environment. But the uranium energy source used in nuclear power plants isn't renewable.

Smoke and steam pouring out of power plant chimneys

A coal power plant emitting smoke, steam and carbon dioxide. Fossil fuels such as coal are non-renewable resources. Burning fossil fuels contributes to climate change by releasing greenhouse gases into the atmosphere. © Peter Gudella/ Shutterstock

What's the difference between renewable and non-renewable energy?

Non-renewable energy comes from natural resources such as coal, oil and natural gas that take billions of years to form, which is why we call them fossil fuels. They are present in finite amounts and will run out, as we are using them far more quickly than they form.

When will fossil fuels run out?

Research based on 2015 data predicts that coal stocks will last well into the next century, but oil and natural gas reserves (stocks that we know we can extract from) will run out in the late 2060s . However, scientific models suggest that if we are to limit global warming to 2°C - the target agreed at COP26 is 1.5°C - over 80% of coal, 50% of gas and 30% of oil reserves will need to be left untouched anyway.

When we extract fossil fuels from deep within the planet and burn them, we can generate electricity quite efficiently. But the process releases a lot of carbon dioxide (CO 2 ) into the atmosphere, which contributes to the greenhouse effect, global warming and biodiversity loss .

Magda explains, 'Fossil fuels brought with them immense technological progress but using them releases CO 2 into the atmosphere, which acts like a blanket, trapping heat that would otherwise escape into space and causing global warming.'

Did you know?

The energy sector is responsible for almost three-quarters of the emissions that have caused global temperatures to warm by 1.1°C since pre-industrial times. 

If we continue to use fossil fuels, the effect will only worsen.

Magda adds, 'If we want to live on this planet much longer than 2050 and keep temperature levels below the 1.5°C of warming agreed to by governments around the world, we need to make some radical changes right now. We need to move to technologies that will give us the same level and comfort of living but drastically cut our emissions and carbon footprint .'

Examples of renewable energy sources

The main types of renewable energy are wind, solar, hydroelectric, tidal, geothermal and biomass. Read on to discover the pros and cons of each of these renewable energy sources.

One of the main benefits of most renewable energy sources is that they don't release carbon dioxide or pollute the air when they are used to produce electricity or heat. Greenhouse gases are emitted during the lifetime of some of the technologies - for example, during their manufacture or construction - but overall emissions are significantly lower than for fossil fuels.

Whereas some countries lack direct access to fossil fuels and must rely on international sources, renewable energy often allows countries to supply their own energy needs, a big economic and political advantage.

Wind energy

Rows of wind turbines sticking up out of the sea, with coastline visible in the distance

An offshore wind farm in the North Sea off the UK coast. Wind energy is an important renewable resource for the UK. According to analysis by Imperial College London's Energy Institute , offshore wind turbines offer the best-value option for meeting the UK's target of delivering carbon neutral electricity by 2035. But the UK's current target for offshore wind electricity production - up to 50 gigawatts by 2030 - will need to be significantly increased to do so. © Riekelt Hakvoort/ Shutterstock

Wind power converts wind - the movement of air - into stored power by turning turbines and converting mechanical energy into electricity. Wind farms can be built both on land and offshore. They work well wherever wind is strong and reliable.

Advantages: Wind energy is a clean, green and renewable resource and turbines can be placed on farmland with minimal disruption. It has the lowest carbon footprint of all renewable energy sources .

Disadvantages: Like any infrastructure, there is an upfront establishment cost and ongoing maintenance fees. These are even higher if wind farms are built offshore. Turbines have a reputation for being noisy and poorly sited wind farms can be dangerous to some wildlife - for instance, if they're placed in the migration paths of birds or bats.

How loud is a wind turbine?

At 300 metres from a dwelling, wind turbines have a sound pressure of 43 decibels , which is between the volume of a refrigerator and an air conditioner.

Solar energy

Solar panels in a field

An array of solar panels in a field in Chippenham, UK. Solar energy is a renewable resource, and the Sun provides more energy than we'll ever use. If we could capture it all, an hour of sunlight would meet the world's energy needs for a year. © Alexey Fedorenko/ Shutterstock

Solar power captures energy (radiation) from the Sun and converts it into electricity, which is then fed into a power grid or stored for later use. Although places near the equator receive the most solar energy, solar panels can generate electricity anywhere that gets sunlight.

Advantages:  Solar energy is renewable, clean, increasingly efficient and has low maintenance costs. Once established, it can dramatically reduce the price of generating electricity.

Disadvantages:  Setting up a solar array is costly and there are expenses involved with energy storage. Solar panels can take up more land than some other types of renewable energy and performance depends on the availability of sunlight. The mining and processing of minerals needed to make the panels can pollute and damage the environment.

China is currently leading the world in solar energy production , with roughly 35% of the global market.

Hydroelectric energy

Water is held back by a huge wall creating a large lake, surrounded by tree-covered hills

Although hydroelectric energy is renewable, it is not always considered green, as building large-scale dams can negatively impact the environment. Nepean Dam in Australia, shown here, was included in a study that showed dams are causing problems for platypuses by creating a barrier between populations. © Greg Brave/ Shutterstock

Hydroelectric power uses the flow of water, often from rivers and lakes controlled by a dam, to turn turbines and power generators, creating electricity. Hydropower works best for regions with reliable rainfall and large, natural water reservoirs.

Hydropower currently produces more electricity than  all other renewable energy sources combined and provides around 17% of the world's energy.

Advantages: Hydroelectricity is dependable and renewable for as long as there is rainfall or flowing water. Reservoirs can offer additional benefits, such as providing drinking water, irrigation and recreational opportunities, including swimming or boating.

Disadvantages: Hydropower plants take up a lot of room and aren't suited to all climates. They are susceptible to drought. Creating artificial water reservoirs can harm biodiversity in natural water systems by limiting the inflow of nutrients and blocking the journey of migratory fish populations. These reservoirs can also release methane - a type of greenhouse gas - as vegetation in the flooded area decomposes. Large amounts of cement are used to construct dams. The manufacture of this material produces large amounts of carbon dioxide.

Tidal energy

Aerial view of a tidal power plant that has been integrated with a bridge

Renewable tidal energy is produced by the natural rise and fall of the sea. However, tidal power plants can change the local biodiversity. This one on the River Rance in Brittany, France, not only led to the local extinction of a fish called plaice but to an increase in the number of cuttlefish, which now thrive there. © Francois BOIZOT/ Shutterstock

Tidal energy uses the continual movement of ocean tides to generate power. Turbines in the water turn a generator, creating electricity.

Advantages: Tidal energy is renewable, generates no carbon emissions and can produce a lot of energy very reliably.

Disadvantages: Offshore infrastructure is expensive to set up and maintain and there are a limited number of appropriate sites for tidal power plants around the world. They can also damage marine environments and impact local plants and animals.

Geothermal energy

Lots of chimneys and steam

A geothermal power plant in Iceland harnesses this renewable energy source. © Peter Gudella/ Shutterstock

Geothermal power uses underground reservoirs of hot water or steam created by the heat of Earth's core to generate electricity. It works best in regions near tectonic plate boundaries .

Advantages: Geothermal energy is highly reliable and has a consistent power output. It also has a relatively small footprint on the land.

Disadvantages: Drilling geothermal wells is expensive and can affect the stability of surrounding land. It must be monitored carefully to minimise environmental impact. There is also a risk of releasing greenhouse gases trapped under Earth's surface.  

Biomass energy

Several large round storage containers on a site with buildings and lorries

A biogas plant producing renewable energy from biomass in the Czech Republic. © Kletr/ Shutterstock

Biomass energy comes from burning plants, plant by-products or waste. Examples include ethanol (from corn or sugarcane), biodiesel (made from vegetable oils, used cooking oils and animal fats), green diesel (derived from algae, sustainable wood crops or sawdust) and biogas (derived from animal manure and other waste).

Advantages: Abundant and cheaply produced, biomass energy is a novel use of waste product and leftover crops. It creates less emissions than burning fossil fuels and having carbon capture in place can stop carbon dioxide entering the atmosphere. Biofuels are also considered relatively easy and inexpensive to implement, as they are compatible with existing agriculture and waste processing and used in existing petrol and diesel vehicles.

Disadvantages: Generating biofuels requires land and water so growing demand for them could lead to deforestation and biodiversity loss. Burning biomass emits carbon dioxide unless carbon capture is implemented.

Ethanol-powered vehicles create up to 86% less greenhouse gas emissions than petrol vehicles, and crops that are grown to produce biomass absorb carbon dioxide.

Can renewable energy replace fossil fuels in the UK?

In 2020, 42% of the UK's electricity came from renewable energy. A quarter of the UK's electricity was produced by wind power, which is the highest proportion of any G20 country and more than four times the global average. Statistics on UK energy trends reveal that from April to June 2022, nearly 39% of the UK's electricity came from renewable energy, slightly more than during the same period in 2021, but down from 45.5% between January and March 2022 when it was unusually sunny and wind speeds were high.

'There has been good news in recent years in terms of progress on renewables,' says Magda, 'but in my opinion, the UK is still lagging behind. It is not so strong yet for truly sustainable technologies. It needs storage and conversion.'

Magda believes that wind (particularly offshore), solar, green hydrogen and rapid innovation in battery storage will be key to the UK reaching net zero by 2050.

She explains, 'The UK is a really windy place, so wind is the perfect renewable energy technology. By 2035 wind and solar should provide 75-90% of total UK electricity to bring emissions down significantly.'

'It has already been shown that it's feasible to produce 90% of the UK's electricity from wind and solar combined. The tech is there and it's becoming more efficient and affordable each year.'

'Offshore wind capacity will also help produce green hydrogen, another crucial part of the UK decarbonisation path.'

What is green hydrogen?

Green hydrogen is a fuel created using renewable energy in a process known as electrolysis. When green hydrogen is burned to produce energy, it releases water.

It's predicted that the UK will need 100 terawatt-hours of green hydrogen by 2035.

What is a terawatt-hour?

A terawatt-hour is a unit of measurement that's large enough to describe the annual electricity needs of entire countries. For scale, one terawatt-hour is equivalent to burning 588,441 barrels of oil.

The future of renewable energy in the UK

Magda believes the UK is at a very critical point in its sustainable technologies journey.

'Everything will depend on what happens this year and next. We need to see radical changes, investment, subsidies and support to reach our target of net zero by 2050.'

'It would cost less than 1% of GDP to get to net zero by 2050 but the advantages would be immense: new jobs, a sustainable economy and a healthy and resilient society.'

Logo featuring a yellow car, power cable and socket painted onto tarmac

An empty electric vehicle charging point © Tony Skerl/ Shutterstock

Challenges and opportunities for renewable energy in the UK

One of the biggest challenges the UK is facing right now is battery storage and access to materials like cobalt and lithium , which are needed to produce lithium-ion batteries at scale.

Why are batteries important for renewable energy?

Batteries help make renewable energy supply reliable and portable - such as in the case of electric vehicles.

Batteries are an important part of our transition to renewable technologies, as they allow energy to be stored and released as needed. For example, solar panels generate energy during the day, and batteries make it possible to store and use that electricity at night.

Currently, just a few countries are responsible for most of the world's production of lithium.

According to Magda, the UK lacks access to the supply chain needed for Li-ion batteries. 'As a result, she adds, 'Johnson Matthey, which is a major company driving battery innovations in the UK, announced they would stop lithium battery research because they are unable to secure a path to raw materials and be competitive on the international market.'

Museum researchers are investigating whether it would be possible to develop a  more sustainable, domestic supply chain by extracting lithium from UK rocks. They made a key breakthrough in 2021 when they produced battery-grade lithium chemicals from UK rocks for the first time.

According to Professor Richard Herrington, Head of Earth Sciences at the Museum, 'An increased, reliable supply of lithium is critical if we are to meet the rising demand for electric cars and provide a dependable supply of energy from renewable sources. The next generation of batteries that don't require lithium may still be three to five years away from being ready for public use.'

However, Magda is optimistic that the UK could lead in emerging battery technologies. 'I think the UK has an amazing opportunity to pioneer the next generation of batteries,' she says.

Innovative models already under development at The Faraday Institution include:

  • Sodium-ion batteries, which are based on waste-derived anodes and critical metal -free cathodes, provide almost the same performance as lithium-ion batteries at half the cost.
  • Lithium-sulphur batteries with 10 times the energy density of lithium-ion batteries make more efficient use of limited materials and eliminate metals from the cathode by using sulphur instead.

Magda adds, 'We need to focus on the areas where the UK has the potential to lead. The UK has such a big tradition in new materials and discoveries, we could move to completely new technologies both for batteries and hydrogen production.'

'There are a lot of challenges, but if we're investing in it, we could be future leaders and even solve one of the most difficult challenges in decarbonisation: flight.'

  • Sustainability
  • Biodiversity
  • Climate change

what does renewable energy mean essay

Protecting our planet

We're working towards a future where both people and the planet thrive.

Hear from scientists studying human impact and change in the natural world.

what does renewable energy mean essay

How are climate change and biodiversity loss linked?

The climate crisis and biodiversity loss are closely connected but the good news is, so are the solutions.

what does renewable energy mean essay

Net zero is cheaper and greener than continuing the use of fossil fuels

Going green is no longer just the smart decision – it's also the most profitable one. 

what does renewable energy mean essay

Nine ways Museum scientists are fighting the planetary emergency

Discover how we're fighting to keep nature healthy.

what does renewable energy mean essay

Lithium carbonate has been produced from UK rocks for the first time

A breakthrough in domestic production could bring down the carbon footprint of lithium-ion batteries.

Don't miss a thing

Receive email updates about our news, science, exhibitions, events, products, services and fundraising activities. We may occasionally include third-party content from our corporate partners and other museums. We will not share your personal details with these third parties. You must be over the age of 13. Privacy notice .

Follow us on social media

Energy.gov Home

  • Renewable Energy

What Is Renewable Energy?

Renewable energy comes from unlimited, naturally replenished resources, such as the sun, tides, and wind. Renewable energy can be used for electricity generation, space and water heating and cooling, and transportation.

Non-renewable energy, in contrast, comes from finite sources, such as coal, natural gas, and oil.

How Does Renewable Energy Work?

Renewable energy sources, such as biomass, the heat in the earth’s crust, sunlight, water, and wind, are natural resources that can be converted into several types of clean, usable energy:

what does renewable energy mean essay

Bioenergy Geothermal Energy Hydrogen and Other Renewable Fuels Hydropower Marine Energy Solar Energy Wind Energy

Learn the truth about clean energy.

Benefits of Renewable Energy

Renewable energy offers numerous economic, environmental, and social advantages. These include:

  • Reduced carbon emissions and air pollution from energy production
  • Enhanced reliability , security, and resilience of the power grid
  • Job creation through the increased production and manufacturing of renewable energy technologies
  • Increased U.S. energy independence
  • Lower energy costs
  • Expanded energy access for remote, coastal, or isolated communities.

Learn more about the advantages of wind energy , solar energy , bioenergy , geothermal energy , hydropower , and marine energy , and how the U.S. Department of Energy is working to modernize the power grid and increase renewable energy production.

Renewable Energy in the United States

Renewable energy generates over 20% of all U.S. electricity , and that percentage continues to grow. The following graphic breaks down the shares of total electricity production in 2022 among the types of renewable power: 

Renewable Energy Share of Total U.S. Electricity Production in 2022. 10.3% wind, 6.0% hydropower, 3.4% solar, 1.2% biomass, 0.4% geothermal.

In 2022, annual U.S. renewable energy generation surpassed coal for the first time in history. By 2025, domestic solar energy generation is expected to increase by 75%, and wind by 11%. 

The United States is a resource-rich country with enough renewable energy resources to generate more than 100 times the amount of electricity Americans use each year.  Learn more about renewable energy potential in the United States.

Subscribe to stay up to date on the latest clean energy news from EERE.

Office of Energy Efficiency and Renewable Energy

The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) has three core divisions: Renewable Energy, Sustainable Transportation and Fuels, and Buildings and Industry. The Renewable Energy pillar comprises four technology offices:

A large seal showing the logos of the various EERE offices, with "Are You A Clean Energy Champion?" written across the middle of it on a ribbon

Every American can advocate for renewable energy by becoming a Clean Energy Champion. Both small and large actions make a difference. Join the movement .

Advancing Renewable Energy in the United States

EERE offers funding for renewable energy research and development, as well as programs that support the siting of renewable energy , connection of renewable energy to the grid , and community-led energy projects . Find open funding opportunities and learn how to apply for funding .

The U.S. Department of Energy's 17 national laboratories conduct research and help bring renewable energy technologies to market. 

Renewable Energy at Home

Homeowners and renters can use clean energy at home by buying green power, installing renewable energy systems to generate electricity, or using renewable resources for water and space heating and cooling.

Before installing a renewable energy system, it's important to reduce your energy consumption and improve your home’s energy efficiency .

Visit Energy Saver to learn more about the use of renewable energy at home.

You may be eligible for federal and state tax credits if you install a renewable energy system in your home. Visit ENERGY STAR to learn about federal renewable energy tax credits for homeowners. For information on state incentives, visit the Database of State Incentives for Renewables and Efficiency .

Other Ways EERE Champions Clean Energy

Find clean energy jobs.

EERE is dedicated to building a clean energy economy, which means millions of new jobs in construction, manufacturing, and many other industries. Learn more about job opportunities in renewable energy:

Our Science Emergency Fund is now LIVE. Your gift is urgently needed!

Benefits of Renewable Energy Use

Published Jul 14, 2008 Updated Dec 20, 2017

Wind turbines and solar panels are an increasingly common sight. But why? What are the benefits of renewable energies—and how do they improve our health, environment, and economy?

This page explores the many positive impacts of clean energy, including the benefits of wind , solar , geothermal , hydroelectric , and biomass . For more information on their negative impacts—including effective solutions to avoid, minimize, or mitigate—see our page on  The Environmental Impacts of Renewable Energy Technologies .

Less global warming

Human activity is overloading our atmosphere with carbon dioxide and other  global warming emissions . These gases act like a blanket, trapping heat. The result is a web of  significant and harmful impacts , from stronger, more frequent storms, to drought, sea level rise, and extinction.

In the United States, about 29 percent of global warming emissions come from our electricity sector. Most of those emissions come from fossil fuels like coal and natural gas [ 1 ,  2 ].

What is CO 2 e?

Carbon dioxide (CO 2 ) is the most prevalent greenhouse gas, but other air pollutants—such as methane—also cause global warming. Different energy sources produce different amounts of these pollutants. To make comparisons easier, we use a carbon dioxide equivalent , or CO2e—the amount of carbon dioxide required to produce an equivalent amount of warming.

In contrast, most renewable energy sources produce little to no global warming emissions. Even when including “life cycle” emissions of clean energy (ie, the emissions from each stage of a technology’s life—manufacturing, installation, operation, decommissioning), the global warming emissions associated with renewable energy are minimal [ 3 ].

The comparison becomes clear when you look at the numbers. Burning natural gas for electricity releases between 0.6 and 2 pounds of carbon dioxide equivalent per kilowatt-hour (CO2E/kWh); coal emits between 1.4 and 3.6 pounds of CO2E/kWh.  Wind , on the other hand, is responsible for only 0.02 to 0.04 pounds of CO2E/kWh on a life-cycle basis;  solar  0.07 to 0.2;  geothermal  0.1 to 0.2; and  hydroelectric  between 0.1 and 0.5.

Renewable electricity generation from  biomass  can have a wide range of global warming emissions depending on the resource and whether or not it is sustainably sourced and harvested.

Chart showing electricity generation technologies powered by renewable resources

Increasing the supply of renewable energy would allow us to replace carbon-intensive energy sources and significantly reduce US global warming emissions.

For example, a 2009 UCS analysis found that a 25 percent by 2025 national renewable electricity standard would lower power plant CO2 emissions 277 million metric tons annually by 2025—the equivalent of the annual output from 70 typical (600 MW) new coal plants [ 4 ].

In addition, a ground-breaking study by the US Department of Energy's National Renewable Energy Laboratory (NREL) explored the feasibility of generating 80 percent of the country’s electricity from renewable sources by 2050. They found that renewable energy could help reduce the electricity sector’s emissions by approximately 81 percent [ 5 ].

Improved public health

The air and water pollution emitted by coal and natural gas plants is linked with breathing problems, neurological damage, heart attacks, cancer, premature death, and a host of other serious problems. The pollution affects everyone: one Harvard University study estimated the life cycle costs and public health effects of coal to be an estimated $74.6 billion every year . That’s equivalent to 4.36 cents per kilowatt-hour of electricity produced—about one-third of the average electricity rate for a typical US home [ 6 ].

Most of these negative health impacts come from air and water pollution that clean energy technologies simply don’t produce. Wind, solar, and hydroelectric systems generate electricity with no associated air pollution emissions. Geothermal and biomass systems emit some air pollutants, though total air emissions are generally much lower than those of coal- and natural gas-fired power plants.

In addition, wind and solar energy require essentially no water to operate and thus do not pollute water resources or strain supplies by competing with agriculture, drinking water, or other important water needs. In contrast, fossil fuels can have a  significant impact on water resources : both coal mining and natural gas drilling can pollute sources of drinking water, and all thermal power plants, including those powered by coal, gas, and oil, withdraw and consume water for cooling. 

Biomass and geothermal power plants, like coal- and natural gas-fired power plants, may require water for cooling. Hydroelectric power plants can disrupt river ecosystems both upstream and downstream from the dam. However, NREL's 80-percent-by-2050 renewable energy study, which included biomass and geothermal, found that total water consumption and withdrawal would decrease significantly in a future with high renewables [ 7 ].

Inexhaustible energy

Strong winds, sunny skies, abundant plant matter, heat from the earth, and fast-moving water can each provide a vast and constantly replenished supply of energy. A relatively small fraction of US electricity currently comes from these sources, but that could change: studies have repeatedly shown that renewable energy can provide a significant share of future electricity needs, even after accounting for potential constraints [ 9 ].

In fact, a major government-sponsored study found that clean energy could contribute somewhere between three and 80 times its 2013 levels, depending on assumptions [8]. And the previously mentioned NREL study found that renewable energy could comfortably provide up to 80 percent of US electricity by 2050.

clean renewable energy

Getting Excited About Energy: Expanding Renewables in the US

Jobs and other economic benefits.

Compared with fossil fuel technologies, which are typically mechanized and capital intensive, the renewable energy industry is more labor intensive. Solar panels need humans to install them; wind farms need technicians for maintenance.

This means that, on average, more jobs are created for each unit of electricity generated from renewable sources than from fossil fuels.

Renewable energy already supports thousands of jobs in the United States. In 2016, the wind energy industry directly employed over 100,000 full-time-equivalent employees in a variety of capacities, including manufacturing, project development, construction and turbine installation, operations and maintenance, transportation and logistics, and financial, legal, and consulting services [ 10 ]. More than 500 factories in the United States manufacture parts for wind turbines, and wind power project installations in 2016 alone represented $13.0 billion in investments [ 11 ].

Other renewable energy technologies employ even more workers. In 2016, the solar industry employed more than 260,000 people, including jobs in solar installation, manufacturing, and sales, a 25% increase over 2015 [ 12 ]. The hydroelectric power industry employed approximately 66,000 people in 2017 [ 13 ]; the geothermal industry employed 5,800 people [ 14] .

Increased support for renewable energy could create even more jobs. The 2009 Union of Concerned Scientists study of a 25-percent-by-2025 renewable energy standard found that such a policy would create more than three times as many jobs (more than 200,000) as producing an equivalent amount of electricity from fossil fuels [ 15 ]. 

In contrast, the entire coal industry employed 160,000 people in 2016 [ 26 ].

In addition to the jobs directly created in the renewable energy industry, growth in clean energy can create positive economic “ripple” effects. For example, industries in the renewable energy supply chain will benefit, and unrelated local businesses will benefit from increased household and business incomes [ 16 ].

Local governments also benefit from clean energy, most often in the form of property and income taxes and other payments from renewable energy project owners. Owners of the land on which wind projects are built often receive lease payments ranging from $3,000 to $6,000 per megawatt of installed capacity, as well as payments for power line easements and road rights-of-way. They may also earn royalties based on the project’s annual revenues. Farmers and rural landowners can generate new sources of supplemental income by producing feedstocks for biomass power facilities.

UCS analysis found that a 25-by-2025 national renewable electricity standard would stimulate $263.4 billion in new capital investment for renewable energy technologies, $13.5 billion in new landowner income from? biomass production and/or wind land lease payments, and $11.5 billion in new property tax revenue for local communities [ 17 ].

Stable energy prices

Renewable energy is providing affordable electricity across the country right now, and can help stabilize energy prices in the future.

Although renewable facilities require upfront investments to build, they can then operate at very low cost (for most clean energy technologies, the “fuel” is free). As a result, renewable energy prices can be very stable over time.

Moreover, the costs of renewable energy technologies have declined steadily, and are projected to drop even more. For example, the average price to install solar dropped more than 70 percent between 2010 and 2017 [ 20 ]. The cost of generating electricity from wind dropped 66 percent between 2009 and 2016 [ 21 ]. Costs will likely decline even further as markets mature and companies increasingly take advantage of economies of scale.

In contrast, fossil fuel prices can vary dramatically and are prone to substantial price swings. For example, there was a rapid increase in US coal prices due to rising global demand before 2008, then a rapid fall after 2008 when global demands declined [ 23 ]. Likewise, natural gas prices have fluctuated greatly since 2000 [ 25 ].

Using more renewable energy can lower the prices of and demand for natural gas and coal by increasing competition and diversifying our energy supplies. And an increased reliance on renewable energy can help protect consumers when fossil fuel prices spike. 

Wind turbine assembly

Barriers to Renewable Energy Technologies

Reliability and resilience.

 Wind and solar are less prone to large-scale failure because they are distributed and modular. Distributed systems are spread out over a large geographical area, so a severe weather event in one location will not cut off power to an entire region. Modular systems are composed of numerous individual wind turbines or solar arrays. Even if some of the equipment in the system is damaged, the rest can typically continue to operate.

For example, Hurricane Sandy damaged fossil fuel-dominated electric generation and distribution systems in New York and New Jersey and left millions of people without power. In contrast, renewable energy projects in the Northeast weathered Hurricane Sandy with minimal damage or disruption [ 25 ]. 

Water scarcity is another risk for non-renewable power plants. Coal, nuclear, and many natural gas plants depend on having sufficient water for cooling, which means that severe droughts and heat waves can put electricity generation at risk. Wind and solar photovoltaic systems do not require water to generate electricity and can operate reliably in conditions that may otherwise require closing a fossil fuel-powered plant. (For more information, see  How it Works: Water for Electricity .)  

The risk of disruptive events will also increase in the future as droughts, heat waves, more intense storms, and increasingly severe wildfires become more frequent due to global warming—increasing the need for resilient, clean technologies.

References:

[1] Environmental Protection Agency. 2017. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015.

[2] Energy Information Agency (EIA). 2017.  How much of the U.S. carbon dioxide emissions are associated with electricity generation?

[3] Intergovernmental Panel on Climate Change (IPCC). 2011.  IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation . Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp. (Chapter 9).

[4] Union of Concerned Scientists (UCS). 2009.  Clean Power Green Jobs .

[5] National Renewable Energy Laboratory (NREL). 2012.  Renewable Electricity Futures Study . Volume 1, pg. 210.

[6] Epstein, P.R.,J. J. Buonocore, K. Eckerle, M. Hendryx, B. M. Stout III, R. Heinberg, R. W. Clapp, B. May, N. L. Reinhart, M. M. Ahern, S. K. Doshi, and L. Glustrom. 2011. Full cost accounting for the life cycle of coal in “Ecological Economics Reviews.” Ann. N.Y. Acad. Sci. 1219: 73–98.

[7]  Renewable Electricity Futures Study . 2012.

[8] NREL. 2016.  Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results .

[9]  Renewable Electricity Futures Study . 2012.

IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation . Prepared by Working Group III of the Intergovernmental Panel on Climate Change. 2011.

UCS. 2009.  Climate 2030: A national blueprint for a clean energy economy .

[10] American Wind Energy Association (AWEA). 2017. AWEA U.S. Wind Industry Annual Market Report: Year Ending 2016. Washington, D.C.: American Wind Energy Association.

 [11] Wiser, Ryan, and Mark Bolinger. 2017. 2016 Wind Technologies Market Report. U.S. Department of Energy.

[12] The Solar Foundation. 2017. National Solar Jobs Census 2016.

[13] Navigant Consulting. 2009.  Job Creation Opportunities in Hydropower .

[14] Geothermal Energy Association. 2010.  Green Jobs through Geothermal Energy .

[15] UCS. 2009.  Clean Power Green Jobs .

[16] Environmental Protection Agency. 2010.  Assessing the Multiple Benefits of Clean Energy: A Resource for States . Chapter 5.

[17] UCS. 2009.  Clean Power Green Jobs .

[18] Deyette, J., and B. Freese. 2010.  Burning coal, burning cash: Ranking the states that import the most coal . Cambridge, MA: Union of Concerned Scientists.

[20] SEIA. 2017. Solar Market Insight Report 2017 Q2.

[21] AWEA. 2017. AWEA U.S. Wind Industry Annual Market Report: Year Ending 2016. Washington, D.C.: American Wind Energy Association.

[22] UCS. 2009.  Clean Power Green Jobs .

[23] UCS. 2011.  A Risky Proposition: The financial hazards of new investments in coal plants .

[24] EIA. 2013.  U.S. Natural Gas Wellhead Price .

[25] Unger, David J. 2012.  Are renewables stormproof? Hurricane Sandy tests solar, wind . The Christian Science Monitor. November 19.

[26] Department of Energy. 2017 U.S. Energy and Employment Report

Related resources

A group of people marching with a sign that reads "Solar power to the people."

The Electric Utility Toolkit

Proximity of power stations to EJ neighborhoods.

Siting for a Cleaner, More Equitable Grid in Massachusetts

Electric power substation

Barriers and Solutions to Building Clean Energy in California

A road winding through wind turbines

Accelerating Clean Energy Ambition

We use cookies to improve your experience. By continuing, you accept our use of cookies. Learn more .

Support our work

Other ways to give.

  • Honor & memory
  • Become a member
  • Give monthly
  • Make a planned gift
  • Gift memberships

Your donation at work

  • News & Updates

The Future of Sustainable Energy

26 June, 2021

Share this on social media:

solar panels (sustainable energy)

Building a sustainable energy future calls for leaps forward in both technology and policy leadership. State governments, major corporations and nations around the world have pledged to address the worsening climate crisis by transitioning to 100% renewable energy over the next few decades. Turning those statements of intention into a reality means undertaking unprecedented efforts and collaboration between disciplines ranging from environmental science to economics.

There are highly promising opportunities for green initiatives that could deliver a better future. However, making a lasting difference will require both new technology and experts who can help governments and organizations transition to more sustainable practices. These leaders will be needed to source renewables efficiently and create environmentally friendly policies, as well as educate consumers and policymakers. To maximize their impact, they must make decisions informed by the most advanced research in clean energy technology, economics, and finance.

Current Trends in Sustainability

The imperative to adopt renewable power solutions on a worldwide scale continues to grow even more urgent as the global average surface temperature hits historic highs and amplifies the danger from extreme weather events . In many regions, the average temperature has already increased by 1.5 degrees , and experts predict that additional warming could drive further heatwaves, droughts, severe hurricanes, wildfires, sea level rises, and even mass extinctions.

In addition, physicians warn that failure to respond to this dire situation could unleash novel diseases : Dr. Rexford Ahima and Dr. Arturo Casadevall of the Johns Hopkins University School of Medicine contributed to an article in the Journal of Clinical Investigation that explained how climate change could affect the human body’s ability to regulate its own temperature while bringing about infectious microbes that adapt to the warmer conditions.

World leaders have accepted that greenhouse gas emissions are a serious problem that must be addressed. Since the Paris Agreement was first adopted in December 2015, 197 nations have signed on to its framework for combating climate change and preventing the global temperature increase from reaching 2 degrees Celsius over preindustrial levels.

Corporate giants made their own commitments to become carbon neutral by funding offsets to reduce greenhouse gases and gradually transitioning into using 100% renewable energy. Google declared its operations carbon neutral in 2017 and has promised that all data centers and campuses will be carbon-free by 2030. Facebook stated that it would eliminate its carbon footprint in 2020 and expand that commitment to all the organization’s suppliers within 10 years. Amazon ordered 100,000 electric delivery vehicles and has promised that its sprawling logistics operations will arrive at net-zero emissions by 2040.

Despite these promising developments, many experts say that nations and businesses are still not changing fast enough. While carbon neutrality pledges are a step in the right direction, they don’t mean that organizations have actually stopped using fossil fuels . And despite the intentions expressed by Paris Agreement signatories, total annual carbon dioxide emissions reached a record high of 33.5 gigatons in 2018, led by China, the U.S., and India.

“The problem is that what we need to achieve is so daunting and taxes our resources so much that we end up with a situation that’s much, much worse than if we had focused our efforts,” Ferraro said.

Recent Breakthroughs in Renewable Power

An environmentally sustainable infrastructure requires innovations in transportation, industry, and utilities. Fortunately, researchers in the private and public sectors are laying the groundwork for an energy transformation that could make the renewable energy of the future more widely accessible and efficient.

Some of the most promising areas that have seen major developments in recent years include:

Driving Electric Vehicles Forward

The technical capabilities of electric cars are taking great strides, and the popularity of these vehicles is also growing among consumers. At Tesla’s September 22, 2020 Battery Day event, Elon Musk announced the company’s plans for new batteries that can be manufactured at a lower cost while offering greater range and increased power output .

The electric car market has seen continuing expansion in Europe even during the COVID-19 pandemic, thanks in large part to generous government subsidies. Market experts once predicted that it would take until 2025 for electric car prices to reach parity with gasoline-powered vehicles. However, growing sales and new battery technology could greatly speed up that timetable .

Cost-Effective Storage For Renewable Power

One of the biggest hurdles in the way of embracing 100% renewable energy has been the need to adjust supply based on demand. Utilities providers need efficient, cost-effective ways of storing solar and wind power so that electricity is available regardless of weather conditions. Most electricity storage currently takes place in pumped-storage hydropower plants, but these facilities require multiple reservoirs at different elevations.

Pumped thermal electricity storage is an inexpensive solution to get around both the geographic limitations of hydropower and high costs of batteries. This approach, which is currently being tested , uses a pump to convert electricity into heat so it can be stored in a material like gravel, water, or molten salts and kept in an insulated tank. A heat engine converts the heat back into electricity as necessary to meet demand.

Unlocking the Potential of Microgrids

Microgrids are another area of research that could prove invaluable to the future of power. These systems can operate autonomously from a traditional electrical grid, delivering electricity to homes and business even when there’s an outage. By using this approach with power sources like solar, wind, or biomass, microgrids can make renewable energy transmission more efficient.

Researchers in public policy and engineering are exploring how microgrids could serve to bring clean electricity to remote, rural areas . One early effort in the Netherlands found that communities could become 90% energy self-sufficient , and solar-powered microgrids have now also been employed in Indian villages. This technology has enormous potential to change the way we access electricity, but lowering costs is an essential step to bring about wider adoption and encourage residents to use the power for purposes beyond basic lighting and cooling.

Advancing the Future of Sustainable Energy

There’s still monumental work to be done in developing the next generation of renewable energy solutions as well as the policy framework to eliminate greenhouse gases from our atmosphere. An analysis from the International Energy Agency found that the technologies currently on the market can only get the world halfway to the reductions needed for net-zero emissions by 2050.

To make it the rest of the way, researchers and policymakers must still explore possibilities such as:

  • Devise and implement large-scale carbon capture systems that store and use carbon dioxide without polluting the atmosphere
  • Establish low-carbon electricity as the primary power source for everyday applications like powering vehicles and heat in buildings
  • Grow the use of bioenergy harnessed from plants and algae for electricity, heat, transportation, and manufacturing
  • Implement zero-emission hydrogen fuel cells as a way to power transportation and utilities

However, even revolutionary technology will not do the job alone. Ambitious goals for renewable energy solutions and long-term cuts in emissions also demand enhanced international cooperation, especially among the biggest polluters. That’s why Jonas Nahm of the Johns Hopkins School of Advanced International Studies has focused much of his research on China’s sustainable energy efforts. He has also argued that the international community should recognize China’s pivotal role in any long-term plans for fighting climate change.

As both the leading emitter of carbon dioxide and the No. 1 producer of wind and solar energy, China is uniquely positioned to determine the future of sustainability initiatives. According to Nahm, the key to making collaboration with China work is understanding the complexities of the Chinese political and economic dynamics. Because of conflicting interests on the national and local levels, the world’s most populous nation continues to power its industries with coal even while President Xi Jinping advocates for fully embracing green alternatives.

China’s fraught position demonstrates that economics and diplomacy could prove to be just as important as technical ingenuity in creating a better future. International cooperation must guide a wide-ranging economic transformation that involves countries and organizations increasing their capacity for producing and storing renewable energy.

It will take strategic thinking and massive investment to realize a vision of a world where utilities produce 100% renewable power while rows of fully electric cars travel on smart highways. To meet the challenge of our generation, it’s more crucial than ever to develop leaders who understand how to apply the latest research to inform policy and who can take charge of globe-spanning sustainable energy initiatives .

About the MA in Sustainable Energy (online) Program at Johns Hopkins SAIS

Created by Johns Hopkins University School of Advanced International Studies faculty with input from industry experts and employers, the Master of Arts in Sustainable Energy (online) program is tailored for the demands of a rapidly evolving sector. As a top-11 global university, Johns Hopkins is uniquely positioned to equip graduates with the skills they need to confront global challenges in the transition to renewable energy.

The MA in Sustainable Energy curriculum is designed to build expertise in finance, economics, and policy. Courses from our faculty of highly experienced researchers and practitioners prepare graduates to excel in professional environments including government agencies, utility companies, energy trade organizations, global energy governance organizations, and more. Students in the Johns Hopkins SAIS benefit from industry connections, an engaged network of more than 230,000 alumni, and high-touch career services.

Request Information

To learn more about the MA in Sustainable Energy (online) and download a brochure , fill out the fields below, or call +1 410-648-2495 or toll-free at +1 888-513-5303 to talk with one of our admissions counselors.

Johns Hopkins University has engaged AllCampus to help support your educational journey. AllCampus will contact you shortly in response to your request for information. About AllCampus . Privacy Policy . You may opt out of receiving communications at any time.

* All Fields are Required. Your Privacy is Protected.

Connect with us

  • Email: [email protected]
  • Local Phone: +1 410-648-2495 (Local)
  • Toll-Free Phone: +1 888-513-5303 (Toll-Free)

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 11 January 2021

Climate change impacts on renewable energy supply

  • David E. H. J. Gernaat   ORCID: orcid.org/0000-0003-4994-1453 1 , 2 ,
  • Harmen Sytze de Boer   ORCID: orcid.org/0000-0001-7376-2581 1 , 2 ,
  • Vassilis Daioglou   ORCID: orcid.org/0000-0002-6028-352X 1 , 2 ,
  • Seleshi G. Yalew   ORCID: orcid.org/0000-0002-7304-6750 2 , 3 , 4 ,
  • Christoph Müller   ORCID: orcid.org/0000-0002-9491-3550 5 &
  • Detlef P. van Vuuren   ORCID: orcid.org/0000-0003-0398-2831 1 , 2  

Nature Climate Change volume  11 ,  pages 119–125 ( 2021 ) Cite this article

21k Accesses

262 Citations

171 Altmetric

Metrics details

  • Climate-change impacts
  • Energy supply and demand

An Author Correction to this article was published on 18 February 2021

This article has been updated

Renewable energy resources, which depend on climate, may be susceptible to future climate change. Here we use climate and integrated assessment models to estimate this effect on key renewables. Future potential and costs are quantified across two warming scenarios for eight technologies: utility-scale and rooftop photovoltaic, concentrated solar power, onshore and offshore wind energy, first-generation and lignocellulosic bioenergy, and hydropower. The generated cost–supply curves are then used to estimate energy system impacts. In a baseline warming scenario, the largest impact is increased availability of bioenergy, though this depends on the strength of CO 2 fertilization. Impacts on hydropower and wind energy are uncertain, with declines in some regions and increases in others, and impacts on solar power are minor. In a future mitigation scenario, these impacts are smaller, but the energy system response is similar to that in the baseline scenario given a larger reliance of the mitigation scenario on renewables.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

$209.00 per year

only $17.42 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

what does renewable energy mean essay

Similar content being viewed by others

what does renewable energy mean essay

Impact of declining renewable energy costs on electrification in low-emission scenarios

what does renewable energy mean essay

Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies

what does renewable energy mean essay

Climate change extremes and photovoltaic power output

Data availability.

Source data are provided with this paper.

Code availability

The code that produced the renewable energy potentials and cost curves can be found at https://github.com/davidgernaat . PBL holds the proprietary rights to the IMAGE computer code; extensive documentation is provided ( https://models.pbl.nl/image ).

Change history

19 february 2021.

A Correction to this paper has been published: https://doi.org/10.1038/s41558-021-01005-w

IEA. World Energy Outlook (International Energy Agency, 2017).

Ram, M., et al. Global Energy System based on 100% Renewable Energy – Power, Heat, Transport and Desalination Sectors (Lappeenranta University of Technology and Energy Watch Group, 2019).

Jacobson, M. Z., Delucchi, M. A., Cameron, M. A. & Mathiesen, B. V. J. R. E. Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes. Renew. Energy 123 , 236–248 (2018).

Article   Google Scholar  

Teske, S. Achieving the Paris Climate Agreement Goals (Springer, 2019).

Bogdanov, D. et al. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 10 , 1077 (2019).

Hansen, K., Breyer, C. & Lund, H. J. E. Status and perspectives on 100% renewable energy systems. Energy 175 , 471–480 (2019).

Turner, S. W. D., Hejazi, M., Kim, S. H., Clarke, L. & Edmonds, J. Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy 141 , 2081–2090 (2017).

van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6 , 375–380 (2016).

Gernaat, D. E. H. J., Bogaart, P. W., van Vuuren, D. P., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2 , 821–828 (2017).

Schaeffer, R. et al. Energy sector vulnerability to climate change: a review. Energy 38 , 1–12 (2012).

Mideksa, T. K. & Kallbekken, S. The impact of climate change on the electricity market: a review. Energy Policy 38 , 3579–3585 (2010).

Ciscar, J.-C. & Dowling, P. Integrated assessment of climate impacts and adaptation in the energy sector. Energy Econ. 46 , 531–538 (2014).

Chandramowli, S. N. & Felder, F. A. Impact of climate change on electricity systems and markets—a review of models and forecasts. Sustain. Energy Technol. Assess. 5 , 62–74 (2014).

Google Scholar  

Pryor, S. C. & Barthelmie, R. J. Climate change impacts on wind energy: a review. Renew. Sustain. Energy Rev. 14 , 430–437 (2010).

CCSP. Effects of Climate Change on Energy Production and Use in the United States – Synthesis and Assessment Product 4.5 (US Climate Change Program, 2008).

Li, D. H. W., Yang, L. & Lam, J. C. Impact of climate change on energy use in the built environment in different climate zones—a review. Energy 42 , 103–112 (2012).

Emodi, N. V., Chaiechi, T. & Rabiul Alam Beg, A. The impact of climate variability and change on the energy system: A systematic scoping review. Sci. Total Environ. 676 , 545–563 (2019).

Article   CAS   Google Scholar  

Yalew, S. G. et al. Impacts of climate change on energy systems in global and regional scenarios. Nat. Energy 5 , 794–802 (2020).

Hoogwijk, M. M. On the global and regional potential of renewable energy sources (Faculteit Scheikunde, Universiteit Utrecht, 2004).

Köberle, A. C., Gernaat, D. E. H. J. & van Vuuren, D. P. Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation. Energy 89 , 739–756 (2015).

Gernaat, D. E., de Boer, H.-S., Dammeier, L. C. & van Vuuren, D. P. The role of residential rooftop photovoltaic in long-term energy and climate scenarios. Appl. Energy 279 , 115705 (2020).

Daioglou, V., Doelman, J. C., Wicke, B., Faaij, A. & van Vuuren, D. P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Change 54 , 88–101 (2019).

Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111 , 3228–3232 (2014).

Jerez, S. et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 6 , 10014 (2015).

Crook, J. A., Jones, L. A., Forster, P. M. & Crook, R. Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy Environ. Sci. 4 , 3101–3109 (2011).

ORNL. New Stream-reach Development: A Comprehensive Assessment of Hydropower Energy Potential in the United States (Oak Ridge National Laboratory, 2014).

Haberl, H. et al. Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass Bioenergy 35 , 4753–4769 (2011).

IAMC documentation contributors. IAMC wiki http://iamcdocumentation.eu/ (2018).

van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42 , 237–250 (2017).

Doelman, J. C. et al. Exploring SSP land-use dynamics using the IMAGE model: regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change 48 , 119–135 (2018).

van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8 , 391–397 (2018).

Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2012).

IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W. & Sitch, S. Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 286 , 249–270 (2004).

Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13 , 679–706 (2007).

Beringer, T., Lucht, W. & Schaphoff, S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3 , 299–312 (2011).

Gernaat, D. Scripts used to generate results presented herein github.com/davidgernaat/Solar_CostCurves Version v1.0.0 (Zenodo, 2020); https://doi.org/10.5281/zenodo.4059441

Gernaat, D. E. H. J., van Vuuren, D. P., van Vliet, J., Sullivan, P. & Arent, D. J. Global long-term cost dynamics of offshore wind electricity generation. Energy 76 , 663–672 (2014).

Gernaat, D. Scripts used to generate results presented herein github.com/davidgernaat/Wind_CostCurves Version v1.0.0 (Zenodo, 2020); https://doi.org/10.5281/zenodo.4059451

Daioglou, V. & Gernaat, D. E. Scripts used to generate results presented herein github.com/davidgernaat/Bio_CostCurves Version v1.0.0 (Zenodo, 2020); https://doi.org/10.5281/zenodo.4059455

Gernaat, D. Scripts used to generate results presented herein github.com/davidgernaat/Hydro_CostCurves Version v1.0.1 (Zenodo, 2020); https://doi.org/10.5281/zenodo.4059487

Gernaat, D. Scripts used to generate results presented herein github.com/davidgernaat/Hydro_ClimateImpacts Version v1.0.0 (Zenodo, 2020); https://doi.org/10.5281/zenodo.4059453

Fraunhofer Institute. Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems, 2018).

IRENA. Renewable Power Generation Costs in 2017 (International Renewable Energy Agency, 2018).

Daioglou, V., van Ruijven, B. J. & van Vuuren, D. P. Model projections for household energy use in developing countries. Energy 37 , 601–615 (2012).

Gagnon, P., Margolis, R., Melius, J., Phillips, C. & Elmore, R. Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed Assessment (National Renewable Energy Laboratory, 2016).

Radziemska, E. The effect of temperature on the power drop in crystalline silicon solar cells. Renew. Energy 28 , 1–12 (2003).

Tonui, J. K. & Tripanagnostopoulos, Y. Performance improvement of PV/T solar collectors with natural air flow operation. Sol. Energy 82 , 1–12 (2008).

Dudley, V. Test Results for Industrial Solar Technology Parabolic Trough Solar Collector (Sandia National Laboratory, 1995).

van Vuuren, D. P. Energy Systems and Climate Policy — Long-Term Scenarios for an Uncertain Future (Utrecht University, 2007).

IEA. World Energy Outlook (International Energy Agency, 2019).

IRENA. Renewable Capacity Statistics (International Renewable Energy Agency, 2019).

Download references

Acknowledgements

A. Righart is acknowledged for editing part of the manuscript. The research leading to these results has received funding from EU’s Horizon 2020 Navigate (no. 821124). We thank the JPI Climate initiative and participating grant institutes for funding the ISIpedia project.

Author information

Authors and affiliations.

PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands

David E. H. J. Gernaat, Harmen Sytze de Boer, Vassilis Daioglou & Detlef P. van Vuuren

Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands

David E. H. J. Gernaat, Harmen Sytze de Boer, Vassilis Daioglou, Seleshi G. Yalew & Detlef P. van Vuuren

Faculty of Technology, Policy, and Management, Technical University of Delft, Delft, The Netherlands

Seleshi G. Yalew

Wageningen Environmental Research, Wageningen University and Research, Wageningen, The Netherlands

Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany

Christoph Müller

You can also search for this author in PubMed   Google Scholar

Contributions

D.E.H.J.G. and D.P.v.V. developed the idea. D.E.H.J.G. designed the experiments and wrote the manuscript. S.G.Y. managed all climate input data. C.M. conducted model simulations and provided bioenergy yield data. V.D. calculated the bioenergy potential. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to David E. H. J. Gernaat .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Andre Lucena, Hannes Weigt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended data fig. 1 gcm model mean for historical 30-year (1970–2000) average climate data used as input to calculate energy potentials..

a , Solar irradiance (kWh m −2 day −1 ) (global horizontal). b , Temperature (°C). c , Wind speeds (m s −1 ). d , Runoff (kg m −2 s −1 ). e , Sugar cane and maize yields (crop selected with highest yield per cell) (%). f , Lignocellulosic crop yields (switchgrass and Miscanthus, or trees) (crop selected with highest yield per cell) (%).

Source data

Extended data fig. 2 gcm model mean change of climate patterns and yields in rcp2.6..

a , solar irradiance (%) (global horizontal). b , temperature (%). (%). c , Wind speed (%). d , Runoff (%). e , Sugar cane and maize yields with CO 2 fertilisation (crop selected with highest yield per cell) (%). f , Lignocellulosic crop yields (switchgrass and Miscanthus, or trees) with CO 2 fertilisation (crop selected with highest yield per cell) (%).

Extended Data Fig. 3 Schematic illustration showing how climatic parameters can change the design discharge and load factors of a hydropower system.

a , The purple line shows a typical historical discharge pattern at a hydropower location with a wet and dry season. The yellow line shows how new climate-change-induced precipitation patterns influence the discharge pattern, in this case with a wetter wet season and a prolonged dry season. Ordering the yellow line data into a flow duration curve, as illustrated in b , changes the design flow and design load factors. b , The flow duration curve with the new discharge pattern. The new discharge pattern (yellow line in a ) forms a new flow duration curve with new design flow (defined as the fourth highest discharge month) and new design load factor (note that the months have shifted, too). The grey lines represent the old climate, the black lines illustrate the new.

Extended Data Fig. 4 Multi-model mean change of technical potential in RCP2.6.

a , Utility-scale PV and rooftop PV. b , Concentrated Solar Power (CSP). c , Onshore and offshore wind energy. d , Hydropower. e , First-generation bioenergy with CO 2 fertilisation. f , Lignocellulosic bioenergy with CO 2 fertilisation.

Extended Data Fig. 5 The global mean changes in technical potential per renewable technology under RCP2.6.

a, Absolute change in technical potential compared to the historical situation (EJ y −1 ). b, Relative change in technical potential compared to the historical situation (%).

Extended Data Fig. 6 Shared Socioeconomic Pathways (SSPs) assumptions for IMAGE.

a , Global population (million) for SSP1-3. b , Economic development for SSP1-3 (GDP trillion USD 2005 y −1 ). c , Global final energy demand per sector for SSP1-3. d , Global primary energy use per energy carrier for SSP2 and SSP2-RCP26.

Extended Data Fig. 7 The direct and indirect effect of climate impacts on cumulative primary energy in SSP2-RCP60-CI without CO 2 fertilisation (2070–2100).

The top row shows the combined ( a ), direct ( b ) and indirect ( c ) mean change between a run with and without climate impacts on renewables in cumulative energy production (2070–2100) per technology group (%). The bottom row shows the uncertainty using the combined (d), direct (e) and indirect (f) absolute and relative standard deviation of the data shown in the top row.

Extended Data Fig. 8 The direct and indirect effect of climate impacts on cumulative primary energy in SSP2-RCP60-CI with CO 2 fertilisation (2070–2100).

The top row shows the combined ( a ), direct ( b ) and indirect ( c ) mean change between a run with and without climate impacts climate impact in cumulative energy production (2070–2100) per technology group (%). The bottom row shows the uncertainty using the combined ( d ), direct ( e ) and indirect ( f ) absolute and relative standard deviation of the data shown in the top row.

Extended Data Fig. 9 The combined relative effect of SSP2-RCP60-HRES climate impacts on cumulative primary energy supply per IMAGE model region.

a , The mean change (over the GCMs) of the cumulative primary energy supply in the period 2070–2100 per technology. b , The absolute (shown in orange gradient) and relative (shown in grey dot size) standard deviation of the data shown in a.

Extended Data Fig. 10 The combined relative effect of SSP2-RCP26 climate impacts on cumulative primary energy supply per IMAGE model region.

Supplementary information, supplementary information.

Supplementary Texts 1–3, Tables 1–5 and Figs. 1–12.

Source Data Fig. 1

Model mean (GFLD-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5) historical (1970–2000), RCP2.6 (2070–2100) and RCP6.0 (2070–2100) climate input data: Solar irradiance (kWh m −2 per day) (global horizontal), temperature (°C), wind speed (m s −1 ), runoff (kg m −2 s −1 ), sugar cane and maize yields (t ha −1 yr −1 ) and lignocellulosic crop yields (switchgrass and Miscanthus , or trees) (t ha −1 yr −1 ).

Source Data Fig. 2

Technical potential per GCM for the historical (1970–2000) period, and the future RCP2.6 (2070–2100) and RCP6.0 (2070–2100) periods: utility-scale PV and rooftop PV, concentrated solar power (CSP), pnshore and offshore wind energy, hydropower, first-generation bioenergy, and lignocellulosic bioenergy with and without CO 2 fertilization.

Source Data Fig. 3

Technical potential per region, GCM and RCP for: utility-scale PV and rooftop PV, concentrated solar power (CSP), onshore and offshore wind energy, hydropower, first-generation bioenergy, and lignocellulosic bioenergy with and without CO 2 fertilization.

Source Data Fig. 4

Primary energy supply (2071–2100) based on historical, RCP2.6 and RCP6.0 climate with and without CO 2 fertilization (PJ).

Source Data Extended Data Fig. 1

Model mean (GFLD-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5) historical (1970–2000), RCP2.6 (2070–2100) and RCP6.0 (2070–2100) climate input data: solar irradiance (kWh m −2 per day) (global horizontal), temperature (°C), wind speed (m s −1 ), runoff (kg m −2 s −1 ), sugar cane and maize yields (t ha −1 yr −1 ) and lignocellulosic crop yields (switchgrass and Miscanthus , or trees) (t ha −1 yr −1 ).

Source Data Extended Data Fig. 2

Source data extended data fig. 4, source data extended data fig. 5, source data extended data fig. 7, source data extended data fig. 8, source data extended data fig. 9, source data extended data fig. 10, rights and permissions.

Reprints and permissions

About this article

Cite this article.

Gernaat, D.E.H.J., de Boer, H.S., Daioglou, V. et al. Climate change impacts on renewable energy supply. Nat. Clim. Chang. 11 , 119–125 (2021). https://doi.org/10.1038/s41558-020-00949-9

Download citation

Received : 13 May 2019

Accepted : 15 October 2020

Published : 11 January 2021

Issue Date : February 2021

DOI : https://doi.org/10.1038/s41558-020-00949-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Climate change impacts on the extreme power shortage events of wind-solar supply systems worldwide during 1980–2022.

  • Dongsheng Zheng
  • Qiang Zhang

Nature Communications (2024)

Maximizing solar power generation through conventional and digital MPPT techniques: a comparative analysis

  • Shahjahan Alias Sarang
  • Muhammad Amir Raza
  • Andika Aji Wijaya

Scientific Reports (2024)

Spatiotemporal management of solar, wind and hydropower across continental Europe

  • Anders Wörman
  • Ilias Pechlivanidis
  • Cintia Bertacchi Uvo

Communications Engineering (2024)

Climate change will impact the value and optimal adoption of residential rooftop solar

  • Michael T. Craig

Nature Climate Change (2024)

Hydropower expansion in eco-sensitive river basins under global energy-economic change

  • A. F. M. Kamal Chowdhury
  • Thomas Wild
  • Jonathan Lamontagne

Nature Sustainability (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

what does renewable energy mean essay

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

Five ways to jump-start the renewable energy transition now

Four key climate change indicators – greenhouse gas concentrations, sea level rise, ocean heat and ocean acidification – set new records in 2021. This is yet another clear sign that human activities are causing planetary-scale changes on land, in the ocean, and in the atmosphere, with dramatic and long-lasting ramifications.

The key to tackling this crisis is to end our reliance on energy generated from fossil fuels - the main cause of climate change. 

“The good news is that the lifeline is right in front of us,” says UN Secretary-General António Guterres, stressing that renewable energy technologies like wind and solar already exist today, and in most cases, are cheaper than coal and other fossil fuels.  We now need to put them to work, urgently, at scale and speed.

The Secretary-General outlines five critical actions the world needs to prioritize now to transform our energy systems and speed up the shift to renewable energy - “because without renewables, there can be no future.”

x

Make renewable energy technology a global public good

For renewable energy technology to be a global public good - meaning available to all , and not just to the wealthy - it will be essential to remove roadblocks to knowledge sharing and technological transfer, including intellectual property rights barriers.

Essential technologies such as battery storage systems allow energy from renewables, like solar and wind, to be stored and released when people, communities and businesses need power. They help to increase energy system flexibility due to their unique capability to quickly absorb, hold and re-inject electricity, says the International Renewable Energy Agency.

Moreover, when paired with renewable generators, battery storage technologies can provide reliable and cheaper electricity in isolated grids and to off-grid communities in remote locations. 

x

Improve global access to components and raw materials

A robust supply of renewable energy components and raw materials is essential. More widespread access to all the key components and materials - from the minerals needed to produce wind turbines and electricity networks, to electric vehicles - will be key.

It will take significant international coordination to expand and diversify manufacturing capacity globally. Moreover, greater investments are needed to ensure a just transition - including in people’s skills training, research and innovation, and incentives to build supply chains through sustainable practices that protect ecosystems and cultures.

x

Level the playing field for renewable energy technologies

While global cooperation and coordination is critical, domestic policy frameworks must urgently be reformed to streamline and fast-track renewable energy projects and catalyze private sector investments.

Technology, capacity and funds for renewable energy transition exist, but there needs to be policies and processes in place to reduce market risk and enable and incentivize investments - including through streamlining the planning, permitting and regulatory processes, and preventing bottlenecks and red tape. This could include allocating space to enable large-scale build-outs in special Renewable Energy Zones .

Nationally Determined Contributions , countries’ individual climate action plans to cut emissions and adapt to climate impacts, must set 1.5C aligned renewable energy targets - and the share of renewables in global electricity generation must increase from today’s 29 percent to 60 percent by 2030 .

Clear and robust policies, transparent processes, public support and the availability of modern energy transmission systems are key to accelerating the uptake of wind and solar energy technologies.

x

Shift energy subsidies from fossil fuels to renewable energy

Fossil-fuel subsidies are one of the biggest financial barriers hampering the world’s shift to renewable energy. The International Monetary Fund (IMF) says that about $5.9 trillion was spent on subsidizing the fossil fuel industry in 2020 alone, including through explicit subsidies, tax breaks, and health and environmental damages that were not priced into the cost of fossil fuels. That’s roughly $11 billion a day.

Fossil fuel subsidies are both inefficient and inequitable . Across developing countries, about half of the public resources spent to support fossil fuel consumption benefits the richest 20 percent of the population, according to the IMF.

Shifting subsidies from fossil fuels to renewable energy not only cuts emissions, it also contributes to the sustainable economic growth, job creation, better public health and more equality, particularly for the poor and most vulnerable communities around the world.

x

Triple investments in renewables

At least $4 trillion a year needs to be invested in renewable energy until 2030 – including investments in technology and infrastructure – to allow us to reach net-zero emissions by 2050.

Not nearly as high as yearly fossil fuel subsidies, this investment will pay off. The reduction of pollution and climate impact alone could save the world up to $4.2 trillion per year by 2030.

The funding is there - what is needed is commitment and accountability, particularly from the global financial systems, including multilateral development banks and other public and private financial institutions, that must align their lending portfolios towards accelerating the renewable energy transition.

In the Secretary-General’s words, “renewables are the only path to real energy security, stable power prices and sustainable employment opportunities.”

what does renewable energy mean essay

Renewable energy – powering a safer future

What is renewable energy and why does it matter? Learn more about why the shift to renewables is our only hope for a brighter and safer world.

what does renewable energy mean essay

What is renewable energy?

Derived from natural resources that are abundant and continuously replenished, renewable energy is key to a safer, cleaner, and sustainable world. Explore common sources of renewable energy here.

what does renewable energy mean essay

Climate issues

Learn more about how climate change impacts are felt across different sectors and ecosystems, and why we must nurture rather than exploit nature’s resources to advance climate action.

Facts and figures

  • What is climate change?
  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips
  • News, Stories & Speeches
  • Get Involved
  • Structure and leadership
  • Committee of Permanent Representatives
  • UN Environment Assembly
  • Funding and partnerships
  • Policies and strategies
  • Evaluation Office
  • Secretariats and Conventions
  • Asia and the Pacific
  • Latin America and the Caribbean
  • New York Office
  • North America
  • Climate action
  • Nature action
  • Chemicals and pollution action
  • Digital Transformations
  • Disasters and conflicts
  • Environment under review
  • Environmental law and governance
  • Extractives
  • Fresh Water
  • Green economy
  • Ocean, seas and coasts
  • Resource efficiency
  • Sustainable Development Goals
  • Youth, education and environment
  • Publications & data

what does renewable energy mean essay

GOAL 7: Affordable and clean energy

Learn more about SDG 7

Ensure access to affordable, reliable, sustainable and modern energy for all:

SDG-Goal7

Lack of access to energy supplies and transformation systems is a constraint to human and economic development. The environment provides a series of renewable and non-renewable energy sources i.e. solar, wind, hydropower, geothermal, biofuels, natural gas, coal, petroleum, uranium. 

Increased use of fossil fuels without actions to mitigate greenhouse gases will have global climate change implications. Energy efficiency and increase use of renewables contribute to climate change mitigation and disaster risk reduction. Maintaining and protecting ecosystems allow using and further developing hydropower sources of electricity and bioenergy.

  • 3 billion people rely on wood, coal, charcoal or animal waste for cooking and heating
  • Energy is the dominant contributor to climate change, accounting for around 60 per cent of total global greenhouse gas emissions
  • Since 1990, global emissions of CO2 have increased by more than 46 per cent.
  • Hydropower is the largest single renewable electricity source today, providing 16% of world electricity at competitive prices. It dominates the electricity mix in several countries, developed, emerging or developing.
  • Bioenergy is the single largest renewable energy source today, providing 10% of world primary energy supply.

Targets linked to the environment:

  • Target 7.1: By 2030, ensure universal access to affordable, reliable and modern energy services
  • Target 7.2: By 2030, increase substantially the share of renewable energy in the global energy mix
  • Target 7.3: By 2030, double the global rate of improvement in energy efficiency
  • Target 7.a: By 2030, enhance international cooperation to facilitate access to clean energy research and technology, including renewable energy, energy efficiency and advanced and cleaner fossil-fuel technology, and promote investment in energy infrastructure and clean energy technology
  • Target 7.b: By 2030, expand infrastructure and upgrade technology for supplying modern and sustainable energy services for all in developing countries, in particular least developed countries, small island developing States, and land-locked developing countries, in accordance with their respective programmes of support

To learn more about UN Environment Programme's contributions to SDG 7:

  • SDG Issue Brief on  Ensuring Access to Affordable, Reliable, Sustainable and Modern Energy for All

Related Sustainable Development Goals

what does renewable energy mean essay

© 2024 UNEP Terms of Use Privacy   Report Project Concern Report Scam Contact Us

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

hydropower

hydroelectric power

Our editors will review what you’ve submitted and determine whether to revise the article.

  • National Geographic - Hydroelectric Energy
  • Energy Education - Hydropower
  • Energy.gov - Hydropower Basics
  • U.S. Energy Information Administration - Hydropower explained

hydropower

hydroelectric power , electricity produced from generators driven by turbines that convert the potential energy of falling or fast-flowing water into mechanical energy . In the early 21st century, hydroelectric power was the most widely utilized form of renewable energy ; in 2019 it accounted for more than 18 percent of the world’s total power generation capacity.

  • Geothermal power
  • Hydroelectric power
  • Solar power
  • Tidal power

what does renewable energy mean essay

In the generation of hydroelectric power, water is collected or stored at a higher elevation and led downward through large pipes or tunnels (penstocks) to a lower elevation; the difference in these two elevations is known as the head . At the end of its passage down the pipes, the falling water causes turbines to rotate. The turbines in turn drive generators , which convert the turbines’ mechanical energy into electricity. Transformers are then used to convert the alternating voltage suitable for the generators to a higher voltage suitable for long-distance transmission. The structure that houses the turbines and generators, and into which the pipes or penstocks feed, is called the powerhouse.

what does renewable energy mean essay

Hydroelectric power plants are usually located in dams that impound rivers , thereby raising the level of the water behind the dam and creating as high a head as is feasible . The potential power that can be derived from a volume of water is directly proportional to the working head, so that a high-head installation requires a smaller volume of water than a low-head installation to produce an equal amount of power. In some dams, the powerhouse is constructed on one flank of the dam, part of the dam being used as a spillway over which excess water is discharged in times of flood. Where the river flows in a narrow steep gorge, the powerhouse may be located within the dam itself.

In most communities the demand for electric power varies considerably at different times of the day. To even the load on the generators, pumped-storage hydroelectric stations are occasionally built. During off-peak periods, some of the extra power available is supplied to the generator operating as a motor, driving the turbine to pump water into an elevated reservoir . Then, during periods of peak demand, the water is allowed to flow down again through the turbine to generate electrical energy . Pumped-storage systems are efficient and provide an economical way to meet peak loads.

what does renewable energy mean essay

In certain coastal areas, such as the Rance River estuary in Brittany , France , hydroelectric power plants have been constructed to take advantage of the rise and fall of tides . When the tide comes in, water is impounded in one or more reservoirs . At low tide, the water in these reservoirs is released to drive hydraulic turbines and their coupled electric generators ( see tidal power ).

what does renewable energy mean essay

Falling water is one of the three principal sources of energy used to generate electric power, the other two being fossil fuels and nuclear fuels . Hydroelectric power has certain advantages over these other sources. It is continually renewable owing to the recurring nature of the hydrologic cycle . It does not produce thermal pollution . (However, some dams can produce methane from the decomposition of vegetation under water.) Hydroelectric power is a preferred energy source in areas with heavy rainfall and with hilly or mountainous regions that are in reasonably close proximity to the main load centers. Some large hydro sites that are remote from load centers may be sufficiently attractive to justify the long high-voltage transmission lines. Small local hydro sites may also be economical, particularly if they combine storage of water during light loads with electricity production during peaks. Many of the negative environmental impacts of hydroelectric power come from the associated dams, which can interrupt the migrations of spawning fish , such as salmon , and permanently submerge or displace ecological and human communities as the reservoirs fill. In addition, hydroelectric dams are vulnerable to water scarcity . In August 2021 Oroville Dam , one of the largest hydroelectric power plants in California, was forced to shut down due to historic drought conditions in the region.

Oxford Martin School logo

Why did renewables become so cheap so fast?

In most places power from new renewables is now cheaper than new fossil fuels..

For the world to transition to low-carbon electricity, energy from these sources needs to be cheaper than electricity from fossil fuels.

Fossil fuels dominate the global power supply because until very recently electricity from fossil fuels was far cheaper than electricity from renewables. This has dramatically changed within the last decade. In most places in the world power from new renewables is now cheaper than power from new fossil fuels.

The fundamental driver of this change is that renewable energy technologies follow learning curves, which means that with each doubling of the cumulative installed capacity their price declines by the same fraction. The price of electricity from fossil fuel sources however does not follow learning curves so that we should expect that the price difference between expensive fossil fuels and cheap renewables will become even larger in the future.

This is an argument for large investments into scaling up renewable technologies now. Increasing installed capacity has the extremely important positive consequence that it drives down the price and thereby makes renewable energy sources more attractive, earlier. In the coming years most of the additional demand for new electricity will come from low- and middle-income countries; we have the opportunity now to ensure that much of the new power supply will be provided by low-carbon sources.

Falling energy prices also mean that the real income of people rises. Investments to scale up energy production with cheap electric power from renewable sources are therefore not only an opportunity to reduce emissions, but also to achieve more economic growth – particularly for the poorest places in the world.

The world’s energy supply today is neither safe nor sustainable. What can we do to change this and make progress against this twin-problem of the status quo?

To see the way forward we have to understand the present. Today fossil fuels – coal, oil, and gas – account for 79% of the world’s energy production and as the chart below shows they have very large negative side effects. The bars to the left show the number of deaths and the bars on the right compare the greenhouse gas emissions. My colleague Hannah Ritchie explains the data in this chart in detail in her post ‘What are the safest sources of energy? ’.

This makes two things very clear. As the burning of fossil fuels accounts for 87% of the world’s CO 2 emissions, a world run on fossil fuels is not sustainable, they endanger the lives and livelihoods of future generations and the biosphere around us. And the very same energy sources lead to the deaths of many people right now – the air pollution from burning fossil fuels kills 3.6 million people in countries around the world every year; this is 6-times the annual death toll of all murders, war deaths, and terrorist attacks combined. 1

It is important to keep in mind that electric energy is only one of several forms of energy that humanity relies on; the transition to low-carbon energy is therefore a bigger task than the transition to low-carbon electricity. 2

What the chart makes clear is that the alternatives to fossil fuels – renewable energy sources and nuclear power – are orders of magnitude safer and cleaner than fossil fuels.

Why then is the world relying on fossil fuels?

Fossil fuels dominate the world’s energy supply because in the past they were cheaper than all other sources of energy. If we want the world to be powered by safer and cleaner alternatives, we have to make sure that those alternatives are cheaper than fossil fuels.

legacy-wordpress-upload

The price of electricity from the long-standing sources: fossil fuels and nuclear power

The world’s electricity supply is dominated by fossil fuels. Coal is by far the biggest source, supplying 37% of electricity; gas is second and supplies 24%. Burning these fossil fuels for electricity and heat is the largest single source of global greenhouse gases, causing 30% of global emissions. 3

The chart here shows how the electricity prices from the long-standing sources of power – fossil fuels and nuclear – have changed over the last decade. The data is published by Lazard. 4

To make comparisons on a consistent basis, energy prices are expressed in ‘levelized costs of energy’ (LCOE). You can think of LCOE from the perspective of someone who is considering building a power plant. If you are in that situation then the LCOE is the answer to the following question: What would be the minimum price that my customers would need to pay so that the power plant would break even over its lifetime?

LCOE captures the cost of building the power plant itself as well as the ongoing costs for fuel and operating the power plant over its lifetime. It however does not take into account costs and benefits at an energy system level: such as price reductions due to low-carbon generation and higher systemic costs when storage or backup power is needed due to the variable output of renewable sources – we will return to the aspect of storage costs later. 5

This makes clear that it is a very crucial metric. If you as the power plant builder pick an energy source that has an LCOE that is higher than the price of the alternatives you will struggle to find someone who is willing to buy your expensive electricity.

What you see in the chart is that within the last 10 years the price of electricity from nuclear became more expensive, gas power became less expensive, and the price of coal power – the world’s largest source of electricity – stayed almost the same. Later we will see what is behind these price changes.

legacy-wordpress-upload

The price decline of electricity from renewable sources

If we want to transition to renewables, it is their price relative to fossil fuels that matters. 6 This chart here is identical to the previous one, but now also includes the price of electricity from renewable sources.

All of these prices – renewables as well as fossil fuels – are without subsidies.

Look at the change in solar and wind energy in recent years. Just 10 years ago it wasn’t even close: it was much cheaper to build a new power plant that burns fossil fuels than to build a new solar photovoltaic (PV) or wind plant. Wind was 22%, and solar 223% more expensive than coal.

But in the last few years this has changed entirely.

Electricity from utility-scale solar photovoltaics cost $359 per MWh in 2009. Within just one decade the price declined by 89% and the relative price flipped: the electricity price that you need to charge to break even with the new average coal plant is now much higher than what you can offer your customers when you build a wind or solar plant.

It’s hard to overstate what a rare achievement these rapid price changes represent. Imagine if some other good had fallen in price as rapidly as renewable electricity: Imagine you’d found a great place to live back in 2009 and at the time you thought it’d be worth paying $3590 in rent for it. If housing had then seen the price decline that we’ve seen for solar it would have meant that by 2019 you’d pay just $400 for the same place. 7

I emphasized that it is the relative price that matters for the decision of which type of power plants are built. Did the price decline of renewables matter for the decisions of actual power plant builders in recent years? Yes it did. As you see in our Energy Explorer , wind and solar energy were scaled up rapidly in recent years; in 2019 renewables accounted for 72% of all new capacity additions worldwide. 8

legacy-wordpress-upload

Why is this happening? Learning curves and the price of solar photovoltaics modules

How can this be? Why do we see the cost of renewable energy decline so very fast?

The costs of fossil fuels and nuclear power depend largely on two factors, the price of the fuel that they burn and the power plant’s operating costs. 9 Renewable energy plants are different: their operating costs are comparatively low and they don’t have to pay for any fuel; their fuel doesn’t have to be dug out of the ground, their fuel – the wind and sunlight – comes to them. What is determining the cost of renewable power is the cost of the power plant, the cost of the technology itself .

To understand why solar power got so cheap we have to understand why solar technology got cheap. For this, let’s go back in time for a moment.

The first price point for usable solar technology that I can find is from the year 1956. At that time the cost of just one watt of solar photovoltaic capacity was $1,865 (adjusted for inflation and in 2019 prices). 10 One watt isn’t much. Today one single solar panel of the type homeowners put on their roofs produces around 320 watts of power. 11 This means that at the price of 1956 one of today’s solar modules would cost $596,800. 12

At this price – more than half a million dollars for a single panel – solar was obviously hopelessly uncompetitive with fossil fuels.

Then why didn’t the history of solar technology end right there?

There are two reasons why instead of dying, solar has developed to become the world’s cheapest source of electricity today.

Even at the very high price, solar technology did find a use. It is a technology that literally came from outer space. The very first practical use of solar power was to supply electricity for a satellite, the Vanguard I satellite in 1958. It was in this high-tech niche where someone was willing to pay for solar technology even at that extremely high price.

The second important reason is that the price of solar modules declined when more of them were produced. More production gave us the chance to learn how to improve the production process: a classic case of learning-by-doing. The initial demand in the high-tech sector meant that some solar technology was produced and this initial production started a virtuous cycle of increasing demand and falling prices.

The visualization shows this mechanism. To satisfy increasing demand more solar modules get deployed, which leads to falling prices; at those lower prices the technology becomes cost-effective in new applications, which in turn means that demand increases. In this positive feedback loop solar technology has powered itself forward ever since its early days in outer space.

Circle showing a cycle of deploying more of a technology causes its prices to fall, which increases demand, and more is deployed.

A short history of solar: From outer space to the cheapest source of energy on earth

During the 1960s the main application of solar remained in satellites. But the virtuous cycle was set in motion and this meant that slowly, but steadily, the price of solar modules declined.

With falling prices the technology came down from space to our planet. The first terrestrial applications in the 1970s were in remote locations where the connection to the wider electrical grid is costly – lighthouses, remote railroad crossings, or the refrigeration of vaccines . 13

The data point for 1976 in the top left corner of the chart shows the state of solar technology at the time.

Back then the price of a solar module, adjusted for inflation, was US-$106 per watt. And as you see on the bottom axis, global installed solar PV capacity was only 0.3 megawatts. Relative to 1956 this was already a price decline of 94%, but relative to the world’s energy demand solar was still very expensive and therefore very small: a capacity of 0.3 megawatts is enough to provide electricity for about 20 people per year. 14

The time-series in the chart shows how the price of solar modules changed from then until now. The so-called ‘learning effect’ in solar technology is incredibly strong: while the installed capacity increased exponentially, the price of solar modules declinedexponentially . The fact that both metrics changed exponentially can be nicely seen in this chart because both axes are logarithmic. On a logarithmic axis a measure that declines exponentially follows a straight line .

This straight line that represents the relationship between experience – measured as the cumulative installed capacity of the technology – and the price of that technology is called the learning curve of that technology. The relative price decline associated with each doubling of experience is the learning rate of a technology.

This is the virtuous cycle in action. More deployment means falling prices, which means more deployment. With solar technology it was for a long time the case that its increased deployment was made possible through government subsidies and mandates – arguably the most positive effect of these policies is that they too drove down the price of these new technologies along the learning curve. Paying for renewables at a high price point earlier allows everyone to pay less for them later.

That more production leads to falling prices is not surprising – such ‘economies of scale’ are found in many corners of manufacturing. If you are already making one pizza, it isn’t that much extra work to make a second one.

What is truly mind blowing about solar technology is how very strong this effect is: For more than four decades each doubling of global cumulative capacity was associated with the same relative decline in prices.

The advances that made this price reduction possible span the entire production process of solar modules: 15 larger, more efficient factories are producing the modules; R&D efforts increase; technological advances increase the efficiency of the panels; engineering advances improve the production processes of the silicon ingots and wafers; the mining and processing of the raw materials increases in scale and becomes cheaper; operational experience accumulates; the modules are more durable and live longer; market competition ensures that profits are low; and capital costs for the production decline. It is a myriad of small improvements across a large collective process that drives this continuous price decline.

The learning rate of solar PV modules is 20.2%. 16 With each doubling of the installed cumulative capacity the price of solar modules declines by 20.2%. 17 The high learning rate meant that the core technology of solar electricity declined rapidly. The price of solar modules declined from $106 to $0.38 per watt. A decline of 99.6%.

To get our expectations for the future right we ought to pay a lot of attention to those technologies that follow learning curves. Initially we might only find them on a high-tech satellite out in space, but the future belongs to them. Renewable energy sources are not the only case; the most well-known case is the computer and the corresponding historical development there is ‘Moore’s Law’. If you are interested in getting your expectations about the future right, you are interested in how Moore’s Law helps us to see the future of technological development, and you want to know about whether it is indeed the case that scaled-up production causes declining prices you can read the following information box that takes a deeper look at it.

legacy-wordpress-upload

How Moore’s Law and Wright’s Law can help us to get our expectations for the future right

Predicting the future: the laws of gordon moore and theodore paul wright.

Solar modules are not the only technology where we see exponential progress. The case of exponential technological change that everyone knows of is Moore’s law – the observation of Intel’s co-founder Gordon Moore who noticed that the number of transistors on microprocessors doubled every two years. He first made this observation back in 1965 and until today this extraordinarily fast rate of technological progress still applies.

Integrated circuits are the fundamental technology of computers and Moore’s law is what has driven the exponential progress in computers in recent decades – computers became rapidly cheaper, more energy efficient, and faster.

As you might have noticed Moore’s law is not stated in the same way that I’ve been looking at solar module prices. Moore’s law describes technological change as a function of time; for solar, I am looking at price changes as a function of experience – measured as the total amount of solar modules that were ever installed. This relationship, that each doubling in experience leads to the same relative decline in prices, was discovered much earlier than Moore’s law, by aerospace engineer Theodore Paul Wright in 1936. 18 After him it is called Wright’s Law . Moore’s observation for the progress in computing technology can be seen as a special case of Wright’s Law. 19

Solar panels and computer chips are not the only technologies that follow his law. Have a look at our visualization of the price declines of 66 different technologies and the research referenced in the footnote 20

How do we know that increasing experience is causing lower prices? After all it could be the other way around – production only increases after costs have fallen. In most settings this is difficult to disentangle empirically, but researchers François Lafond, Diana Greenwald, and Doyne Farmer found an instance where this question can be answered. In their paper ‘Can Stimulating Demand Drive Costs Down?’, they study the price changes at a time when reverse causality can be ruled out, when demand was clearly not the consequence of lower prices: the demand for military technology in the Second World War. 21 Their finding is that for technologies for which Wright’s Law applies, it is mostly the cumulative experience that determines the price. As demand for weapons grew production experience increased sharply and prices declined. When the war was over and demand shrank, the price decline reverted back to a slower rate. This is suggesting that it is really the cumulative experience that is driving the price decline that we are interested in.

legacy-wordpress-upload

Wright’s Law helps us to get our expectations for the future right

If you want to know what the future looks like one of the most useful questions to ask is which technologies follow Wright’s Law and which do not.

Most technologies obviously do not follow Wright’s Law – the prices of bicycles, fridges, or coal power plants do not decline exponentially as we produce more of them. But those which do follow Wright’s Law – like computers, solar PV, and batteries – are the ones to look out for. They might initially only be found in very niche applications, but a few decades later they are everywhere.

If you are unaware that technology follows Wright’s Law you can get your predictions very wrong. At the dawn of the computer age in 1943 IBM president Thomas Watson famously said "I think there is a world market for maybe five computers." 22 At the price point of computers at the time that was perhaps perfectly true, but what he didn’t foresee was how rapidly the price of computers would fall. From its initial niche when there was perhaps truly only demand for five computers they expanded to more and more applications and the virtuous cycle meant that the price of computers declined further and further. The exponential progress of computers expanded their use from a tiny niche to the defining technology of our time.

Solar modules are on the same trajectory, as we’ve seen before. At the price of solar modules in the 1950s it would have sounded quite reasonable to say, “I think there is a world market for maybe five solar modules.” But as a prediction for the future this statement too would have been ridiculously wrong.

To get our expectations about the future right we are well advised to take the exponential change of Wright’s Law seriously. My colleagues Doyne Farmer, François Lafond, Penny Mealy, Rupert Way, Matt Ives, Linus Mattauch, Cameron Hepburn and others have done important pioneering work in this field. A central paper of their work is Farmer’s and Lafond’s ‘How predictable is technological progress?’ from 2016. 23 The focus of this research paper is the price of solar modules so that we avoid repeating Watson’s mistake for solar technology. They lay out in detail what I discussed here: how solar modules decline in price, how demand is driving this change, and how we can learn about the future by relying on these insights.

To get our expectations for the future right we ought to pay attention to those technologies that follow Wright’s law. Initially we might only find them on a high-tech satellite out in space, but the future belongs to them.

Do electricity prices follow learning curves?

Solar PV modules might very well follow a rapidly declining learning curve, but solar modules themselves are not what we want. We want the electricity that they produce. Does the price of solar electricity follow a learning curve?

The visualization shows the relevant data. 24 On the vertical axis you see again the LCOE price for electricity and on the horizontal axis you now find the cumulative installed capacity. 25 As in the solar module chart, both variables are plotted on logarithmic scales so that the line on the charts represents the learning rate for these technologies.

In bright orange you see the development for the price of power from solar PV over the last decade. The learning curve relationship that we saw for the price of solar modules also holds for the price of electricity . The learning rate is actually even faster: At each doubling of installed solar capacity the price of solar electricity declined by 36% – compared to 20% for solar modules.

Wind power – shown in blue – also follows a learning curve. The onshore wind industry achieved a learning rate of 23%. Every doubling of capacity was associated with a price decline of almost a quarter.

Offshore wind had a learning rate of 10% and is still relatively expensive – only 25% cheaper than nuclear and a bit more expensive than coal. But for two reasons experts expect the power from offshore wind to become very cheap in the coming years, larger wind turbine sizes and the fact that the consistent winds out on the sea allows higher load factors. 26 The obvious similarity of onshore and offshore wind also means that learning effects in one industry can be transferred to the other.

legacy-wordpress-upload

Fossil fuels and nuclear do not follow learning curves

Electricity generation from renewables is getting rapidly cheaper. What about its competitors? Let’s look first at coal.

Why is electricity from coal not getting cheaper?

Coal, the world’s largest source of electricity, is also included in the chart. The global price of electricity from new coal (LCOE) declined from $111 to $109. While solar got 89% cheaper and wind 70%, the price of electricity from coal declined by merely 2%.

The stagnating price of coal power in the last decade is not unusual. The historical development of the price of coal power is nowhere close to what we’ve been seeing for renewable power. Neither the price of the coal nor the price of the coal plants followed a learning curve, the prices didn’t even decline over the long run. 27

Electricity from coal was historically cheap and still is, but it is not getting cheaper. There are two reasons we shouldn’t expect this to change much in the future:

First, there is little room for improving the efficiency of coal power plants substantially. Typical plants have efficiencies of around 33%, while the most efficient ones today reach 47%. 28 Even a dramatic, unprecedented improvement from an efficiency of one-third to two-thirds would only correspond to the progress that solar PV modules make every 7.5 years. 29

Second, the price of electricity from all fossil fuel is not only determined by the technology but to a significant extent by the cost of the fuel itself. The cost of coal that the power plant burns makes up about 40% of total costs. 30 This means that for all non-renewable power plants which have these fuel costs there is a hard lower bound to how much the cost of their electricity can possibly decrease. Even if the price for constructing the power plant would decline, the price of the fuel means that there is a floor below which the price of electricity cannot pass.

For these reasons it should not be surprising that coal power does not follow a learning curve.

Electricity from gas: should we expect that the price continues to fall?

Electricity from gas, the second largest fossil fuel source, did become cheaper over the last decade. 31 As we saw above, electricity from combined cycle gas plants declined by 32% to a global average cost of $56 per MWh. 32

The costs of building a gas plant declined during some periods in the last 70 years, as Rubin et al (2015) show. 33 But the main reason the price of gas electricity declined over the last decade is that the price of gas itself happened to decline over this particular period. After a peak in 2008 the price of gas declined steeply. The increased supply from fracking is one key reason. This price decline of gas, however, is not part of a long-run development. The price of gas today is higher than two or three decades ago.

For the same reasons as discussed for coal – limited learning and fuel costs as a floor – we should therefore not expect the price of electricity from gas to decline significantly over the coming decades and we should certainly not expect a learning curve effect similar to what we are seeing for renewables.

Why did nuclear power get more expensive? What can reverse that trend?

For nuclear power you see the data since 2009 in the chart. Nuclear power has increased in price.

This increase is part of a longer term trend. In many places building a power plant has become more expensive as the studies reviewed in Rubin et al (2015) document. 33 This is of course very unfortunate, since nuclear is both a low-carbon source of electricity and one of the safest sources of electricity as we have seen in the very first chart.

One reason for rising prices is increased regulation for nuclear power, which has the important benefit of increased safety. A second reason is that the world has not built many nuclear power plants in recent years so that supply chains are small, uncompetitive, and are not benefiting from economies of scale. 34

Both of these reasons explain why the global average LCOE price has gone up. But for nuclear there are large differences in price trends between countries: Prices and construction times have increased significantly in the US and the UK, while France and South Korea were at least able to keep prices and construction times constant. 35

Michel Berthélemy and Lina Escobar Rangel (2015) explain that those countries that were able to avoid price surges are countries that do not stand out in regulating nuclear power less, but in standardizing the construction of reactors more. 35 Learning, after all, means transferring the knowledge gathered in one instance to another. No repetition, no learning.

This is in sharp contrast with renewables in particular. While nuclear technology is not very standardized and gets build very rarely, solar PV modules and wind plants are the exact opposite, very standardized and extremely often built. 36

One hope is that a new boom in nuclear power and increased standardization of the reactors would lead to declining costs of nuclear power.

But there is no strong price decline anywhere, and certainly nothing that could be characterized by a steep learning curve.

But nuclear could still become more important in the future because it can complement renewables where these energy sources have their weaknesses: First, intermittency of electricity from renewables remains a challenge and a viable energy mix of the future post-carbon world will likely include all low-carbon sources, renewables as well as nuclear power. And second, the land use of renewables is large and a big environmental benefit of nuclear power is that it uses very little land. 37

And beyond the existing nuclear fission reactors there are several teams working towards nuclear fusion reactors, which would potentially entirely change the world’s energy supply. 38

To make nuclear reactors competitive with fossil fuels is again an argument for carbon taxes. Nuclear reactors kill 350-times less people per unit of energy than fossil fuel plants, and as a low-carbon technology they can be key in making the transition away from fossil fuels.

Batteries and electricity storage follow learning curves too

One of the downsides of renewable sources is their intermittent supply cycle. The sun doesn’t always shine and the wind doesn't always blow. Technologies like batteries that store electric power are key to balance the changing supply from renewables with the inflexible demand for electricity.

Fortunately electricity storage technologies are also among the few technologies that are following learning curves – their learning curve are indeed very steep, as the chart here shows.

This chart is from my colleague Hannah Ritchie; she documents in her article that the price of batteries declined by 97% in the last three decades. 39

At their current price there might only be demand for five large power storage systems in the world, but as a prediction for the future this might sound foolish one day (if you don’t know what I’m alluding to, you skipped reading the text in the fold-out box above).

legacy-wordpress-upload

Scaling up low-carbon sources leads to lower prices; let’s not waste this opportunity for our planet and economy

The takeaway of the previous discussion is that renewables follow steep learning curves and fossil fuels do not. A key reason is that renewables do not have fuel costs and comparatively small operating and maintenance costs, which means that the LCOE of renewable energy scales with the cost of their technologies. And the key technologies of renewable energy systems – solar, wind, and batteries – themselves follow a learning curve: each doubling of their installed capacity leads to the same decline of costs.

If we are serious about making the transition to a low-carbon global energy system we have a fantastic opportunity in front of us. Scaling up renewable energy systems doesn’t only have the direct benefit of more low-carbon energy, but has an indirect side effect that is even more important: cheaper energy.

The learning rates for wind and solar PV are exceptionally fast. It is extremely rare to find technologies of this kind.

Solar and wind have one more big advantage. While there is often little agreement in how to reduce greenhouse gas emissions, expanding solar and wind power are two options that are hugely popular with large majorities. Even in the often polarized US, renewables have the support of strong majorities of Democrats and Republicans. 85% of Americans are in favour of expanding wind power and 92% are in favor of expanding solar power, and in other countries the support is often even higher. 40

Today, at a time when the global economy – and workers around the world – suffer greatly from the COVID-19 recession and when interest rates are low (or even negative), scaling up renewable energy systems offers us a great chance to move forward. It is rare to have a policy option that leads to more jobs, cheaper prices for consumers, and a greener, safer planet. 41

The more renewable energy technologies we deploy, the more their costs will fall. More growth will mean even more growth.

Making renewable energy irresistible: Technological progress somewhere turns into progress everywhere

One last argument on why lower prices due to technological change are so crucial for making the transition to the post-carbon world. If rich countries make investments into renewable technology that drive down the price along the learning curves, they are not just working towards the transition from fossil fuels to renewable energy for themselves, but for the entire world.

The relative price of fossil fuels and renewables is key to anyone’s decision of which power plant to build. Making low-carbon technology cheap is a policy goal that doesn’t only reduce emissions in your own country but in the entire world, forever.

Driving down the price of low-carbon energy should be seen as one of the most important goals (and achievements) of clean energy policy, because it matters beyond the borders of the country that is adopting that policy. This is the beautiful thing about technology: once it is invented somewhere it can help everywhere.

The biggest growth in electricity demand in the coming years will not come from rich countries, but the poorer, yet rapidly developing countries in Africa and Asia. 42 The steep decline of solar power is a particularly fortunate development for many of these countries that often have sunny climates .

Energy systems have very long path dependencies, since it is very costly to build a power plant or to decide to shut a power plant down. Investments in renewable technologies now will therefore have very long-term benefits. Every instance when a country or an electricity company decides to build a low-carbon power plant instead of a coal plant is a win for decades. Low prices are the key argument to convince the world – especially those places that have the least money – to build low-carbon power systems for a sustainable future.

One of the very worst misconceptions about the challenge of climate change is that it is an easy problem to solve. It is not.

Climate policy is exceedingly difficult 43 and the technological challenges are much larger than the electricity sector alone since it is only one of several big sectors that need to be decarbonized. We need change and technological innovation across all these sectors at a scale that matches the problem and the problem is big.

But what the consideration of changing electricity prices has shown is that we have a clear option in front of us where we are able to make very important progress. Low-carbon technologies that were so expensive just a few decades ago that they were only affordable for satellites have came down steadily in price and now provide the cheapest electricity on the planet (which implies that they are now the cheapest source of energy that humanity ever had access to).

Driving down the costs of renewables is key to a green, low-carbon future, but it also has a big benefit for people today: Your real income is the ratio between what you are paid and the price of the goods and services you pay for – that is why falling energy prices means that people’s real income is growing. Falling energy prices means economic growth and less poverty.

The reason we can hope for a future in which renewables are deployed rapidly and where fossil fuel plants become increasingly unprofitable is that renewables follow steep learning curves, and fossil fuels do not. We are heading towards a future in which the disadvantage of fossil fuels will keep increasing.

But limiting climate change is a race against time and we have a long way to go. There is a good chance that the world has reached the peak of greenhouse gas emissions last year. A huge milestone, but the peak is not the goal; we need to get all the way down to net-zero.

The argument for scaling these technologies up sooner rather than later is that we are getting to the low-carbon, low-cost future faster . This ensures that the power plants that will be built in the coming years are not fossil fuel plants but renewables.

This is key to bringing down greenhouse gas emissions fast. And it has the side effects that it saves people from air pollution and it reduces energy prices – which means growing incomes and declining poverty.

Acknowledgements

I would like to thank Hannah Ritchie, François Lafond, Rupert Way, Marcel Gerber, Ernst van Woerden, Charlie Giattino, and Breck Yunits for reading drafts of this and for their very helpful comments and ideas.

In a study published in the Proceedings of the National Academy of Sciences, Jos Lelieveld et al. (2019) estimated that 5.6 million people died from anthropogenically caused air pollution. Of these 5.6 million, 3.6 million were attributed to fossil fuels.

Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A., & Ramanathan, V. (2019). Effects of fossil fuel and total anthropogenic emission removal on public health and climate . Proceedings of the National Academy of Sciences, 116(15), 7192-7197

The death toll of the three counts of violence for 2017 according to the IHME is 561,511.

• Homicides: 405,346 deaths

• War battles: 129,720 deaths

• Terrorism: 26,445 deaths.

The other two big energy sectors are heat and transport; in the coming years it is very likely that the share of electric energy will increase, because a larger share of transport will be electrified.

The IEA reports that electricity’s share in total final energy consumption was 19% in 2018 and expects it to increase to  24% in 2040.

In 2016 (the latest sectoral breakdown available) global greenhouse gas emissions were 49.36 billion tonnes CO2eq. Electricity and heat generation was responsible for 15.01 billion tonnes CO2eq.

Electricity and heat generation therefore accounted for [49.36 / 15.01 * 100 = 30%] of global emissions. This data is sourced from Climate Watch and the World Resources Institute.

The data source is Lazard's Levelized Cost of Energy 2019 – the big advantage of this source is that it includes the cost of electricity from a wide range of sources.

“Enhanced levelised cost” is an approach that aims to adjust for this, but its measurement is still in its early stages. Simon Evans discusses ‘enhanced levelised costs’ for different electricity sources in the UK .

This goal – the alternative energy source generating power at a levelized cost of energy (LCOE) that is equal (or lower) than the currently dominating source of energy – is referred to as ‘grid parity’.

It is very hard to find anything else that declines in price just as fast as electricity from renewable sources.The report by IRENA finds that for the 531 individual items that are used to compile the UK’s Consumer Price Index (CPI), only five items have declined more rapidly: strawberries, fruit smoothies, internet computer games, household cleaner and underground/metro fares outside London. But of course most people spend more money on electricity than on strawberries.IRENA (2020) – Renewable Power Generation Costs in 2019 , International Renewable Energy Agency

IRENA (2020) – Renewable Power Generation Costs in 2019 , International Renewable Energy Agency

In the following section we will look into their cost structures in detail.

J. Perlin (1999) – From space to earth: the story of solar electricity. aatech publications, Ann Arbor, MI (1999) via Doyne Farmer and Fracois Lafond (2016) – How predictable is technological progress? Research Policy. Volume 45, Issue 3, April 2016, Pages 647-665. https://doi.org/10.1016/j.respol.2015.11.001

$256 in 1956 adjusted for prices – using the US GDP deflator – equals $1865 in 2019 US-$ according to ( https://www.multpl.com/gdp-deflator

Ben Zientara (2020) – How much electricity does a solar panel produce? Updated version from 4/2/2020

This is the price per watt multiplied by the output of today’s typical solar panel: 320W * 1865$/W= $596,800.

The History of Solar . US Department of Energy.

How much electricity can be generated from 0.3 megawatts of electricity?

As a back-of-the-envelope calculation, I used the oldest data for Germany that I could find, which relates to the 1990s, and took an average to average over better and worse years. In the 1990s Germany had 48.5 MW of solar capacity and generated 23,750 MWh of electricity. This means that in these circumstances and with this technology (surely much better than the technology in 1976) they generated 145,040 kWh per solar PV capacity of 0.3 MW.

The electricity demand of a person in Germany is 7,333kWh per year so that 0.3MW could provide electricity for 20 people (145,040kWh/7,333kWh=19.78).

Kavlak, Goksin and McNerney, James and Trancik, Jessika E. (2017) – Evaluating the Causes of Cost Reduction in Photovoltaic Modules (August 9, 2017). In Energy Policy, 123:700-710, 2018, http://dx.doi.org/10.2139/ssrn.2891516

As one would expect, the exact learning rate differs slightly across studies, mostly due to differences in the chosen data source, the chosen proxy measure for ‘experience’, the geographic location or the considered time-span.

To give the fairest estimate and avoid relying on one unusual datapoint I am therefore reporting an average across several experience curve studies for PV that was conducted by de La Tour et al. 2013. The authors find an average learning rate over many studies of 20.2% (see Table 1 of their publication).

de La Tour, A., Glachant, M. & Ménière, Y. (2013) – Predicting the costs of photovoltaic solar modules in 2020 using experience curve models . In Energy 62, 341–348.

The learning rate implied by the data that I’m presenting here is very similar (22.5%).

Since it is sometimes wrongly claimed: It is not the case that a constant learning rate implies that the cost of a technology eventually would need to decline to 0.

This misunderstanding does not consider the driving force appropriately. It is the doubling of the cumulative number of units produced that drives the cost decline. Achieving a doubling of that becomes harder and harder as total production increases. Once the cumulative production is already very high, each doubling of cumulative capacity will take longer and longer. Eventually demand will level off such that the price decline slows down and would stop when the cumulative production of the technology satisfies demand.

Theodore Paul Wright (1936) – Factors affecting the cost of airplanes. J. Aeronaut. Sci., 3 (4) (1936), pp. 122-128

Plausibly it isn’t just the passing of time that drives the progress in computer chips, but there too it is the learning that comes with continuously expanding the production of these chips. Lafond et al (2018) explain that the two laws produce the same forecasts when cumulative production grows exponentially, which is the case when production grows exponentially. More precisely, if production grows exponentially with some noise/fluctuations, then cumulative production grows exponentially with very little noise/fluctuations. As a result, the log of cumulative production is a linear trend and therefore predicting cost by the linear trend of time or the linear trend of log cumulative production give the same results.

Fracois Lafond, Aimee G. Bailey, Jan D. Bakker, Dylan Rebois, Rubina Zadourian, Patrick McSharry, and J. Doyne Farmer (2018) – How well do experience curves predict technological progress? A method for making distributional forecasts In Technological Forecasting and Social Change  128, pp 104-117, 2018. arXiv , Publisher , Data , Code .

See also Nagy B, Farmer JD, Bui QM, Trancik JE (2013) Statistical Basis for Predicting Technological Progress. PLoS ONE 8(2): e52669. https://doi.org/10.1371/journal.pone.0052669

Wright’s law for solar PV modules has also been given its own name; some call it Swanson’s Law (Wiki) .

Nagy B, Farmer JD, Bui QM, Trancik JE (2013) Statistical Basis for Predicting Technological Progress. PLoS ONE 8(2): e52669. https://doi.org/10.1371/journal.pone.0052669

Many more references can be found in Doyne Farmer and Fracois Lafond (2016) – How predictable is technological progress? Research Policy. Volume 45, Issue 3, April 2016, Pages 647-665. https://doi.org/10.1016/j.respol.2015.11.001

The price of Ford’s Model T followed Wright’s law: each doubling of cumulative production led to the same relative decline in prices. What’s fascinating is that this decline hasn’t stopped until today. An 8hp car, as the Model T, costs what you’d expect: See Sam Korus (2019) – Wright’s Law Predicted 109 Years of Auto Production Costs, and Now Tesla’s

Lafond, Francois and Greenwald, Diana Seave and Farmer, J. Doyne, Can Stimulating Demand Drive Costs Down? World War II as a Natural Experiment (June 1, 2020). http://dx.doi.org/10.2139/ssrn.3519913

The first reference to Watson saying this is in an article from Der Spiegel from 26th May 1965 – Sieg der Mikrosekunde

Doyne Farmer and Fracois Lafond (2016) – How predictable is technological progress? Research Policy. Volume 45, Issue 3, April 2016, Pages 647-665. https://doi.org/10.1016/j.respol.2015.11.001

See also: de La Tour, A., Glachant, M. & Ménière, Y. (2013) – Predicting the costs of photovoltaic solar modules in 2020 using experience curve models . In Energy 62, 341–348.

IRENA 2020 for all data on renewable sources; Lazard for the price of electricity from nuclear and coal – IAEA for nuclear capacity and the Global Energy Monitor for coal capacity .

For fossil fuels and nuclear we show installed capacity at each point in time (because we are not aware of any data on the cumulatively built capacity for these energy sources). I am however not expecting a large difference between installed and cumulatively built capacity – especially over a 10-year time span and for power sources that have been scaled up largely before 2009.

The UK government expects offshore wind to become cheaper than onshore wind by the mid-2030s. Department for Business, Energy & Industrial Strategy (2020) – BEIS electricity generation cost report . Published 24 August 2020.

See also the discussion of this report: Simon Evans (2020) – Wind and solar are 30-50% cheaper than thought,admits UK government . In Carbon Brief.

The price of coal plants over time was studied in McNerney et al (2011) and the authors find that after a decline of construction costs from 1902 until around 1970, the price then increased for two decades from 1970 until 1990 . They attribute this cost increase to increased restrictions on the tolerable pollution (air pollution has fallen rapidly in industrialized countries since 1970). From around 1990 onwards the price of coal plants remained largely unchanged.

J. McNerney, J.D. Farmer, J.E. Trancik (2011) – Historical costs of coal-fired electricity and implications for the future Energy Policy, 39 (6) (2011), pp. 3042-3054 https://doi.org/10.1016/j.enpol.2011.01.037

The price of coal itself has fluctuated over the last 150 years, but without a clear long run trend as the same authors show. Falling transportation costs have made coal cheaper for power plants, but more recently the price of coal increased and overall the price of coal has not declined over the long run.

Dawn Santoianni (2015) – Setting the Benchmark: The World's Most Efficient Coal-Fired Power Plants in Worldcoal

Doyne Farmer and Francois Lafond (2016) – How predictable is technological progress? Research Policy. Volume 45, Issue 3, April 2016, Pages 647-665. doi.org/10.1016/j.respol.2015.11.001

There are arguments for and against gas as a source of electricity. In comparison with coal, the world’s dominating source of electricity, gas is both safer and cleaner, as we see in the first chart: the death rate from air pollution and accidents is 9-times lower and the greenhouse gas emissions are 40% lower per unit of produced energy. A third important consideration is that while power from gas peakers is expensive they can react quickly and provide electricity at peak times or when the output from other sources, especially renewables, drops.

On the other hand it is of course the case that gas is much more deadly and emits much more carbon than nuclear and renewables.

Good carbon pricing could strike a balance where the low-carbon alternatives can continue to grow and gas can take over from coal. At a higher carbon price, gas combined with CCS – carbon capture and storage – can become cost-effective sooner. The UK has implemented a carbon price and the government there expects that from 2025 onwards the levelised cost for gas-with-CCS to be cheaper than unabated gas. See: Department for Business, Energy & Industrial Strategy (2020) – BEIS electricity generation cost report . Published 24 August 2020.

In the visualization I am not able to show gas electricity. This is because the price between gas peaker and combined cycles differs significantly, and I am not aware of any global data on the capacity of each of these sources. If you know of data that would allow the addition of gas to the visualization please get in touch with me. Thank you.

Edward S.Rubin, Inês M.L.Azevedo, Paulina Jaramillo, Sonia Yeh (2015) – A review of learning rates for electricity supply technologies. In Energy Policy. Volume 86, November 2015, Pages 198-218. https://doi.org/10.1016/j.enpol.2015.06.011

Michael Fitzpatrick (2017) – Nuclear power is set to get a lot safer (and cheaper) – here’s why https://theconversation.com/nuclear-power-is-set-to-get-a-lot-safer-and-cheaper-heres-why-62207

See Michel Berthélemy and Lina Escobar Rangel (2015) – Nuclear reactors' construction costs: The role of lead-time, standardization and technological progress. In Energy Policy Volume 82, July 2015, Pages 118-130. https://doi.org/10.1016/j.enpol.2015.03.015

A rough back of the envelope calculation by Michael Barnard makes this clear "There is about 650 gigawatts (GW) of capacity of wind energy right now, as one example. The average wind turbine is about 2 megawatts (MW) in capacity globally, as new ones are almost always bigger and often much bigger. That means that there are about 325,000 wind turbines that have been built, and it means that there are almost a million wind turbine blades. Similarly, there’s about about 584 GW of solar globally. The average solar panel is about 200 Watts in capacity, so that’s about 3 billion solar panels installed already."

David J. C. MacKay (2008) – Sustainable Energy – without the hot air. Online at WithoutHotAir.com

Recent relevant coverage includes Compact Nuclear Fusion Reactor Is ‘Very Likely to Work,’ Studies Suggest (in the New York Times) and somewhat dated, but still relevant and fascinating A Star in a Bottle in the New Yorker.

See also Schmidt, O., Hawkes, A., Gambhir, A. et al. The future cost of electrical energy storage based on experience rates. Nat Energy 2, 17110 (2017). https://doi.org/10.1038/nenergy.2017.110

An updated dataset from 2018 by the authors is available on FigShare here

Annual updates can be found via Bloomberg NEF, for example here .

Cary Funk and Meg Hefferon (2019) – U.S. Public Views on Climate and Energy . Pew Research Center.

On other countries see Pew Research (2020) – International Science Survey 2019-2020 . September 29, 2020 Release

Two papers to read on this point:Rupert Way, François Lafond, Fabrizio Lillo, Valentyn Panchenko, J. Doyne Farmer (2019) – Wright meets Markowitz: How standard portfolio theory changes when assets are technologies following experience curves. In Journal of Economic Dynamics and Control. Volume 101, April 2019, Pages 211-238. https://doi.org/10.1016/j.jedc.2018.10.006

Farmer, J.D., Hepburn, C., Ives, M.C., Hale, T., Wetzer, T., Mealy, P., Rafaty, R., Srivastav, S. & Way, R. (2019). 'Sensitive intervention points in the post-carbon transition'. Science, 364(6436), pp. 132-134.

See the IEA World Energy Outlook 2020 section on electricity .

Carbon pricing is a policy that would make those who actually cause emissions pay for them (the richest people in the world that enjoy the best living conditions in human history), but most governments fail to implement carbon prices, and where they exist they are often too low (which has the consequence that the poorest people on the planet are ‘paying’ most for carbon emissions, since it is them who are suffering the severest consequences).

Cite this work

Our articles and data visualizations rely on work from many different people and organizations. When citing this article, please also cite the underlying data sources. This article can be cited as:

BibTeX citation

Reuse this work freely

All visualizations, data, and code produced by Our World in Data are completely open access under the Creative Commons BY license . You have the permission to use, distribute, and reproduce these in any medium, provided the source and authors are credited.

The data produced by third parties and made available by Our World in Data is subject to the license terms from the original third-party authors. We will always indicate the original source of the data in our documentation, so you should always check the license of any such third-party data before use and redistribution.

All of our charts can be embedded in any site.

Our World in Data is free and accessible for everyone.

Help us do this work by making a donation.

COMMENTS

  1. Renewable energy

    In contrast, renewable energy sources accounted for nearly 20 percent of global energy consumption at the beginning of the 21st century, largely from traditional uses of biomass such as wood for heating and cooking.By 2015 about 16 percent of the world's total electricity came from large hydroelectric power plants, whereas other types of renewable energy (such as solar, wind, and geothermal ...

  2. Renewable Energy

    Passive solar energy does not use any equipment. Instead, it gets energy from the way sunlight naturally changes throughout the day. For example, people can build houses so their windows face the path of the sun. This means the house will get more heat from the sun. It will take less energy from other sources to heat the house.

  3. Renewable energy

    Renewable energy (or green energy) is energy from renewable natural resources that are replenished on a human timescale. The most widely used renewable energy types are solar energy, wind power, and hydropower. Bioenergy and geothermal power are also significant in some countries. Some also consider nuclear power a renewable power source ...

  4. Renewable Energy Explained

    Background Info. Vocabulary. In any discussion about climate change, renewable energy usually tops the list of changes the world can implement to stave off the worst effects of rising temperatures. That's because renewable energy sources, such as solar and wind, don't emit carbon dioxide and other greenhouse gases that contribute to global warming.

  5. What is renewable energy?

    Renewable energy is&nbsp;energy derived from natural sources&nbsp;that are replenished at a higher rate than they are consumed. Sunlight and wind, for example, are such sources that are constantly ...

  6. Renewable energy, facts and information

    Hydropower is the world's biggest source of renewable energy by far, with China, Brazil, Canada, the U.S., and Russia the leading hydropower producers. While hydropower is theoretically a clean ...

  7. Renewable Energy: Everything You Need to Know

    Renewable energy refers to energy that comes from naturally regenerating sources. These energy sources are sustainable because they can be used without running out of resources or causing major harm to the environment. Examples of renewable energy include wind power, solar power, bioenergy (generated from organic matter known as biomass) and ...

  8. Introduction to Renewable Energy

    The term "renewable" encompasses a wide diversity of energy resources with varying economics, technologies, end uses, scales, environmental impacts, availability, and depletability. For example, fully "renewable" resources are not depleted by human use, whereas "semi-renewable" resources must be properly managed to ensure long-term ...

  9. Renewable energy

    Renewable energy actually is the cheapest power option in most parts of the world today. Prices for renewable energy technologies are dropping rapidly. ... This means that a total of more than 30 ...

  10. Renewable energy and its importance for tackling climate change

    Renewable energy is an important element in the fight against climate change, reducing reliance on fossil fuels that release carbon dioxide into the atmosphere. ... Nor does green energy, which comes from natural sources such as the Sun and is produced without any major negative impacts on the environment. Renewable energy refers to sources ...

  11. Renewable Energy

    Renewable energy comes from unlimited, naturally replenished resources, such as the sun, tides, and wind. Renewable energy can be used for electricity generation, space and water heating and cooling, and transportation. Non-renewable energy, in contrast, comes from finite sources, such as coal, natural gas, and oil.

  12. PDF The Economics of Renewable Energy

    Reducing costs of solar PV and costs of energy storage devices (e.g. batteries) are two key areas for technology development that could significantly reduce renewable energy costs in the long run. With higher energy costs, buildings, transportation networks, and manufacturing would be redesigned to use less energy.

  13. Benefits of Renewable Energy Use

    Using more renewable energy can lower the prices of and demand for natural gas and coal by increasing competition and diversifying our energy supplies. And an increased reliance on renewable energy can help protect consumers when fossil fuel prices spike. Explainer. Renewables face major obstacles.

  14. The Future of Sustainable Energy

    Advancing the Future of Sustainable Energy. There's still monumental work to be done in developing the next generation of renewable energy solutions as well as the policy framework to eliminate greenhouse gases from our atmosphere. An analysis from the International Energy Agency found that the technologies currently on the market can only ...

  15. Full article: A review of renewable energy sources, sustainability

    Notwithstanding, renewable energy sources are the most outstanding alternative and the only solution to the growing challenges (Tiwari & Mishra, Citation 2011). In 2012, renewable energy sources supplied 22% of the total world energy generation (U.S. Energy Information Administration, Citation 2012) which was not possible a decade ago.

  16. Climate change impacts on renewable energy supply

    The increase in renewable energy use leads to a decline in fossil fuel and nuclear energy use in most of the regions, resulting in a 1-2% reduction in cumulative CO 2 emissions (2015-2100). In ...

  17. Khan Academy

    If you're seeing this message, it means we're having trouble loading external resources on our website. If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

  18. Solar energy

    solar energy, radiation from the Sun capable of producing heat, causing chemical reactions, or generating electricity. The total amount of solar energy incident on Earth is vastly in excess of the world's current and anticipated energy requirements. If suitably harnessed, this highly diffused source has the potential to satisfy all future ...

  19. Five ways to jump-start the renewable energy transition now

    For renewable energy technology to be a global public good - meaning available to all, and not just to the wealthy - it will be essential to remove roadblocks to knowledge sharing and ...

  20. GOAL 7: Affordable and clean energy

    Learn more about SDG 7 Ensure access to affordable, reliable, sustainable and modern energy for all: Lack of access to energy supplies and transformation systems is a constraint to human and economic development. The environment provides a series of renewable and non-renewable energy sources i.e. solar, wind, hydropower, geothermal, biofuels, natural gas, coal, petroleum, uranium. Increased ...

  21. Hydroelectric power

    pumped-storage system. hydroelectric power, electricity produced from generators driven by turbines that convert the potential energy of falling or fast-flowing water into mechanical energy. In the early 21st century, hydroelectric power was the most widely utilized form of renewable energy; in 2019 it accounted for more than 18 percent of the ...

  22. Why did renewables become so cheap so fast?

    The learning rate of solar PV modules is 20.2%.16 With each doubling of the installed cumulative capacity the price of solar modules declines by 20.2%.17 The high learning rate meant that the core technology of solar electricity declined rapidly. The price of solar modules declined from $106 to $0.38 per watt. A decline of 99.6%.