Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Guide to Experimental Design | Overview, Steps, & Examples

Guide to Experimental Design | Overview, 5 steps & Examples

Published on December 3, 2019 by Rebecca Bevans . Revised on June 21, 2023.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design create a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying.

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead. This minimizes several types of research bias, particularly sampling bias , survivorship bias , and attrition bias as time passes.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, other interesting articles, frequently asked questions about experiments.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Research question Independent variable Dependent variable
Phone use and sleep Minutes of phone use before sleep Hours of sleep per night
Temperature and soil respiration Air temperature just above the soil surface CO2 respired from soil

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Extraneous variable How to control
Phone use and sleep in sleep patterns among individuals. measure the average difference between sleep with phone use and sleep without phone use rather than the average amount of sleep per treatment group.
Temperature and soil respiration also affects respiration, and moisture can decrease with increasing temperature. monitor soil moisture and add water to make sure that soil moisture is consistent across all treatment plots.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

design of experiment steps

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

Null hypothesis (H ) Alternate hypothesis (H )
Phone use and sleep Phone use before sleep does not correlate with the amount of sleep a person gets. Increasing phone use before sleep leads to a decrease in sleep.
Temperature and soil respiration Air temperature does not correlate with soil respiration. Increased air temperature leads to increased soil respiration.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalized and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomized design vs a randomized block design .
  • A between-subjects design vs a within-subjects design .

Randomization

An experiment can be completely randomized or randomized within blocks (aka strata):

  • In a completely randomized design , every subject is assigned to a treatment group at random.
  • In a randomized block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.
Completely randomized design Randomized block design
Phone use and sleep Subjects are all randomly assigned a level of phone use using a random number generator. Subjects are first grouped by age, and then phone use treatments are randomly assigned within these groups.
Temperature and soil respiration Warming treatments are assigned to soil plots at random by using a number generator to generate map coordinates within the study area. Soils are first grouped by average rainfall, and then treatment plots are randomly assigned within these groups.

Sometimes randomization isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs. within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomizing or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Between-subjects (independent measures) design Within-subjects (repeated measures) design
Phone use and sleep Subjects are randomly assigned a level of phone use (none, low, or high) and follow that level of phone use throughout the experiment. Subjects are assigned consecutively to zero, low, and high levels of phone use throughout the experiment, and the order in which they follow these treatments is randomized.
Temperature and soil respiration Warming treatments are assigned to soil plots at random and the soils are kept at this temperature throughout the experiment. Every plot receives each warming treatment (1, 3, 5, 8, and 10C above ambient temperatures) consecutively over the course of the experiment, and the order in which they receive these treatments is randomized.

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimize research bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalized to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 21). Guide to Experimental Design | Overview, 5 steps & Examples. Scribbr. Retrieved July 8, 2024, from https://www.scribbr.com/methodology/experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, random assignment in experiments | introduction & examples, quasi-experimental design | definition, types & examples, how to write a lab report, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • A Quick Guide to Experimental Design | 5 Steps & Examples

A Quick Guide to Experimental Design | 5 Steps & Examples

Published on 11 April 2022 by Rebecca Bevans . Revised on 5 December 2022.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design means creating a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying. 

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If if random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, frequently asked questions about experimental design.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Research question Independent variable Dependent variable
Phone use and sleep Minutes of phone use before sleep Hours of sleep per night
Temperature and soil respiration Air temperature just above the soil surface CO2 respired from soil

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Extraneous variable How to control
Phone use and sleep in sleep patterns among individuals. measure the average difference between sleep with phone use and sleep without phone use rather than the average amount of sleep per treatment group.
Temperature and soil respiration also affects respiration, and moisture can decrease with increasing temperature. monitor soil moisture and add water to make sure that soil moisture is consistent across all treatment plots.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Prevent plagiarism, run a free check.

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

Null hypothesis (H ) Alternate hypothesis (H )
Phone use and sleep Phone use before sleep does not correlate with the amount of sleep a person gets. Increasing phone use before sleep leads to a decrease in sleep.
Temperature and soil respiration Air temperature does not correlate with soil respiration. Increased air temperature leads to increased soil respiration.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalised and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomised design vs a randomised block design .
  • A between-subjects design vs a within-subjects design .

Randomisation

An experiment can be completely randomised or randomised within blocks (aka strata):

  • In a completely randomised design , every subject is assigned to a treatment group at random.
  • In a randomised block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.
Completely randomised design Randomised block design
Phone use and sleep Subjects are all randomly assigned a level of phone use using a random number generator. Subjects are first grouped by age, and then phone use treatments are randomly assigned within these groups.
Temperature and soil respiration Warming treatments are assigned to soil plots at random by using a number generator to generate map coordinates within the study area. Soils are first grouped by average rainfall, and then treatment plots are randomly assigned within these groups.

Sometimes randomisation isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomising or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Between-subjects (independent measures) design Within-subjects (repeated measures) design
Phone use and sleep Subjects are randomly assigned a level of phone use (none, low, or high) and follow that level of phone use throughout the experiment. Subjects are assigned consecutively to zero, low, and high levels of phone use throughout the experiment, and the order in which they follow these treatments is randomised.
Temperature and soil respiration Warming treatments are assigned to soil plots at random and the soils are kept at this temperature throughout the experiment. Every plot receives each warming treatment (1, 3, 5, 8, and 10C above ambient temperatures) consecutively over the course of the experiment, and the order in which they receive these treatments is randomised.

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimise bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalised to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bevans, R. (2022, December 05). A Quick Guide to Experimental Design | 5 Steps & Examples. Scribbr. Retrieved 8 July 2024, from https://www.scribbr.co.uk/research-methods/guide-to-experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

  • Set objectives
  • Select process variables
  • Select an experimental design
  • Execute the design
  • Check that the data are consistent with the experimental assumptions 
  • Analyze and interpret the results
  • Use/present the results (may lead to further runs or DOE's).
  • Check performance of gauges/measurement devices first.
  • Keep the experiment as simple as possible.
  • Check that all planned runs are feasible.
  • Watch out for process drifts and shifts during the run.
  • Avoid unplanned changes (e.g., swap operators at halfway point).
  • Allow some time (and back-up material) for unexpected events.
  • Obtain buy-in from all parties involved.
  • Maintain effective ownership of each step in the experimental plan.
  • Preserve all the raw data--do not keep only summary averages!
  • Record everything that happens.
  • Reset equipment to its original state after the experiment.
  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Experimental Design: Definition and Types

By Jim Frost 3 Comments

What is Experimental Design?

An experimental design is a detailed plan for collecting and using data to identify causal relationships. Through careful planning, the design of experiments allows your data collection efforts to have a reasonable chance of detecting effects and testing hypotheses that answer your research questions.

An experiment is a data collection procedure that occurs in controlled conditions to identify and understand causal relationships between variables. Researchers can use many potential designs. The ultimate choice depends on their research question, resources, goals, and constraints. In some fields of study, researchers refer to experimental design as the design of experiments (DOE). Both terms are synonymous.

Scientist who developed an experimental design for her research.

Ultimately, the design of experiments helps ensure that your procedures and data will evaluate your research question effectively. Without an experimental design, you might waste your efforts in a process that, for many potential reasons, can’t answer your research question. In short, it helps you trust your results.

Learn more about Independent and Dependent Variables .

Design of Experiments: Goals & Settings

Experiments occur in many settings, ranging from psychology, social sciences, medicine, physics, engineering, and industrial and service sectors. Typically, experimental goals are to discover a previously unknown effect , confirm a known effect, or test a hypothesis.

Effects represent causal relationships between variables. For example, in a medical experiment, does the new medicine cause an improvement in health outcomes? If so, the medicine has a causal effect on the outcome.

An experimental design’s focus depends on the subject area and can include the following goals:

  • Understanding the relationships between variables.
  • Identifying the variables that have the largest impact on the outcomes.
  • Finding the input variable settings that produce an optimal result.

For example, psychologists have conducted experiments to understand how conformity affects decision-making. Sociologists have performed experiments to determine whether ethnicity affects the public reaction to staged bike thefts. These experiments map out the causal relationships between variables, and their primary goal is to understand the role of various factors.

Conversely, in a manufacturing environment, the researchers might use an experimental design to find the factors that most effectively improve their product’s strength, identify the optimal manufacturing settings, and do all that while accounting for various constraints. In short, a manufacturer’s goal is often to use experiments to improve their products cost-effectively.

In a medical experiment, the goal might be to quantify the medicine’s effect and find the optimum dosage.

Developing an Experimental Design

Developing an experimental design involves planning that maximizes the potential to collect data that is both trustworthy and able to detect causal relationships. Specifically, these studies aim to see effects when they exist in the population the researchers are studying, preferentially favor causal effects, isolate each factor’s true effect from potential confounders, and produce conclusions that you can generalize to the real world.

To accomplish these goals, experimental designs carefully manage data validity and reliability , and internal and external experimental validity. When your experiment is valid and reliable, you can expect your procedures and data to produce trustworthy results.

An excellent experimental design involves the following:

  • Lots of preplanning.
  • Developing experimental treatments.
  • Determining how to assign subjects to treatment groups.

The remainder of this article focuses on how experimental designs incorporate these essential items to accomplish their research goals.

Learn more about Data Reliability vs. Validity and Internal and External Experimental Validity .

Preplanning, Defining, and Operationalizing for Design of Experiments

A literature review is crucial for the design of experiments.

This phase of the design of experiments helps you identify critical variables, know how to measure them while ensuring reliability and validity, and understand the relationships between them. The review can also help you find ways to reduce sources of variability, which increases your ability to detect treatment effects. Notably, the literature review allows you to learn how similar studies designed their experiments and the challenges they faced.

Operationalizing a study involves taking your research question, using the background information you gathered, and formulating an actionable plan.

This process should produce a specific and testable hypothesis using data that you can reasonably collect given the resources available to the experiment.

  • Null hypothesis : The jumping exercise intervention does not affect bone density.
  • Alternative hypothesis : The jumping exercise intervention affects bone density.

To learn more about this early phase, read Five Steps for Conducting Scientific Studies with Statistical Analyses .

Formulating Treatments in Experimental Designs

In an experimental design, treatments are variables that the researchers control. They are the primary independent variables of interest. Researchers administer the treatment to the subjects or items in the experiment and want to know whether it causes changes in the outcome.

As the name implies, a treatment can be medical in nature, such as a new medicine or vaccine. But it’s a general term that applies to other things such as training programs, manufacturing settings, teaching methods, and types of fertilizers. I helped run an experiment where the treatment was a jumping exercise intervention that we hoped would increase bone density. All these treatment examples are things that potentially influence a measurable outcome.

Even when you know your treatment generally, you must carefully consider the amount. How large of a dose? If you’re comparing three different temperatures in a manufacturing process, how far apart are they? For my bone mineral density study, we had to determine how frequently the exercise sessions would occur and how long each lasted.

How you define the treatments in the design of experiments can affect your findings and the generalizability of your results.

Assigning Subjects to Experimental Groups

A crucial decision for all experimental designs is determining how researchers assign subjects to the experimental conditions—the treatment and control groups. The control group is often, but not always, the lack of a treatment. It serves as a basis for comparison by showing outcomes for subjects who don’t receive a treatment. Learn more about Control Groups .

How your experimental design assigns subjects to the groups affects how confident you can be that the findings represent true causal effects rather than mere correlation caused by confounders. Indeed, the assignment method influences how you control for confounding variables. This is the difference between correlation and causation .

Imagine a study finds that vitamin consumption correlates with better health outcomes. As a researcher, you want to be able to say that vitamin consumption causes the improvements. However, with the wrong experimental design, you might only be able to say there is an association. A confounder, and not the vitamins, might actually cause the health benefits.

Let’s explore some of the ways to assign subjects in design of experiments.

Completely Randomized Designs

A completely randomized experimental design randomly assigns all subjects to the treatment and control groups. You simply take each participant and use a random process to determine their group assignment. You can flip coins, roll a die, or use a computer. Randomized experiments must be prospective studies because they need to be able to control group assignment.

Random assignment in the design of experiments helps ensure that the groups are roughly equivalent at the beginning of the study. This equivalence at the start increases your confidence that any differences you see at the end were caused by the treatments. The randomization tends to equalize confounders between the experimental groups and, thereby, cancels out their effects, leaving only the treatment effects.

For example, in a vitamin study, the researchers can randomly assign participants to either the control or vitamin group. Because the groups are approximately equal when the experiment starts, if the health outcomes are different at the end of the study, the researchers can be confident that the vitamins caused those improvements.

Statisticians consider randomized experimental designs to be the best for identifying causal relationships.

If you can’t randomly assign subjects but want to draw causal conclusions about an intervention, consider using a quasi-experimental design .

Learn more about Randomized Controlled Trials and Random Assignment in Experiments .

Randomized Block Designs

Nuisance factors are variables that can affect the outcome, but they are not the researcher’s primary interest. Unfortunately, they can hide or distort the treatment results. When experimenters know about specific nuisance factors, they can use a randomized block design to minimize their impact.

This experimental design takes subjects with a shared “nuisance” characteristic and groups them into blocks. The participants in each block are then randomly assigned to the experimental groups. This process allows the experiment to control for known nuisance factors.

Blocking in the design of experiments reduces the impact of nuisance factors on experimental error. The analysis assesses the effects of the treatment within each block, which removes the variability between blocks. The result is that blocked experimental designs can reduce the impact of nuisance variables, increasing the ability to detect treatment effects accurately.

Suppose you’re testing various teaching methods. Because grade level likely affects educational outcomes, you might use grade level as a blocking factor. To use a randomized block design for this scenario, divide the participants by grade level and then randomly assign the members of each grade level to the experimental groups.

A standard guideline for an experimental design is to “Block what you can, randomize what you cannot.” Use blocking for a few primary nuisance factors. Then use random assignment to distribute the unblocked nuisance factors equally between the experimental conditions.

You can also use covariates to control nuisance factors. Learn about Covariates: Definition and Uses .

Observational Studies

In some experimental designs, randomly assigning subjects to the experimental conditions is impossible or unethical. The researchers simply can’t assign participants to the experimental groups. However, they can observe them in their natural groupings, measure the essential variables, and look for correlations. These observational studies are also known as quasi-experimental designs. Retrospective studies must be observational in nature because they look back at past events.

Imagine you’re studying the effects of depression on an activity. Clearly, you can’t randomly assign participants to the depression and control groups. But you can observe participants with and without depression and see how their task performance differs.

Observational studies let you perform research when you can’t control the treatment. However, quasi-experimental designs increase the problem of confounding variables. For this design of experiments, correlation does not necessarily imply causation. While special procedures can help control confounders in an observational study, you’re ultimately less confident that the results represent causal findings.

Learn more about Observational Studies .

For a good comparison, learn about the differences and tradeoffs between Observational Studies and Randomized Experiments .

Between-Subjects vs. Within-Subjects Experimental Designs

When you think of the design of experiments, you probably picture a treatment and control group. Researchers assign participants to only one of these groups, so each group contains entirely different subjects than the other groups. Analysts compare the groups at the end of the experiment. Statisticians refer to this method as a between-subjects, or independent measures, experimental design.

In a between-subjects design , you can have more than one treatment group, but each subject is exposed to only one condition, the control group or one of the treatment groups.

A potential downside to this approach is that differences between groups at the beginning can affect the results at the end. As you’ve read earlier, random assignment can reduce those differences, but it is imperfect. There will always be some variability between the groups.

In a  within-subjects experimental design , also known as repeated measures, subjects experience all treatment conditions and are measured for each. Each subject acts as their own control, which reduces variability and increases the statistical power to detect effects.

In this experimental design, you minimize pre-existing differences between the experimental conditions because they all contain the same subjects. However, the order of treatments can affect the results. Beware of practice and fatigue effects. Learn more about Repeated Measures Designs .

Assigned to one experimental condition Participates in all experimental conditions
Requires more subjects Fewer subjects
Differences between subjects in the groups can affect the results Uses same subjects in all conditions.
No order of treatment effects. Order of treatments can affect results.

Design of Experiments Examples

For example, a bone density study has three experimental groups—a control group, a stretching exercise group, and a jumping exercise group.

In a between-subjects experimental design, scientists randomly assign each participant to one of the three groups.

In a within-subjects design, all subjects experience the three conditions sequentially while the researchers measure bone density repeatedly. The procedure can switch the order of treatments for the participants to help reduce order effects.

Matched Pairs Experimental Design

A matched pairs experimental design is a between-subjects study that uses pairs of similar subjects. Researchers use this approach to reduce pre-existing differences between experimental groups. It’s yet another design of experiments method for reducing sources of variability.

Researchers identify variables likely to affect the outcome, such as demographics. When they pick a subject with a set of characteristics, they try to locate another participant with similar attributes to create a matched pair. Scientists randomly assign one member of a pair to the treatment group and the other to the control group.

On the plus side, this process creates two similar groups, and it doesn’t create treatment order effects. While matched pairs do not produce the perfectly matched groups of a within-subjects design (which uses the same subjects in all conditions), it aims to reduce variability between groups relative to a between-subjects study.

On the downside, finding matched pairs is very time-consuming. Additionally, if one member of a matched pair drops out, the other subject must leave the study too.

Learn more about Matched Pairs Design: Uses & Examples .

Another consideration is whether you’ll use a cross-sectional design (one point in time) or use a longitudinal study to track changes over time .

A case study is a research method that often serves as a precursor to a more rigorous experimental design by identifying research questions, variables, and hypotheses to test. Learn more about What is a Case Study? Definition & Examples .

In conclusion, the design of experiments is extremely sensitive to subject area concerns and the time and resources available to the researchers. Developing a suitable experimental design requires balancing a multitude of considerations. A successful design is necessary to obtain trustworthy answers to your research question and to have a reasonable chance of detecting treatment effects when they exist.

Share this:

design of experiment steps

Reader Interactions

' src=

March 23, 2024 at 2:35 pm

Dear Jim You wrote a superb document, I will use it in my Buistatistics course, along with your three books. Thank you very much! Miguel

' src=

March 23, 2024 at 5:43 pm

Thanks so much, Miguel! Glad this post was helpful and I trust the books will be as well.

' src=

April 10, 2023 at 4:36 am

What are the purpose and uses of experimental research design?

Comments and Questions Cancel reply

Experimental design: Guide, steps, examples

Last updated

27 April 2023

Reviewed by

Miroslav Damyanov

Short on time? Get an AI generated summary of this article instead

Experimental research design is a scientific framework that allows you to manipulate one or more variables while controlling the test environment. 

When testing a theory or new product, it can be helpful to have a certain level of control and manipulate variables to discover different outcomes. You can use these experiments to determine cause and effect or study variable associations. 

This guide explores the types of experimental design, the steps in designing an experiment, and the advantages and limitations of experimental design. 

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • What is experimental research design?

You can determine the relationship between each of the variables by: 

Manipulating one or more independent variables (i.e., stimuli or treatments)

Applying the changes to one or more dependent variables (i.e., test groups or outcomes)

With the ability to analyze the relationship between variables and using measurable data, you can increase the accuracy of the result. 

What is a good experimental design?

A good experimental design requires: 

Significant planning to ensure control over the testing environment

Sound experimental treatments

Properly assigning subjects to treatment groups

Without proper planning, unexpected external variables can alter an experiment's outcome. 

To meet your research goals, your experimental design should include these characteristics:

Provide unbiased estimates of inputs and associated uncertainties

Enable the researcher to detect differences caused by independent variables

Include a plan for analysis and reporting of the results

Provide easily interpretable results with specific conclusions

What's the difference between experimental and quasi-experimental design?

The major difference between experimental and quasi-experimental design is the random assignment of subjects to groups. 

A true experiment relies on certain controls. Typically, the researcher designs the treatment and randomly assigns subjects to control and treatment groups. 

However, these conditions are unethical or impossible to achieve in some situations.

When it's unethical or impractical to assign participants randomly, that’s when a quasi-experimental design comes in. 

This design allows researchers to conduct a similar experiment by assigning subjects to groups based on non-random criteria. 

Another type of quasi-experimental design might occur when the researcher doesn't have control over the treatment but studies pre-existing groups after they receive different treatments.

When can a researcher conduct experimental research?

Various settings and professions can use experimental research to gather information and observe behavior in controlled settings. 

Basically, a researcher can conduct experimental research any time they want to test a theory with variable and dependent controls. 

Experimental research is an option when the project includes an independent variable and a desire to understand the relationship between cause and effect. 

  • The importance of experimental research design

Experimental research enables researchers to conduct studies that provide specific, definitive answers to questions and hypotheses. 

Researchers can test Independent variables in controlled settings to:

Test the effectiveness of a new medication

Design better products for consumers

Answer questions about human health and behavior

Developing a quality research plan means a researcher can accurately answer vital research questions with minimal error. As a result, definitive conclusions can influence the future of the independent variable. 

Types of experimental research designs

There are three main types of experimental research design. The research type you use will depend on the criteria of your experiment, your research budget, and environmental limitations. 

Pre-experimental research design

A pre-experimental research study is a basic observational study that monitors independent variables’ effects. 

During research, you observe one or more groups after applying a treatment to test whether the treatment causes any change. 

The three subtypes of pre-experimental research design are:

One-shot case study research design

This research method introduces a single test group to a single stimulus to study the results at the end of the application. 

After researchers presume the stimulus or treatment has caused changes, they gather results to determine how it affects the test subjects. 

One-group pretest-posttest design

This method uses a single test group but includes a pretest study as a benchmark. The researcher applies a test before and after the group’s exposure to a specific stimulus. 

Static group comparison design

This method includes two or more groups, enabling the researcher to use one group as a control. They apply a stimulus to one group and leave the other group static. 

A posttest study compares the results among groups. 

True experimental research design

A true experiment is the most common research method. It involves statistical analysis to prove or disprove a specific hypothesis . 

Under completely experimental conditions, researchers expose participants in two or more randomized groups to different stimuli. 

Random selection removes any potential for bias, providing more reliable results. 

These are the three main sub-groups of true experimental research design:

Posttest-only control group design

This structure requires the researcher to divide participants into two random groups. One group receives no stimuli and acts as a control while the other group experiences stimuli.

Researchers perform a test at the end of the experiment to observe the stimuli exposure results.

Pretest-posttest control group design

This test also requires two groups. It includes a pretest as a benchmark before introducing the stimulus. 

The pretest introduces multiple ways to test subjects. For instance, if the control group also experiences a change, it reveals that taking the test twice changes the results.

Solomon four-group design

This structure divides subjects into two groups, with two as control groups. Researchers assign the first control group a posttest only and the second control group a pretest and a posttest. 

The two variable groups mirror the control groups, but researchers expose them to stimuli. The ability to differentiate between groups in multiple ways provides researchers with more testing approaches for data-based conclusions. 

Quasi-experimental research design

Although closely related to a true experiment, quasi-experimental research design differs in approach and scope. 

Quasi-experimental research design doesn’t have randomly selected participants. Researchers typically divide the groups in this research by pre-existing differences. 

Quasi-experimental research is more common in educational studies, nursing, or other research projects where it's not ethical or practical to use randomized subject groups.

  • 5 steps for designing an experiment

Experimental research requires a clearly defined plan to outline the research parameters and expected goals. 

Here are five key steps in designing a successful experiment:

Step 1: Define variables and their relationship

Your experiment should begin with a question: What are you hoping to learn through your experiment? 

The relationship between variables in your study will determine your answer.

Define the independent variable (the intended stimuli) and the dependent variable (the expected effect of the stimuli). After identifying these groups, consider how you might control them in your experiment. 

Could natural variations affect your research? If so, your experiment should include a pretest and posttest. 

Step 2: Develop a specific, testable hypothesis

With a firm understanding of the system you intend to study, you can write a specific, testable hypothesis. 

What is the expected outcome of your study? 

Develop a prediction about how the independent variable will affect the dependent variable. 

How will the stimuli in your experiment affect your test subjects? 

Your hypothesis should provide a prediction of the answer to your research question . 

Step 3: Design experimental treatments to manipulate your independent variable

Depending on your experiment, your variable may be a fixed stimulus (like a medical treatment) or a variable stimulus (like a period during which an activity occurs). 

Determine which type of stimulus meets your experiment’s needs and how widely or finely to vary your stimuli. 

Step 4: Assign subjects to groups

When you have a clear idea of how to carry out your experiment, you can determine how to assemble test groups for an accurate study. 

When choosing your study groups, consider: 

The size of your experiment

Whether you can select groups randomly

Your target audience for the outcome of the study

You should be able to create groups with an equal number of subjects and include subjects that match your target audience. Remember, you should assign one group as a control and use one or more groups to study the effects of variables. 

Step 5: Plan how to measure your dependent variable

This step determines how you'll collect data to determine the study's outcome. You should seek reliable and valid measurements that minimize research bias or error. 

You can measure some data with scientific tools, while you’ll need to operationalize other forms to turn them into measurable observations.

  • Advantages of experimental research

Experimental research is an integral part of our world. It allows researchers to conduct experiments that answer specific questions. 

While researchers use many methods to conduct different experiments, experimental research offers these distinct benefits:

Researchers can determine cause and effect by manipulating variables.

It gives researchers a high level of control.

Researchers can test multiple variables within a single experiment.

All industries and fields of knowledge can use it. 

Researchers can duplicate results to promote the validity of the study .

Replicating natural settings rapidly means immediate research.

Researchers can combine it with other research methods.

It provides specific conclusions about the validity of a product, theory, or idea.

  • Disadvantages (or limitations) of experimental research

Unfortunately, no research type yields ideal conditions or perfect results. 

While experimental research might be the right choice for some studies, certain conditions could render experiments useless or even dangerous. 

Before conducting experimental research, consider these disadvantages and limitations:

Required professional qualification

Only competent professionals with an academic degree and specific training are qualified to conduct rigorous experimental research. This ensures results are unbiased and valid. 

Limited scope

Experimental research may not capture the complexity of some phenomena, such as social interactions or cultural norms. These are difficult to control in a laboratory setting.

Resource-intensive

Experimental research can be expensive, time-consuming, and require significant resources, such as specialized equipment or trained personnel.

Limited generalizability

The controlled nature means the research findings may not fully apply to real-world situations or people outside the experimental setting.

Practical or ethical concerns

Some experiments may involve manipulating variables that could harm participants or violate ethical guidelines . 

Researchers must ensure their experiments do not cause harm or discomfort to participants. 

Sometimes, recruiting a sample of people to randomly assign may be difficult. 

  • Experimental research design example

Experiments across all industries and research realms provide scientists, developers, and other researchers with definitive answers. These experiments can solve problems, create inventions, and heal illnesses. 

Product design testing is an excellent example of experimental research. 

A company in the product development phase creates multiple prototypes for testing. With a randomized selection, researchers introduce each test group to a different prototype. 

When groups experience different product designs , the company can assess which option most appeals to potential customers. 

Experimental research design provides researchers with a controlled environment to conduct experiments that evaluate cause and effect. 

Using the five steps to develop a research plan ensures you anticipate and eliminate external variables while answering life’s crucial questions.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 6 February 2023

Last updated: 6 October 2023

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 7 March 2023

Last updated: 9 March 2023

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

design of experiment steps

Users report unexpectedly high data usage, especially during streaming sessions.

design of experiment steps

Users find it hard to navigate from the home page to relevant playlists in the app.

design of experiment steps

It would be great to have a sleep timer feature, especially for bedtime listening.

design of experiment steps

I need better filters to find the songs or artists I’m looking for.

  • Types of experimental

Log in or sign up

Get started for free

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

1.1 - a quick history of the design of experiments (doe).

The textbook we are using brings an engineering perspective to the design of experiments. We will bring in other contexts and examples from other fields of study including agriculture (where much of the early research was done) education and nutrition. Surprisingly the service industry has begun using design of experiments as well.

  All experiments are designed experiments, it is just that some are poorly designed and some are well-designed.  

Engineering Experiments Section  

If we had infinite time and resource budgets there probably wouldn't be a big fuss made over designing experiments. In production and quality control we want to control the error and learn as much as we can about the process or the underlying theory with the resources at hand. From an engineering perspective we're trying to use experimentation for the following purposes:

  • reduce time to design/develop new products & processes
  • improve performance of existing processes
  • improve reliability and performance of products
  • achieve product & process robustness
  • perform evaluation of materials, design alternatives, setting component & system tolerances, etc.

We always want to fine-tune or improve the process. In today's global world this drive for competitiveness affects all of us both as consumers and producers.

Robustness is a concept that enters into statistics at several points. At the analysis, stage robustness refers to a technique that isn't overly influenced by bad data. Even if there is an outlier or bad data you still want to get the right answer. Regardless of who or what is involved in the process - it is still going to work. We will come back to this notion of robustness later in the course (Lesson 12).

Every experiment design has inputs. Back to the cake baking example: we have our ingredients such as flour, sugar, milk, eggs, etc. Regardless of the quality of these ingredients we still want our cake to come out successfully. In every experiment there are inputs and in addition, there are factors (such as time of baking, temperature, geometry of the cake pan, etc.), some of which you can control and others that you can't control. The experimenter must think about factors that affect the outcome. We also talk about the output and the yield or the response to your experiment. For the cake, the output might be measured as texture, flavor, height, size, or flavor.

Four Eras in the History of DOE Section  

Here's a quick timeline:

  • R. A. Fisher & his co-workers
  • Profound impact on agricultural science
  • Factorial designs, ANOVA
  • Box & Wilson, response surfaces
  • Applications in the chemical & process industries
  • Quality improvement initiatives in many companies
  • CQI and TQM were important ideas and became management goals
  • Taguchi and robust parameter design, process robustness
  • The modern era, beginning circa 1990, when economic competitiveness and globalization are driving all sectors of the economy to be more competitive.

Immediately following World War II the first industrial era marked another resurgence in the use of DOE. It was at this time that Box and Wilson (1951) wrote the key paper in response surface designs thinking of the output as a response function and trying to find the optimum conditions for this function. George Box died early in 2013. And, an interesting fact here - he married Fisher's daughter! He worked in the chemical industry in England in his early career and then came to America and worked at the University of Wisconsin for most of his career.

The Second Industrial Era - or the Quality Revolution

image of W Edward Deming

W. Edwards Deming

The importance of statistical quality control was taken to Japan in the 1950s by W Edward Deming. This started what Montgomery calls a second Industrial Era, and sometimes the quality revolution. After the second world war, Japanese products were of terrible quality. They were cheaply made and not very good. In the 1960s their quality started improving. The Japanese car industry adopted statistical quality control procedures and conducted experiments which started this new era. Total Quality Management (TQM), Continuous Quality Improvement (CQI) are management techniques that have come out of this statistical quality revolution - statistical quality control and design of experiments.

Taguchi, a Japanese engineer, discovered and published a lot of the techniques that were later brought to the West, using an independent development of what he referred to as orthogonal arrays. In the West, these were referred to as fractional factorial designs. These are both very similar and we will discuss both of these in this course. He came up with the concept of robust parameter design and process robustness.

The Modern Era

Around 1990 Six Sigma, a new way of representing CQI, became popular. Now it is a company and they employ a technique which has been adopted by many of the large manufacturing companies. This is a technique that uses statistics to make decisions based on quality and feedback loops. It incorporates a lot of previous statistical and management techniques.

Clinical Trials

Montgomery omits in this brief history a major part of design of experimentation that evolved - clinical trials. This evolved in the 1960s when medical advances were previously based on anecdotal data; a doctor would examine six patients and from this wrote a paper and published it. The incredible biases resulting from these kinds of anecdotal studies became known. The outcome was a move toward making the randomized double-blind clinical trial the gold standard for approval of any new product, medical device, or procedure. The scientific application of the statistical procedures became very important.

Lean Six Sigma Training Certification

6sigma.us

  • Facebook Instagram Twitter LinkedIn YouTube
  • (877) 497-4462

SixSigma.us

Step-by-Step Guide to DoE (Design of Experiments)

February 16th, 2017

DOE or Design of experiments helps identify the various factors that affect the productivity and the outcomes of a particular process or a design. The individual influence of the factors as well as the interactive power of these factors to influence the outcome comes to light through an efficient design of experiment. The trial and error approach of the past to consequently achieve the desired productivity and efficiency is obsolete. The sophisticated statistical approach taken by DOE makes it convenient for the businesses to design, conduct and analyze the experiments that can help multiply the output. Here is a systematic, step-by-step guide to design a fruitful experiment.

design of experiment steps

Set Objectives Clearly defined goals and objectives of the experiment are important to get the intended answer. A comprehensive brain storming session or an interactive meeting can help the team prioritize the goals. The type of design of the experiment depends heavily on your objectives. • Comparative Design: It lets you compare between two or more factors or effects to find out the one with the greatest impact. • Screening Design: It is vital when you are dealing with many factors and want to filter out a few important ones. • Response Surface Modeling: Typically employed when you want to maximize or minimize a response. • Regression Modeling: It is used to help figure out the degrees of dependence of a response on the factors.

Choose Your Variables The next step is to shortlist your variables. Choose your input i.e. factors and your output i.e. responses carefully, as this will define the efficacy and usability of your experiment. Setting the constraints or the range of the factors is vital. Two-level designs that involve a high and a low level for the factors seem to be the most efficient one, with +1 and -1 notations respectively.

Consider the Interactions The greatest advantage of Design of Experiments over traditional experiments is its allowance of analyzing the synergized impacts of the various factors on the responses. When many factors are in play together, finding out the combinations of factors that manage to inflict the most affect is crucial. The team needs to carefully prioritize the interactions they want to test. If you are using DOE software, it is best to run the experiment for all the possible interactions of factors.

Run the Experiment Once you have decided upon the type of experiment and the most important input and output, it is time to simply run the experiment. Ensuring all the relevant data is accurate and in process, is vital to your results. Before running the experiment, go over the design one more time. The team should come up with the minimum number of times to run the experiment to get any significant result. Run all the experiments with the same set of assumptions as well as factors and responses.

Analyze the Results After the necessary runs of your experiment have been carried out, the next obvious step is the analysis of the data obtained because of the experiment. Graphs and diagrams can help you greatly assess the data. Histograms, flowcharts as well as scatter diagrams can give an insight on the effects of various factors on different responses. Try to find correlations between input and output, the interactive impacts of the many factors as well as the magnitude of affects on the responses. Simple and step-by-step approach to design of experiments efficiently lets you test out the different ways in to improve a particular process. The results and findings of an experiment allow you to make the necessary tweaks and adjustments in a system to improve the yield.

Stop by 6Sigma.us and learn how we can make a difference in your business and bring clarity to your current challenges.

SixSigma.us offers both Live Virtual classes as well as Online Self-Paced training. Most option includes access to the same great Master Black Belt instructors that teach our World Class in-person sessions. Sign-up today!

Virtual Classroom Training Programs Self-Paced Online Training Programs

SixSigma.us Accreditation & Affiliations

PMI-logo-6sigma-us

Monthly Management Tips

  • Be the first one to receive the latest updates and information from 6Sigma
  • Get curated resources from industry-experts
  • Gain an edge with complete guides and other exclusive materials
  • Become a part of one of the largest Six Sigma community
  • Unlock your path to become a Six Sigma professional

" * " indicates required fields

19+ Experimental Design Examples (Methods + Types)

practical psychology logo

Ever wondered how scientists discover new medicines, psychologists learn about behavior, or even how marketers figure out what kind of ads you like? Well, they all have something in common: they use a special plan or recipe called an "experimental design."

Imagine you're baking cookies. You can't just throw random amounts of flour, sugar, and chocolate chips into a bowl and hope for the best. You follow a recipe, right? Scientists and researchers do something similar. They follow a "recipe" called an experimental design to make sure their experiments are set up in a way that the answers they find are meaningful and reliable.

Experimental design is the roadmap researchers use to answer questions. It's a set of rules and steps that researchers follow to collect information, or "data," in a way that is fair, accurate, and makes sense.

experimental design test tubes

Long ago, people didn't have detailed game plans for experiments. They often just tried things out and saw what happened. But over time, people got smarter about this. They started creating structured plans—what we now call experimental designs—to get clearer, more trustworthy answers to their questions.

In this article, we'll take you on a journey through the world of experimental designs. We'll talk about the different types, or "flavors," of experimental designs, where they're used, and even give you a peek into how they came to be.

What Is Experimental Design?

Alright, before we dive into the different types of experimental designs, let's get crystal clear on what experimental design actually is.

Imagine you're a detective trying to solve a mystery. You need clues, right? Well, in the world of research, experimental design is like the roadmap that helps you find those clues. It's like the game plan in sports or the blueprint when you're building a house. Just like you wouldn't start building without a good blueprint, researchers won't start their studies without a strong experimental design.

So, why do we need experimental design? Think about baking a cake. If you toss ingredients into a bowl without measuring, you'll end up with a mess instead of a tasty dessert.

Similarly, in research, if you don't have a solid plan, you might get confusing or incorrect results. A good experimental design helps you ask the right questions ( think critically ), decide what to measure ( come up with an idea ), and figure out how to measure it (test it). It also helps you consider things that might mess up your results, like outside influences you hadn't thought of.

For example, let's say you want to find out if listening to music helps people focus better. Your experimental design would help you decide things like: Who are you going to test? What kind of music will you use? How will you measure focus? And, importantly, how will you make sure that it's really the music affecting focus and not something else, like the time of day or whether someone had a good breakfast?

In short, experimental design is the master plan that guides researchers through the process of collecting data, so they can answer questions in the most reliable way possible. It's like the GPS for the journey of discovery!

History of Experimental Design

Around 350 BCE, people like Aristotle were trying to figure out how the world works, but they mostly just thought really hard about things. They didn't test their ideas much. So while they were super smart, their methods weren't always the best for finding out the truth.

Fast forward to the Renaissance (14th to 17th centuries), a time of big changes and lots of curiosity. People like Galileo started to experiment by actually doing tests, like rolling balls down inclined planes to study motion. Galileo's work was cool because he combined thinking with doing. He'd have an idea, test it, look at the results, and then think some more. This approach was a lot more reliable than just sitting around and thinking.

Now, let's zoom ahead to the 18th and 19th centuries. This is when people like Francis Galton, an English polymath, started to get really systematic about experimentation. Galton was obsessed with measuring things. Seriously, he even tried to measure how good-looking people were ! His work helped create the foundations for a more organized approach to experiments.

Next stop: the early 20th century. Enter Ronald A. Fisher , a brilliant British statistician. Fisher was a game-changer. He came up with ideas that are like the bread and butter of modern experimental design.

Fisher invented the concept of the " control group "—that's a group of people or things that don't get the treatment you're testing, so you can compare them to those who do. He also stressed the importance of " randomization ," which means assigning people or things to different groups by chance, like drawing names out of a hat. This makes sure the experiment is fair and the results are trustworthy.

Around the same time, American psychologists like John B. Watson and B.F. Skinner were developing " behaviorism ." They focused on studying things that they could directly observe and measure, like actions and reactions.

Skinner even built boxes—called Skinner Boxes —to test how animals like pigeons and rats learn. Their work helped shape how psychologists design experiments today. Watson performed a very controversial experiment called The Little Albert experiment that helped describe behaviour through conditioning—in other words, how people learn to behave the way they do.

In the later part of the 20th century and into our time, computers have totally shaken things up. Researchers now use super powerful software to help design their experiments and crunch the numbers.

With computers, they can simulate complex experiments before they even start, which helps them predict what might happen. This is especially helpful in fields like medicine, where getting things right can be a matter of life and death.

Also, did you know that experimental designs aren't just for scientists in labs? They're used by people in all sorts of jobs, like marketing, education, and even video game design! Yes, someone probably ran an experiment to figure out what makes a game super fun to play.

So there you have it—a quick tour through the history of experimental design, from Aristotle's deep thoughts to Fisher's groundbreaking ideas, and all the way to today's computer-powered research. These designs are the recipes that help people from all walks of life find answers to their big questions.

Key Terms in Experimental Design

Before we dig into the different types of experimental designs, let's get comfy with some key terms. Understanding these terms will make it easier for us to explore the various types of experimental designs that researchers use to answer their big questions.

Independent Variable : This is what you change or control in your experiment to see what effect it has. Think of it as the "cause" in a cause-and-effect relationship. For example, if you're studying whether different types of music help people focus, the kind of music is the independent variable.

Dependent Variable : This is what you're measuring to see the effect of your independent variable. In our music and focus experiment, how well people focus is the dependent variable—it's what "depends" on the kind of music played.

Control Group : This is a group of people who don't get the special treatment or change you're testing. They help you see what happens when the independent variable is not applied. If you're testing whether a new medicine works, the control group would take a fake pill, called a placebo , instead of the real medicine.

Experimental Group : This is the group that gets the special treatment or change you're interested in. Going back to our medicine example, this group would get the actual medicine to see if it has any effect.

Randomization : This is like shaking things up in a fair way. You randomly put people into the control or experimental group so that each group is a good mix of different kinds of people. This helps make the results more reliable.

Sample : This is the group of people you're studying. They're a "sample" of a larger group that you're interested in. For instance, if you want to know how teenagers feel about a new video game, you might study a sample of 100 teenagers.

Bias : This is anything that might tilt your experiment one way or another without you realizing it. Like if you're testing a new kind of dog food and you only test it on poodles, that could create a bias because maybe poodles just really like that food and other breeds don't.

Data : This is the information you collect during the experiment. It's like the treasure you find on your journey of discovery!

Replication : This means doing the experiment more than once to make sure your findings hold up. It's like double-checking your answers on a test.

Hypothesis : This is your educated guess about what will happen in the experiment. It's like predicting the end of a movie based on the first half.

Steps of Experimental Design

Alright, let's say you're all fired up and ready to run your own experiment. Cool! But where do you start? Well, designing an experiment is a bit like planning a road trip. There are some key steps you've got to take to make sure you reach your destination. Let's break it down:

  • Ask a Question : Before you hit the road, you've got to know where you're going. Same with experiments. You start with a question you want to answer, like "Does eating breakfast really make you do better in school?"
  • Do Some Homework : Before you pack your bags, you look up the best places to visit, right? In science, this means reading up on what other people have already discovered about your topic.
  • Form a Hypothesis : This is your educated guess about what you think will happen. It's like saying, "I bet this route will get us there faster."
  • Plan the Details : Now you decide what kind of car you're driving (your experimental design), who's coming with you (your sample), and what snacks to bring (your variables).
  • Randomization : Remember, this is like shuffling a deck of cards. You want to mix up who goes into your control and experimental groups to make sure it's a fair test.
  • Run the Experiment : Finally, the rubber hits the road! You carry out your plan, making sure to collect your data carefully.
  • Analyze the Data : Once the trip's over, you look at your photos and decide which ones are keepers. In science, this means looking at your data to see what it tells you.
  • Draw Conclusions : Based on your data, did you find an answer to your question? This is like saying, "Yep, that route was faster," or "Nope, we hit a ton of traffic."
  • Share Your Findings : After a great trip, you want to tell everyone about it, right? Scientists do the same by publishing their results so others can learn from them.
  • Do It Again? : Sometimes one road trip just isn't enough. In the same way, scientists often repeat their experiments to make sure their findings are solid.

So there you have it! Those are the basic steps you need to follow when you're designing an experiment. Each step helps make sure that you're setting up a fair and reliable way to find answers to your big questions.

Let's get into examples of experimental designs.

1) True Experimental Design

notepad

In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

Researchers carefully pick an independent variable to manipulate (remember, that's the thing they're changing on purpose) and measure the dependent variable (the effect they're studying). Then comes the magic trick—randomization. By randomly putting participants into either the control or experimental group, scientists make sure their experiment is as fair as possible.

No sneaky biases here!

True Experimental Design Pros

The pros of True Experimental Design are like the perks of a VIP ticket at a concert: you get the best and most trustworthy results. Because everything is controlled and randomized, you can feel pretty confident that the results aren't just a fluke.

True Experimental Design Cons

However, there's a catch. Sometimes, it's really tough to set up these experiments in a real-world situation. Imagine trying to control every single detail of your day, from the food you eat to the air you breathe. Not so easy, right?

True Experimental Design Uses

The fields that get the most out of True Experimental Designs are those that need super reliable results, like medical research.

When scientists were developing COVID-19 vaccines, they used this design to run clinical trials. They had control groups that received a placebo (a harmless substance with no effect) and experimental groups that got the actual vaccine. Then they measured how many people in each group got sick. By comparing the two, they could say, "Yep, this vaccine works!"

So next time you read about a groundbreaking discovery in medicine or technology, chances are a True Experimental Design was the VIP behind the scenes, making sure everything was on point. It's been the go-to for rigorous scientific inquiry for nearly a century, and it's not stepping off the stage anytime soon.

2) Quasi-Experimental Design

So, let's talk about the Quasi-Experimental Design. Think of this one as the cool cousin of True Experimental Design. It wants to be just like its famous relative, but it's a bit more laid-back and flexible. You'll find quasi-experimental designs when it's tricky to set up a full-blown True Experimental Design with all the bells and whistles.

Quasi-experiments still play with an independent variable, just like their stricter cousins. The big difference? They don't use randomization. It's like wanting to divide a bag of jelly beans equally between your friends, but you can't quite do it perfectly.

In real life, it's often not possible or ethical to randomly assign people to different groups, especially when dealing with sensitive topics like education or social issues. And that's where quasi-experiments come in.

Quasi-Experimental Design Pros

Even though they lack full randomization, quasi-experimental designs are like the Swiss Army knives of research: versatile and practical. They're especially popular in fields like education, sociology, and public policy.

For instance, when researchers wanted to figure out if the Head Start program , aimed at giving young kids a "head start" in school, was effective, they used a quasi-experimental design. They couldn't randomly assign kids to go or not go to preschool, but they could compare kids who did with kids who didn't.

Quasi-Experimental Design Cons

Of course, quasi-experiments come with their own bag of pros and cons. On the plus side, they're easier to set up and often cheaper than true experiments. But the flip side is that they're not as rock-solid in their conclusions. Because the groups aren't randomly assigned, there's always that little voice saying, "Hey, are we missing something here?"

Quasi-Experimental Design Uses

Quasi-Experimental Design gained traction in the mid-20th century. Researchers were grappling with real-world problems that didn't fit neatly into a laboratory setting. Plus, as society became more aware of ethical considerations, the need for flexible designs increased. So, the quasi-experimental approach was like a breath of fresh air for scientists wanting to study complex issues without a laundry list of restrictions.

In short, if True Experimental Design is the superstar quarterback, Quasi-Experimental Design is the versatile player who can adapt and still make significant contributions to the game.

3) Pre-Experimental Design

Now, let's talk about the Pre-Experimental Design. Imagine it as the beginner's skateboard you get before you try out for all the cool tricks. It has wheels, it rolls, but it's not built for the professional skatepark.

Similarly, pre-experimental designs give researchers a starting point. They let you dip your toes in the water of scientific research without diving in head-first.

So, what's the deal with pre-experimental designs?

Pre-Experimental Designs are the basic, no-frills versions of experiments. Researchers still mess around with an independent variable and measure a dependent variable, but they skip over the whole randomization thing and often don't even have a control group.

It's like baking a cake but forgetting the frosting and sprinkles; you'll get some results, but they might not be as complete or reliable as you'd like.

Pre-Experimental Design Pros

Why use such a simple setup? Because sometimes, you just need to get the ball rolling. Pre-experimental designs are great for quick-and-dirty research when you're short on time or resources. They give you a rough idea of what's happening, which you can use to plan more detailed studies later.

A good example of this is early studies on the effects of screen time on kids. Researchers couldn't control every aspect of a child's life, but they could easily ask parents to track how much time their kids spent in front of screens and then look for trends in behavior or school performance.

Pre-Experimental Design Cons

But here's the catch: pre-experimental designs are like that first draft of an essay. It helps you get your ideas down, but you wouldn't want to turn it in for a grade. Because these designs lack the rigorous structure of true or quasi-experimental setups, they can't give you rock-solid conclusions. They're more like clues or signposts pointing you in a certain direction.

Pre-Experimental Design Uses

This type of design became popular in the early stages of various scientific fields. Researchers used them to scratch the surface of a topic, generate some initial data, and then decide if it's worth exploring further. In other words, pre-experimental designs were the stepping stones that led to more complex, thorough investigations.

So, while Pre-Experimental Design may not be the star player on the team, it's like the practice squad that helps everyone get better. It's the starting point that can lead to bigger and better things.

4) Factorial Design

Now, buckle up, because we're moving into the world of Factorial Design, the multi-tasker of the experimental universe.

Imagine juggling not just one, but multiple balls in the air—that's what researchers do in a factorial design.

In Factorial Design, researchers are not satisfied with just studying one independent variable. Nope, they want to study two or more at the same time to see how they interact.

It's like cooking with several spices to see how they blend together to create unique flavors.

Factorial Design became the talk of the town with the rise of computers. Why? Because this design produces a lot of data, and computers are the number crunchers that help make sense of it all. So, thanks to our silicon friends, researchers can study complicated questions like, "How do diet AND exercise together affect weight loss?" instead of looking at just one of those factors.

Factorial Design Pros

This design's main selling point is its ability to explore interactions between variables. For instance, maybe a new study drug works really well for young people but not so great for older adults. A factorial design could reveal that age is a crucial factor, something you might miss if you only studied the drug's effectiveness in general. It's like being a detective who looks for clues not just in one room but throughout the entire house.

Factorial Design Cons

However, factorial designs have their own bag of challenges. First off, they can be pretty complicated to set up and run. Imagine coordinating a four-way intersection with lots of cars coming from all directions—you've got to make sure everything runs smoothly, or you'll end up with a traffic jam. Similarly, researchers need to carefully plan how they'll measure and analyze all the different variables.

Factorial Design Uses

Factorial designs are widely used in psychology to untangle the web of factors that influence human behavior. They're also popular in fields like marketing, where companies want to understand how different aspects like price, packaging, and advertising influence a product's success.

And speaking of success, the factorial design has been a hit since statisticians like Ronald A. Fisher (yep, him again!) expanded on it in the early-to-mid 20th century. It offered a more nuanced way of understanding the world, proving that sometimes, to get the full picture, you've got to juggle more than one ball at a time.

So, if True Experimental Design is the quarterback and Quasi-Experimental Design is the versatile player, Factorial Design is the strategist who sees the entire game board and makes moves accordingly.

5) Longitudinal Design

pill bottle

Alright, let's take a step into the world of Longitudinal Design. Picture it as the grand storyteller, the kind who doesn't just tell you about a single event but spins an epic tale that stretches over years or even decades. This design isn't about quick snapshots; it's about capturing the whole movie of someone's life or a long-running process.

You know how you might take a photo every year on your birthday to see how you've changed? Longitudinal Design is kind of like that, but for scientific research.

With Longitudinal Design, instead of measuring something just once, researchers come back again and again, sometimes over many years, to see how things are going. This helps them understand not just what's happening, but why it's happening and how it changes over time.

This design really started to shine in the latter half of the 20th century, when researchers began to realize that some questions can't be answered in a hurry. Think about studies that look at how kids grow up, or research on how a certain medicine affects you over a long period. These aren't things you can rush.

The famous Framingham Heart Study , started in 1948, is a prime example. It's been studying heart health in a small town in Massachusetts for decades, and the findings have shaped what we know about heart disease.

Longitudinal Design Pros

So, what's to love about Longitudinal Design? First off, it's the go-to for studying change over time, whether that's how people age or how a forest recovers from a fire.

Longitudinal Design Cons

But it's not all sunshine and rainbows. Longitudinal studies take a lot of patience and resources. Plus, keeping track of participants over many years can be like herding cats—difficult and full of surprises.

Longitudinal Design Uses

Despite these challenges, longitudinal studies have been key in fields like psychology, sociology, and medicine. They provide the kind of deep, long-term insights that other designs just can't match.

So, if the True Experimental Design is the superstar quarterback, and the Quasi-Experimental Design is the flexible athlete, then the Factorial Design is the strategist, and the Longitudinal Design is the wise elder who has seen it all and has stories to tell.

6) Cross-Sectional Design

Now, let's flip the script and talk about Cross-Sectional Design, the polar opposite of the Longitudinal Design. If Longitudinal is the grand storyteller, think of Cross-Sectional as the snapshot photographer. It captures a single moment in time, like a selfie that you take to remember a fun day. Researchers using this design collect all their data at one point, providing a kind of "snapshot" of whatever they're studying.

In a Cross-Sectional Design, researchers look at multiple groups all at the same time to see how they're different or similar.

This design rose to popularity in the mid-20th century, mainly because it's so quick and efficient. Imagine wanting to know how people of different ages feel about a new video game. Instead of waiting for years to see how opinions change, you could just ask people of all ages what they think right now. That's Cross-Sectional Design for you—fast and straightforward.

You'll find this type of research everywhere from marketing studies to healthcare. For instance, you might have heard about surveys asking people what they think about a new product or political issue. Those are usually cross-sectional studies, aimed at getting a quick read on public opinion.

Cross-Sectional Design Pros

So, what's the big deal with Cross-Sectional Design? Well, it's the go-to when you need answers fast and don't have the time or resources for a more complicated setup.

Cross-Sectional Design Cons

Remember, speed comes with trade-offs. While you get your results quickly, those results are stuck in time. They can't tell you how things change or why they're changing, just what's happening right now.

Cross-Sectional Design Uses

Also, because they're so quick and simple, cross-sectional studies often serve as the first step in research. They give scientists an idea of what's going on so they can decide if it's worth digging deeper. In that way, they're a bit like a movie trailer, giving you a taste of the action to see if you're interested in seeing the whole film.

So, in our lineup of experimental designs, if True Experimental Design is the superstar quarterback and Longitudinal Design is the wise elder, then Cross-Sectional Design is like the speedy running back—fast, agile, but not designed for long, drawn-out plays.

7) Correlational Design

Next on our roster is the Correlational Design, the keen observer of the experimental world. Imagine this design as the person at a party who loves people-watching. They don't interfere or get involved; they just observe and take mental notes about what's going on.

In a correlational study, researchers don't change or control anything; they simply observe and measure how two variables relate to each other.

The correlational design has roots in the early days of psychology and sociology. Pioneers like Sir Francis Galton used it to study how qualities like intelligence or height could be related within families.

This design is all about asking, "Hey, when this thing happens, does that other thing usually happen too?" For example, researchers might study whether students who have more study time get better grades or whether people who exercise more have lower stress levels.

One of the most famous correlational studies you might have heard of is the link between smoking and lung cancer. Back in the mid-20th century, researchers started noticing that people who smoked a lot also seemed to get lung cancer more often. They couldn't say smoking caused cancer—that would require a true experiment—but the strong correlation was a red flag that led to more research and eventually, health warnings.

Correlational Design Pros

This design is great at proving that two (or more) things can be related. Correlational designs can help prove that more detailed research is needed on a topic. They can help us see patterns or possible causes for things that we otherwise might not have realized.

Correlational Design Cons

But here's where you need to be careful: correlational designs can be tricky. Just because two things are related doesn't mean one causes the other. That's like saying, "Every time I wear my lucky socks, my team wins." Well, it's a fun thought, but those socks aren't really controlling the game.

Correlational Design Uses

Despite this limitation, correlational designs are popular in psychology, economics, and epidemiology, to name a few fields. They're often the first step in exploring a possible relationship between variables. Once a strong correlation is found, researchers may decide to conduct more rigorous experimental studies to examine cause and effect.

So, if the True Experimental Design is the superstar quarterback and the Longitudinal Design is the wise elder, the Factorial Design is the strategist, and the Cross-Sectional Design is the speedster, then the Correlational Design is the clever scout, identifying interesting patterns but leaving the heavy lifting of proving cause and effect to the other types of designs.

8) Meta-Analysis

Last but not least, let's talk about Meta-Analysis, the librarian of experimental designs.

If other designs are all about creating new research, Meta-Analysis is about gathering up everyone else's research, sorting it, and figuring out what it all means when you put it together.

Imagine a jigsaw puzzle where each piece is a different study. Meta-Analysis is the process of fitting all those pieces together to see the big picture.

The concept of Meta-Analysis started to take shape in the late 20th century, when computers became powerful enough to handle massive amounts of data. It was like someone handed researchers a super-powered magnifying glass, letting them examine multiple studies at the same time to find common trends or results.

You might have heard of the Cochrane Reviews in healthcare . These are big collections of meta-analyses that help doctors and policymakers figure out what treatments work best based on all the research that's been done.

For example, if ten different studies show that a certain medicine helps lower blood pressure, a meta-analysis would pull all that information together to give a more accurate answer.

Meta-Analysis Pros

The beauty of Meta-Analysis is that it can provide really strong evidence. Instead of relying on one study, you're looking at the whole landscape of research on a topic.

Meta-Analysis Cons

However, it does have some downsides. For one, Meta-Analysis is only as good as the studies it includes. If those studies are flawed, the meta-analysis will be too. It's like baking a cake: if you use bad ingredients, it doesn't matter how good your recipe is—the cake won't turn out well.

Meta-Analysis Uses

Despite these challenges, meta-analyses are highly respected and widely used in many fields like medicine, psychology, and education. They help us make sense of a world that's bursting with information by showing us the big picture drawn from many smaller snapshots.

So, in our all-star lineup, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, the Factorial Design is the strategist, the Cross-Sectional Design is the speedster, and the Correlational Design is the scout, then the Meta-Analysis is like the coach, using insights from everyone else's plays to come up with the best game plan.

9) Non-Experimental Design

Now, let's talk about a player who's a bit of an outsider on this team of experimental designs—the Non-Experimental Design. Think of this design as the commentator or the journalist who covers the game but doesn't actually play.

In a Non-Experimental Design, researchers are like reporters gathering facts, but they don't interfere or change anything. They're simply there to describe and analyze.

Non-Experimental Design Pros

So, what's the deal with Non-Experimental Design? Its strength is in description and exploration. It's really good for studying things as they are in the real world, without changing any conditions.

Non-Experimental Design Cons

Because a non-experimental design doesn't manipulate variables, it can't prove cause and effect. It's like a weather reporter: they can tell you it's raining, but they can't tell you why it's raining.

The downside? Since researchers aren't controlling variables, it's hard to rule out other explanations for what they observe. It's like hearing one side of a story—you get an idea of what happened, but it might not be the complete picture.

Non-Experimental Design Uses

Non-Experimental Design has always been a part of research, especially in fields like anthropology, sociology, and some areas of psychology.

For instance, if you've ever heard of studies that describe how people behave in different cultures or what teens like to do in their free time, that's often Non-Experimental Design at work. These studies aim to capture the essence of a situation, like painting a portrait instead of taking a snapshot.

One well-known example you might have heard about is the Kinsey Reports from the 1940s and 1950s, which described sexual behavior in men and women. Researchers interviewed thousands of people but didn't manipulate any variables like you would in a true experiment. They simply collected data to create a comprehensive picture of the subject matter.

So, in our metaphorical team of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, and Meta-Analysis is the coach, then Non-Experimental Design is the sports journalist—always present, capturing the game, but not part of the action itself.

10) Repeated Measures Design

white rat

Time to meet the Repeated Measures Design, the time traveler of our research team. If this design were a player in a sports game, it would be the one who keeps revisiting past plays to figure out how to improve the next one.

Repeated Measures Design is all about studying the same people or subjects multiple times to see how they change or react under different conditions.

The idea behind Repeated Measures Design isn't new; it's been around since the early days of psychology and medicine. You could say it's a cousin to the Longitudinal Design, but instead of looking at how things naturally change over time, it focuses on how the same group reacts to different things.

Imagine a study looking at how a new energy drink affects people's running speed. Instead of comparing one group that drank the energy drink to another group that didn't, a Repeated Measures Design would have the same group of people run multiple times—once with the energy drink, and once without. This way, you're really zeroing in on the effect of that energy drink, making the results more reliable.

Repeated Measures Design Pros

The strong point of Repeated Measures Design is that it's super focused. Because it uses the same subjects, you don't have to worry about differences between groups messing up your results.

Repeated Measures Design Cons

But the downside? Well, people can get tired or bored if they're tested too many times, which might affect how they respond.

Repeated Measures Design Uses

A famous example of this design is the "Little Albert" experiment, conducted by John B. Watson and Rosalie Rayner in 1920. In this study, a young boy was exposed to a white rat and other stimuli several times to see how his emotional responses changed. Though the ethical standards of this experiment are often criticized today, it was groundbreaking in understanding conditioned emotional responses.

In our metaphorical lineup of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, and Non-Experimental Design is the journalist, then Repeated Measures Design is the time traveler—always looping back to fine-tune the game plan.

11) Crossover Design

Next up is Crossover Design, the switch-hitter of the research world. If you're familiar with baseball, you'll know a switch-hitter is someone who can bat both right-handed and left-handed.

In a similar way, Crossover Design allows subjects to experience multiple conditions, flipping them around so that everyone gets a turn in each role.

This design is like the utility player on our team—versatile, flexible, and really good at adapting.

The Crossover Design has its roots in medical research and has been popular since the mid-20th century. It's often used in clinical trials to test the effectiveness of different treatments.

Crossover Design Pros

The neat thing about this design is that it allows each participant to serve as their own control group. Imagine you're testing two new kinds of headache medicine. Instead of giving one type to one group and another type to a different group, you'd give both kinds to the same people but at different times.

Crossover Design Cons

What's the big deal with Crossover Design? Its major strength is in reducing the "noise" that comes from individual differences. Since each person experiences all conditions, it's easier to see real effects. However, there's a catch. This design assumes that there's no lasting effect from the first condition when you switch to the second one. That might not always be true. If the first treatment has a long-lasting effect, it could mess up the results when you switch to the second treatment.

Crossover Design Uses

A well-known example of Crossover Design is in studies that look at the effects of different types of diets—like low-carb vs. low-fat diets. Researchers might have participants follow a low-carb diet for a few weeks, then switch them to a low-fat diet. By doing this, they can more accurately measure how each diet affects the same group of people.

In our team of experimental designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, and Repeated Measures Design is the time traveler, then Crossover Design is the versatile utility player—always ready to adapt and play multiple roles to get the most accurate results.

12) Cluster Randomized Design

Meet the Cluster Randomized Design, the team captain of group-focused research. In our imaginary lineup of experimental designs, if other designs focus on individual players, then Cluster Randomized Design is looking at how the entire team functions.

This approach is especially common in educational and community-based research, and it's been gaining traction since the late 20th century.

Here's how Cluster Randomized Design works: Instead of assigning individual people to different conditions, researchers assign entire groups, or "clusters." These could be schools, neighborhoods, or even entire towns. This helps you see how the new method works in a real-world setting.

Imagine you want to see if a new anti-bullying program really works. Instead of selecting individual students, you'd introduce the program to a whole school or maybe even several schools, and then compare the results to schools without the program.

Cluster Randomized Design Pros

Why use Cluster Randomized Design? Well, sometimes it's just not practical to assign conditions at the individual level. For example, you can't really have half a school following a new reading program while the other half sticks with the old one; that would be way too confusing! Cluster Randomization helps get around this problem by treating each "cluster" as its own mini-experiment.

Cluster Randomized Design Cons

There's a downside, too. Because entire groups are assigned to each condition, there's a risk that the groups might be different in some important way that the researchers didn't account for. That's like having one sports team that's full of veterans playing against a team of rookies; the match wouldn't be fair.

Cluster Randomized Design Uses

A famous example is the research conducted to test the effectiveness of different public health interventions, like vaccination programs. Researchers might roll out a vaccination program in one community but not in another, then compare the rates of disease in both.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, and Crossover Design is the utility player, then Cluster Randomized Design is the team captain—always looking out for the group as a whole.

13) Mixed-Methods Design

Say hello to Mixed-Methods Design, the all-rounder or the "Renaissance player" of our research team.

Mixed-Methods Design uses a blend of both qualitative and quantitative methods to get a more complete picture, just like a Renaissance person who's good at lots of different things. It's like being good at both offense and defense in a sport; you've got all your bases covered!

Mixed-Methods Design is a fairly new kid on the block, becoming more popular in the late 20th and early 21st centuries as researchers began to see the value in using multiple approaches to tackle complex questions. It's the Swiss Army knife in our research toolkit, combining the best parts of other designs to be more versatile.

Here's how it could work: Imagine you're studying the effects of a new educational app on students' math skills. You might use quantitative methods like tests and grades to measure how much the students improve—that's the 'numbers part.'

But you also want to know how the students feel about math now, or why they think they got better or worse. For that, you could conduct interviews or have students fill out journals—that's the 'story part.'

Mixed-Methods Design Pros

So, what's the scoop on Mixed-Methods Design? The strength is its versatility and depth; you're not just getting numbers or stories, you're getting both, which gives a fuller picture.

Mixed-Methods Design Cons

But, it's also more challenging. Imagine trying to play two sports at the same time! You have to be skilled in different research methods and know how to combine them effectively.

Mixed-Methods Design Uses

A high-profile example of Mixed-Methods Design is research on climate change. Scientists use numbers and data to show temperature changes (quantitative), but they also interview people to understand how these changes are affecting communities (qualitative).

In our team of experimental designs, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, and Cluster Randomized Design is the team captain, then Mixed-Methods Design is the Renaissance player—skilled in multiple areas and able to bring them all together for a winning strategy.

14) Multivariate Design

Now, let's turn our attention to Multivariate Design, the multitasker of the research world.

If our lineup of research designs were like players on a basketball court, Multivariate Design would be the player dribbling, passing, and shooting all at once. This design doesn't just look at one or two things; it looks at several variables simultaneously to see how they interact and affect each other.

Multivariate Design is like baking a cake with many ingredients. Instead of just looking at how flour affects the cake, you also consider sugar, eggs, and milk all at once. This way, you understand how everything works together to make the cake taste good or bad.

Multivariate Design has been a go-to method in psychology, economics, and social sciences since the latter half of the 20th century. With the advent of computers and advanced statistical software, analyzing multiple variables at once became a lot easier, and Multivariate Design soared in popularity.

Multivariate Design Pros

So, what's the benefit of using Multivariate Design? Its power lies in its complexity. By studying multiple variables at the same time, you can get a really rich, detailed understanding of what's going on.

Multivariate Design Cons

But that complexity can also be a drawback. With so many variables, it can be tough to tell which ones are really making a difference and which ones are just along for the ride.

Multivariate Design Uses

Imagine you're a coach trying to figure out the best strategy to win games. You wouldn't just look at how many points your star player scores; you'd also consider assists, rebounds, turnovers, and maybe even how loud the crowd is. A Multivariate Design would help you understand how all these factors work together to determine whether you win or lose.

A well-known example of Multivariate Design is in market research. Companies often use this approach to figure out how different factors—like price, packaging, and advertising—affect sales. By studying multiple variables at once, they can find the best combination to boost profits.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, Cluster Randomized Design is the team captain, and Mixed-Methods Design is the Renaissance player, then Multivariate Design is the multitasker—juggling many variables at once to get a fuller picture of what's happening.

15) Pretest-Posttest Design

Let's introduce Pretest-Posttest Design, the "Before and After" superstar of our research team. You've probably seen those before-and-after pictures in ads for weight loss programs or home renovations, right?

Well, this design is like that, but for science! Pretest-Posttest Design checks out what things are like before the experiment starts and then compares that to what things are like after the experiment ends.

This design is one of the classics, a staple in research for decades across various fields like psychology, education, and healthcare. It's so simple and straightforward that it has stayed popular for a long time.

In Pretest-Posttest Design, you measure your subject's behavior or condition before you introduce any changes—that's your "before" or "pretest." Then you do your experiment, and after it's done, you measure the same thing again—that's your "after" or "posttest."

Pretest-Posttest Design Pros

What makes Pretest-Posttest Design special? It's pretty easy to understand and doesn't require fancy statistics.

Pretest-Posttest Design Cons

But there are some pitfalls. For example, what if the kids in our math example get better at multiplication just because they're older or because they've taken the test before? That would make it hard to tell if the program is really effective or not.

Pretest-Posttest Design Uses

Let's say you're a teacher and you want to know if a new math program helps kids get better at multiplication. First, you'd give all the kids a multiplication test—that's your pretest. Then you'd teach them using the new math program. At the end, you'd give them the same test again—that's your posttest. If the kids do better on the second test, you might conclude that the program works.

One famous use of Pretest-Posttest Design is in evaluating the effectiveness of driver's education courses. Researchers will measure people's driving skills before and after the course to see if they've improved.

16) Solomon Four-Group Design

Next up is the Solomon Four-Group Design, the "chess master" of our research team. This design is all about strategy and careful planning. Named after Richard L. Solomon who introduced it in the 1940s, this method tries to correct some of the weaknesses in simpler designs, like the Pretest-Posttest Design.

Here's how it rolls: The Solomon Four-Group Design uses four different groups to test a hypothesis. Two groups get a pretest, then one of them receives the treatment or intervention, and both get a posttest. The other two groups skip the pretest, and only one of them receives the treatment before they both get a posttest.

Sound complicated? It's like playing 4D chess; you're thinking several moves ahead!

Solomon Four-Group Design Pros

What's the pro and con of the Solomon Four-Group Design? On the plus side, it provides really robust results because it accounts for so many variables.

Solomon Four-Group Design Cons

The downside? It's a lot of work and requires a lot of participants, making it more time-consuming and costly.

Solomon Four-Group Design Uses

Let's say you want to figure out if a new way of teaching history helps students remember facts better. Two classes take a history quiz (pretest), then one class uses the new teaching method while the other sticks with the old way. Both classes take another quiz afterward (posttest).

Meanwhile, two more classes skip the initial quiz, and then one uses the new method before both take the final quiz. Comparing all four groups will give you a much clearer picture of whether the new teaching method works and whether the pretest itself affects the outcome.

The Solomon Four-Group Design is less commonly used than simpler designs but is highly respected for its ability to control for more variables. It's a favorite in educational and psychological research where you really want to dig deep and figure out what's actually causing changes.

17) Adaptive Designs

Now, let's talk about Adaptive Designs, the chameleons of the experimental world.

Imagine you're a detective, and halfway through solving a case, you find a clue that changes everything. You wouldn't just stick to your old plan; you'd adapt and change your approach, right? That's exactly what Adaptive Designs allow researchers to do.

In an Adaptive Design, researchers can make changes to the study as it's happening, based on early results. In a traditional study, once you set your plan, you stick to it from start to finish.

Adaptive Design Pros

This method is particularly useful in fast-paced or high-stakes situations, like developing a new vaccine in the middle of a pandemic. The ability to adapt can save both time and resources, and more importantly, it can save lives by getting effective treatments out faster.

Adaptive Design Cons

But Adaptive Designs aren't without their drawbacks. They can be very complex to plan and carry out, and there's always a risk that the changes made during the study could introduce bias or errors.

Adaptive Design Uses

Adaptive Designs are most often seen in clinical trials, particularly in the medical and pharmaceutical fields.

For instance, if a new drug is showing really promising results, the study might be adjusted to give more participants the new treatment instead of a placebo. Or if one dose level is showing bad side effects, it might be dropped from the study.

The best part is, these changes are pre-planned. Researchers lay out in advance what changes might be made and under what conditions, which helps keep everything scientific and above board.

In terms of applications, besides their heavy usage in medical and pharmaceutical research, Adaptive Designs are also becoming increasingly popular in software testing and market research. In these fields, being able to quickly adjust to early results can give companies a significant advantage.

Adaptive Designs are like the agile startups of the research world—quick to pivot, keen to learn from ongoing results, and focused on rapid, efficient progress. However, they require a great deal of expertise and careful planning to ensure that the adaptability doesn't compromise the integrity of the research.

18) Bayesian Designs

Next, let's dive into Bayesian Designs, the data detectives of the research universe. Named after Thomas Bayes, an 18th-century statistician and minister, this design doesn't just look at what's happening now; it also takes into account what's happened before.

Imagine if you were a detective who not only looked at the evidence in front of you but also used your past cases to make better guesses about your current one. That's the essence of Bayesian Designs.

Bayesian Designs are like detective work in science. As you gather more clues (or data), you update your best guess on what's really happening. This way, your experiment gets smarter as it goes along.

In the world of research, Bayesian Designs are most notably used in areas where you have some prior knowledge that can inform your current study. For example, if earlier research shows that a certain type of medicine usually works well for a specific illness, a Bayesian Design would include that information when studying a new group of patients with the same illness.

Bayesian Design Pros

One of the major advantages of Bayesian Designs is their efficiency. Because they use existing data to inform the current experiment, often fewer resources are needed to reach a reliable conclusion.

Bayesian Design Cons

However, they can be quite complicated to set up and require a deep understanding of both statistics and the subject matter at hand.

Bayesian Design Uses

Bayesian Designs are highly valued in medical research, finance, environmental science, and even in Internet search algorithms. Their ability to continually update and refine hypotheses based on new evidence makes them particularly useful in fields where data is constantly evolving and where quick, informed decisions are crucial.

Here's a real-world example: In the development of personalized medicine, where treatments are tailored to individual patients, Bayesian Designs are invaluable. If a treatment has been effective for patients with similar genetics or symptoms in the past, a Bayesian approach can use that data to predict how well it might work for a new patient.

This type of design is also increasingly popular in machine learning and artificial intelligence. In these fields, Bayesian Designs help algorithms "learn" from past data to make better predictions or decisions in new situations. It's like teaching a computer to be a detective that gets better and better at solving puzzles the more puzzles it sees.

19) Covariate Adaptive Randomization

old person and young person

Now let's turn our attention to Covariate Adaptive Randomization, which you can think of as the "matchmaker" of experimental designs.

Picture a soccer coach trying to create the most balanced teams for a friendly match. They wouldn't just randomly assign players; they'd take into account each player's skills, experience, and other traits.

Covariate Adaptive Randomization is all about creating the most evenly matched groups possible for an experiment.

In traditional randomization, participants are allocated to different groups purely by chance. This is a pretty fair way to do things, but it can sometimes lead to unbalanced groups.

Imagine if all the professional-level players ended up on one soccer team and all the beginners on another; that wouldn't be a very informative match! Covariate Adaptive Randomization fixes this by using important traits or characteristics (called "covariates") to guide the randomization process.

Covariate Adaptive Randomization Pros

The benefits of this design are pretty clear: it aims for balance and fairness, making the final results more trustworthy.

Covariate Adaptive Randomization Cons

But it's not perfect. It can be complex to implement and requires a deep understanding of which characteristics are most important to balance.

Covariate Adaptive Randomization Uses

This design is particularly useful in medical trials. Let's say researchers are testing a new medication for high blood pressure. Participants might have different ages, weights, or pre-existing conditions that could affect the results.

Covariate Adaptive Randomization would make sure that each treatment group has a similar mix of these characteristics, making the results more reliable and easier to interpret.

In practical terms, this design is often seen in clinical trials for new drugs or therapies, but its principles are also applicable in fields like psychology, education, and social sciences.

For instance, in educational research, it might be used to ensure that classrooms being compared have similar distributions of students in terms of academic ability, socioeconomic status, and other factors.

Covariate Adaptive Randomization is like the wise elder of the group, ensuring that everyone has an equal opportunity to show their true capabilities, thereby making the collective results as reliable as possible.

20) Stepped Wedge Design

Let's now focus on the Stepped Wedge Design, a thoughtful and cautious member of the experimental design family.

Imagine you're trying out a new gardening technique, but you're not sure how well it will work. You decide to apply it to one section of your garden first, watch how it performs, and then gradually extend the technique to other sections. This way, you get to see its effects over time and across different conditions. That's basically how Stepped Wedge Design works.

In a Stepped Wedge Design, all participants or clusters start off in the control group, and then, at different times, they 'step' over to the intervention or treatment group. This creates a wedge-like pattern over time where more and more participants receive the treatment as the study progresses. It's like rolling out a new policy in phases, monitoring its impact at each stage before extending it to more people.

Stepped Wedge Design Pros

The Stepped Wedge Design offers several advantages. Firstly, it allows for the study of interventions that are expected to do more good than harm, which makes it ethically appealing.

Secondly, it's useful when resources are limited and it's not feasible to roll out a new treatment to everyone at once. Lastly, because everyone eventually receives the treatment, it can be easier to get buy-in from participants or organizations involved in the study.

Stepped Wedge Design Cons

However, this design can be complex to analyze because it has to account for both the time factor and the changing conditions in each 'step' of the wedge. And like any study where participants know they're receiving an intervention, there's the potential for the results to be influenced by the placebo effect or other biases.

Stepped Wedge Design Uses

This design is particularly useful in health and social care research. For instance, if a hospital wants to implement a new hygiene protocol, it might start in one department, assess its impact, and then roll it out to other departments over time. This allows the hospital to adjust and refine the new protocol based on real-world data before it's fully implemented.

In terms of applications, Stepped Wedge Designs are commonly used in public health initiatives, organizational changes in healthcare settings, and social policy trials. They are particularly useful in situations where an intervention is being rolled out gradually and it's important to understand its impacts at each stage.

21) Sequential Design

Next up is Sequential Design, the dynamic and flexible member of our experimental design family.

Imagine you're playing a video game where you can choose different paths. If you take one path and find a treasure chest, you might decide to continue in that direction. If you hit a dead end, you might backtrack and try a different route. Sequential Design operates in a similar fashion, allowing researchers to make decisions at different stages based on what they've learned so far.

In a Sequential Design, the experiment is broken down into smaller parts, or "sequences." After each sequence, researchers pause to look at the data they've collected. Based on those findings, they then decide whether to stop the experiment because they've got enough information, or to continue and perhaps even modify the next sequence.

Sequential Design Pros

This allows for a more efficient use of resources, as you're only continuing with the experiment if the data suggests it's worth doing so.

One of the great things about Sequential Design is its efficiency. Because you're making data-driven decisions along the way, you can often reach conclusions more quickly and with fewer resources.

Sequential Design Cons

However, it requires careful planning and expertise to ensure that these "stop or go" decisions are made correctly and without bias.

Sequential Design Uses

In terms of its applications, besides healthcare and medicine, Sequential Design is also popular in quality control in manufacturing, environmental monitoring, and financial modeling. In these areas, being able to make quick decisions based on incoming data can be a big advantage.

This design is often used in clinical trials involving new medications or treatments. For example, if early results show that a new drug has significant side effects, the trial can be stopped before more people are exposed to it.

On the flip side, if the drug is showing promising results, the trial might be expanded to include more participants or to extend the testing period.

Think of Sequential Design as the nimble athlete of experimental designs, capable of quick pivots and adjustments to reach the finish line in the most effective way possible. But just like an athlete needs a good coach, this design requires expert oversight to make sure it stays on the right track.

22) Field Experiments

Last but certainly not least, let's explore Field Experiments—the adventurers of the experimental design world.

Picture a scientist leaving the controlled environment of a lab to test a theory in the real world, like a biologist studying animals in their natural habitat or a social scientist observing people in a real community. These are Field Experiments, and they're all about getting out there and gathering data in real-world settings.

Field Experiments embrace the messiness of the real world, unlike laboratory experiments, where everything is controlled down to the smallest detail. This makes them both exciting and challenging.

Field Experiment Pros

On one hand, the results often give us a better understanding of how things work outside the lab.

While Field Experiments offer real-world relevance, they come with challenges like controlling for outside factors and the ethical considerations of intervening in people's lives without their knowledge.

Field Experiment Cons

On the other hand, the lack of control can make it harder to tell exactly what's causing what. Yet, despite these challenges, they remain a valuable tool for researchers who want to understand how theories play out in the real world.

Field Experiment Uses

Let's say a school wants to improve student performance. In a Field Experiment, they might change the school's daily schedule for one semester and keep track of how students perform compared to another school where the schedule remained the same.

Because the study is happening in a real school with real students, the results could be very useful for understanding how the change might work in other schools. But since it's the real world, lots of other factors—like changes in teachers or even the weather—could affect the results.

Field Experiments are widely used in economics, psychology, education, and public policy. For example, you might have heard of the famous "Broken Windows" experiment in the 1980s that looked at how small signs of disorder, like broken windows or graffiti, could encourage more serious crime in neighborhoods. This experiment had a big impact on how cities think about crime prevention.

From the foundational concepts of control groups and independent variables to the sophisticated layouts like Covariate Adaptive Randomization and Sequential Design, it's clear that the realm of experimental design is as varied as it is fascinating.

We've seen that each design has its own special talents, ideal for specific situations. Some designs, like the Classic Controlled Experiment, are like reliable old friends you can always count on.

Others, like Sequential Design, are flexible and adaptable, making quick changes based on what they learn. And let's not forget the adventurous Field Experiments, which take us out of the lab and into the real world to discover things we might not see otherwise.

Choosing the right experimental design is like picking the right tool for the job. The method you choose can make a big difference in how reliable your results are and how much people will trust what you've discovered. And as we've learned, there's a design to suit just about every question, every problem, and every curiosity.

So the next time you read about a new discovery in medicine, psychology, or any other field, you'll have a better understanding of the thought and planning that went into figuring things out. Experimental design is more than just a set of rules; it's a structured way to explore the unknown and answer questions that can change the world.

Related posts:

  • Experimental Psychologist Career (Salary + Duties + Interviews)
  • 40+ Famous Psychologists (Images + Biographies)
  • 11+ Psychology Experiment Ideas (Goals + Methods)
  • The Little Albert Experiment
  • 41+ White Collar Job Examples (Salary + Path)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

Storyboard That

  • My Storyboards

Exploring the Art of Experimental Design: A Step-by-Step Guide for Students and Educators

Experimental design for students.

Experimental design is a key method used in subjects like biology, chemistry, physics, psychology, and social sciences. It helps us figure out how different factors affect what we're studying, whether it's plants, chemicals, physical laws, human behavior, or how society works. Basically, it's a way to set up experiments so we can test ideas, see what happens, and make sense of our results. It's super important for students and researchers who want to answer big questions in science and understand the world better. Experimental design skills can be applied in situations ranging from problem solving to data analysis; they are wide reaching and can frequently be applied outside the classroom. The teaching of these skills is a very important part of science education, but is often overlooked when focused on teaching the content. As science educators, we have all seen the benefits practical work has for student engagement and understanding. However, with the time constraints placed on the curriculum, the time needed for students to develop these experimental research design and investigative skills can get squeezed out. Too often they get a ‘recipe’ to follow, which doesn’t allow them to take ownership of their practical work. From a very young age, they start to think about the world around them. They ask questions then use observations and evidence to answer them. Students tend to have intelligent, interesting, and testable questions that they love to ask. As educators, we should be working towards encouraging these questions and in turn, nurturing this natural curiosity in the world around them.

Teaching the design of experiments and letting students develop their own questions and hypotheses takes time. These materials have been created to scaffold and structure the process to allow teachers to focus on improving the key ideas in experimental design. Allowing students to ask their own questions, write their own hypotheses, and plan and carry out their own investigations is a valuable experience for them. This will lead to students having more ownership of their work. When students carry out the experimental method for their own questions, they reflect on how scientists have historically come to understand how the universe works.

Experimental Design

Take a look at the printer-friendly pages and worksheet templates below!

What are the Steps of Experimental Design?

Embarking on the journey of scientific discovery begins with mastering experimental design steps. This foundational process is essential for formulating experiments that yield reliable and insightful results, guiding researchers and students alike through the detailed planning, experimental research design, and execution of their studies. By leveraging an experimental design template, participants can ensure the integrity and validity of their findings. Whether it's through designing a scientific experiment or engaging in experimental design activities, the aim is to foster a deep understanding of the fundamentals: How should experiments be designed? What are the 7 experimental design steps? How can you design your own experiment?

This is an exploration of the seven key experimental method steps, experimental design ideas, and ways to integrate design of experiments. Student projects can benefit greatly from supplemental worksheets and we will also provide resources such as worksheets aimed at teaching experimental design effectively. Let’s dive into the essential stages that underpin the process of designing an experiment, equipping learners with the tools to explore their scientific curiosity.

1. Question

This is a key part of the scientific method and the experimental design process. Students enjoy coming up with questions. Formulating questions is a deep and meaningful activity that can give students ownership over their work. A great way of getting students to think of how to visualize their research question is using a mind map storyboard.

Free Customizable Experimental Design in Science Questions Spider Map

Ask students to think of any questions they want to answer about the universe or get them to think about questions they have about a particular topic. All questions are good questions, but some are easier to test than others.

2. Hypothesis

A hypothesis is known as an educated guess. A hypothesis should be a statement that can be tested scientifically. At the end of the experiment, look back to see whether the conclusion supports the hypothesis or not.

Forming good hypotheses can be challenging for students to grasp. It is important to remember that the hypothesis is not a research question, it is a testable statement . One way of forming a hypothesis is to form it as an “if... then...” statement. This certainly isn't the only or best way to form a hypothesis, but can be a very easy formula for students to use when first starting out.

An “if... then...” statement requires students to identify the variables first, and that may change the order in which they complete the stages of the visual organizer. After identifying the dependent and independent variables, the hypothesis then takes the form if [change in independent variable], then [change in dependent variable].

For example, if an experiment were looking for the effect of caffeine on reaction time, the independent variable would be amount of caffeine and the dependent variable would be reaction time. The “if, then” hypothesis could be: If you increase the amount of caffeine taken, then the reaction time will decrease.

3. Explanation of Hypothesis

What led you to this hypothesis? What is the scientific background behind your hypothesis? Depending on age and ability, students use their prior knowledge to explain why they have chosen their hypotheses, or alternatively, research using books or the internet. This could also be a good time to discuss with students what a reliable source is.

For example, students may reference previous studies showing the alertness effects of caffeine to explain why they hypothesize caffeine intake will reduce reaction time.

4. Prediction

The prediction is slightly different to the hypothesis. A hypothesis is a testable statement, whereas the prediction is more specific to the experiment. In the discovery of the structure of DNA, the hypothesis proposed that DNA has a helical structure. The prediction was that the X-ray diffraction pattern of DNA would be an X shape.

Students should formulate a prediction that is a specific, measurable outcome based on their hypothesis. Rather than just stating "caffeine will decrease reaction time," students could predict that "drinking 2 cans of soda (90mg caffeine) will reduce average reaction time by 50 milliseconds compared to drinking no caffeine."

5. Identification of Variables

Below is an example of a Discussion Storyboard that can be used to get your students talking about variables in experimental design.

Experimental Design in Science Discussion Storyboard with Students

The three types of variables you will need to discuss with your students are dependent, independent, and controlled variables. To keep this simple, refer to these as "what you are going to measure", "what you are going to change", and "what you are going to keep the same". With more advanced students, you should encourage them to use the correct vocabulary.

Dependent variables are what is measured or observed by the scientist. These measurements will often be repeated because repeated measurements makes your data more reliable.

The independent variables are variables that scientists decide to change to see what effect it has on the dependent variable. Only one is chosen because it would be difficult to figure out which variable is causing any change you observe.

Controlled variables are quantities or factors that scientists want to remain the same throughout the experiment. They are controlled to remain constant, so as to not affect the dependent variable. Controlling these allows scientists to see how the independent variable affects the dependent variable within the experimental group.

Use this example below in your lessons, or delete the answers and set it as an activity for students to complete on Storyboard That.

How temperature affects the amount of sugar able to be dissolved in water
Independent VariableWater Temperature
(Range 5 different samples at 10°C, 20°C, 30°C, 40°C and 50°C)
Dependent VariableThe amount of sugar that can be dissolved in the water, measured in teaspoons.
Controlled Variables

Identifying Variables Storyboard with Pictures | Experimental Design Process St

6. Risk Assessment

Ultimately this must be signed off on by a responsible adult, but it is important to get students to think about how they will keep themselves safe. In this part, students should identify potential risks and then explain how they are going to minimize risk. An activity to help students develop these skills is to get them to identify and manage risks in different situations. Using the storyboard below, get students to complete the second column of the T-chart by saying, "What is risk?", then explaining how they could manage that risk. This storyboard could also be projected for a class discussion.

Risk Assessment Storyboard for Experimental Design in Science

7. Materials

In this section, students will list the materials they need for the experiments, including any safety equipment that they have highlighted as needing in the risk assessment section. This is a great time to talk to students about choosing tools that are suitable for the job. You are going to use a different tool to measure the width of a hair than to measure the width of a football field!

8. General Plan and Diagram

It is important to talk to students about reproducibility. They should write a procedure that would allow their experimental method to be reproduced easily by another scientist. The easiest and most concise way for students to do this is by making a numbered list of instructions. A useful activity here could be getting students to explain how to make a cup of tea or a sandwich. Act out the process, pointing out any steps they’ve missed.

For English Language Learners and students who struggle with written English, students can describe the steps in their experiment visually using Storyboard That.

Not every experiment will need a diagram, but some plans will be greatly improved by including one. Have students focus on producing clear and easy-to-understand diagrams that illustrate the experimental group.

For example, a procedure to test the effect of sunlight on plant growth utilizing completely randomized design could detail:

  • Select 10 similar seedlings of the same age and variety
  • Prepare 2 identical trays with the same soil mixture
  • Place 5 plants in each tray; label one set "sunlight" and one set "shade"
  • Position sunlight tray by a south-facing window, and shade tray in a dark closet
  • Water both trays with 50 mL water every 2 days
  • After 3 weeks, remove plants and measure heights in cm

9. Carry Out Experiment

Once their procedure is approved, students should carefully carry out their planned experiment, following their written instructions. As data is collected, students should organize the raw results in tables, graphs, photos or drawings. This creates clear documentation for analyzing trends.

Some best practices for data collection include:

  • Record quantitative data numerically with units
  • Note qualitative observations with detailed descriptions
  • Capture set up through illustrations or photos
  • Write observations of unexpected events
  • Identify data outliers and sources of error

For example, in the plant growth experiment, students could record:

GroupSunlightSunlightSunlightShadeShade
Plant ID12312
Start Height5 cm4 cm5 cm6 cm4 cm
End Height18 cm17 cm19 cm9 cm8 cm

They would also describe observations like leaf color change or directional bending visually or in writing.

It is crucial that students practice safe science procedures. Adult supervision is required for experimentation, along with proper risk assessment.

Well-documented data collection allows for deeper analysis after experiment completion to determine whether hypotheses and predictions were supported.

Completed Examples

Editable Scientific Investigation Design Example: Moldy Bread

Resources and Experimental Design Examples

Using visual organizers is an effective way to get your students working as scientists in the classroom.

There are many ways to use these investigation planning tools to scaffold and structure students' work while they are working as scientists. Students can complete the planning stage on Storyboard That using the text boxes and diagrams, or you could print them off and have students complete them by hand. Another great way to use them is to project the planning sheet onto an interactive whiteboard and work through how to complete the planning materials as a group. Project it onto a screen and have students write their answers on sticky notes and put their ideas in the correct section of the planning document.

Very young learners can still start to think as scientists! They have loads of questions about the world around them and you can start to make a note of these in a mind map. Sometimes you can even start to ‘investigate’ these questions through play.

The foundation resource is intended for elementary students or students who need more support. It is designed to follow exactly the same process as the higher resources, but made slightly easier. The key difference between the two resources are the details that students are required to think about and the technical vocabulary used. For example, it is important that students identify variables when they are designing their investigations. In the higher version, students not only have to identify the variables, but make other comments, such as how they are going to measure the dependent variable or utilizing completely randomized design. As well as the difference in scaffolding between the two levels of resources, you may want to further differentiate by how the learners are supported by teachers and assistants in the room.

Students could also be encouraged to make their experimental plan easier to understand by using graphics, and this could also be used to support ELLs.

Customizable Foundation Experimental Design Steps T Chart Template

Students need to be assessed on their science inquiry skills alongside the assessment of their knowledge. Not only will that let students focus on developing their skills, but will also allow them to use their assessment information in a way that will help them improve their science skills. Using Quick Rubric , you can create a quick and easy assessment framework and share it with students so they know how to succeed at every stage. As well as providing formative assessment which will drive learning, this can also be used to assess student work at the end of an investigation and set targets for when they next attempt to plan their own investigation. The rubrics have been written in a way to allow students to access them easily. This way they can be shared with students as they are working through the planning process so students know what a good experimental design looks like.

Proficient
13 Points
Emerging
7 Points
Beginning
0 Points
Proficient
11 Points
Emerging
5 Points
Beginning
0 Points

Printable Resources

Return to top

Print Ready Experimental Design Idea Sheet

Related Activities

Chemical Reactions Experiment Worksheet

Additional Worksheets

If you're looking to add additional projects or continue to customize worksheets, take a look at several template pages we've compiled for you below. Each worksheet can be copied and tailored to your projects or students! Students can also be encouraged to create their own if they want to try organizing information in an easy to understand way.

  • Lab Worksheets
  • Discussion Worksheets
  • Checklist Worksheets

Related Resources

  • Scientific Method Steps
  • Science Discussion Storyboards
  • Developing Critical Thinking Skills

How to Teach Students the Design of Experiments

Encourage questioning and curiosity.

Foster a culture of inquiry by encouraging students to ask questions about the world around them.

Formulate testable hypotheses

Teach students how to develop hypotheses that can be scientifically tested. Help them understand the difference between a hypothesis and a question.

Provide scientific background

Help students understand the scientific principles and concepts relevant to their hypotheses. Encourage them to draw on prior knowledge or conduct research to support their hypotheses.

Identify variables

Teach students about the three types of variables (dependent, independent, and controlled) and how they relate to experimental design. Emphasize the importance of controlling variables and measuring the dependent variable accurately.

Plan and diagram the experiment

Guide students in developing a clear and reproducible experimental procedure. Encourage them to create a step-by-step plan or use visual diagrams to illustrate the process.

Carry out the experiment and analyze data

Support students as they conduct the experiment according to their plan. Guide them in collecting data in a meaningful and organized manner. Assist them in analyzing the data and drawing conclusions based on their findings.

Frequently Asked Questions about Experimental Design for Students

What are some common experimental design tools and techniques that students can use.

Common experimental design tools and techniques that students can use include random assignment, control groups, blinding, replication, and statistical analysis. Students can also use observational studies, surveys, and experiments with natural or quasi-experimental designs. They can also use data visualization tools to analyze and present their results.

How can experimental design help students develop critical thinking skills?

Experimental design helps students develop critical thinking skills by encouraging them to think systematically and logically about scientific problems. It requires students to analyze data, identify patterns, and draw conclusions based on evidence. It also helps students to develop problem-solving skills by providing opportunities to design and conduct experiments to test hypotheses.

How can experimental design be used to address real-world problems?

Experimental design can be used to address real-world problems by identifying variables that contribute to a particular problem and testing interventions to see if they are effective in addressing the problem. For example, experimental design can be used to test the effectiveness of new medical treatments or to evaluate the impact of social interventions on reducing poverty or improving educational outcomes.

What are some common experimental design pitfalls that students should avoid?

Common experimental design pitfalls that students should avoid include failing to control variables, using biased samples, relying on anecdotal evidence, and failing to measure dependent variables accurately. Students should also be aware of ethical considerations when conducting experiments, such as obtaining informed consent and protecting the privacy of research subjects.

  • 353/365 ~ Second Fall #running #injury • Ray Bouknight • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Always Writing • mrsdkrebs • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Batteries • Razor512 • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Bleed for It • zerojay • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Bulbs • Roo Reynolds • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • Change • dominiccampbell • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Children • Quang Minh (YILKA) • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • Danger • KatJaTo • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • draw • Asja. • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Epic Fireworks Safety Goggles • EpicFireworks • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • GERMAN BUNSEN • jasonwoodhead23 • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Heart Dissection • tjmwatson • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • ISST 2014 Munich • romanboed • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Lightbulb! • Matthew Wynn • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Mini magnifying glass • SkintDad.co.uk • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • Plants • henna lion • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • Plants • Graham S Dean Photography • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Pré Treino.... São Carlos está foda com essa queimada toda #asma #athsma #ashmatt #asthma • .v1ctor Casale. • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • puzzle • olgaberrios • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Puzzled • Brad Montgomery • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Question Mark • ryanmilani • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Radiator • Conal Gallagher • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Red Tool Box • marinetank0 • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Remote Control • Sean MacEntee • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • stopwatch • Search Engine People Blog • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Thinking • Caramdir • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • Thumb Update: The hot-glue induced burn now has a purple blister. Purple is my favorite color. (September 26, 2012 at 04:16PM) • elisharene • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • Washing my Hands 2 • AlishaV • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Windows • Stanley Zimny (Thank You for 18 Million views) • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • wire • Dyroc • License Attribution (http://creativecommons.org/licenses/by/2.0/)

Try 1 Month For

30 Day Money Back Guarantee New Customers Only Full Price After Introductory Offer

Learn more about our Department, School, and District packages

  • 30 Day Money Back Guarantee
  • New Customers Only
  • Full Price After Introductory Offer

Experimental Design: Types, Examples & Methods

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Experimental design refers to how participants are allocated to different groups in an experiment. Types of design include repeated measures, independent groups, and matched pairs designs.

Probably the most common way to design an experiment in psychology is to divide the participants into two groups, the experimental group and the control group, and then introduce a change to the experimental group, not the control group.

The researcher must decide how he/she will allocate their sample to the different experimental groups.  For example, if there are 10 participants, will all 10 participants participate in both groups (e.g., repeated measures), or will the participants be split in half and take part in only one group each?

Three types of experimental designs are commonly used:

1. Independent Measures

Independent measures design, also known as between-groups , is an experimental design where different participants are used in each condition of the independent variable.  This means that each condition of the experiment includes a different group of participants.

This should be done by random allocation, ensuring that each participant has an equal chance of being assigned to one group.

Independent measures involve using two separate groups of participants, one in each condition. For example:

Independent Measures Design 2

  • Con : More people are needed than with the repeated measures design (i.e., more time-consuming).
  • Pro : Avoids order effects (such as practice or fatigue) as people participate in one condition only.  If a person is involved in several conditions, they may become bored, tired, and fed up by the time they come to the second condition or become wise to the requirements of the experiment!
  • Con : Differences between participants in the groups may affect results, for example, variations in age, gender, or social background.  These differences are known as participant variables (i.e., a type of extraneous variable ).
  • Control : After the participants have been recruited, they should be randomly assigned to their groups. This should ensure the groups are similar, on average (reducing participant variables).

2. Repeated Measures Design

Repeated Measures design is an experimental design where the same participants participate in each independent variable condition.  This means that each experiment condition includes the same group of participants.

Repeated Measures design is also known as within-groups or within-subjects design .

  • Pro : As the same participants are used in each condition, participant variables (i.e., individual differences) are reduced.
  • Con : There may be order effects. Order effects refer to the order of the conditions affecting the participants’ behavior.  Performance in the second condition may be better because the participants know what to do (i.e., practice effect).  Or their performance might be worse in the second condition because they are tired (i.e., fatigue effect). This limitation can be controlled using counterbalancing.
  • Pro : Fewer people are needed as they participate in all conditions (i.e., saves time).
  • Control : To combat order effects, the researcher counter-balances the order of the conditions for the participants.  Alternating the order in which participants perform in different conditions of an experiment.

Counterbalancing

Suppose we used a repeated measures design in which all of the participants first learned words in “loud noise” and then learned them in “no noise.”

We expect the participants to learn better in “no noise” because of order effects, such as practice. However, a researcher can control for order effects using counterbalancing.

The sample would be split into two groups: experimental (A) and control (B).  For example, group 1 does ‘A’ then ‘B,’ and group 2 does ‘B’ then ‘A.’ This is to eliminate order effects.

Although order effects occur for each participant, they balance each other out in the results because they occur equally in both groups.

counter balancing

3. Matched Pairs Design

A matched pairs design is an experimental design where pairs of participants are matched in terms of key variables, such as age or socioeconomic status. One member of each pair is then placed into the experimental group and the other member into the control group .

One member of each matched pair must be randomly assigned to the experimental group and the other to the control group.

matched pairs design

  • Con : If one participant drops out, you lose 2 PPs’ data.
  • Pro : Reduces participant variables because the researcher has tried to pair up the participants so that each condition has people with similar abilities and characteristics.
  • Con : Very time-consuming trying to find closely matched pairs.
  • Pro : It avoids order effects, so counterbalancing is not necessary.
  • Con : Impossible to match people exactly unless they are identical twins!
  • Control : Members of each pair should be randomly assigned to conditions. However, this does not solve all these problems.

Experimental design refers to how participants are allocated to an experiment’s different conditions (or IV levels). There are three types:

1. Independent measures / between-groups : Different participants are used in each condition of the independent variable.

2. Repeated measures /within groups : The same participants take part in each condition of the independent variable.

3. Matched pairs : Each condition uses different participants, but they are matched in terms of important characteristics, e.g., gender, age, intelligence, etc.

Learning Check

Read about each of the experiments below. For each experiment, identify (1) which experimental design was used; and (2) why the researcher might have used that design.

1 . To compare the effectiveness of two different types of therapy for depression, depressed patients were assigned to receive either cognitive therapy or behavior therapy for a 12-week period.

The researchers attempted to ensure that the patients in the two groups had similar severity of depressed symptoms by administering a standardized test of depression to each participant, then pairing them according to the severity of their symptoms.

2 . To assess the difference in reading comprehension between 7 and 9-year-olds, a researcher recruited each group from a local primary school. They were given the same passage of text to read and then asked a series of questions to assess their understanding.

3 . To assess the effectiveness of two different ways of teaching reading, a group of 5-year-olds was recruited from a primary school. Their level of reading ability was assessed, and then they were taught using scheme one for 20 weeks.

At the end of this period, their reading was reassessed, and a reading improvement score was calculated. They were then taught using scheme two for a further 20 weeks, and another reading improvement score for this period was calculated. The reading improvement scores for each child were then compared.

4 . To assess the effect of the organization on recall, a researcher randomly assigned student volunteers to two conditions.

Condition one attempted to recall a list of words that were organized into meaningful categories; condition two attempted to recall the same words, randomly grouped on the page.

Experiment Terminology

Ecological validity.

The degree to which an investigation represents real-life experiences.

Experimenter effects

These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.

Demand characteristics

The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).

Independent variable (IV)

The variable the experimenter manipulates (i.e., changes) is assumed to have a direct effect on the dependent variable.

Dependent variable (DV)

Variable the experimenter measures. This is the outcome (i.e., the result) of a study.

Extraneous variables (EV)

All variables which are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.

Confounding variables

Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.

Random Allocation

Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of taking part in each condition.

The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.

Order effects

Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:

(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;

(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.

Print Friendly, PDF & Email

design of experiment steps

DOE: The Power Tool of the Analyze and Improve Phases

Published: February 26, 2010 by Dr. Russell A. Boyles

design of experiment steps

Even a novice on a Six Sigma project team knows each step in the basic five-step DMAIC method (Define, Measure, Analyze, Improve, Control) is essential to the success of a breakthrough project. What is not as widely recognized, however, is that each step brings a distinct set of tools to bear on the project objective. For the Analyze and Improve steps, design of experiments (DOE), combined with analysis of variance, is the Six Sigma power tool.

Design of experiments was first conceived and developed by Sir Ronald A. Fisher in the 1920s and 1930s. Fisher was a brilliant mathematician and geneticist working to improve crop yields in England. He designed and supervised field trials comparing fertilizers and seed varieties, among other things. Fisher encountered two enormous obstacles: 1) uncontrollable variation in the soil from plot to plot and 2) a limited number of plots available for any given trial. He solved these problems by the arrangement of the fertilizers or seed varieties in the field.

For example, to determine which of four varieties of wheat had the highest yield, Fisher would divide a rectangular test field into 16 plots. He then planted each of the four varieties in four separate plots. Each of the four varieties (A, B, C and D) was planted just once in each row and once in each column (Figure 1). This minimized the effects of soil variation in the analysis of the plot yields.

Fisher also developed the correct method for analyzing designed experiments. He called it “analysis of variance” because it breaks up the total variation in the data column into components due to different sources. Today these vector components are called “signals” and “noise.” There is a signal component for each controlled variation and a noise component representing variations not attributable to any of the controlled variations. By looking at the signal-to-noise ratio for a particular variation, the analysis of variance will provide accurate answers.

The problems Fisher encountered in conducting agricultural experiments in the 1920s exist today in virtually all Six Sigma applications. For example, industrial experimenters are confronted by significant degrees of uncontrollable variation in such areas as raw materials, human operators or environmental conditions. Such problems can be overcome by running sufficiently large experiments. Unfortunately, large experiments are often too expensive, too time consuming, or both. Fortunately, Fisher’s solutions to these problems work just as well in 21st century Six Sigma as they did in 20th century agriculture. In fact, Fisher’s methods of design and analysis have become international standards in business and applied science.

Fisher’s methods require well-structured data matrices. His analysis of variance delivers surprisingly precise results when applied to a well-structured matrix, even when the matrix is quite small.

Case Study: The Daily Grind

Don worked in the belt grinding department. Day after day, he and his co-workers removed gate stubs from metal castings to prepare them for final processing and shipping. The grinders were paid a handsome hourly rate. The other major expense was the cost of the belts. The department went through a lot of belts on a typical shift.

Define: If a belt is used beyond a certain point, the efficiency in removing metal goes way down. The supplier representative had given the area manager a rule for when the grinders should replace a worn belt. The rule was called “50 percent used up.” Examples of belts that had been 50 percent used up were hanging on the walls in the grinding department. The purpose of the rule was to minimize the total expense of the operation. Don thought the rule was wrong. He thought the rule caused them to discard the belts too soon. He had a hypothesis that using the belts a little longer would reduce the belt expense with no loss of grinding efficiency. He also suspected that the supplier just wanted to sell more belts.

High
High
High
High
Low
Low
Low
Low

Rubber
Rubber
Steel
Steel
Rubber
Rubber
Steel
Steel

50%
75%
50%
75%
50%
75%
50%
75%

50
30
30
50
30
50
30
50

AM
AM
AM
AM
AM
AM
AM
AM

5.28
4.25
5.20
2.46
8.63
5.99
4.75
3.71

High
High
High
High
Low
Low
Low
Low

Rubber
Rubber
Steel
Steel
Rubber
Rubber
Steel
Steel

50%
75%
50%
75%
50%
75%
50%
75%

30
50
50
30
50
30
50
30

PM
PM
PM
PM
PM
PM
PM
PM

6.50
4.87
3.32
2.13
8.36
4.23
5.34
2.87

Don had come up with a new rule called 75 percent used up. He proposed doing a designed experiment to determine whether or not the new rule was more cost effective than the old rule. Don, the area manager and the supplier representative discussed the project. The supplier representative was vehemently opposed to the project. He said the 50 percent rule was based on extensive experimentation and testing at his company. He said the grinding department was wasting time trying to reinvent the wheel.

Don argued that laboratory tests may not be good predictors of shop-floor performance. The area manager thought Don had a good point. He gave the go-ahead for the project. He allowed Don one full day to complete the experiment.

Measure: When the other grinders heard about the experiment, they suggested other things that could be tested in addition to the 50-versus-75-percent usage. The contact wheels currently used on the grinding tools had a low land-to-groove ratio (LGR). One of the grinders wanted to try a wheel with a higher LGR. Another wanted to try a contact wheel made out of hard rubber instead of metal (Material). A third reminded Don that belts of at least two different grit sizes were routinely used. He felt that both grits should be represented in the experiment to get realistic results (Grit).

Don figured he could get 16 castings done in one day. But he also felt that he was usually more efficient mornings than afternoons. The experiment was controlled for this by including a morning/afternoon factor in the matrix (Session). Above is the data matrix for the experiment which tested all five factors. The response variable was the total cost for each casting divided by the amount of metal removed. The total cost was calculated as labor cost plus belt cost.

Analyze: A well-designed experiment is usually easy to analyze. The data matrix suggested the following:

  • Don was on to something with his 75 percent used up
  • High LGR is better than low
  • Rubber wheels are worse than metal ones

Figure 2 shows the Pareto plot ranking the factors and their interactions in the belt grinding experiment by the strength (length) of their profit signals.

The strongest signal was the comparison of steel to rubber contact wheels (Material). This signal indicated that rubber was not a good idea. The next-largest signal was the comparison of the 50 percent rule to the 75 percent rule (Usage). It predicted significant savings with Don’s idea. The third-largest signal was the comparison of low to high land-to-groove ratio (LGR) for the contact wheel.

The next two signals involved interactive effects. The message here was that the actual cost reductions from implementing the Usage and LGR results would be different for the two grit sizes.

Improve: Don’s experiment produced two recommendations: 1) use his 75 percent rule instead of the supplier’s 50 percent rule and 2) use contact wheels with the higher land-to-groove ratio. The combined impact of these two changes was a predicted cost reduction of $2.75 per unit of metal removed. This amounted to about $900,000 in annual savings.

Don’s recommendations were quickly implemented throughout the grinding department. The actual savings came in a little under the prediction, but everyone was happy. Not bad for a one-day project.

Control: Some degree of cost reduction was achieved by all the grinders, but it did not apply uniformly. There was still a lot of variability in grinder performance. Attacking this variation obviously was the next step.

Design of experiments and analysis of variance are hardly new, but they remain vital ingredients in virtually all applications of the Six Sigma DMAIC cycle. Good experiments require well-structured data matrices. Modern statistical software packages will generate such matrices automatically for any experiment specified. The same programs perform the appropriate analysis of variance at the click of a mouse. Thus, statistically valid comparisons and accurate predictions are now available to all, even when small experiments are demanded.

There are, of course, key disciplines in design of experiments that depend on the experimenters and not the software. These include choosing appropriate responses (output variables) and factors (input variables), setting appropriate factor ranges or levels, creating documentation for everyone involved in the experiment, managing the experiment as it takes place, reporting and presenting results, deciding whether to further optimize the process or just run a confirmation experiment. In other words, a designed experiment is a DMAIC cycle-within-a-cycle.

About the Author

' src=

Dr. Russell A. Boyles

design of experiment steps

  • Certified ScrumMaster (CSM) Certification
  • Certified Scrum Product Owner (CSPO) Certification
  • Leading SAFe 6.0 Certification
  • Professional Scrum Master-Advanced™ (PSM-A) Training
  • SAFe 6.0 Scrum Master (SSM) Certification
  • Implementing SAFe 6.0 (SPC) Certification
  • SAFe 6.0 Release Train Engineer (RTE) Certification
  • SAFe 6.0 Product Owner Product Manager (POPM) Certification
  • ICP-ACC Certification
  • Agile Master's Program
  • Agile Excellence Master's Program
  • Kanban Management Professional (KMP I: Kanban System Design) Certification
  • Professional Scrum Product Owner I (PSPO I) Training
  • View All Courses

Accreditation Bodies

  • Project Management Professional (PMP) Certification
  • PRINCE2 Certification
  • PRINCE2 Foundation Certification
  • PRINCE2 Practitioner Certification
  • Change Management Training
  • Project Management Techniques Training
  • Certified Associate in Project Management (CAPM) Certification
  • Program Management Professional (PgMP) Certification
  • Portfolio Management Professional (PfMP) Certification
  • Oracle Primavera P6 Certification
  • Project Management Master's Program
  • Microsoft Project Training
  • Data Science Bootcamp
  • Data Engineer Bootcamp
  • Data Analyst Bootcamp
  • AI Engineer Bootcamp
  • Data Science with Python Certification
  • Python for Data Science
  • Machine Learning with Python
  • Data Science with R
  • Machine Learning with R
  • Deep Learning Certification Training
  • Natural Language Processing (NLP)

Enhance your career prospects with our Data Science Training

Embark on a Data Science career with our Data Analyst Bootcamp

Elevate your Data Science career with our AI Engineer Bootcamp

  • DevOps Foundation Certification
  • Docker with Kubernetes Training
  • Certified Kubernetes Administrator (CKA) Certification
  • Kubernetes Training
  • Docker Training
  • DevOps Training
  • DevOps Leader Training
  • Jenkins Training
  • Openstack Training
  • Ansible Certification
  • Chef Training
  • AWS Certified Solutions Architect - Associate
  • Multi-Cloud Engineer Bootcamp
  • AWS Cloud Practitioner Certification
  • Developing on AWS
  • AWS DevOps Certification
  • Azure Solution Architect Certification
  • Azure Fundamentals Certification
  • Azure Administrator Certification
  • Azure Data Engineer Certification
  • Azure Devops Certification
  • AWS Cloud Architect Master's Program
  • AWS Certified SysOps Administrator Certification
  • Azure Security Engineer Certification
  • Azure AI Solution Certification Training

Supercharge your career with our Multi-Cloud Engineer Bootcamp

  • Full-Stack Developer Bootcamp
  • UI/UX Design Bootcamp
  • Full-Stack [Java Stack] Bootcamp
  • Software Engineer Bootcamp
  • Software Engineer Bootcamp (with PMI)
  • Front-End Development Bootcamp
  • Back-End Development Bootcamp
  • React Training
  • Node JS Training
  • Angular Training (Version 12)
  • Javascript Training
  • PHP and MySQL Training

Work on real-world projects, build practical developer skills

Hands-on, work experience-based learning

Start building in-demand tech skills

  • ITIL 4 Foundation Certification
  • ITIL Practitioner Certification
  • ISO 14001 Foundation Certification
  • ISO 20000 Certification
  • ISO 27000 Foundation Certification
  • ITIL 4 Specialist: Create, Deliver and Support Training
  • ITIL 4 Specialist: Drive Stakeholder Value Training
  • ITIL 4 Strategist Direct, Plan and Improve Training
  • FAAANG/MAANG Interview Preparation
  • Python Certification Training
  • Advanced Python Course
  • R Programming Language Certification
  • Advanced R Course
  • Java Training
  • Java Deep Dive
  • Scala Training
  • Advanced Scala
  • C# Training
  • Microsoft .Net Framework Training
  • Tableau Certification
  • Data Visualisation with Tableau Certification
  • Microsoft Power BI Certification
  • TIBCO Spotfire Training
  • Data Visualisation with Qlikview Certification
  • Sisense BI Certification
  • Blockchain Professional Certification
  • Blockchain Solutions Architect Certification
  • Blockchain Security Engineer Certification
  • Blockchain Quality Engineer Certification
  • Blockchain 101 Certification
  • Hadoop Administration Course
  • Big Data and Hadoop Course
  • Big Data Analytics Course
  • Apache Spark and Scala Training
  • Apache Storm Training
  • Apache Kafka Training
  • Comprehensive Pig Training
  • Comprehensive Hive Training
  • Android Development Course
  • IOS Development Course
  • React Native Course
  • Ionic Training
  • Xamarin Studio Training
  • Xamarin Certification
  • OpenGL Training
  • NativeScript for Mobile App Development
  • Selenium Certification Training
  • ISTQB Foundation Certification
  • ISTQB Advanced Level Security Tester Training
  • ISTQB Advanced Level Test Manager Certification
  • ISTQB Advanced Level Test Analyst Certification
  • ISTQB Advanced Level Technical Test Analyst Certification
  • Silk Test Workbench Training
  • Automation Testing using TestComplete Training
  • Cucumber Training
  • Functional Testing Using Ranorex Training
  • Teradata Certification Training
  • Certified Business Analysis Professional (CBAP®)
  • Entry Certificate in Business Analysis™ (ECBA™)
  • Certification of Capability in Business Analysis™ (CCBA®)
  • Business Case Writing Course
  • Professional in Business Analysis (PMI-PBA) Certification
  • Agile Business Analysis Certification
  • Six Sigma Green Belt Certification
  • Six Sigma Black Belt Certification
  • Six Sigma Yellow Belt Certification
  • CMMIV1.3 Training
  • Cyber Security Bootcamp
  • Certified Ethical Hacker (CEH v12) Certification
  • Certified Information Systems Auditor (CISA) Certification
  • Certified Information Security Manager (CISM) Certification
  • Certified Information Systems Security Professional (CISSP) Certification
  • Cybersecurity Master's Program
  • Certified Cloud Security Professional (CCSP) Certification
  • Certified Information Privacy Professional - Europe (CIPP-E) Certification
  • Control Objectives for Information and Related Technology (COBIT5) Foundation
  • Payment Card Industry Security Standards (PCI-DSS) Certification
  • Introduction to Forensic
  • Digital Marketing Course
  • PPC Training
  • Web Analytics Course
  • Social Media Marketing Course
  • Content Marketing Course
  • E-Mail Marketing Course
  • Display Advertizing Course
  • Conversion Optimization Course
  • Mobile Marketing Course
  • Introduction to the European Union General Data Protection Regulation
  • Financial Risk Management (FRM) Level 1 Certification
  • Financial Risk Management (FRM) Level 2 Certification
  • Risk Management and Internal Controls Training
  • Data Protection-Associate
  • Credit Risk Management
  • Budget Analysis and Forecasting
  • International Financial Reporting Standards (IFRS) for SMEs
  • Diploma In International Financial Reporting
  • Certificate in International Financial Reporting
  • Corporate Governance
  • Finance for Non-Finance Managers
  • Financial Modeling with Excel
  • Auditing and Assurance
  • MySQL Course
  • Redis Certification
  • MongoDB Developer Course
  • Postgresql Training
  • Neo4j Certification
  • Mariadb Course
  • Hbase Training
  • MongoDB Administrator Course
  • Conflict Management Training
  • Communication Course
  • International Certificate In Advanced Leadership Skills
  • Soft Skills Training
  • Soft Skills for Corporate Career Growth
  • Soft Skills Leadership Training
  • Building Team Trust Workshop
  • CompTIA A+ Certification
  • CompTIA Cloud Essentials Certification
  • CompTIA Cloud+ Certification
  • CompTIA Mobility+ Certification
  • CompTIA Network+ Certification
  • CompTIA Security+ Certification
  • CompTIA Server+ Certification
  • CompTIA Project+ Certification
  • Master of Business Administration from Golden Gate University Training
  • MBA from Deakin Business School with Multiple Specializations
  • Master of Business Administration from Jindal Global Business School Training
  • Master of Business Administration from upGrad Training
  • MS Excel 2010
  • Advanced Excel 2013
  • Certified Supply Chain Professional
  • Software Estimation and Measurement Using IFPUG FPA
  • Software Size Estimation and Measurement using IFPUG FPA & SNAP
  • Leading and Delivering World Class Product Development Course
  • Product Management and Product Marketing for Telecoms IT and Software
  • Foundation Certificate in Marketing
  • Flow Measurement and Custody Transfer Training Course

Project Management Tutorial

By knowledgehut ., 1. what is project management, 2. activity-based costing, 3. agile project management, 4. basic management skills, 5. basic quality tools, 6. benchmarking process, 7. cause and effect diagram, 8. change management process, 9. communication management, 10. communication blocker, 11. communication methods, 12. communication channels, 13. communication model, 14. conflict management, 15. critical path method (cpm), 16. critical chain method, 17. crisis management, 18. decision making process, 19. design of experiment, 20. effective communication skills, 21. effective presentation skills, 22. enterprise resource planning, 23. event chain methodology, 24. extreme project management, 25. gantt chart tool, 26. just-in-time (jit) manufacturing, 27. knowledge management, 28. leads, lags & float, 29. management best practices, 30. management styles, 31. management by objective (mbo), 32. monte carlo analysis, 33. motivation theories, 34. negotiation skills, 35. organization structures, 36. pert estimation technique, 37. prince2 project management methodology, 38. pareto chart tool, 39. powerful leadership skills, 40. process-based management, 41. procurement documents, 42. procurement management, 43. project activity diagram, 44. project charter, 45. project contract types, 46. project cost control, 47. project kick-off meeting, 48. project lessons learnt, 49. project management methodologies, 50. project management office, 51. project management processes, 52. project management tools, 53. project management triangle, 54. project manager goals, 55. project portfolio management, 56. project quality plan, 57. project records management, 58. project risk categories, 59. project risk management, 60. project scope definition, 61. project selection methods, 62. project success criteria, 63. project time management, 64. project management software, 65. project workforce management, 66. quality assurance and quality control, 67. raci chart tool, 68. rewards and recognition, 69. requirements collection, 70. resource levelling, 71. staffing management plan, 72. stakeholder management, 73. statement of work (sow), 74. stress management techniques, 75. structured brainstorming, 76. succession planning, 77. supply chain management, 78. team building program, 79. team motivation, 80. the balanced score card, 81. the halo effect, 82. the make or buy decision, 83. the rule of seven, 84. the virtual team, 85. total productive maintenance, 86. total quality management, 87. traditional project management, 88. work breakdown structure, design of experiment.

Design of Experiments (DOE) is also referred to as Designed Experiments or Experimental Design – are defined as the systematic procedure carried out under controlled conditions in order to discover an unknown effect, to test or establish a hypothesis, or to illustrate a known effect. It involves determining the relationship between input factors affecting a process and the output of that process. It helps to manage process inputs in order to optimize the output.

A simple example of DOE:

While doing interior design of a new house, the final effect of interior design will depend on various factors such as colour of walls, lights, floors, placements of various objects in the house, sizes and shapes of the objects and many more. Each of these factors will have an impact on the final outcome of interior decoration. While variation in each factor alone can impact, a variation in a combination of these factors at the same time also will impact the final outcome. 

Hence it needs to be studied how each of these factors impact the final outcome, which are the critical factors impacting the most, which are the most important combination of these factors impacting the final outcome significantly.

The interior designer can plan and conduct some experiments. Get to know more about  DOE with our PMP online training .

Basics of DOE

The method was coined by Sir Ronald A. Fisher in the 1920s and 1930s. Design of Experiment is a powerful data collection and analysis tool that can be used in a variety of experimental situations.

 It allows manipulating multiple input factors and determining their effect on a desired output (response). By changing multiple inputs at the same time, DOE helps to identify important interactions that may be missed when experimenting with only one factor at a time. We can investigate all possible combinations (full factorial) or only a portion of the possible combinations (fractional factorial).

A well planned and executed experiment may provide a great deal of information about the effect on a response variable due to one or more factors. Many experiments involve holding certain factors constant and altering the levels of another variable. This "one factor at a time" (OFAT) approach to process knowledge is, however, inefficient when compared with changing multiple factor levels simultaneously.

A well-performed experiment may provide answers to the following such as:

  • What are the key factors in a process? (both controllable and uncontrollable)
  • At what settings would the process deliver acceptable performance?
  • What are the key, main and interaction effects in the process?
  • What settings would bring about less variation in the output?

A repetitive approach to gaining knowledge should be taken up, typically involving these consecutive steps:

  • A screening design that narrows the field of variables under assessment.
  • A “full factorial” design that studies the response of every combination of factors and factor levels, and an attempt to zero in on a region of values where the process is close to optimization.

A basic approach to a Design of Experiment

We need to follow the below steps in sequence for conducting a DOE.

  • Define the problem(s)
  • Determine objective(s)
  • Design experiments 
  • Conduct experiments and collect data
  • Analyse data
  • Interpret results
  • Verify predicted results

DOE has been in use for many years in manufacturing industry. Below are some of the benefits/improvements we can expect from conducting DOEs:

  • reduce time to design/develop new products & processes
  • improve performance of existing processes
  • improve reliability and performance of products
  • achieve product & process robustness
  • evaluation of materials, design alternatives, setting component & system tolerances, etc.

Leave a Reply

Your email address will not be published. Required fields are marked *

A valuable piece of knowledge. Thank you!

Eniola Samson

This blog is appreciated, thanks.

I like the article. Thank you very much.

Thank you for the information.

The content of the motivation theories are well explained and its has been of great help to me . Thank you for making it that easy for easy understanding.

Suggested Tutorials

PRINCE2 Tutorial [Video]

USEFUL LINKS

  • PMP Course in Chennai
  • PMP Online Training in Kolkata
  • PMP Course in Montreal
  • PMP Course Online in Amsterdam

Get a 1:1 Mentorship call with our Career Advisor

Your Message (Optional)

Subscribe to our newsletter..

  • Login Forgot Password

Don't Miss Out on Exclusive Discounts on Courses!

Future-proof your career with the latest in-demand courses.

  • Get Job-Ready Digital Skills
  • Experience Outcome-Based Immersive Learning
  • Get Trained by a Stellar Pool of Industry Experts
  • Best-In-Class Industry-Vetted Curriculum

By tapping submit, you agree to KnowledgeHut Privacy Policy and Terms & Conditions

Learn Quality Management  

SITE-WIDE SALE IS LIVE NOW.  

  CLICK HERE.

design of experiment steps

  • ASQ® CQA Exam
  • ASQ® CQE Exam
  • ASQ® CSQP Exam
  • ASQ® CSSYB Exam
  • ASQ® CSSGB Exam
  • ASQ® CSSBB Exam
  • ASQ® CMQ/OE Exam
  • ASQ® CQT Exam
  • ASQ® CQPA Exam
  • ASQ® CQIA Exam
  • 7 Quality Tools
  • Quality Gurus
  • ISO 9001:2015
  • Quality Cost
  • Six Sigma Basics
  • Risk Management
  • Lean Manufacturing
  • Design of Experiments
  • Quality Acronyms
  • Quality Awareness
  • Quality Circles
  • Acceptance Sampling
  • Measurement System
  • APQP + PPAP
  • GD&T Symbols
  • Project Quality (PMP)
  • Full List of Quizzes >>
  • Reliability Engineering
  • Statistics with Excel
  • Statistics with Minitab
  • Multiple Regression
  • Quality Function Deployment
  • Benchmarking
  • Statistical Process Control
  • Quality Talks >> New
  • Six Sigma White Belt
  • Six Sigma Yellow Belt
  • Six Sigma Green Belt
  • Six Sigma Black Belt
  • Minitab 17 for Six Sigma
  • Casio fx-991MS Calculator
  • CSSYB/LSSYB Mock Exam
  • CSSGB/LSSGB Mock Exam
  • CSSBB/LSSBB Mock Exam
  • ASQ® CQA Preparation
  • ASQ® CQE Preparation
  • ASQ® CQPA Preparation
  • ASQ® CQIA Preparation
  • CQE Mock Exams
  • CMQ/OE Mock Exams
  • CQA Mock Exams
  • CQIA Mock Exams
  • CQPA Mock Exam
  • CQT Mock Exam
  • CQI Mock Exam
  • CSQP Mock Exam
  • Design of Experiments (DoE)
  • Measurement System Analysis
  • Statistics Using R
  • Data Visualization with R
  • Statistics Using Python
  • Data Visualization with Python
  • Regression with Minitab
  • Logistic Regression
  • Data Analysis Using Excel
  • The Git Mindset
  • Statistics Quiz
  • Root Cause Analysis
  • Kano Analysis
  • Lean Management
  • QMS Lead Auditor
  • Quality Management
  • ISO 9001:2015 Transition
  • Project Quality Manager
  • गुणवत्ता.org
  • Summary Sheets
  • Practice Tests
  • QG Hall of Fame
  • Testimonials – ASQ Exams Preparation

Six Sigma , Statistics

  • Design of Experiments (DoE) – 5 Phases

** Unlock Your Full Potential **

design of experiment steps

A designed experiment is a type of scientific research where researchers control variables (factors) and observe their effect on the outcome variable (dependent variable).

Design of Experiments Steps

Five phases or steps of   experimental design ( DoE , Design of experiments ) include:

1. Planning

Careful planning and attention to detail can help you avoid any pitfalls along your path. In most situations, you would have limited resources to conduct experiments. You would want to get the best results by conducting the minimum number of runs.

You start with a clear understanding of the problem and a well-defined purpose of the experiment.

At this stage, you would identify the potential factors (independent variables) that could be significantly affecting the response. Here you can use your past experience and subject matter expert knowledge to define relevant factors and their levels for the experiment.

In addition, you would need to ensure that the process being analyzed is under statistical control ( Statistical Process Control ) and that the measurement system variation is acceptable.

2. Screening

If the number of factors to be studied is large (typically more than 5), then as the first step, you would conduct screening experiments to reduce them.

The number of factors to be studied significantly impacts the number of runs. For example, if you decided to study 10 factors that could impact the response in the planning, then for a full factorial design , you would need to conduct 2^10 or 1024 experimental treatments (runs). In almost all situations conducting an experiment with these numbers of runs is impossible. In these situations, you would want to do some screening experiments to reduce the number of factors to be studied in the next step.

The following designs are typically used during the screening phase:

a) Fractional Factorial Design

b) Plackett-Burman Design

c) Definitive Screening Designs

3. Modelling

Once you have identified the significant factors using screening experiments, you will model the relationship between significant factors and the response. This is done using regression analysis.

The following designs are typically used during the modelling phase:

b) Full Factorial Design

4. Optimizing

After identifying the significant factors and modelling the relationship between factors and response, you would optimize the process conditions to achieve the desired result. This phase involves finding the best combination of factors and levels to produce the optimum output.

The following designs may be used during the optimization phase:

a) Central Composite Design

b) Box-Behnken Design

5. Verifying

Verification is the final phase of the experiment. It is conducted after the optimized condition has been achieved. The verification helps you confirm whether the optimized condition was indeed optimal. If not, then you would modify the experimental plan accordingly.

A good experiment should always begin with a clearly defined objective. A well-designed experiment will ensure that the experiment meets its objectives.

Similar Posts:

February 18, 2024

Casio fx-991MS and fx-991EX for Quality Certification Exams

February 19, 2024

Summary Sheets – Six Sigma Green Belt

Practice tests – lean six sigma yellow belt.

December 24, 2021

Seven Quality Tools – Pareto Chart

December 16, 2022

Get to Know Your Data Better with Descriptive Statistics

April 7, 2018

Customer Dissatisfaction – Reasons and Ways to Deal with it.

design of experiment steps

49 Courses on SALE!

design of experiment steps

  • Statistics for Experimenters
  • Hunter Award

101 Ways to Design an Experiment, or Some Ideas About Teaching Design of Experiments by William G. Hunter

williamghunter.net > Articles > 101 Ways to Design an Experiment

I want to share some ideas about teaching design of experiments. They are related to something I have often wondered about: whether it is possible to let students experience first-hand all the steps involved in an experimental investigation-thinking of the problem, deciding what experiments might shed light on the problem, planning the runs to be made, carrying them out, analyzing the results, and writing a report summarizing the work. One curiosity about most courses on experimental designing, it seems to me, is that students get no practice designing realistic experiments although, from homework assignments, they do get practice analyzing data. Clearly, however, because of limitations of time and money, if students are to design experiments and actually carry them out, they cannot be involved with elaborate investigations. Therefore, the key question is this: Is it feasible for students to devise their own simple experiments and carry them through to completion and, if so, is it of any educational value to have them do so? I believe the answer to both parts of the question is yes, and the purpose of this paper is to explain why.

The particular design course I have taught most often is a one-semester course that includes these standard statistical techniques: t-tests (paired and unpaired), analysis of variance (primarily for one-way and two-way layouts), factorial and fractional factorial designs (emphasis given to two-level designs), the method of least squares (for linear and nonlinear models), and response surface methodology. The value of randomization and blocking is stressed. Special attention is given to these questions: What are the assumptions being made? What if they are violated? What common pitfalls are encountered in practice? What precautions can be taken to avoid these pitfalls? In analyzing data how can one determine whether the model is adequate? Homework problems provide ample opportunity for carefully examining residuals, especially by plotting them. The material for this course is discussed in the context of the iterative nature of experimental investigations.

Most of those who have taken this course have been graduate students, principally in engineering (chemical, civil, mechanical, industrial, agricultural) but also in a variety of other fields including statistics, food science, forestry, chemistry, and biology. There is a prerequisite of a one-semester introductory statistics course, but this requirement is customarily waived for graduate students with the understanding that they do a little extra work to catch up.

Simulated Data

One possibility is to use simulated data, and the scope here is wide, especially with the availability of computers. At times I have given assignments of this kind, especially response surface problems. Each student receives his or her own sets of data based upon the designs he or she chooses.

The problem might be set up as one involving a chemist who wishes to find the best settings of these five variables-temperature, concentration, pH, stirring rate, and amount of catalyst-and to determine the local geography of the response surface(s) near the optimum. To define the region of operability, ranges are specified for each of these variables. Perhaps more than one response can be measured, for instance, yield and cost. The student is given a certain budget, either in terms of runs or money, the latter being appropriate if there is an option provided for different types of experiments which have different costs. The student can ask for data in, say, three stages. Between these stages the accumulated data can be analyzed so that future experiments can be planned on the basis of all available information.

In generating the data, which contains experimental error, there are many possibilities. Different models can be used for each student, the models not necessarily being the usual simple first-order or second-order linear models. Not all variables need to be important, that is, some may be dummy variables (different ones for different students). Time trends and other abnormalities can be deliberately introduced into the data provided to the students.

The student prepares a report including a summary of the most important facts discovered about his or her system and perhaps containing a contour map of the response surface(s) for the two most important variables (if three of the five variables are dummies, this map should correspond to the true surface from which the data were generated). It is instructive then to compare each student's findings with the corresponding true situation.

Students enjoy games of this type and learn a considerable amount from them. For many it is the first time they realize just how frustrating the presence of an appreciable amount of experimental error can be. The typical prearranged undergraduate laboratory experiments in physics and chemistry, of course, have all important known sources of experimental error removed (typically the data are supposed to fall on a straight line-exactly-or else).

One's first reaction might be that there are not enough possibilities for experiments of this kind. But this is incorrect, as is illustrated by Table 1, which lists some of the experiments reported by the students. Experiments number 1-63 are of the home type and experiments number 64-101 are of the laboratory type. Note the variety of studies done. To save space, for most variables the levels used are not given. Anyway, they are not essential for our purposes here. Most of these experiments were factorial designs. Let us look briefly at the first two home experiments and the first two laboratory experiments.

Bicycle Experiment

In experiment number 1 the student, Norman Miller, using a factorial design with all points replicated, studied the effects of three variables-seat height (26, 30 inches), light generator (on or off), and tire pressure (40, 55 psi)-on two responses-time required to ride his bicycle over a particular course and his pulse rate at the finish of each run (pulse rate at the start was virtually constant). To him the most surprising result was how much he was slowed down by having the generator on. The average time for each run was approximately 50 seconds. He discovered that raising the seat reduced the time by about 10 seconds, having the generator on increased it by about one-third that amount and inflating the tires to 55 psi reduced the time by about the same amount that the generator increased it. He planned further experiments.

Popcorn Experiment

In experiment number 2 the student, Karen Vlasek, using a factorial design with four replicated center points, determined the effects of three variables on the amount of popcorn produced. She found, for example, that although double the yield was obtained with the gourmet popcorn, it cost three times as much as the regular popcorn. By using this experimental design she discovered approximately what combination of variables gave her best results. She noted that it differed from those recommended by the manufacturer of her popcorn popper and both suppliers of popcorn.

Dilution experiment

In experiment number 64 the student, Dean Hafeman, studied a routine laboratory procedure (a dilution) that was performed many times each day where he worked-almost on a mass production basis. The manufacturer of the equipment used for this work emphasized that the key operations, the raising and lowering of two plungers, had to be done slowly for good results. The student wondered what difference it would make if these operations were done quickly. He set up a factorial design in which the variables were the raising and lowering of plunger A and the raising and lowering of plunger B. The two levels of each variable were slow and fast. To his surprise, he found that none of the variables had any measurable effect on the readings. This conclusion had important practical implications in his laboratory because it meant that good results could be obtained even if the plungers were moved quickly; consequently a considerable amount of time could be saved in doing this routing work.

Trouble-shooting Experiment

In experiment number 65 the student, Rodger Melton, solved a trouble-shooting problem that he encountered in his research work. In one piece of his apparatus an extremely small quantity of a certain chemical was distilled to be collected in a second piece of the apparatus. Unfortunately, some of this material condensed prematurely in the line between these two pieces of apparatus. Was there a way to prevent this? By using a factorial design the problem was solved, it being discovered that by suitably adjusting the voltage and using a J-tube none of the material condensed prematurely. The column temperature, which was discovered to be minor consequence as far as premature condensation was concerned (a surprise), could be set to maximize throughput.

Most Popular Experiments

The most popular home experiments have concerned cooking since recipes lend themselves so readily to variations. What to measure for the response has sometimes created a problem. Usually a quality characteristic such as taste has been determined (preferably independently by a number of judges) on a 1-5 or 1-10 scale. Growing seeds has also been an easy and popular experiment. In the laboratory experiments, sensitivity or robustness tests have been the most common (the dilution experiment, number 65, discussed above is of this type). Typically the experimenter varies the conditions for a standard analytical procedure (for example, for the measurement of chemical oxygen demand, COD) to see how much the measured value is affected. That is, if the standard procedure calls for the addition of 20 ml. of a particular chemical, 18 ml. and 22 ml. might be tried. Results from such tests are revealing no matter which way they turn out. One student, for example, concluded ``The results sort of speak for themselves. The test is not very robust.'' Another student, who studied a different test, reported ``The results of the Yates analysis show that the COD test is indeed robust.''

Structuring the Assignment

I have always made these assignments completely open, saying that they could study anything that interested them. I have tended to favor home rather than laboratory experiments. I have suggested they choose something they care about, preferably something they've wondered about. Such projects seem to turn out better than those picked for no particularly good reason. Here is how a few of the reports began: ``Ever since we came to Madison my family has experienced difficulty in making bread that will rise properly.'' ``Since moving to Madison, my green thumb has turned black. Every plant I have tried to grow has died.'' (Nothing works in Madison?) ``This experiment deals with how best to prepare pancakes to satisfy the group of four of us living together.'' ``I rent an efficiency on the second floor of an apartment building which has cooking facilities on the first floor only. When I cook rice, my staple food,I have to make one to three visits to the kitchen to make sure it is ready to be served and not burned. Because of this inconvenience, I wanted to study the effects of certain variables on the cooking time of rice.'' ``My wife and I were wondering if our oldest daughter had a favorite toy.'' ``For the home brewer, a small kitchen blender does a good job of grinding malt, provided the right levels of speed, batch size and time are used. This is the basis of the experimental design.'' ``During my career as a beer drinker, various questions have arisen.'' ``I do much of the maintenance and repair work around my home, and some of the repairs require the use of epoxy glue. I was curious about some of the factors affecting its performance.'' ``My wife and I are interested in indoor plants, and often we like to give them as gifts. We usually select a cutting from one of our fifty or so plants, put it in a glass of water until it develops roots, and then pot it. We have observed that sometimes the cutting roots quickly and sometimes it roots slowly, so we decided to experiment with several factors that we thought might be important in this process.'' ``I chose to find out how my shotguns were firing. I reload my own shells with powders that were recommended to me, one for short range shooting and one for long range shooting. I had my doubts if the recommendations were valid.''

What Did the Students Learn?

The conclusion reached in this last experiment was: ``As it looks now, I should use my Gun A with powder C for close range shooting, such as for grouse and woodcock. I should use gun B and powder D for longer range shooting as for ducks and geese.'' As is illustrated by this example and the first four discussed above, the students sometimes learned things that were directly useful to them. Some other examples: ``Spending $70 extra to buy tape deck 2 is not justified as the difference in sound is better with the other, or probably there is no difference. The synthesizer appears not to affect the quality of the sound.'' In operating my calculator I can anticipate increasing operation time by an additional 15 minutes and 23 seconds on the average by charging 60 minutes instead of 30 minutes.'' ``In conclusion, the Chinese dumplings turned out very pretty and very delicious, especially the ones with thin skins. I think this was a successful experiment.

Naturally, not all experiments were successful. ``A better way to have run the experiment would have been to...'' Various troubles arose. ``The reason that there is only one observation for the eighth row is that one of the cups was knocked over by a curious cat.'' ``One observation made during the experiment was that the child's posture may have affected the duration of the ride. Mark (13 pounds) leaned back, thus distributing his weight more evenly. On the other hand, Mike (22 pounds) preferred to sit forward, which may have made the restoring action of the spring more difficult.'' (The trouble here was that the variable the student wanted to study was weight, not posture.) Another student, who was studying factors that affected how fast snow melted on sidewalks, had some of his data destroyed because the sun came out brightly (and unexpectedly) one day near the end of his experiment and melted all the snow.

Because of such troubles these simple experiments have served as useful vehicles for discussing important practical points that arise in more serious scientific investigations. Excellent questions for this purpose have arisen from these studies. ``Do I really need to use a completely randomized experiment? It will take much longer to do that way?'' There have been good examples that illustrate the sequential nature of experimentation and show how carefully conceived experimental designs can help in solving problems.''...This must have been the main reason why the first experiment completely failed. I decided to try another factorial design. Synchronization of the flash unit and camera still bothered me. I decided to experiment with...'' some other factors.

As a result of these projects students seem to get a much better appreciation of the efficiency and beauty of experimental designs. For example, in this last experiment the student concluded: ``The factorial design proved to be efficient in solving the problem. I did get off on the wrong track initially, but the information learned concerning synchronization is quite valuable.'' Another student: ``It is interesting to see how a few experiments can give so much information.''

There is another point, and it is not the least important. Most of the students had fun with these projects. And I did, too. Just looking through Table 1 suggests why this is so, I think. One report ended simply: ``This experiment was really fun!'' Many students have reported that this was the best part of the course.

There is a tendency sometimes for experimenters to discount what they have learned, this being true not only for students in this class, but also for experimenters in general. That is, they learn more than they realize. Hindsight is the culprit. On pondering a certain conclusion, one is prone to say ``Oh yes, that makes sense. Yes, that's the way it should be. That's what I would have expected.'' While this reaction is often correct, one is sometimes just fooling oneself, that is, interrogation at the outset would have produced exactly the opposite opinion. So that students could more accurately gauge what they learned from their simple experiments, I tried the following and it seemed to work: after having decided on the experimental runs to perform, the student guessed what his or her major conclusions would be and wrote them down. Upon completion of the assignment, these guesses were checked against the actual results, which immediately provided a clear picture of what was learned (the surprises) and what was confirmed (the non-surprises).

I now tend to spend much more time introducing each new topic than I used to. Providing appropriate motivation is extremely important. For classes I have had the privilege of teaching-whether in universities or elsewhere-I have found that it has been better to use concrete examples followed by the general theory rather than the reverse. I now try to describe a particular problem in some detail, preferably a real one with which I am familiar, and then pose the question: What would YOU do? I find it helpful to resist the temptation to move on too quickly to the prepared lecture so that there is ample time for students to consider this question seriously, to discuss it, to ask questions of clarification, to express ideas they have, and ultimately (and this really the object of the exercise) to realize that a genuine problem exists and they do not know how to solve it. They are then eager to learn. And after we have finished with that particular topic they know they have learned something of value. (I realize as I write this that I have been strongly influenced by George Barnard, who masterfully conducted a seminar in this manner at Imperial College, London, in 1964-65, which I was fortunate to have attended.)

Current examples are well-received, especially controversies (for example, weather modification experiments). Some useful sources are court cases, advertisements, TV and radio commercials, and ``Consumer Reports''. An older controversy still of considerable interest from a pedagogical point of view is the AD-X2 battery additive case. Gosset's comments on the Lanarkshire Milk Experiment are still illuminating. Sometimes trying to get the data that support a particular TV commercial or the facts from both parties of a dispute has made an interesting side project to carry along through a semester.

Having each student exercise his or her own initiative in thinking up an experiment and carrying it through to completion has turned out successfully. Using games involving simulated data has also been useful. I have incorporated such projects, principally of the former type, into courses I have taught, and I urge others to consider doing the same. Why?

First of all, it's fun. The students have generally welcomed the opportunity to learn something about a particular question they have wondered about. I have been fascinated to see what they have chosen to study and what conclusions they have reached, so it has been fun for me, too. The students and I have certainly learned interesting things we did not know before. Why doesn't my bread rise? Why don't my flowers grow? Is this analytical procedure robust? Will carrying a crutch make it easier for me to get a ride hitchhiking? (Incidentally, it made it harder.)

Secondly, the students have gotten a lot out of such experiences. There is a definite deepening of understanding that comes from having been through a study from start to finish-deciding on a problem, the variables, the ranges of the variables, and how to measure the response(s), actually running the experiment and collecting the data, analyzing the results, learning what the practical consequences are, and finally writing a report. Being veterans, not of the war certainly but of a minor skirmish at least, the students seem more comfortable and confident with the entire subject of the design of experiments, especially as they share their experiences with one another.

Thirdly, I have found it particularly worthwhile to discuss with them in class some of the practical questions that naturally emerge from these studies. ``What can I do about missing data?'' ``These first three readings are questionable because I think I didn't have my technique perfected then-What should I do?'' ``A most unusual thing happened during this run, so should I analyze this result with all the others or leave it out?'' They are genuinely interested in such questions because they have actually encountered them, not just read about them in a textbook. Sometimes there is no simple answer, and lively and valuable discussions then occur. Such discussions, I hope, help them understand that, when they confront real problems later on which refuse to look like those in the textbooks no matter how they are viewed, there are alternatives to pretending they do and charging ahead regardless or forgetting about them in hopes they will go away or adopting a ``non-statistical'' approach-in a word, there are alternatives to panic.

Table 1. List of some studies done by students in an experimental design course.

  • variables: seat height (26, 30 inches), generator (off,on), tire pressure (40, 55 psi) responses: time to complete fixed course on bicycle and pulse rate at finish
  • variables: brand of popcorn (ordinary, gourmet), size of batch (1/3,2/3 cup), popcorn to oil ratio (low, high) responses: yield of popcorn
  • variables: amount of yeast, amount of sugar, liquid (milk, water), rise temperature, rise time responses: quality of bread, especially the total rise
  • variables: number of pills, amount of cough syrup, use of vaporizer responses: how well twins, who had colds, slept during the night
  • variables: speed of film, light (normal, diffused), shutter speed responses: quality of slides made close up with flash attachment on camera
  • variables: hours of illumination, water temperature, specific gravity of water responses: growth rate of algae in salt water aquarium
  • variables: temperature, amount of sugar, food prior to drink (water, salted popcorn) responses: taste of Koolaid
  • variables: direction in which radio is facing, antenna angle, antenna slant responses: strength of radio signal from particular AM station in Chicago
  • variables: blending speed, amount of water, temperature of water, soaking time before blending responses: blending time for soy beans
  • variables: charge time, digits fixed, number of calculations performed responses: operation time for pocket calculator
  • variables: clothes dryer (A,B), temperature setting, load responses: time until dryer stops
  • variables: pan (aluminum, iron), burner on stove, cover for pan (no, yes) responses: time to boil water
  • variables: aspirin buffered? (no, yes) dose, water temperature responses: hours of relief from migraine headache
  • variables: amount of milk powder added to milk, heating temperature, incubation temperature responses: taste comparison of homemade yogurt and commercial brand
  • variables: pack on back (no, yes), footwear (tennis shoes, boots), run (7, 14 flights of steps) responses: time required to run up steps and heartbeat at top
  • variables: width to height ratio of sheet of balsa wood, slant angle, dihedral angle, weight added, thickness of wood responses: length of flight of model airplane
  • variables: level of coffee in cup, devices (nothing, spoon placed across top of cup facing up), speed of walking responses: how much coffee spilled while walking
  • variables: type of stitch, yarn gauge, needle size responses: cost of knitting scarf, dollars per square foot
  • variables: type of drink (beer, rum), number of drinks, rate of drinking, hours after last meal responses: time to get steel ball through a maze
  • variables: size of order, time of day, sex of server responses: cost of order of french fries, in cents per ounce
  • variables: brand of gasoline, driving speed, temperature responses: gas mileage for car
  • variables: stamp (first class, air mail), zip code (used, not used), time of day when letter mailed responses: number of days required for letter to be delivered to another city
  • variables: side of face (left, right), beard history (shaved once in two years0-sideburns, shaved over 600 times in two years-just below sideburns) responses: length of whiskers 3 days after shaving
  • variables: eyes used (both, right), location of observer, distance responses: number of times (out of 15) that correct gender of passerby was determined by experimenter with poor eyesight wearing no glasses
  • variables: distance to target, guns (A,B), powders(C,D) responses: number of shot that penetrated a one foot diameter circle on the target
  • variables: oven temperature, length of heating, amount of water responses: height of cake
  • variables: strength of developer, temperature, degree of agitation responses: density of photographic film
  • variables: brand of rubber band, size, temperature responses: length of rubber band before it broke
  • variables: viscosity of oil, type of pick-up shoes, number of teeth in gear responses: speed of H.O. scale slot racers
  • variables: type of tire, brand of gas, driver (A,B) responses: time for car to cover one-quarter mile
  • variables: temperature, stirring rate, amount of solvent responses: time to dissolve table salt
  • variables: amounts of cooking wine, oyster sauce,sesame oil responses: taste of stewed chicken
  • variables: type of surface, object (slide rule, ruler, silver dollar), pushed? (no,yes) responses: angle necessary to make object slide
  • variables: ambient temperature, choke setting, number of charges responses: number of kicks necessary to start motorcycle
  • variables: temperature, location in oven, biscuits covered while baking? (no,yes) responses: time to bake biscuits
  • variables: temperature of water, amount of grease, amount of water conditioner responses: quantity of suds produced in kitchen blender
  • variables: person putting daughter to bed (mother, father), bed time, place (home, grandparents) responses: toys child chose to sleep with
  • variables: amount of light in room, type of music played, volume responses: correct answers on simple arithmetic test, time required to complete test, words remembered (from list of 15)
  • variables: amounts of added Turkish, Latakia, and Perique tobaccos responses: bite, smoking characteristics, aroma, and taste of tobacco mixture
  • variables: temperature, humidity, rock salt responses: time to melt ice
  • variables: number of cards dealt at one time, position of picker relative to the dealer responses: points in games of sheepshead, a card game
  • variables: marijuana (no, yes),tequila (no, yes),sauna (no, yes) responses: pleasure experienced in subsequent sexual intercourse
  • variables: amounts of flour, eggs, milk responses: taste of pancakes, consensus of group of four living together
  • variables: brand of suntan lotion, altitude, skier responses: time to get sun burned
  • variables: amount of sleep the night before, substantial exercise during the day? (no, yes), eat right before going to bed? (no, yes) responses: soundness of sleep, average reading from five persons
  • variables: brand of tape deck used for playing music, bass level, treble level, synthesizer? (no, yes) responses: clearness and quality of sound, and absence of noise
  • variables: type of filter paper, beverage to be filtered, volume of beverage responses: time to filter
  • variables: type of ski, temperature, type of wax responses: time to go down ski slope
  • variables: ambient temperature for dough when rising, amount of vegetable oil, number of onions responses: four quality characteristics of pizza
  • variables: amount of fertilizer, location of seeds (3 x 3 Latin square) responses: time for seeds to germinate
  • variables: speed of kitchen blender, batch size of malt, blending time responses: quality of ground malt for brewing beer
  • variables: soft drink (A,B), container (can, bottle), sugar free? (no, yes) responses: taste of drink from paper cup
  • variables: child's weight (13, 22 pounds),spring tension (4, 8 cranks), swing orientation (level, tilted) responses: number of swings and duration of these swings obtained from an automatic infant swing
  • variables: orientation of football, kick (ordinary, soccer style),steps taken before kick, shoe (soft, hard) responses: distance football was kicked
  • variables: weight of bowling ball, spin, bowling lane (A, B) responses: bowling pins knocked down
  • variables: distance from basket type of shot, location on floor responses: number of shots made (out of 10) with basketball
  • variables: temperature, position of glass when pouring soft drink, amount of sugar added responses: amount of foam produced when pouring soft drink into glass
  • variables: brand of epoxy glue, ratio of hardener to resin, thickness of application, smoothness of surface, curing time responses: strength of bond between two strips of aluminum
  • variables: amount of plant hormone, water (direct from tap, stood out for 24 hours), window in which plant was put responses: root lengths of cuttings from purple passion vine after 21 days
  • variables: amount of detergent (1/4, 1/2 cup), bleach (none, 1 cup), fabric softener (not used, used) responses: ability to remove oil and grape juice stains
  • variables: skin thickness, water temperature, amount of salt responses: time to cook Chinese meat dumpling
  • variables: appearance (with and without a crutch), location, time responses: time to get a ride hitchhiking and number of cars that passed before getting a ride
  • variables: frequency of watering plants, use of plant food (no, yes), temperature of water responses: growth rate of house plants
  • variables: plunger A up (slow, fast),plunger A down (slow, fast), plunger B up (slow, fast) plunger B down (slow, fast) responses: reproducibility of automatic diluter, optical density readings made with spectrophotometer
  • variables: temperature of gas chromatograph column, tube type (U, J), voltage responses: size of unwanted droplet
  • variables: temperature, gas pressure, welding speed responses: strength of polypropylene weld,manual operation
  • variables: concentration of lysozyme, pH, ionic strength, temperature responses: rate of chemical reaction
  • variables: anhydrous barium peroxide powder,sulfur,charcoal dust responses: length of time fuse powder burned and the evenness of burning
  • variables: air velocity, air temperature, rice bed depth responses: time to dry wild rice
  • variables: concentration of lactose crystal, crystal size, rate of agitation responses: spread ability of caramel candy
  • variables: positions of coating chamber, distribution plate, and lower chamber responses: number of particles caught in a fluidized bed collector
  • variables: proportional band, manual reset, regulator pressure responses: sensitivity of a pneumatic valve control system for a heat exchanger
  • variables: chloride concentration, phase ratio, total amine concentration, amount of preservative added responses: degree of separation of zinc from copper accomplished by extraction
  • variables: temperature, nitrate concentration, amount of preservative added responses: measured nitrate concentration in sewage, comparison of three different methods
  • variables: solar radiation collector size, ratio of storage capacity to collector size, extent of short-term intermittency of radiation, average daily radiation on three successive days responses: efficiency of solar space-heating system, a computer simulation
  • variables: pH, dissolved oxygen content of water, temperature responses: extent of corrosion of iron
  • variables: amount of sulfuric acid, time of shaking milk-acid mixture, time of final tempering responses: measurement of butterfat content of milk
  • variables: mode (batch, time-sharing), job size, system utilization (low, high) responses: time to complete job on computer
  • variables: flow rate of carrier gas, polarity of stationary liquid phase, temperature responses: two different measures of efficiency of operation of gas chromatograph
  • variables: pH of assay buffer, incubation time, concentration of binder responses: measured cortisol level in human blood plasma
  • variables: aluminum, boron, cooling time responses: extent of rock candy fracture of cast steel
  • variables: magnification, read out system (micrometer, electronic), stage light responses: measurement of angle with photogrammetric instrument
  • variables: riser height, mold hardness, carbon equivalent responses: changes in height, width, and length dimensions of cast metal
  • variables: amperage, contact tube height, travel speed, edge preparation responses: quality of weld made by submerged arc welding process
  • variables: time, amount of magnesium oxide, amount of alloy responses: recovery of material by steam distillation
  • variables: pH, depth, time responses: final moisture content of alfalfa protein
  • variables: deodorant, concentration of chemical, incubation time responses: odor produced by material isolated from decaying manure, after treatment
  • variables: temperature variation, concentration of cupric sulfate concentration of sulfuric acid responses: limiting currents on totaling disk electrode
  • variables: air flow, diameter of bead, heat shield (no, yes) responses: measured temperature of a heated plate
  • variables: voltage, warm-up procedure, bulb age responses: sensitivity of micro densitometer
  • variables: pressure, amount of ferric chloride added, amount of lime added responses: efficiency of vacuum filtration of sludge
  • variables: longitudinal feed rate, transverse feed rate, depth of cut responses: longitudinal and thrust forces for surface grinding operation
  • variables: time between preparation of sample and refluxing, reflux time, time between end of reflux and start of titrating responses: chemical oxygen demand of samples with same amount of waste (acetanilide)
  • variables: speed of rotation, thrust load, method of lubrication responses: torque of taper roller bearings
  • variables: type of activated carbon, amount of carbon, pH responses: adsorption characteristics of activated carbon used with municipal waste water
  • variables: amounts of nickel, manganese, carbon responses: impact strength of steel alloy
  • variables: form (broth, gravy), added broth (no, yes), added fat (no, yes), type of meat (lamb, beef) responses: percentage of panelists correctly identifying which samples were lamb
  • variables: well (A, B), depth of probe, method of analysis (peak height, planimeter) responses: methane concentration in completed sanitary landfill
  • variables: paste (A, B), preparation of skin (no, yes), site (sternum, forearm) responses: electrocardiogram reading
  • variables: lime dosage, time of flocculation, mixing speed responses: removal of turbidity and hardness from water
  • variables: temperature difference between surface and bottom waters, thickness of surface layer, jet distance to thermocline, velocity of jet, temperature difference between jet and bottom waters responses: mixing time for an initially thermally stratified tank of water

Articles by Bill

Thoughts about bill's work and life, articles by george box.

Design of a new laboratory earthquake experiment

  • Aoude, Abdallah
  • Stefanou, Ioannis
  • Semblat, Jean-François
  • Rubino, Vito

In this study, we present a new apparatus for creating earthquake-like instabilities in the laboratory and testing earthquake control theories (Stefanou, 2019a; Stefanou & Tzortzopoulos, 2022; Gutiérrez-Oribio et al., 2022). This experimental setup incorporates an analogue fault surrounded by an elastic medium. The frictional properties of the analogue fault are imposed by 3D printing. The elastic medium was chosen such as to have a very low Young's modulus and allow reasonable sampling rates for testing the earthquake control theories, while enabling the upscaling of the results based on appropriate scaling laws.The apparatus allows the application of a slow, uniform deformation of the elastic medium through a system of pantographs installed at the lateral boundaries of the device. Then, when the critical state is reached, an earthquake-like instability occurs. The slip front and its propagation are measured using digital image correlation. Preliminary results show qualitative similarities with natural seismic slip, as expected.The next step is to adjust the effective stress over the analogue fault to achieve a controlled slow slip rate of prescribed amplitude, according to our earthquake control theories and compare the results with those from existing, but simpler, experiments we have performed in the past (Gutiérrez-Oribio et al., 2023).

No Sources Found

Eco-friendly purification process of chitin contained in shrimp shells by application of the Definitive Screening Design experiment plan

  • Original Article
  • Published: 05 July 2024

Cite this article

design of experiment steps

  • Zineb Chiki 1 ,
  • Maryam El Hajam 2 ,
  • Hamza Boulika 1 ,
  • Salima Ben Tahar 1 ,
  • Meryem Hajji Nabih 1 ,
  • Taj-Dine Lamcharfi 1 &
  • Noureddine Idrissi Kandri 1  

22 Accesses

Explore all metrics

Chitin is a biopolymer contained in shrimp shells, its extraction requires costly and polluting processes. However, it has a wide range of applications, mainly in the pharmaceutical and automotive sectors. The aim of this work is to improve the chitin purification process by using an experimental design to reduce the cost of the process and its effects as much as possible. The "Definitive Screening Design" (DSD) discovered in 2011, offers an attractive alternative to existing designs by screening and optimizing at the same time. The quality of the obtained biopolymer was expressed by crystallinity index that was extracted from the X-ray diffraction (XRD) data, which reveals a crystallinity index (CrI%) about 87% for optimal values of 0.5 M for the concentration of acid chloride and 40 °C for the demineralization temperature for three hours. To identify the chitin and assess its quality a parameter called acetylation degree was calculated from Fourier Transform Infrared spectrophotometry (FT-IR) results, that revealed an optimal value about 77% for an acid chloride concentration of 1.5 M, a sodium hydroxide concentration of 0.5 M, and a temperature of 40 °C for the demineralization and deproteinization steps. Scanning Electron Microscopy (SEM) analysis was performed to observe the morphology of purified chitin, which reveals a homogeneous surface with block formation while using HCl as demineralization agent in the process, so it is considered the most suitable acid to use in this step.

Graphical Abstract

design of experiment steps

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

design of experiment steps

Similar content being viewed by others

design of experiment steps

Green low-cost synthesis of zero-valent iron nanoparticles from Palm Petiole Extract for Cr(VI) removal from water

Chitosan nanoparticles preparation and applications.

design of experiment steps

Novel Sequential Microwave-Ultrasonic-Assisted Extraction of Phenolic Compounds from Jackfruit (Artocarpus heterophyllus Lam.) Peel Waste Using Choline Chloride-Lactic Acid Deep Eutectic Solvent

Data availability.

The author declare that the data set generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Strungaru S-A, Jijie R, Nicoara M, Plavan G, Faggio C (2019) Micro- (nano) plastics in freshwater ecosystems: abundance, toxicological impact and quantification methodology. TrAC Trends Anal Chem 110:116–128. https://doi.org/10.1016/j.trac.2018.10.025

Article   Google Scholar  

Guzzetti E, Sureda A, Tejada S, Faggio C (2018) Microplastic in marine organism: environmental and toxicological effects. Environ Toxicol Pharmacol 64:164–171. https://doi.org/10.1016/j.etap.2018.10.009

Prokić MD, Radovanović TB, Gavrić JP, Faggio C (2019) Ecotoxicological effects of microplastics: examination of biomarkers, current state and future perspectives. TrAC Trends Anal Chem 111:37–46. https://doi.org/10.1016/j.trac.2018.12.001

Alimba CG, Faggio C (2019) Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile. Environ Toxicol Pharmacol 68:61–74. https://doi.org/10.1016/j.etap.2019.03.001

Bouras O, Bollinger J-C, Baudu M, Khalaf H (2007) Adsorption of diuron and its degradation products from aqueous solution by surfactant-modified pillared clays. Appl Clay Sci 37:240–250. https://doi.org/10.1016/j.clay.2007.01.009

Demim S, Drouiche N, Aouabed A, Benayad T, Dendene-Badache O, Semsari S (2013) Cadmium and nickel: assessment of the physiological effects and heavy metal removal using a response surface approach by L. gibba. Ecol Eng 61:426–435. https://doi.org/10.1016/j.ecoleng.2013.10.016

Gobi N, Vaseeharan B, Rekha R, Vijayakumar S, Faggio C (2018) Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. Ecotoxicol Environ Saf 162:147–159. https://doi.org/10.1016/j.ecoenv.2018.06.070

Vijayakumar S et al (2019) Bioinspired zinc oxide nanoparticles using lycopersicon esculentum for antimicrobial and anticancer applications. J Clust Sci 30(6):1465–1479. https://doi.org/10.1007/s10876-019-01590-z

El Hajam M et al (2020) Pb2+ ions adsorption onto raw and chemically activated Dibetou sawdust: application of experimental designs. J King Saud Univ - Sci 32(3):2176–2189. https://doi.org/10.1016/j.jksus.2020.02.027

Burgos-Aceves MA, Cohen A, Smith Y, Faggio C (2018) MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures. Ecotoxicol Environ Saf 148:995–1000. https://doi.org/10.1016/j.ecoenv.2017.12.001

Hajji Nabih M et al (2021) Physicochemical characterization of cardoon “Cynara cardunculus” Wastes (Leaves and Stems): a comparative study. Sustainability 13(24):Art. no. 24. https://doi.org/10.3390/su132413905

Hajji Nabih M et al (2023) Preparation and characterization of activated carbons from cardoon “Cynara Cardunculus” waste: application to the adsorption of synthetic organic dyes. Mater Today Proc 72:3369–3379. https://doi.org/10.1016/j.matpr.2022.07.414

Hajji Nabih M et al (2023) Successive solvent extraction, characterization and antioxidant activities of cardoon waste (Leaves and Stems) extracts: comparative study. Molecules 28(3):1129. https://doi.org/10.3390/molecules28031129

Hisham F, MaziatiAkmal MH, Ahmad FB, Ahmad K (2021) Facile extraction of chitin and chitosan from shrimp shell. Mater Today Proc 42:2369–2373. https://doi.org/10.1016/j.matpr.2020.12.329

Vincent J (2012) Structural biomaterials. Third Edition. Accessed: Mar. 27, 2023. [Online]. Available: https://press.princeton.edu/books/paperback/9780691154008/structural-biomaterials

Hadley NF (1986) The arthropod cuticle. Sci Am 255:104–112

Ghorbel-Bellaaj O, Hajji S, Younes I, Chaabouni M, Nasri M, Jellouli K (2013) Optimization of chitin extraction from shrimp waste with Bacillus pumilus A1 using response surface methodology. Int J Biol Macromol 61:243–250. https://doi.org/10.1016/j.ijbiomac.2013.07.001

Pakizeh M, Moradi A, Ghassemi T (2021) Chemical extraction and modification of chitin and chitosan from shrimp shells. Eur Polym J 159:110709. https://doi.org/10.1016/j.eurpolymj.2021.110709

Sulthan R, Reghunadhan A, Sambhudevan S (2023) A new era of chitin synthesis and dissolution using deep eutectic solvents- comparison with ionic liquids. J Mol Liq 380:121794. https://doi.org/10.1016/j.molliq.2023.121794

Mohan K et al (2022) Green and eco-friendly approaches for the extraction of chitin and chitosan: a review. Carbohydr Polym 287:119349

Wang Y, Zhu H, Qiao M, Luo Y (2024) Glycerol/organic acid-based ternary deep eutectic solvents as a green approach to recover chitin with different molecular weight from seafood waste. Int J Biol Macromol 257:128714. https://doi.org/10.1016/j.ijbiomac.2023.128714

Morais ES, Lopes AMDC, Freire MG, Freire CSR, Coutinho JAP, Silvestre AJD (2020) Use of Ionic liquids and deep eutectic solvents in polysaccharides dissolution and extraction processes towards sustainable biomass valorization. Molecules 25(16):3652. https://doi.org/10.3390/molecules25163652

Jones B, Nachtsheim CJ (2011) A class of three-level designs for definitive screening in the presence of second-order effects. J Qual Technol 43(1):1–15. https://doi.org/10.1080/00224065.2011.11917841

Truong TO, Hausler R, Monette F, Niquette P (2007) Valorisation des résidus industriels de pêches pour la transformation de chitosane par technique hydrothermo-chimique. Rev Sci Eau 20(3):253–262. https://doi.org/10.7202/016170ar

No HK, Hur EY (1998) Control of foam formation by antifoam during demineralization of crustacean shell in preparation of Chitin. J Agric Food Chem 46(9):3844–3846. https://doi.org/10.1021/jf9802676

Baron R et al (2015) Kinetic study of solid phase demineralization by weak acids in one-step enzymatic bio-refinery of shrimp cuticles. Process Biochem 50(12):2215–2223. https://doi.org/10.1016/j.procbio.2015.09.017

Tolaimate A, Desbrieres J, Rhazi M, Alagui A (2003) Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer 44(26):7939–7952. https://doi.org/10.1016/j.polymer.2003.10.025

Sagheer FAA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr Polym 77(2):410–419. https://doi.org/10.1016/j.carbpol.2009.01.032

Nguyen N-K, Stylianou S (2013) Constructing definitive screening designs using cyclic generators. J Stat Theory Pract 7(4):713–724. https://doi.org/10.1080/15598608.2013.781891

Article   MathSciNet   Google Scholar  

Boulika H, El Hajam M, Hajji Nabih M, Riffi Karim I, IdrissiKandri N, Zerouale A (2023) Definitive screening design applied to cationic & anionic adsorption dyes on Almond shells activated carbon: Isotherm, kinetic and thermodynamic studies. Mater Today Proc 72:3336–3346. https://doi.org/10.1016/j.matpr.2022.07.358

Libbrecht W et al (2015) Optimization of soft templated mesoporous carbon synthesis using definitive screening design. Chem Eng J 259:126–134. https://doi.org/10.1016/j.cej.2014.07.113

Erler A, de Mas N, Ramsey P, Henderson G (2013) Efficient biological process characterization by definitive-screening designs: the formaldehyde treatment of a therapeutic protein as a case study. Biotechnol Lett 35(3):323–329. https://doi.org/10.1007/s10529-012-1089-y

Liu S et al (2012) Extraction and Characterization of Chitin from the Beetle Holotrichia parallela Motschulsky. Molecules 17(4):4604–4611. https://doi.org/10.3390/molecules17044604

Nam YS, Park WH, Ihm D, Hudson SM (2010) Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydr Polym 80(1):291–295. https://doi.org/10.1016/j.carbpol.2009.11.030

Kaya M, Seyyar O, Baran T, Turkes T (2014) Bat guano as new and attractive chitin and chitosan source. Front Zool 11(1):59. https://doi.org/10.1186/s12983-014-0059-8

Gbenebor OP, Adeosun SO, Lawal GI, Jun S, Olaleye SA (2017) Acetylation, crystalline and morphological properties of structural polysaccharide from shrimp exoskeleton. Eng Sci Technol Int J 20(3):1155–1165. https://doi.org/10.1016/j.jestch.2017.05.002

Kim S-K (2011) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca Raton

Google Scholar  

Nakagawa S, Johnson PCD, Schielzeth H (2017) The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J R Soc Interface 14:20170213. https://doi.org/10.1098/rsif.2017.0213

Schiefer H, Schiefer F (2021) Statistics for engineers: an introduction with examples from practice. Wiesbaden: Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-32397-4

Pennington DW et al (2004) Life cycle assessment part 2: current impact assessment practice. Environ Int 30(5):721–739. https://doi.org/10.1016/j.envint.2003.12.009

Tolesa LD, Gupta BS, Lee M-J (2019) Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids. Int J Biol Macromol 130:818–826. https://doi.org/10.1016/j.ijbiomac.2019.03.018

Isa M, Ameh A, Tijjani M, Adama K (2012) Extraction and characterization of chitin and chitosan from Nigerian shrimps. Int J Biol Chem Sci 6(1):446–453. https://doi.org/10.4314/ijbcs.v6i1.40

De Queiroz Antonino R et al (2017) Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs 15(5):141. https://doi.org/10.3390/md15050141

Poerio A, Petit C, Jehl J-P, Arab-Tehrany E, Mano JF, Cleymand F (2020) Extraction and physicochemical characterization of chitin from cicada orni sloughs of the south-eastern french mediterranean basin. Molecules 25(11):2543. https://doi.org/10.3390/molecules25112543

Boureghda Y, Satha H, Bendebane F (2021) Chitin–glucan complex from pleurotus ostreatus mushroom: physicochemical characterization and comparison of extraction methods. Waste Biomass Valorization 12(11):6139–6153. https://doi.org/10.1007/s12649-021-01449-3

Loste E, Wilson RM, Seshadri R, Meldrum FC (2003) The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. J Cryst Growth 254(1–2):206–218. https://doi.org/10.1016/S0022-0248(03)01153-9

Mucci A (1986) Growth kinetics and composition of magnesian calcite overgrowths precipitated from seawater: quantitative influence of orthophosphate ions. Geochim Cosmochim Acta 50(10):2255–2265. https://doi.org/10.1016/0016-7037(86)90080-3

‘First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum | Scientific Reports’. Accessed: Feb. 14, 2024. [Online]. Available: https://www.nature.com/articles/srep06162

Liu Y, Liu Z, Pan W, Wu Q (2008) Absorption behaviors and structure changes of chitin in alkali solution. Carbohydr Polym 72(2):235–239. https://doi.org/10.1016/j.carbpol.2007.08.004

Raya I, Mayasari E, Yahya A, Syahrul M, Latunra AI (2015) Shynthesis and characterizations of calcium hydroxyapatite derived from crabs shells ( Portunus pelagicus ) and its potency in safeguard against to dental demineralizations. Int J Biomater 2015:1–8. https://doi.org/10.1155/2015/469176

Selvam NCS, Kumar RT, Kennedy LJ, Vijaya JJ (2011) Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J Alloys Compd 509(41):9809–9815. https://doi.org/10.1016/j.jallcom.2011.08.032

Hajji S, Turki T, Boubakri A, Ben Amor M, Mzoughi N (2017) Study of cadmium adsorption onto calcite using full factorial experiment design. Desalination Water Treat. 83:222–233. https://doi.org/10.5004/dwt.2017.21079

Farcas F, Touzé PL (2001) La spectrometrie infrarouge a transformee de Fourier (IRTF). Une methode interessante pour la caracterisation des ciments

Guggenheim S et al (2002) Report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the “Crystallinity Index.” Clay Miner 37(2):389–393. https://doi.org/10.1180/0009855023720043

Abdou ES, Nagy KSA, Elsabee MZ (2008) Extraction and characterization of chitin and chitosan from local sources. Bioresour Technol 99(5):1359–1367. https://doi.org/10.1016/j.biortech.2007.01.051

Zhang H, Yun S, Song L, Zhang Y, Zhao Y (2017) The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate. Int J Biol Macromol 96:334–339. https://doi.org/10.1016/j.ijbiomac.2016.12.017

Hajji S et al (2014) Structural differences between chitin and chitosan extracted from three different marine sources. Int J Biol Macromol 65:298–306. https://doi.org/10.1016/j.ijbiomac.2014.01.045

Gopi S, Pius A, Thomas S (2016) Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. J Water Process Eng 14:1–8. https://doi.org/10.1016/j.jwpe.2016.07.010

El Knidri H, El Khalfaouy R, Laajeb A, Addaou A, Lahsini A (2016) Eco-friendly extraction and characterization of chitin and chitosan from the shrimp shell waste via microwave irradiation. Process Saf Environ Prot 104:395–405. https://doi.org/10.1016/j.psep.2016.09.020

Kumari S, Kumar Annamareddy SH, Abanti S, Kumar Rath P (2017) Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int J Biol Macromol 104:1697–1705. https://doi.org/10.1016/j.ijbiomac.2017.04.119

Cárdenas G, Cabrera G, Taboada E, Miranda SP (2004) Chitin characterization by SEM, FTIR, XRD, and 13 C cross polarization/mass angle spinning NMR: Chitin Characterization. J Appl Polym Sci 93(4):1876–1885. https://doi.org/10.1002/app.20647

Download references

The authors did not receive support from any organization for the submitted work.

Author information

Authors and affiliations.

Signals, Systems and Components Laboratory (SSC), Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Route Imouzzer, BP2202, Fez, Morocco

Zineb Chiki, Hamza Boulika, Salima Ben Tahar, Meryem Hajji Nabih, Taj-Dine Lamcharfi & Noureddine Idrissi Kandri

Advanced Structures and Composites Center, University of Maine, Orono, ME, 04469, USA

Maryam El Hajam

You can also search for this author in PubMed   Google Scholar

Contributions

CHIKI Zineb: Formal analysis, validation, writing of the original version.

EL HAJAM Maryam: Data conservation, investigation, writing-revision and editing.

BOULIKA Hamza: Writing-revision and editing.

BEN TAHAR Salima: investigation and editing.

HAJJI NABIH Meryem: investigation and editing.

LAMCHARFI Taj-dine: Investigation, writing-editing.

IDRISSI KANDR Noureddine: Data conservation, investigation, writing-editing.

Corresponding author

Correspondence to Zineb Chiki .

Ethics declarations

Competing interests.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

• This study reveals a minimum concentration of acid and base, potentially improving chitin’s proprieties.

• Our analysis uncovers surprising percentage of CrI and DA, with an optimum purification conditions.

• The research identifies the effect of acid nature on the polymer’s morphology, marking a significant step forward in polymer science.

• Exploring the effect of the purification temperature, this article presents the discovery of the chitin’s appearance changing related to the treatment duration and temperature.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Chiki, Z., El Hajam, M., Boulika, H. et al. Eco-friendly purification process of chitin contained in shrimp shells by application of the Definitive Screening Design experiment plan. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05868-9

Download citation

Received : 27 February 2024

Revised : 29 May 2024

Accepted : 13 June 2024

Published : 05 July 2024

DOI : https://doi.org/10.1007/s13399-024-05868-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Optimization
  • Definitive Screening Design
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. 15 Experimental Design Examples (2024)

    design of experiment steps

  2. What is Design of Experiment

    design of experiment steps

  3. What are the Steps to Design an Experiment?

    design of experiment steps

  4. Steps of the Scientific Method

    design of experiment steps

  5. 42 fundamentals of experimental design worksheet

    design of experiment steps

  6. Design of Experiment

    design of experiment steps

VIDEO

  1. Design of Experiments (DOE) Tutorial for Beginners

  2. Transistor Amplifier Comparisons

  3. Lemon battery experiment steps science project #hack #freeenergy #diy #viral @arslantech8596

  4. 1. Introduction to Design of Experiment

  5. Steps in Sampling Design

  6. Steps in Conducting an Experiment

COMMENTS

  1. Guide to Experimental Design

    Learn how to design an experiment to test a causal hypothesis. Follow the five key steps: define variables, write hypothesis, design treatments, assign subjects, and measure dependent variable.

  2. What Is Design of Experiments (DOE)?

    Design of experiments (DOE) is defined as a branch of applied statistics that deals with planning, conducting, analyzing, and interpreting controlled tests to evaluate the factors that control the value of a parameter or group of parameters. DOE is a powerful data collection and analysis tool that can be used in a variety of experimental ...

  3. A Quick Guide to Experimental Design

    A good experimental design requires a strong understanding of the system you are studying. There are five key steps in designing an experiment: Consider your variables and how they are related. Write a specific, testable hypothesis. Design experimental treatments to manipulate your independent variable.

  4. Experimental Design Step by Step: A Practical Guide for Beginners

    Experimental design (or design of experiments, DOE) is a multivariate approach, aimed at maximizing the ratio between quality of information about a chemical system or process and experimental effo...

  5. Experimental Design

    Experimental Design. Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results. Experimental design typically includes ...

  6. 5.1.3. What are the steps of DOE?

    Obtaining good results from a DOE involves these seven steps: Set objectives. Select process variables. Select an experimental design. Execute the design. Check that the data are consistent with the experimental assumptions. Analyze and interpret the results. Use/present the results (may lead to further runs or DOE's).

  7. Experimental Design: Definition and Types

    An experimental design is a detailed plan for collecting and using data to identify causal relationships. Through careful planning, the design of experiments allows your data collection efforts to have a reasonable chance of detecting effects and testing hypotheses that answer your research questions. An experiment is a data collection ...

  8. Design of experiments

    The design of experiments ( DOE or DOX ), also known as experiment design or experimental design, is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions ...

  9. Guide to experimental research design

    This guide explores the types of experimental design, the steps in designing an experiment, and the advantages and limitations of experimental design. ... Step 3: Design experimental treatments to manipulate your independent variable. Depending on your experiment, your variable may be a fixed stimulus (like a medical treatment) or a variable ...

  10. 1.1

    Lesson 1: Introduction to Design of Experiments. 1.1 - A Quick History of the Design of Experiments (DOE) 1.2 - The Basic Principles of DOE; 1.3 - Steps for Planning, Conducting and Analyzing an Experiment; Lesson 2: Simple Comparative Experiments. 2.1 - Simple Comparative Experiments; 2.2 - Sample Size Determination; 2.3 - Determining Power

  11. PDF Topic 1: INTRODUCTION TO PRINCIPLES OF EXPERIMENTAL DESIGN

    Figure 2. Example of the process of research. A designed experiment must satisfy all requirements of the objectives of a study but is also subject to the limitations of available resources. Below we will give examples of how the objective and hypothesis of a study influences the design of an experiment. 1.

  12. Step-by-Step Guide to DoE (Design of Experiments)

    Here is a systematic, step-by-step guide to design a fruitful experiment. Clearly defined goals and objectives of the experiment are important to get the intended answer. A comprehensive brain storming session or an interactive meeting can help the team prioritize the goals. The type of design of the experiment depends heavily on your objectives.

  13. 19+ Experimental Design Examples (Methods + Types)

    1) True Experimental Design. In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

  14. Experimental Design Steps & Activities

    This is an exploration of the seven key experimental method steps, experimental design ideas, and ways to integrate design of experiments. Student projects can benefit greatly from supplemental worksheets and we will also provide resources such as worksheets aimed at teaching experimental design effectively.

  15. PDF Chapter 4 Experimental Designs and Their Analysis

    Design of experiment means how to design an experiment in the sense that how the observations or measurements should be obtained to answer a query in a valid, efficient and economical way. The designing of the experiment and the analysis of obtained data are inseparable. If the experiment is designed properly keeping in mind the question, then ...

  16. Experimental Design: Types, Examples & Methods

    Three types of experimental designs are commonly used: 1. Independent Measures. Independent measures design, also known as between-groups, is an experimental design where different participants are used in each condition of the independent variable. This means that each condition of the experiment includes a different group of participants.

  17. A Comprehensive Guide to Design of Experiments: Concepts ...

    Design of Experiments is a vital tool in data science, providing a structured and rigorous approach to planning, designing, and analyzing experiments. By leveraging various DOE techniques ...

  18. DOE: The Power Tool of the Analyze and Improve Phases

    For the Analyze and Improve steps, design of experiments (DOE), combined with analysis of variance, is the Six Sigma power tool. Design of experiments was first conceived and developed by Sir Ronald A. Fisher in the 1920s and 1930s. Fisher was a brilliant mathematician and geneticist working to improve crop yields in England.

  19. Introduction to experimental design (video)

    Introduction to experimental design. Scientific progress hinges on well-designed experiments. Most experiments start with a testable hypothesis. To avoid errors, researchers may randomly divide subjects into control and experimental groups. Both groups should receive a treatment, like a pill (real or placebo), to counteract the placebo effect.

  20. Design of Experiment (DOE) in Project Management

    A "full factorial" design that studies the response of every combination of factors and factor levels, and an attempt to zero in on a region of values where the process is close to optimization. A basic approach to a Design of Experiment. We need to follow the below steps in sequence for conducting a DOE. Define the problem(s) Determine ...

  21. Designing an Experiment: 8 Steps Plus Experimental Design Types

    To design your own experiment, consider following these steps and examples: 1. Determine your specific research question. To begin, craft a specific research question. A research question is a topic you are hoping to learn more about. In order to create the best possible results, try to make your topic as specific as possible.

  22. Design of Experiments (DoE)

    Five phases or steps of experimental design ( DoE, Design of experiments) include: 1. Planning. Careful planning and attention to detail can help you avoid any pitfalls along your path. In most situations, you would have limited resources to conduct experiments. You would want to get the best results by conducting the minimum number of runs.

  23. 101 Ways to Design an Experiment, or Some Ideas About Teaching Design

    In experiment number 2 the student, Karen Vlasek, using a factorial design with four replicated center points, determined the effects of three variables on the amount of popcorn produced. She found, for example, that although double the yield was obtained with the gourmet popcorn, it cost three times as much as the regular popcorn.

  24. Design of Experiments-Based Optimization of an Electrochemical

    A design of experiments model has been developed to optimize an electrochemical protocol for the decarboxylative N-alkylation of pyrazole in a spinning cylinder electrode reactor. The electrochemical reaction requires the incorporation of molecular sieves as an additive to ensure the absence of moisture and prevent potential electrode corrosion issues. The spinning cylinder electrode reactor ...

  25. Design of a new laboratory earthquake experiment

    Preliminary results show qualitative similarities with natural seismic slip, as expected.The next step is to adjust the effective stress over the analogue fault to achieve a controlled slow slip rate of prescribed amplitude, according to our earthquake control theories and compare the results with those from existing, but simpler, experiments ...

  26. Eco-friendly purification process of chitin contained in ...

    Chitin is a biopolymer contained in shrimp shells, its extraction requires costly and polluting processes. However, it has a wide range of applications, mainly in the pharmaceutical and automotive sectors. The aim of this work is to improve the chitin purification process by using an experimental design to reduce the cost of the process and its effects as much as possible. The "Definitive ...

  27. A field experiment on gamification of physical activity—Effects on

    Gamification is finding growing application in the field of physical activity, promising engaging and motivating experiences that foster behavioural change. Yet, rigorous empirical work substantiating favourable claims is limited. Our study sought to find evidence for the effects resulting from gamification of physical activity on the users' motivation, perceived usefulness, and the ...

  28. Creating a Consistent Design System

    A thought experiment on naming conventions for Tier 2 color tokens. Dec 28, 2023. ... How to start building a design system. A step-by-step guide to bring a design system into your company without losing your mind. Nov 6, 2023. Nathan Curtis. Planning a Design System Generation. How to approach a cycle sweeping change across a library.