• Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

100+ Quantitative Research Topics For Students

Quantitative Research Topics

Quantitative research is a research strategy focusing on quantified data collection and analysis processes. This research strategy emphasizes testing theories on various subjects. It also includes collecting and analyzing non-numerical data.

Quantitative research is a common approach in the natural and social sciences , like marketing, business, sociology, chemistry, biology, economics, and psychology. So, if you are fond of statistics and figures, a quantitative research title would be an excellent option for your research proposal or project.

How to Get a Title of Quantitative Research

How to make quantitative research title, what is the best title for quantitative research, amazing quantitative research topics for students, creative quantitative research topics, perfect quantitative research title examples, unique quantitative research titles, outstanding quantitative research title examples for students, creative example title of quantitative research samples, outstanding quantitative research problems examples, fantastic quantitative research topic examples, the best quantitative research topics, grade 12 quantitative research title for students, list of quantitative research titles for high school, easy quantitative research topics for students, trending topics for quantitative research, quantitative research proposal topics, samples of quantitative research titles, research title about business quantitative.

Finding a great title is the key to writing a great quantitative research proposal or paper. A title for quantitative research prepares you for success, failure, or mediocre grades. This post features examples of quantitative research titles for all students.

Putting together a research title and quantitative research design is not as easy as some students assume. So, an example topic of quantitative research can help you craft your own. However, even with the examples, you may need some guidelines for personalizing your research project or proposal topics.

So, here are some tips for getting a title for quantitative research:

  • Consider your area of studies
  • Look out for relevant subjects in the area
  • Expert advice may come in handy
  • Check out some sample quantitative research titles

Making a quantitative research title is easy if you know the qualities of a good title in quantitative research. Reading about how to make a quantitative research title may not help as much as looking at some samples. Looking at a quantitative research example title will give you an idea of where to start.

However, let’s look at some tips for how to make a quantitative research title:

  • The title should seem interesting to readers
  • Ensure that the title represents the content of the research paper
  • Reflect on the tone of the writing in the title
  • The title should contain important keywords in your chosen subject to help readers find your paper
  • The title should not be too lengthy
  • It should be grammatically correct and creative
  • It must generate curiosity

An excellent quantitative title should be clear, which implies that it should effectively explain the paper and what readers can expect. A research title for quantitative research is the gateway to your article or proposal. So, it should be well thought out. Additionally, it should give you room for extensive topic research.

A sample of quantitative research titles will give you an idea of what a good title for quantitative research looks like. Here are some examples:

  • What is the correlation between inflation rates and unemployment rates?
  • Has climate adaptation influenced the mitigation of funds allocation?
  • Job satisfaction and employee turnover: What is the link?
  • A look at the relationship between poor households and the development of entrepreneurship skills
  • Urbanization and economic growth: What is the link between these elements?
  • Does education achievement influence people’s economic status?
  • What is the impact of solar electricity on the wholesale energy market?
  • Debt accumulation and retirement: What is the relationship between these concepts?
  • Can people with psychiatric disorders develop independent living skills?
  • Children’s nutrition and its impact on cognitive development

Quantitative research applies to various subjects in the natural and social sciences. Therefore, depending on your intended subject, you have numerous options. Below are some good quantitative research topics for students:

  • The difference between the colorific intake of men and women in your country
  • Top strategies used to measure customer satisfaction and how they work
  • Black Friday sales: are they profitable?
  • The correlation between estimated target market and practical competitive risk assignment
  • Are smartphones making us brighter or dumber?
  • Nuclear families Vs. Joint families: Is there a difference?
  • What will society look like in the absence of organized religion?
  • A comparison between carbohydrate weight loss benefits and high carbohydrate diets?
  • How does emotional stability influence your overall well-being?
  • The extent of the impact of technology in the communications sector

Creativity is the key to creating a good research topic in quantitative research. Find a good quantitative research topic below:

  • How much exercise is good for lasting physical well-being?
  • A comparison of the nutritional therapy uses and contemporary medical approaches
  • Does sugar intake have a direct impact on diabetes diagnosis?
  • Education attainment: Does it influence crime rates in society?
  • Is there an actual link between obesity and cancer rates?
  • Do kids with siblings have better social skills than those without?
  • Computer games and their impact on the young generation
  • Has social media marketing taken over conventional marketing strategies?
  • The impact of technology development on human relationships and communication
  • What is the link between drug addiction and age?

Need more quantitative research title examples to inspire you? Here are some quantitative research title examples to look at:

  • Habitation fragmentation and biodiversity loss: What is the link?
  • Radiation has affected biodiversity: Assessing its effects
  • An assessment of the impact of the CORONA virus on global population growth
  • Is the pandemic truly over, or have human bodies built resistance against the virus?
  • The ozone hole and its impact on the environment
  • The greenhouse gas effect: What is it and how has it impacted the atmosphere
  • GMO crops: are they good or bad for your health?
  • Is there a direct link between education quality and job attainment?
  • How have education systems changed from traditional to modern times?
  • The good and bad impacts of technology on education qualities

Your examiner will give you excellent grades if you come up with a unique title and outstanding content. Here are some quantitative research examples titles.

  • Online classes: are they helpful or not?
  • What changes has the global CORONA pandemic had on the population growth curve?
  • Daily habits influenced by the global pandemic
  • An analysis of the impact of culture on people’s personalities
  • How has feminism influenced the education system’s approach to the girl child’s education?
  • Academic competition: what are its benefits and downsides for students?
  • Is there a link between education and student integrity?
  • An analysis of how the education sector can influence a country’s economy
  • An overview of the link between crime rates and concern for crime
  • Is there a link between education and obesity?

Research title example quantitative topics when well-thought guarantees a paper that is a good read. Look at the examples below to get started.

  • What are the impacts of online games on students?
  • Sex education in schools: how important is it?
  • Should schools be teaching about safe sex in their sex education classes?
  • The correlation between extreme parent interference on student academic performance
  • Is there a real link between academic marks and intelligence?
  • Teacher feedback: How necessary is it, and how does it help students?
  • An analysis of modern education systems and their impact on student performance
  • An overview of the link between academic performance/marks and intelligence
  • Are grading systems helpful or harmful to students?
  • What was the impact of the pandemic on students?

Irrespective of the course you take, here are some titles that can fit diverse subjects pretty well. Here are some creative quantitative research title ideas:

  • A look at the pre-corona and post-corona economy
  • How are conventional retail businesses fairing against eCommerce sites like Amazon and Shopify?
  • An evaluation of mortality rates of heart attacks
  • Effective treatments for cardiovascular issues and their prevention
  • A comparison of the effectiveness of home care and nursing home care
  • Strategies for managing effective dissemination of information to modern students
  • How does educational discrimination influence students’ futures?
  • The impacts of unfavorable classroom environment and bullying on students and teachers
  • An overview of the implementation of STEM education to K-12 students
  • How effective is digital learning?

If your paper addresses a problem, you must present facts that solve the question or tell more about the question. Here are examples of quantitative research titles that will inspire you.

  • An elaborate study of the influence of telemedicine in healthcare practices
  • How has scientific innovation influenced the defense or military system?
  • The link between technology and people’s mental health
  • Has social media helped create awareness or worsened people’s mental health?
  • How do engineers promote green technology?
  • How can engineers raise sustainability in building and structural infrastructures?
  • An analysis of how decision-making is dependent on someone’s sub-conscious
  • A comprehensive study of ADHD and its impact on students’ capabilities
  • The impact of racism on people’s mental health and overall wellbeing
  • How has the current surge in social activism helped shape people’s relationships?

Are you looking for an example of a quantitative research title? These ten examples below will get you started.

  • The prevalence of nonverbal communication in social control and people’s interactions
  • The impacts of stress on people’s behavior in society
  • A study of the connection between capital structures and corporate strategies
  • How do changes in credit ratings impact equality returns?
  • A quantitative analysis of the effect of bond rating changes on stock prices
  • The impact of semantics on web technology
  • An analysis of persuasion, propaganda, and marketing impact on individuals
  • The dominant-firm model: what is it, and how does it apply to your country’s retail sector?
  • The role of income inequality in economy growth
  • An examination of juvenile delinquents’ treatment in your country

Excellent Topics For Quantitative Research

Here are some titles for quantitative research you should consider:

  • Does studying mathematics help implement data safety for businesses
  • How are art-related subjects interdependent with mathematics?
  • How do eco-friendly practices in the hospitality industry influence tourism rates?
  • A deep insight into how people view eco-tourisms
  • Religion vs. hospitality: Details on their correlation
  • Has your country’s tourist sector revived after the pandemic?
  • How effective is non-verbal communication in conveying emotions?
  • Are there similarities between the English and French vocabulary?
  • How do politicians use persuasive language in political speeches?
  • The correlation between popular culture and translation

Here are some quantitative research titles examples for your consideration:

  • How do world leaders use language to change the emotional climate in their nations?
  • Extensive research on how linguistics cultivate political buzzwords
  • The impact of globalization on the global tourism sector
  • An analysis of the effects of the pandemic on the worldwide hospitality sector
  • The influence of social media platforms on people’s choice of tourism destinations
  • Educational tourism: What is it and what you should know about it
  • Why do college students experience math anxiety?
  • Is math anxiety a phenomenon?
  • A guide on effective ways to fight cultural bias in modern society
  • Creative ways to solve the overpopulation issue

An example of quantitative research topics for 12 th -grade students will come in handy if you want to score a good grade. Here are some of the best ones:

  • The link between global warming and climate change
  • What is the greenhouse gas impact on biodiversity and the atmosphere
  • Has the internet successfully influenced literacy rates in society
  • The value and downsides of competition for students
  • A comparison of the education system in first-world and third-world countries
  • The impact of alcohol addiction on the younger generation
  • How has social media influenced human relationships?
  • Has education helped boost feminism among men and women?
  • Are computers in classrooms beneficial or detrimental to students?
  • How has social media improved bullying rates among teenagers?

High school students can apply research titles on social issues  or other elements, depending on the subject. Let’s look at some quantitative topics for students:

  • What is the right age to introduce sex education for students
  • Can extreme punishment help reduce alcohol consumption among teenagers?
  • Should the government increase the age of sexual consent?
  • The link between globalization and the local economy collapses
  • How are global companies influencing local economies?

There are numerous possible quantitative research topics you can write about. Here are some great quantitative research topics examples:

  • The correlation between video games and crime rates
  • Do college studies impact future job satisfaction?
  • What can the education sector do to encourage more college enrollment?
  • The impact of education on self-esteem
  • The relationship between income and occupation

You can find inspiration for your research topic from trending affairs on social media or in the news. Such topics will make your research enticing. Find a trending topic for quantitative research example from the list below:

  • How the country’s economy is fairing after the pandemic
  • An analysis of the riots by women in Iran and what the women gain to achieve
  • Is the current US government living up to the voter’s expectations?
  • How is the war in Ukraine affecting the global economy?
  • Can social media riots affect political decisions?

A proposal is a paper you write proposing the subject you would like to cover for your research and the research techniques you will apply. If the proposal is approved, it turns to your research topic. Here are some quantitative titles you should consider for your research proposal:

  • Military support and economic development: What is the impact in developing nations?
  • How does gun ownership influence crime rates in developed countries?
  • How can the US government reduce gun violence without influencing people’s rights?
  • What is the link between school prestige and academic standards?
  • Is there a scientific link between abortion and the definition of viability?

You can never have too many sample titles. The samples allow you to find a unique title you’re your research or proposal. Find a sample quantitative research title here:

  • Does weight loss indicate good or poor health?
  • Should schools do away with grading systems?
  • The impact of culture on student interactions and personalities
  • How can parents successfully protect their kids from the dangers of the internet?
  • Is the US education system better or worse than Europe’s?

If you’re a business major, then you must choose a research title quantitative about business. Let’s look at some research title examples quantitative in business:

  • Creating shareholder value in business: How important is it?
  • The changes in credit ratings and their impact on equity returns
  • The importance of data privacy laws in business operations
  • How do businesses benefit from e-waste and carbon footprint reduction?
  • Organizational culture in business: what is its importance?

We Are A Call Away

Interesting, creative, unique, and easy quantitative research topics allow you to explain your paper and make research easy. Therefore, you should not take choosing a research paper or proposal topic lightly. With your topic ready, reach out to us today for excellent research paper writing services .

Leave a Reply Cancel reply

Educational resources and simple solutions for your research journey

What is quantitative research? Definition, methods, types, and examples

What is Quantitative Research? Definition, Methods, Types, and Examples

list of quantitative research examples

If you’re wondering what is quantitative research and whether this methodology works for your research study, you’re not alone. If you want a simple quantitative research definition , then it’s enough to say that this is a method undertaken by researchers based on their study requirements. However, to select the most appropriate research for their study type, researchers should know all the methods available. 

Selecting the right research method depends on a few important criteria, such as the research question, study type, time, costs, data availability, and availability of respondents. There are two main types of research methods— quantitative research  and qualitative research. The purpose of quantitative research is to validate or test a theory or hypothesis and that of qualitative research is to understand a subject or event or identify reasons for observed patterns.   

Quantitative research methods  are used to observe events that affect a particular group of individuals, which is the sample population. In this type of research, diverse numerical data are collected through various methods and then statistically analyzed to aggregate the data, compare them, or show relationships among the data. Quantitative research methods broadly include questionnaires, structured observations, and experiments.  

Here are two quantitative research examples:  

  • Satisfaction surveys sent out by a company regarding their revamped customer service initiatives. Customers are asked to rate their experience on a rating scale of 1 (poor) to 5 (excellent).  
  • A school has introduced a new after-school program for children, and a few months after commencement, the school sends out feedback questionnaires to the parents of the enrolled children. Such questionnaires usually include close-ended questions that require either definite answers or a Yes/No option. This helps in a quick, overall assessment of the program’s outreach and success.  

list of quantitative research examples

Table of Contents

What is quantitative research ? 1,2

list of quantitative research examples

The steps shown in the figure can be grouped into the following broad steps:  

  • Theory : Define the problem area or area of interest and create a research question.  
  • Hypothesis : Develop a hypothesis based on the research question. This hypothesis will be tested in the remaining steps.  
  • Research design : In this step, the most appropriate quantitative research design will be selected, including deciding on the sample size, selecting respondents, identifying research sites, if any, etc.
  • Data collection : This process could be extensive based on your research objective and sample size.  
  • Data analysis : Statistical analysis is used to analyze the data collected. The results from the analysis help in either supporting or rejecting your hypothesis.  
  • Present results : Based on the data analysis, conclusions are drawn, and results are presented as accurately as possible.  

Quantitative research characteristics 4

  • Large sample size : This ensures reliability because this sample represents the target population or market. Due to the large sample size, the outcomes can be generalized to the entire population as well, making this one of the important characteristics of quantitative research .  
  • Structured data and measurable variables: The data are numeric and can be analyzed easily. Quantitative research involves the use of measurable variables such as age, salary range, highest education, etc.  
  • Easy-to-use data collection methods : The methods include experiments, controlled observations, and questionnaires and surveys with a rating scale or close-ended questions, which require simple and to-the-point answers; are not bound by geographical regions; and are easy to administer.  
  • Data analysis : Structured and accurate statistical analysis methods using software applications such as Excel, SPSS, R. The analysis is fast, accurate, and less effort intensive.  
  • Reliable : The respondents answer close-ended questions, their responses are direct without ambiguity and yield numeric outcomes, which are therefore highly reliable.  
  • Reusable outcomes : This is one of the key characteristics – outcomes of one research can be used and replicated in other research as well and is not exclusive to only one study.  

Quantitative research methods 5

Quantitative research methods are classified into two types—primary and secondary.  

Primary quantitative research method:

In this type of quantitative research , data are directly collected by the researchers using the following methods.

– Survey research : Surveys are the easiest and most commonly used quantitative research method . They are of two types— cross-sectional and longitudinal.   

->Cross-sectional surveys are specifically conducted on a target population for a specified period, that is, these surveys have a specific starting and ending time and researchers study the events during this period to arrive at conclusions. The main purpose of these surveys is to describe and assess the characteristics of a population. There is one independent variable in this study, which is a common factor applicable to all participants in the population, for example, living in a specific city, diagnosed with a specific disease, of a certain age group, etc. An example of a cross-sectional survey is a study to understand why individuals residing in houses built before 1979 in the US are more susceptible to lead contamination.  

->Longitudinal surveys are conducted at different time durations. These surveys involve observing the interactions among different variables in the target population, exposing them to various causal factors, and understanding their effects across a longer period. These studies are helpful to analyze a problem in the long term. An example of a longitudinal study is the study of the relationship between smoking and lung cancer over a long period.  

– Descriptive research : Explains the current status of an identified and measurable variable. Unlike other types of quantitative research , a hypothesis is not needed at the beginning of the study and can be developed even after data collection. This type of quantitative research describes the characteristics of a problem and answers the what, when, where of a problem. However, it doesn’t answer the why of the problem and doesn’t explore cause-and-effect relationships between variables. Data from this research could be used as preliminary data for another study. Example: A researcher undertakes a study to examine the growth strategy of a company. This sample data can be used by other companies to determine their own growth strategy.  

list of quantitative research examples

– Correlational research : This quantitative research method is used to establish a relationship between two variables using statistical analysis and analyze how one affects the other. The research is non-experimental because the researcher doesn’t control or manipulate any of the variables. At least two separate sample groups are needed for this research. Example: Researchers studying a correlation between regular exercise and diabetes.  

– Causal-comparative research : This type of quantitative research examines the cause-effect relationships in retrospect between a dependent and independent variable and determines the causes of the already existing differences between groups of people. This is not a true experiment because it doesn’t assign participants to groups randomly. Example: To study the wage differences between men and women in the same role. For this, already existing wage information is analyzed to understand the relationship.  

– Experimental research : This quantitative research method uses true experiments or scientific methods for determining a cause-effect relation between variables. It involves testing a hypothesis through experiments, in which one or more independent variables are manipulated and then their effect on dependent variables are studied. Example: A researcher studies the importance of a drug in treating a disease by administering the drug in few patients and not administering in a few.  

The following data collection methods are commonly used in primary quantitative research :  

  • Sampling : The most common type is probability sampling, in which a sample is chosen from a larger population using some form of random selection, that is, every member of the population has an equal chance of being selected. The different types of probability sampling are—simple random, systematic, stratified, and cluster sampling.  
  • Interviews : These are commonly telephonic or face-to-face.  
  • Observations : Structured observations are most commonly used in quantitative research . In this method, researchers make observations about specific behaviors of individuals in a structured setting.  
  • Document review : Reviewing existing research or documents to collect evidence for supporting the quantitative research .  
  • Surveys and questionnaires : Surveys can be administered both online and offline depending on the requirement and sample size.

The data collected can be analyzed in several ways in quantitative research , as listed below:  

  • Cross-tabulation —Uses a tabular format to draw inferences among collected data  
  • MaxDiff analysis —Gauges the preferences of the respondents  
  • TURF analysis —Total Unduplicated Reach and Frequency Analysis; helps in determining the market strategy for a business  
  • Gap analysis —Identify gaps in attaining the desired results  
  • SWOT analysis —Helps identify strengths, weaknesses, opportunities, and threats of a product, service, or organization  
  • Text analysis —Used for interpreting unstructured data  

Secondary quantitative research methods :

This method involves conducting research using already existing or secondary data. This method is less effort intensive and requires lesser time. However, researchers should verify the authenticity and recency of the sources being used and ensure their accuracy.  

The main sources of secondary data are: 

  • The Internet  
  • Government and non-government sources  
  • Public libraries  
  • Educational institutions  
  • Commercial information sources such as newspapers, journals, radio, TV  

What is quantitative research? Definition, methods, types, and examples

When to use quantitative research 6  

Here are some simple ways to decide when to use quantitative research . Use quantitative research to:  

  • recommend a final course of action  
  • find whether a consensus exists regarding a particular subject  
  • generalize results to a larger population  
  • determine a cause-and-effect relationship between variables  
  • describe characteristics of specific groups of people  
  • test hypotheses and examine specific relationships  
  • identify and establish size of market segments  

A research case study to understand when to use quantitative research 7  

Context: A study was undertaken to evaluate a major innovation in a hospital’s design, in terms of workforce implications and impact on patient and staff experiences of all single-room hospital accommodations. The researchers undertook a mixed methods approach to answer their research questions. Here, we focus on the quantitative research aspect.  

Research questions : What are the advantages and disadvantages for the staff as a result of the hospital’s move to the new design with all single-room accommodations? Did the move affect staff experience and well-being and improve their ability to deliver high-quality care?  

Method: The researchers obtained quantitative data from three sources:  

  • Staff activity (task time distribution): Each staff member was shadowed by a researcher who observed each task undertaken by the staff, and logged the time spent on each activity.  
  • Staff travel distances : The staff were requested to wear pedometers, which recorded the distances covered.  
  • Staff experience surveys : Staff were surveyed before and after the move to the new hospital design.  

Results of quantitative research : The following observations were made based on quantitative data analysis:  

  • The move to the new design did not result in a significant change in the proportion of time spent on different activities.  
  • Staff activity events observed per session were higher after the move, and direct care and professional communication events per hour decreased significantly, suggesting fewer interruptions and less fragmented care.  
  • A significant increase in medication tasks among the recorded events suggests that medication administration was integrated into patient care activities.  
  • Travel distances increased for all staff, with highest increases for staff in the older people’s ward and surgical wards.  
  • Ratings for staff toilet facilities, locker facilities, and space at staff bases were higher but those for social interaction and natural light were lower.  

Advantages of quantitative research 1,2

When choosing the right research methodology, also consider the advantages of quantitative research and how it can impact your study.  

  • Quantitative research methods are more scientific and rational. They use quantifiable data leading to objectivity in the results and avoid any chances of ambiguity.  
  • This type of research uses numeric data so analysis is relatively easier .  
  • In most cases, a hypothesis is already developed and quantitative research helps in testing and validatin g these constructed theories based on which researchers can make an informed decision about accepting or rejecting their theory.  
  • The use of statistical analysis software ensures quick analysis of large volumes of data and is less effort intensive.  
  • Higher levels of control can be applied to the research so the chances of bias can be reduced.  
  • Quantitative research is based on measured value s, facts, and verifiable information so it can be easily checked or replicated by other researchers leading to continuity in scientific research.  

Disadvantages of quantitative research 1,2

Quantitative research may also be limiting; take a look at the disadvantages of quantitative research. 

  • Experiments are conducted in controlled settings instead of natural settings and it is possible for researchers to either intentionally or unintentionally manipulate the experiment settings to suit the results they desire.  
  • Participants must necessarily give objective answers (either one- or two-word, or yes or no answers) and the reasons for their selection or the context are not considered.   
  • Inadequate knowledge of statistical analysis methods may affect the results and their interpretation.  
  • Although statistical analysis indicates the trends or patterns among variables, the reasons for these observed patterns cannot be interpreted and the research may not give a complete picture.  
  • Large sample sizes are needed for more accurate and generalizable analysis .  
  • Quantitative research cannot be used to address complex issues.  

What is quantitative research? Definition, methods, types, and examples

Frequently asked questions on  quantitative research    

Q:  What is the difference between quantitative research and qualitative research? 1  

A:  The following table lists the key differences between quantitative research and qualitative research, some of which may have been mentioned earlier in the article.  

     
Purpose and design                   
Research question         
Sample size  Large  Small 
Data             
Data collection method  Experiments, controlled observations, questionnaires and surveys with a rating scale or close-ended questions. The methods can be experimental, quasi-experimental, descriptive, or correlational.  Semi-structured interviews/surveys with open-ended questions, document study/literature reviews, focus groups, case study research, ethnography 
Data analysis             

Q:  What is the difference between reliability and validity? 8,9    

A:  The term reliability refers to the consistency of a research study. For instance, if a food-measuring weighing scale gives different readings every time the same quantity of food is measured then that weighing scale is not reliable. If the findings in a research study are consistent every time a measurement is made, then the study is considered reliable. However, it is usually unlikely to obtain the exact same results every time because some contributing variables may change. In such cases, a correlation coefficient is used to assess the degree of reliability. A strong positive correlation between the results indicates reliability.  

Validity can be defined as the degree to which a tool actually measures what it claims to measure. It helps confirm the credibility of your research and suggests that the results may be generalizable. In other words, it measures the accuracy of the research.  

The following table gives the key differences between reliability and validity.  

     
Importance  Refers to the consistency of a measure  Refers to the accuracy of a measure 
Ease of achieving  Easier, yields results faster  Involves more analysis, more difficult to achieve 
Assessment method  By examining the consistency of outcomes over time, between various observers, and within the test  By comparing the accuracy of the results with accepted theories and other measurements of the same idea 
Relationship  Unreliable measurements typically cannot be valid  Valid measurements are also reliable 
Types  Test-retest reliability, internal consistency, inter-rater reliability  Content validity, criterion validity, face validity, construct validity 

Q:  What is mixed methods research? 10

list of quantitative research examples

A:  A mixed methods approach combines the characteristics of both quantitative research and qualitative research in the same study. This method allows researchers to validate their findings, verify if the results observed using both methods are complementary, and explain any unexpected results obtained from one method by using the other method. A mixed methods research design is useful in case of research questions that cannot be answered by either quantitative research or qualitative research alone. However, this method could be more effort- and cost-intensive because of the requirement of more resources. The figure 3 shows some basic mixed methods research designs that could be used.  

Thus, quantitative research is the appropriate method for testing your hypotheses and can be used either alone or in combination with qualitative research per your study requirements. We hope this article has provided an insight into the various facets of quantitative research , including its different characteristics, advantages, and disadvantages, and a few tips to quickly understand when to use this research method.  

References  

  • Qualitative vs quantitative research: Differences, examples, & methods. Simply Psychology. Accessed Feb 28, 2023. https://simplypsychology.org/qualitative-quantitative.html#Quantitative-Research  
  • Your ultimate guide to quantitative research. Qualtrics. Accessed February 28, 2023. https://www.qualtrics.com/uk/experience-management/research/quantitative-research/  
  • The steps of quantitative research. Revise Sociology. Accessed March 1, 2023. https://revisesociology.com/2017/11/26/the-steps-of-quantitative-research/  
  • What are the characteristics of quantitative research? Marketing91. Accessed March 1, 2023. https://www.marketing91.com/characteristics-of-quantitative-research/  
  • Quantitative research: Types, characteristics, methods, & examples. ProProfs Survey Maker. Accessed February 28, 2023. https://www.proprofssurvey.com/blog/quantitative-research/#Characteristics_of_Quantitative_Research  
  • Qualitative research isn’t as scientific as quantitative methods. Kmusial blog. Accessed March 5, 2023. https://kmusial.wordpress.com/2011/11/25/qualitative-research-isnt-as-scientific-as-quantitative-methods/  
  • Maben J, Griffiths P, Penfold C, et al. Evaluating a major innovation in hospital design: workforce implications and impact on patient and staff experiences of all single room hospital accommodation. Southampton (UK): NIHR Journals Library; 2015 Feb. (Health Services and Delivery Research, No. 3.3.) Chapter 5, Case study quantitative data findings. Accessed March 6, 2023. https://www.ncbi.nlm.nih.gov/books/NBK274429/  
  • McLeod, S. A. (2007).  What is reliability?  Simply Psychology. www.simplypsychology.org/reliability.html  
  • Reliability vs validity: Differences & examples. Accessed March 5, 2023. https://statisticsbyjim.com/basics/reliability-vs-validity/  
  • Mixed methods research. Community Engagement Program. Harvard Catalyst. Accessed February 28, 2023. https://catalyst.harvard.edu/community-engagement/mmr  

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Back to school 2024 sale

Back to School – Lock-in All Access Pack for a Year at the Best Price

journal turnaround time

Journal Turnaround Time: Researcher.Life and Scholarly Intelligence Join Hands to Empower Researchers with Publication Time Insights 

APA Acredited Statistics Training

Quantitative Research: Examples of Research Questions and Solutions

Are you ready to embark on a journey into the world of quantitative research? Whether you’re a seasoned researcher or just beginning your academic journey, understanding how to formulate effective research questions is essential for conducting meaningful studies. In this blog post, we’ll explore examples of quantitative research questions across various disciplines and discuss how StatsCamp.org courses can provide the tools and support you need to overcome any challenges you may encounter along the way.

Understanding Quantitative Research Questions

Quantitative research involves collecting and analyzing numerical data to answer research questions and test hypotheses. These questions typically seek to understand the relationships between variables, predict outcomes, or compare groups. Let’s explore some examples of quantitative research questions across different fields:

Examples of quantitative research questions

  • What is the relationship between class size and student academic performance?
  • Does the use of technology in the classroom improve learning outcomes?
  • How does parental involvement affect student achievement?
  • What is the effect of a new drug treatment on reducing blood pressure?
  • Is there a correlation between physical activity levels and the risk of cardiovascular disease?
  • How does socioeconomic status influence access to healthcare services?
  • What factors influence consumer purchasing behavior?
  • Is there a relationship between advertising expenditure and sales revenue?
  • How do demographic variables affect brand loyalty?

Stats Camp: Your Solution to Mastering Quantitative Research Methodologies

At StatsCamp.org, we understand that navigating the complexities of quantitative research can be daunting. That’s why we offer a range of courses designed to equip you with the knowledge and skills you need to excel in your research endeavors. Whether you’re interested in learning about regression analysis, experimental design, or structural equation modeling, our experienced instructors are here to guide you every step of the way.

Bringing Your Own Data

One of the unique features of StatsCamp.org is the opportunity to bring your own data to the learning process. Our instructors provide personalized guidance and support to help you analyze your data effectively and overcome any roadblocks you may encounter. Whether you’re struggling with data cleaning, model specification, or interpretation of results, our team is here to help you succeed.

Courses Offered at StatsCamp.org

  • Latent Profile Analysis Course : Learn how to identify subgroups, or profiles, within a heterogeneous population based on patterns of responses to multiple observed variables.
  • Bayesian Statistics Course : A comprehensive introduction to Bayesian data analysis, a powerful statistical approach for inference and decision-making. Through a series of engaging lectures and hands-on exercises, participants will learn how to apply Bayesian methods to a wide range of research questions and data types.
  • Structural Equation Modeling (SEM) Course : Dive into advanced statistical techniques for modeling complex relationships among variables.
  • Multilevel Modeling Course : A in-depth exploration of this advanced statistical technique, designed to analyze data with nested structures or hierarchies. Whether you’re studying individuals within groups, schools within districts, or any other nested data structure, multilevel modeling provides the tools to account for the dependencies inherent in such data.

As you embark on your journey into quantitative research, remember that StatsCamp.org is here to support you every step of the way. Whether you’re formulating research questions, analyzing data, or interpreting results, our courses provide the knowledge and expertise you need to succeed. Join us today and unlock the power of quantitative research!

Follow Us On Social! Facebook | Instagram | X

Stats Camp Statistical Methods Training

933 San Mateo Blvd NE #500, Albuquerque, NM 87108

4414 82 nd Street #212-121 Lubbock, TX 79424

Monday – Friday: 9:00 AM – 5:00 PM

© Copyright 2003 - 2024 | All Rights Reserved Stats Camp Foundation 501(c)(3) Non-Profit Organization.

Research

98 Quantitative Research Questions & Examples

98 Quantitative Research Questions & Examples

Free Website Traffic Checker

Discover your competitors' strengths and leverage them to achieve your own success

As researchers, we know how powerful quantitative research data can be in helping answer strategic questions. Here, I’ve detailed 23 use cases and curated 98 quantitative market research questions with examples – making this a post you should add to your bookmark list , so you can quickly refer back.

I’ve formatted this post to show you 10-15 questions for each use case. At the end of each section, I also share a quicker way to get similar insights using modern market research tools like Similarweb.

What is a quantitative research question?

Quantitative market research questions tell you the what, how, when, and where of a subject. From trendspotting to identifying patterns or establishing averages– using quantitative data is a clear and effective way to start solving business problems.

Types of quantitative research questions

Quantitative market research questions are divided into two main types: descriptive and causal.

  • Descriptive research questions seek to quantify a phenomenon by focusing on a certain population or phenomenon to measure certain aspects of it, such as frequency, average, or relationship.
  • Causal research questions explore the cause-and-effect relationship between two or more variables.

The ultimate list of questions for quantitative market research

Get clear explanations of the different applications and approaches to quantitative research–with the added bonus of seeing what questions to ask and how they can impact your business.

Examples of quantitative research questions for competitive analysis

A powerful example of quantitative research in play is when it’s used to inform a competitive analysis . A process that’s used to analyze and understand how industry leaders and companies of interest are performing.

Pro Tip: Collect data systematically, and use a competitive analysis framework to record your findings. You can refer back to it when you repeat the process later in the year.

  • What is the market share of our major competitors?
  • What is the average purchase price of our competitors’ products?
  • How often do our competitors release new products?
  • What is the total number of customer reviews for our competitors’ products?
  • What is the average rating of our competitors’ products?
  • What is the average customer satisfaction score for our competitors?
  • What is the average return rate of our competitors’ products?
  • What is the average shipping time for our competitors’ products?
  • What is the average price discount offered by our competitors?
  • What is the average lifespan of our competitors’ products?

With this data, you can determine your position in the market and benchmark your performance against rival companies. It can then be used to improve offerings, service standards, pricing, positioning, and operational effectiveness. Notice that all questions can be answered with a numerical response , a key component of all successful examples of quantitative market research questions.

Quantitative research question example: market analysis

‍♀️ Question: What is the market share of our major competitors?

Insight sought: Industry market share of leaders and key competitors.

Challenges with traditional quantitative research methods: Outdated data is a major consideration; data freshness remains critical, yet is often tricky to obtain using traditional research methods. Markets shift fast, so being able to obtain and track market share in real time is a challenge many face.

A new approach: Similarweb enables you to track this key business KPI in real-time using digital data directly from the platform. On any day, you can see what your market share is, along with any players in your market. Plus, you get to see rising stars showing significant growth, who may pose a threat through market disruption or new tactics.

⏰ Time to insight: 30 seconds

✅ How it’s done: Using Similarweb’s Web Industry Analysis, two digital metrics give you the intel needed to decipher the market share in any industry. I’m using the Banking, Credit, and Lending market throughout these examples. I’ve selected the US market, analyzing the performance of the previous 3 months.

  • Share of visits 

quantitative market research example

Here, I can see the top players in my market based on the number of unique visitors to their sites. On top of the raw data that shows me the volume of visitors as a figure, I can quickly see the two players ( Capital One and Chase ) that have grown and by what percentage. On the side, you can see rising players in the industry. Now, while my initial question was to establish the market share of my major competitors, I can see there are a few disruptive players in my market who I’d want to track too; Synchrony.com being one of particular interest, given their substantial growth and traffic numbers.

  • Share of search 

quantitative market research question example

Viewing the overall market size based on total search volumes, you can explore industry leaders in more detail. The top websites are the top five players, ranking by traffic share . You can also view the month-over-month change in visits, which shows you who is performing best at any given time . It’s the same five names, with Paypal and Chase leading the pack. However, I see Wells Fargo is better at attracting repeat visitors, while Capital One and Bank of America perform better at drawing in unique visitors.

In answer to my question, what is the market share of my major competitors, I can quickly use Similarweb’s quantitative data to get my answer.

Traffic distribution breakdown with Similarweb

This traffic share visual can be downloaded from the platform. It plots the ten industry leader’s market share and allocates the remaining share to the rest of the market.

industry leader’s market share quadrant

I can also download a market quadrant analysis, which takes two key data points, traffic share and unique visitors, and plots the industry leaders. All supporting raw data can be downloaded in .xls format or connected to other business intelligence platforms via the API.

Quantitative research questions for consumer behavior studies

These studies measure and analyze consumer behavior , preferences, and habits . Any type of audience analysis helps companies better understand customer intent, and adjust offerings, messaging, campaigns, SEO, and ultimately offer more relevant products and services within a market.

  • What is the average amount consumers spend on a certain product each month?
  • What percentage of consumers are likely to purchase a product based on its price?
  • How do the demographics of the target audience affect their purchasing behavior?
  • What type of incentive is most likely to increase the likelihood of purchase?
  • How does the store’s location impact product sales and turnover?
  • What are the key drivers of product loyalty among consumers?
  • What are the most commonly cited reasons for not buying a product?
  • How does the availability of product information impact purchasing decisions?
  • What is the average time consumers spend researching a product before buying it?
  • How often do consumers use social media when making a purchase decision?

While applying a qualitative approach to such studies is also possible, it’s a great example of quantitative market research in action. For larger corporations, studies that involve a large, relevant sample size of a target market deliver vital consumer insights at scale .

Read More: 83 Qualitative Research Questions & Examples

Quantitative research question and answer: content strategy and analysis

‍♀️ Question: What type of content performed best in the market this past month?

Insight sought: Establish high-performing campaigns and promotions in a market.

Challenges with traditional quantitative research methods: Whether you consider putting together a panel yourself, or paying a company to do it for you, quantitative research at scale is costly and time-consuming. What’s more, you have to ensure that sampling is done right and represents your target audience.

A new approach: Data analysis is the foundation of our entire business. For over 10 years, Similarweb has developed a unique , multi-dimensional approach to understanding the digital world. To see the specific campaigns that resonate most with a target audience, use Similarweb’s Popular Pages feature. Key metrics show which campaigns achieve the best results for any site (including rival firms), campaign take-up, and periodic changes in performance and interest.

✅ How it’s done: I’ve chosen Capital One and Wells Fargo to review. Using the Popular Pages campaign filter, I can view all pages identified by a URL parameter UTM. For clarity, I’ve highlighted specific campaigns showing high-growth and increasing popularity. I can view any site’s trending, new, or best-performing pages using a different filter.

popular pages extract Similarweb

In this example, I have highlighted three campaigns showing healthy growth, covering teen checking accounts, performance savings accounts, and add-cash-in-store. Next, I will perform the same check for another key competitor in my market.

Wells Fargo popular pages extract Similarweb

Here, I can see financial health tools campaigns with over 300% month-over-month growth and smarter credit and FICO campaigns showing strong performance. This tells me that campaigns focussing on education and tools are growing in popularity within this market. 

Examples of quantitative research questions for brand tracking

These studies are designed to measure customers’ awareness, perceptions, behaviors, and attitudes toward a brand over time. Different applications include measuring brand awareness , brand equity, customer satisfaction, and purchase or usage intent.

quantitative research questions for brand tracking

These types of research surveys ask questions about brand knowledge, brand attributes, brand perceptions, and brand loyalty . The data collected can then be used to understand the current state of a brand’s performance, identify improvements, and track the success of marketing initiatives.

  • To what extent is Brand Z associated with innovation?
  • How do consumers rate the quality of Brand Z’s products and services?
  • How has the awareness of Brand Z changed over the past 6 months?
  • How does Brand Z compare to its competitors in terms of customer satisfaction?
  • To what extent do consumers trust Brand Z?
  • How likely are consumers to recommend Brand Z?
  • What factors influence consumers’ purchase decisions when considering Brand Z?
  • What is the average customer satisfaction score for equity?
  • How does equity’s customer service compare to its competitors?
  • How do customer perceptions of equity’s brand values compare to its competitors?

Quantitative research question example and answer: brand tracking

‍♀️ Question: How has the awareness of Brand Z changed over the past 6 months?

Insight sought: How has brand awareness changed for my business and competitors over time.

⏰ Time to insight: 2 minutes

✅ How it’s done: Using Similarweb’s search overview, I can quickly identify which brands in my chosen market have the highest brand awareness over any time period or location. I can view these stats as a custom market or examine brands individually.

Quantitative research questions example for brand awareness

Here, I’ve chosen a custom view that shows me five companies side-by-side. In the top right-hand corner, under branded traffic, you get a quick snapshot of the share of website visits that were generated by branded keywords. A branded keyword is when a consumer types the brand name + a search term.

Below that, you will see the search traffic and engagement section. Here, I’ve filtered the results to show me branded traffic as a percentage of total traffic. Similarweb shows me how branded search volumes grow or decline monthly. Helping me answer the question of how brand awareness has changed over time.

Quantitative research questions for consumer ad testing

Another example of using quantitative research to impact change and improve results is ad testing. It measures the effectiveness of different advertising campaigns. It’s often known as A/B testing , where different visuals, content, calls-to-action, and design elements are experimented with to see which works best. It can show the impact of different ads on engagement and conversions.

A range of quantitative market research questions can be asked and analyzed to determine the optimal approach.

  • How does changing the ad’s headline affect the number of people who click on the ad?
  • How does varying the ad’s design affect its click-through rate?
  • How does altering the ad’s call-to-action affect the number of conversions?
  • How does adjusting the ad’s color scheme influence the number of people who view the ad?
  • How does manipulating the ad’s text length affect the average amount of time a user spends on the landing page?
  • How does changing the ad’s placement on the page affect the amount of money spent on the ad?
  • How does varying the ad’s targeting parameters affect the number of impressions?
  • How does altering the ad’s call-to-action language impact the click-through rate?

Quantitative question examples for social media monitoring

Quantitative market research can be applied to measure and analyze the impact of social media on a brand’s awareness, engagement, and reputation . By tracking key metrics such as the number of followers, impressions, and shares, brands can:

  • Assess the success of their social media campaigns
  • Understand what content resonates with customers
  • Spot potential areas for improvement
  • How often are people talking about our brand on social media channels?
  • How many times has our brand been mentioned in the past month?
  • What are the most popular topics related to our brand on social media?
  • What is the sentiment associated with our brand across social media channels?
  • How do our competitors compare in terms of social media presence?
  • What is the average response time for customer inquiries on social media?
  • What percentage of followers are actively engaging with our brand?
  • What are the most popular hashtags associated with our brand?
  • What types of content generate the most engagement on social media?
  • How does our brand compare to our competitors in terms of reach and engagement on social media?

Example of quantitative research question and answer: social media monitoring

‍♀️ Question: How does our brand compare to our competitors in terms of reach and engagement on social media?

Insight sought: The social channels that most effectively drive traffic and engagement in my market

✅ How it’s done: Similarweb Digital Research Intelligence shows you a marketing channels overview at both an industry and market level. With it, you can view the most effective social media channels in any industry and drill down to compare social performance across a custom group of competitors or an individual company.

Here, I’ve taken the five closest rivals in my market and clicked to expand social media channel data. Wells Fargo and Bank of America have generated the highest traffic volume from social media, with over 6.6 million referrals this year. Next, I can see the exact percentage of traffic generated by each channel and its relative share of traffic for each competitor. This shows me the most effective channels are YouTube, Facebook, LinkedIn, and Reddit – in that order.

Quantitative social media questions

In 30-seconds, I’ve discovered the following:

  • YouTube is the most popular social network in my market.
  • Facebook and LinkedIn are the second and third most popular channels.
  • Wells Fargo is my primary target for a more in-depth review, with the highest performance on the top two channels.
  • Bank of America is outperforming all key players significantly on LinkedIn.
  • American Express has found a high referral opportunity on Reddit that others have been unable to match.

Power-up Your Market Research with Similarweb Today

Examples of quantitative research questions for online polls

This is one of the oldest known uses of quantitative market research. It dates back to the 19th century when they were first used in America to try and predict the outcome of the presidential elections.

quantitative research questions for online polls

Polls are just short versions of surveys but provide a point-in-time perspective across a large group of people. You can add a poll to your website as a widget, to an email, or if you’ve got a budget to spend, you might use a company like YouGov to add questions to one of their online polls and distribute it to an audience en-masse.

  • What is your annual income?
  • In what age group do you fall?
  • On average, how much do you spend on our products per month?
  • How likely are you to recommend our products to others?
  • How satisfied are you with our customer service?
  • How likely are you to purchase our products in the future?
  • On a scale of 1 to 10, how important is price when it comes to buying our products?
  • How likely are you to use our products in the next six months?
  • What other brands of products do you purchase?
  • How would you rate our products compared to our competitors?

Quantitative research questions for eye tracking studies

These research studies measure how people look and respond to different websites or ad elements. It’s traditionally an example of quantitative research used by enterprise firms but is becoming more common in the SMB space due to easier access to such technologies.

  • How much time do participants spend looking at each visual element of the product or ad?
  • How does the order of presentation affect the impact of time spent looking at each visual element?
  • How does the size of the visual elements affect the amount of time spent looking at them?
  • What is the average time participants spend looking at the product or ad as a whole?
  • What is the average number of fixations participants make when looking at the product or ad?
  • Are there any visual elements that participants consistently ignore?
  • How does the product’s design or advertising affect the average number of fixations?
  • How do different types of participants (age, gender, etc.) interact with the product or ad differently?
  • Is there a correlation between the amount of time spent looking at the product or ad and the participants’ purchase decision?
  • How does the user’s experience with similar products or ads affect the amount of time spent looking at the current product or ad?

Quantitative question examples for customer segmentation

Segmentation is becoming more important as organizations large and small seek to offer more personalized experiences. Effective segmentation helps businesses understand their customer’s needs–which can result in more targeted marketing, increased conversions, higher levels of loyalty, and better brand awareness.

quantitative research questions for segmentation

If you’re just starting to segment your market, and want to know the best quantitative research questions to ask to help you do this, here are 20 to choose from.

Examples of quantitative research questions to segment customers

  • What is your age range?
  • What is your annual household income?
  • What is your preferred online shopping method?
  • What is your occupation?
  • What types of products do you typically purchase?
  • Are you a frequent shopper?
  • How often do you purchase products online?
  • What is your typical budget for online purchases?
  • What is your primary motivation for purchasing products online?
  • What factors influence your decision to purchase a product online?
  • What device do you use most often when shopping online?
  • What type of product categories are you most interested in?
  • Do you prefer to shop online for convenience or for a better price?
  • What type of discounts or promotions do you look for when making online purchases?
  • How do you prefer to receive notifications about product promotions or discounts?
  • What type of payment methods do you prefer when shopping online?
  • What methods do you use to compare different products and prices when shopping online?
  • What type of customer service do you expect when shopping online?
  • What type of product reviews do you consider when making online purchases?
  • How do you prefer to interact with a brand when shopping online?

Examples of quantitative research questions for analyzing customer segments

  • What is the average age of customers in each segment?
  • How do spending habits vary across customer segments ?
  • What is the average length of time customers spend in each segment?
  • How does loyalty vary across customer segments?
  • What is the average purchase size in each segment?
  • What is the average frequency of purchases in each segment?
  • What is the average customer lifetime value in each segment?
  • How does customer satisfaction vary across customer segments?
  • What is the average response rate to campaigns in each segment?
  • How does customer engagement vary across customer segments?

These questions are ideal to ask once you’ve already defined your segments. We’ve written a useful post that covers the ins and outs of what market segmentation is and how to do it.

Additional applications of quantitative research questions

I’ve covered ten use cases for quantitative questions in detail. Still, there are other instances where you can put quantitative research to good use.

Product usage studies: Measure how customers use a product or service.

Preference testing: Testing of customer preferences for different products or services.

Sales analysis: Analysis of sales data to identify trends and patterns.

Distribution analysis: Analyzing distribution channels to determine the most efficient and effective way to reach customers.

Focus groups: Groups of consumers brought together to discuss and provide feedback on a particular product, service, or marketing campaign.

Consumer interviews: Conducted with customers to understand their behavior and preferences better.

Mystery shopping: Mystery shoppers are sent to stores to measure customer service levels and product availability.

Conjoint analysis: Analysis of how consumers value different attributes of a product or service.

Regression analysis: Statistical analysis used to identify relationships between different variables.

A/B testing: Testing two or more different versions of a product or service to determine which one performs better.

Brand equity studies: Measure, compare and analyze brand recognition, loyalty, and consumer perception.

Exit surveys: Collect numerical data to analyze employee experience and reasons for leaving, providing insight into how to improve the work environment and retain employees.

Price sensitivity testing: Measuring responses to different pricing models to find the optimal pricing model, and identify areas if and where discounts or incentives might be beneficial.

Quantitative market research survey examples

A recent GreenBook study shows that 89% of people in the market research industry use online surveys frequently–and for good reason. They’re quick and easy to set up, the cost is minimal, and they’re highly scalable too.

Quantitative market research method examples

Questions are always formatted to provide close-ended answers that can be quantified. If you wish to collect free-text responses, this ventures into the realm of qualitative research . Here are a few examples.

Brand Loyalty Surveys: Companies use online surveys to measure customers’ loyalty to their brand. They include questions about how long an individual has been a customer, their overall satisfaction with the service or product, and the likelihood of them recommending the brand to others.

Customer Satisfaction Surveys: These surveys may include questions about the customer’s experience, their overall satisfaction, and the likelihood they will recommend a product or service to others.

Pricing Studies: This type of research reveals how customers value their products or services. These surveys may include questions about the customer’s willingness to pay for the product, the customer’s perception of the price and value, and their comparison of the price to other similar items.

Product/Service Usage Studies: These surveys measure how customers use their products or services. They can include questions about how often customers use a product, their preferred features, and overall satisfaction.

Here’s an example of a typical survey we’ve used when testing out potential features with groups of clients. After they’ve had the chance to use the feature for a period, we send a short survey, then use the feedback to determine the viability of the feature for future release.

Employee Experience Surveys: Another great example of quantitative data in action, and one we use at Similarweb to measure employee satisfaction. Many online platforms are available to help you conduct them; here, we use Culture AMP . The ability to manipulate the data, spot patterns or trends, then identify the core successes and development areas are astounding.

Qualitative customer experience example Culture AMP

How to answer quantitative research questions with Similarweb

For the vast majority of applications I’ve covered in this post, there’s a more modern, quicker, and more efficient way to obtain similar insights online. Gone are the days when companies need to use expensive outdated data or pay hefty sums of money to market research firms to conduct broad studies to get the answers they need.

By this point, I hope you’ve seen how quick and easy it is to use Similarweb to do market research the modern way. But I’ve only scratched the surface of its capabilities.

Take two to watch this introductory video and see what else you can uncover.

Added bonus: Similarweb API

If you need to crunch large volumes of data and already use tools like Tableau or PowerBI, you can seamlessly connect Similarweb via the API and pipe in the data. So for faster analysis of big data, you can leverage Similarweb data to use alongside the visualization tools you already know and love.

Similarweb’s suite of market intelligence solutions offers unbiased, accurate, honest insights you can trust. With a world of data at your fingertips, use Similarweb Research Intelligence to uncover facts that help inform your research and strengthen your position.

Take a look at:

  • Our Market Research suite
  • Our Benchmarking tools
  • Our Audience Insights tool
  • Our Company Research module
  • Our Consumer Journey Tracker
  • Our Competitive Analysis Tool

Wrapping up

Today’s markets change at lightning speed. To keep up and succeed, companies need access to insights and intel they can depend on to be timely and on-point. While quantitative market research questions can and should always be asked, it’s important to leverage technology to increase your speed to insight, and thus improve reaction times and response to market shifts.

What is quantitative market research?

Quantitative market research is a form of research that uses numerical data to gain insights into the behavior and preferences of customers. It is used to measure and track the performance of products, services, and campaigns.

How does quantitative market research help businesses?

Quantitative market research can help businesses identify customer trends, measure customer satisfaction, and develop effective marketing strategies. It can also provide valuable insights into customer behavior, preferences, and attitudes.

What types of questions should be included in a quantitative market research survey?

Questions in a quantitative market research survey should be focused, clear, and specific. Questions should be structured to collect quantitative data, such as numbers, percentages, or frequency of responses.

What methods can be used to collect quantitative market research data?

Common methods used to collect quantitative market research data include surveys, interviews, focus groups, polls, and online questionnaires.

What are the advantages and disadvantages of using quantitative market research?

The advantages of using quantitative market research include the ability to collect data quickly, the ability to analyze data in a structured way, and the ability to identify trends. Disadvantages include the potential for bias, the cost of collecting data, and the difficulty in interpreting results.

author-photo

by Liz March

Digital Research Specialist

Liz March has 15 years of experience in content creation. She enjoys the outdoors, F1, and reading, and is pursuing a BSc in Environmental Science.

Related Posts

Importance of Market Research: 9 Reasons Why It’s Crucial for Your Business

Importance of Market Research: 9 Reasons Why It’s Crucial for Your Business

Audience Segmentation: Definition, Importance & Types

Audience Segmentation: Definition, Importance & Types

Geographic Segmentation: Definition, Pros & Cons, Examples, and More

Geographic Segmentation: Definition, Pros & Cons, Examples, and More

Demographic Segmentation: The Key To Transforming Your Marketing Strategy

Demographic Segmentation: The Key To Transforming Your Marketing Strategy

Unlocking Consumer Behavior: What Makes Your Customers Tick?

Unlocking Consumer Behavior: What Makes Your Customers Tick?

Customer Segmentation: Expert Tips on Understanding Your Audience

Customer Segmentation: Expert Tips on Understanding Your Audience

Wondering what similarweb can do for your business.

Give it a try or talk to our insights team — don’t worry, it’s free!

list of quantitative research examples

Research Methodologies

Quantitative research methodologies.

  • Qualitative Research Methodologies
  • Systematic Reviews
  • Finding Articles by Methodology
  • Design Your Research Project

Library Help

What is quantitative research.

Quantitative methodologies use statistics to analyze numerical data gathered by researchers to answer their research questions. Quantitative methods can be used to answer questions such as:

  • What are the relationships between two or more variables? 
  • What factors are at play in an environment that might affect the behavior or development of the organisms in that environment?

Quantitative methods can also be used to test hypotheses by conducting quasi-experimental studies or designing experiments.

Independent and Dependent Variables

In quantitative research, a variable is something (an intervention technique, a pharmaceutical, a temperature, etc.) that changes. There are two kinds of variables:  independent variables and dependent variables . In the simplest terms, the independent variable is whatever the researchers are using to attempt to make a change in their dependent variable.

Table listing independent and dependent variables.
Independent Variable(s) Dependent Variable
A new cancer-treating drug being tested in different dosage strengths The number of detectable cancer cells in a patient or cell sample
Different genres of music* Plant growth within a specific time frame

* This is a real, repeatable experiment you can try on your plants.

Correlational

Researchers will compare two sets of numbers to try and identify a relationship (if any) between two things.

  • Köse S., & Murat, M. (2021). Examination of the relationship between smartphone addiction and cyberchondria in adolescents. Archives of Psychiatric Nursing, 35(6): 563-570.
  • Pilger et al. (2021). Spiritual well-being, religious/spiritual coping and quality of life among the elderly undergoing hemodialysis: a correlational study. Journal of Religion, Spirituality & Aging, 33(1): 2-15.

Descriptive

Researchers will attempt to quantify a variety of factors at play as they study a particular type of phenomenon or action. For example, researchers might use a descriptive methodology to understand the effects of climate change on the life cycle of a plant or animal. 

  • Lakshmi, E. (2021). Food consumption pattern and body mass index of adolescents: A descriptive study. International Journal of Nutrition, Pharmacology, Neurological Diseases, 11(4), 293–297.
  • Lin, J., Singh, S., Sha, L., Tan, W., Lang, D., Gašević, D., & Chen, G. (2022). Is it a good move? Mining effective tutoring strategies from human–human tutorial dialogues. Future Generation Computer Systems, 127, 194–207.

Experimental

To understand the effects of a variable, researchers will design an experiment where they can control as many factors as possible. This can involve creating control and experimental groups. The experimental group will be exposed to the variable to study its effects. The control group provides data about what happens when the variable is absent. For example, in a study about online teaching, the control group might receive traditional face-to-face instruction while the experimental group would receive their instruction virtually. 

  • Jinzhang Jia, Yinuo Chen, Guangbo Che, Jinchao Zhu, Fengxiao Wang, & Peng Jia. (2021). Experimental study on the explosion characteristics of hydrogen-methane premixed gas in complex pipe networks. Scientific Reports, 11(1), 1–11.
  • Sasaki, R. et al. (2021). Effects of cryotherapy applied at different temperatures on inflammatory pain during the acute phase of arthritis in rats. Physical Therapy, 101(2), 1–9.

Quasi-Experimental/Quasi-Comparative

Researchers will attempt to determine what (if any) effect a variable can have. These studies may have multiple independent variables (causes) and multiple dependent variables (effects), but this can complicate researchers' efforts to find out if A can cause B or if X, Y,  and  Z are also playing a role.

  • Jafari, A., Alami, A., Charoghchian, E., Delshad Noghabi, A., & Nejatian, M. (2021). The impact of effective communication skills training on the status of marital burnout among married women. BMC Women’s Health, 21(1), 1-10.
  • Phillips, S. W., Kim, D.-Y., Sobol, J. J., & Gayadeen, S. M. (2021). Total recall?: A quasi-experimental study of officer’s recollection in shoot - don’t shoot simulators. Police Practice and Research, 22(3), 1229–1240.

Surveys can be considered a quantitative methodology if the researchers require their respondents to choose from pre-determined responses. 

  • Harries et al. (2021). Effects of the COVID-19 pandemic on medical students: A multicenter quantitative study. BMC Medical Education, 21(14), 1-8.
  • Call : 801.863.8840
  • Text : 801.290.8123
  • In-Person Help
  • Email a Librarian
  • Make an Appointment
  • << Previous: Home
  • Next: Qualitative Research Methodologies >>
  • Last Updated: Jun 20, 2024 3:16 PM
  • URL: https://uvu.libguides.com/methods
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

list of quantitative research examples

Home Market Research

Quantitative Research: What It Is, Practices & Methods

Quantitative research

Quantitative research involves analyzing and gathering numerical data to uncover trends, calculate averages, evaluate relationships, and derive overarching insights. It’s used in various fields, including the natural and social sciences. Quantitative data analysis employs statistical techniques for processing and interpreting numeric data.

Research designs in the quantitative realm outline how data will be collected and analyzed with methods like experiments and surveys. Qualitative methods complement quantitative research by focusing on non-numerical data, adding depth to understanding. Data collection methods can be qualitative or quantitative, depending on research goals. Researchers often use a combination of both approaches to gain a comprehensive understanding of phenomena.

What is Quantitative Research?

Quantitative research is a systematic investigation of phenomena by gathering quantifiable data and performing statistical, mathematical, or computational techniques. Quantitative research collects statistically significant information from existing and potential customers using sampling methods and sending out online surveys , online polls , and questionnaires , for example.

One of the main characteristics of this type of research is that the results can be depicted in numerical form. After carefully collecting structured observations and understanding these numbers, it’s possible to predict the future of a product or service, establish causal relationships or Causal Research , and make changes accordingly. Quantitative research primarily centers on the analysis of numerical data and utilizes inferential statistics to derive conclusions that can be extrapolated to the broader population.

An example of a quantitative research study is the survey conducted to understand how long a doctor takes to tend to a patient when the patient walks into the hospital. A patient satisfaction survey can be administered to ask questions like how long a doctor takes to see a patient, how often a patient walks into a hospital, and other such questions, which are dependent variables in the research. This kind of research method is often employed in the social sciences, and it involves using mathematical frameworks and theories to effectively present data, ensuring that the results are logical, statistically sound, and unbiased.

Data collection in quantitative research uses a structured method and is typically conducted on larger samples representing the entire population. Researchers use quantitative methods to collect numerical data, which is then subjected to statistical analysis to determine statistically significant findings. This approach is valuable in both experimental research and social research, as it helps in making informed decisions and drawing reliable conclusions based on quantitative data.

Quantitative Research Characteristics

Quantitative research has several unique characteristics that make it well-suited for specific projects. Let’s explore the most crucial of these characteristics so that you can consider them when planning your next research project:

list of quantitative research examples

  • Structured tools: Quantitative research relies on structured tools such as surveys, polls, or questionnaires to gather quantitative data . Using such structured methods helps collect in-depth and actionable numerical data from the survey respondents, making it easier to perform data analysis.
  • Sample size: Quantitative research is conducted on a significant sample size  representing the target market . Appropriate Survey Sampling methods, a fundamental aspect of quantitative research methods, must be employed when deriving the sample to fortify the research objective and ensure the reliability of the results.
  • Close-ended questions: Closed-ended questions , specifically designed to align with the research objectives, are a cornerstone of quantitative research. These questions facilitate the collection of quantitative data and are extensively used in data collection processes.
  • Prior studies: Before collecting feedback from respondents, researchers often delve into previous studies related to the research topic. This preliminary research helps frame the study effectively and ensures the data collection process is well-informed.
  • Quantitative data: Typically, quantitative data is represented using tables, charts, graphs, or other numerical forms. This visual representation aids in understanding the collected data and is essential for rigorous data analysis, a key component of quantitative research methods.
  • Generalization of results: One of the strengths of quantitative research is its ability to generalize results to the entire population. It means that the findings derived from a sample can be extrapolated to make informed decisions and take appropriate actions for improvement based on numerical data analysis.

Quantitative Research Methods

Quantitative research methods are systematic approaches used to gather and analyze numerical data to understand and draw conclusions about a phenomenon or population. Here are the quantitative research methods:

  • Primary quantitative research methods
  • Secondary quantitative research methods

Primary Quantitative Research Methods

Primary quantitative research is the most widely used method of conducting market research. The distinct feature of primary research is that the researcher focuses on collecting data directly rather than depending on data collected from previously done research. Primary quantitative research design can be broken down into three further distinctive tracks and the process flow. They are:

A. Techniques and Types of Studies

There are multiple types of primary quantitative research. They can be distinguished into the four following distinctive methods, which are:

01. Survey Research

Survey Research is fundamental for all quantitative outcome research methodologies and studies. Surveys are used to ask questions to a sample of respondents, using various types such as online polls, online surveys, paper questionnaires, web-intercept surveys , etc. Every small and big organization intends to understand what their customers think about their products and services, how well new features are faring in the market, and other such details.

By conducting survey research, an organization can ask multiple survey questions , collect data from a pool of customers, and analyze this collected data to produce numerical results. It is the first step towards collecting data for any research. You can use single ease questions . A single-ease question is a straightforward query that elicits a concise and uncomplicated response.

This type of research can be conducted with a specific target audience group and also can be conducted across multiple groups along with comparative analysis . A prerequisite for this type of research is that the sample of respondents must have randomly selected members. This way, a researcher can easily maintain the accuracy of the obtained results as a huge variety of respondents will be addressed using random selection. 

Traditionally, survey research was conducted face-to-face or via phone calls. Still, with the progress made by online mediums such as email or social media, survey research has also spread to online mediums.There are two types of surveys , either of which can be chosen based on the time in hand and the kind of data required:

Cross-sectional surveys: Cross-sectional surveys are observational surveys conducted in situations where the researcher intends to collect data from a sample of the target population at a given point in time. Researchers can evaluate various variables at a particular time. Data gathered using this type of survey is from people who depict similarity in all variables except the variables which are considered for research . Throughout the survey, this one variable will stay constant.

  • Cross-sectional surveys are popular with retail, SMEs, and healthcare industries. Information is garnered without modifying any parameters in the variable ecosystem.
  • Multiple samples can be analyzed and compared using a cross-sectional survey research method.
  • Multiple variables can be evaluated using this type of survey research.
  • The only disadvantage of cross-sectional surveys is that the cause-effect relationship of variables cannot be established as it usually evaluates variables at a particular time and not across a continuous time frame.

Longitudinal surveys: Longitudinal surveys are also observational surveys , but unlike cross-sectional surveys, longitudinal surveys are conducted across various time durations to observe a change in respondent behavior and thought processes. This time can be days, months, years, or even decades. For instance, a researcher planning to analyze the change in buying habits of teenagers over 5 years will conduct longitudinal surveys.

  • In cross-sectional surveys, the same variables were evaluated at a given time, and in longitudinal surveys, different variables can be analyzed at different intervals.
  • Longitudinal surveys are extensively used in the field of medicine and applied sciences. Apart from these two fields, they are also used to observe a change in the market trend analysis , analyze customer satisfaction, or gain feedback on products/services.
  • In situations where the sequence of events is highly essential, longitudinal surveys are used.
  • Researchers say that when research subjects need to be thoroughly inspected before concluding, they rely on longitudinal surveys.

02. Correlational Research

A comparison between two entities is invariable. Correlation research is conducted to establish a relationship between two closely-knit entities and how one impacts the other, and what changes are eventually observed. This research method is carried out to give value to naturally occurring relationships, and a minimum of two different groups are required to conduct this quantitative research method successfully. Without assuming various aspects, a relationship between two groups or entities must be established.

Researchers use this quantitative research design to correlate two or more variables using mathematical analysis methods. Patterns, relationships, and trends between variables are concluded as they exist in their original setup. The impact of one of these variables on the other is observed, along with how it changes the relationship between the two variables. Researchers tend to manipulate one of the variables to attain the desired results.

Ideally, it is advised not to make conclusions merely based on correlational research. This is because it is not mandatory that if two variables are in sync that they are interrelated.

Example of Correlational Research Questions :

  • The relationship between stress and depression.
  • The equation between fame and money.
  • The relation between activities in a third-grade class and its students.

03. Causal-comparative Research

This research method mainly depends on the factor of comparison. Also called quasi-experimental research , this quantitative research method is used by researchers to conclude the cause-effect equation between two or more variables, where one variable is dependent on the other independent variable. The independent variable is established but not manipulated, and its impact on the dependent variable is observed. These variables or groups must be formed as they exist in the natural setup. As the dependent and independent variables will always exist in a group, it is advised that the conclusions are carefully established by keeping all the factors in mind.

Causal-comparative research is not restricted to the statistical analysis of two variables but extends to analyzing how various variables or groups change under the influence of the same changes. This research is conducted irrespective of the type of relationship that exists between two or more variables. Statistical analysis plan is used to present the outcome using this quantitative research method.

Example of Causal-Comparative Research Questions:

  • The impact of drugs on a teenager. The effect of good education on a freshman. The effect of substantial food provision in the villages of Africa.

04. Experimental Research

Also known as true experimentation, this research method relies on a theory. As the name suggests, experimental research is usually based on one or more theories. This theory has yet to be proven before and is merely a supposition. In experimental research, an analysis is done around proving or disproving the statement. This research method is used in natural sciences. Traditional research methods are more effective than modern techniques.

There can be multiple theories in experimental research. A theory is a statement that can be verified or refuted.

After establishing the statement, efforts are made to understand whether it is valid or invalid. This quantitative research method is mainly used in natural or social sciences as various statements must be proved right or wrong.

  • Traditional research methods are more effective than modern techniques.
  • Systematic teaching schedules help children who struggle to cope with the course.
  • It is a boon to have responsible nursing staff for ailing parents.

B. Data Collection Methodologies

The second major step in primary quantitative research is data collection. Data collection can be divided into sampling methods and data collection using surveys and polls.

01. Data Collection Methodologies: Sampling Methods

There are two main sampling methods for quantitative research: Probability and Non-probability sampling .

Probability sampling: A theory of probability is used to filter individuals from a population and create samples in probability sampling . Participants of a sample are chosen by random selection processes. Each target audience member has an equal opportunity to be selected in the sample.

There are four main types of probability sampling:

  • Simple random sampling: As the name indicates, simple random sampling is nothing but a random selection of elements for a sample. This sampling technique is implemented where the target population is considerably large.
  • Stratified random sampling: In the stratified random sampling method , a large population is divided into groups (strata), and members of a sample are chosen randomly from these strata. The various segregated strata should ideally not overlap one another.
  • Cluster sampling: Cluster sampling is a probability sampling method using which the main segment is divided into clusters, usually using geographic segmentation and demographic segmentation parameters.
  • Systematic sampling: Systematic sampling is a technique where the starting point of the sample is chosen randomly, and all the other elements are chosen using a fixed interval. This interval is calculated by dividing the population size by the target sample size.

Non-probability sampling: Non-probability sampling is where the researcher’s knowledge and experience are used to create samples. Because of the researcher’s involvement, not all the target population members have an equal probability of being selected to be a part of a sample.

There are five non-probability sampling models:

  • Convenience sampling: In convenience sampling , elements of a sample are chosen only due to one prime reason: their proximity to the researcher. These samples are quick and easy to implement as there is no other parameter of selection involved.
  • Consecutive sampling: Consecutive sampling is quite similar to convenience sampling, except for the fact that researchers can choose a single element or a group of samples and conduct research consecutively over a significant period and then perform the same process with other samples.
  • Quota sampling: Using quota sampling , researchers can select elements using their knowledge of target traits and personalities to form strata. Members of various strata can then be chosen to be a part of the sample as per the researcher’s understanding.
  • Snowball sampling: Snowball sampling is conducted with target audiences who are difficult to contact and get information. It is popular in cases where the target audience for analysis research is rare to put together.
  • Judgmental sampling: Judgmental sampling is a non-probability sampling method where samples are created only based on the researcher’s experience and research skill .

02. Data collection methodologies: Using surveys & polls

Once the sample is determined, then either surveys or polls can be distributed to collect the data for quantitative research.

Using surveys for primary quantitative research

A survey is defined as a research method used for collecting data from a pre-defined group of respondents to gain information and insights on various topics of interest. The ease of survey distribution and the wide number of people it can reach depending on the research time and objective makes it one of the most important aspects of conducting quantitative research.

Fundamental levels of measurement – nominal, ordinal, interval, and ratio scales

Four measurement scales are fundamental to creating a multiple-choice question in a survey. They are nominal, ordinal, interval, and ratio measurement scales without the fundamentals of which no multiple-choice questions can be created. Hence, it is crucial to understand these measurement levels to develop a robust survey.

Use of different question types

To conduct quantitative research, close-ended questions must be used in a survey. They can be a mix of multiple question types, including multiple-choice questions like semantic differential scale questions , rating scale questions , etc.

Survey Distribution and Survey Data Collection

In the above, we have seen the process of building a survey along with the research design to conduct primary quantitative research. Survey distribution to collect data is the other important aspect of the survey process. There are different ways of survey distribution. Some of the most commonly used methods are:

  • Email: Sending a survey via email is the most widely used and effective survey distribution method. This method’s response rate is high because the respondents know your brand. You can use the QuestionPro email management feature to send out and collect survey responses.
  • Buy respondents: Another effective way to distribute a survey and conduct primary quantitative research is to use a sample. Since the respondents are knowledgeable and are on the panel by their own will, responses are much higher.
  • Embed survey on a website: Embedding a survey on a website increases a high number of responses as the respondent is already in close proximity to the brand when the survey pops up.
  • Social distribution: Using social media to distribute the survey aids in collecting a higher number of responses from the people that are aware of the brand.
  • QR code: QuestionPro QR codes store the URL for the survey. You can print/publish this code in magazines, signs, business cards, or on just about any object/medium.
  • SMS survey: The SMS survey is a quick and time-effective way to collect a high number of responses.
  • Offline Survey App: The QuestionPro App allows users to circulate surveys quickly, and the responses can be collected both online and offline.

Survey example

An example of a survey is a short customer satisfaction (CSAT) survey that can quickly be built and deployed to collect feedback about what the customer thinks about a brand and how satisfied and referenceable the brand is.

Using polls for primary quantitative research

Polls are a method to collect feedback using close-ended questions from a sample. The most commonly used types of polls are election polls and exit polls . Both of these are used to collect data from a large sample size but using basic question types like multiple-choice questions.

C. Data Analysis Techniques

The third aspect of primary quantitative research design is data analysis . After collecting raw data, there must be an analysis of this data to derive statistical inferences from this research. It is important to relate the results to the research objective and establish the statistical relevance of the results.

Remember to consider aspects of research that were not considered for the data collection process and report the difference between what was planned vs. what was actually executed.

It is then required to select precise Statistical Analysis Methods , such as SWOT, Conjoint, Cross-tabulation, etc., to analyze the quantitative data.

  • SWOT analysis: SWOT Analysis stands for the acronym of Strengths, Weaknesses, Opportunities, and Threat analysis. Organizations use this statistical analysis technique to evaluate their performance internally and externally to develop effective strategies for improvement.
  • Conjoint Analysis: Conjoint Analysis is a market analysis method to learn how individuals make complicated purchasing decisions. Trade-offs are involved in an individual’s daily activities, and these reflect their ability to decide from a complex list of product/service options.
  • Cross-tabulation: Cross-tabulation is one of the preliminary statistical market analysis methods which establishes relationships, patterns, and trends within the various parameters of the research study.
  • TURF Analysis: TURF Analysis , an acronym for Totally Unduplicated Reach and Frequency Analysis, is executed in situations where the reach of a favorable communication source is to be analyzed along with the frequency of this communication. It is used for understanding the potential of a target market.

Inferential statistics methods such as confidence interval, the margin of error, etc., can then be used to provide results.

Secondary Quantitative Research Methods

Secondary quantitative research or desk research is a research method that involves using already existing data or secondary data. Existing data is summarized and collated to increase the overall effectiveness of the research.

This research method involves collecting quantitative data from existing data sources like the internet, government resources, libraries, research reports, etc. Secondary quantitative research helps to validate the data collected from primary quantitative research and aid in strengthening or proving, or disproving previously collected data.

The following are five popularly used secondary quantitative research methods:

  • Data available on the internet: With the high penetration of the internet and mobile devices, it has become increasingly easy to conduct quantitative research using the internet. Information about most research topics is available online, and this aids in boosting the validity of primary quantitative data.
  • Government and non-government sources: Secondary quantitative research can also be conducted with the help of government and non-government sources that deal with market research reports. This data is highly reliable and in-depth and hence, can be used to increase the validity of quantitative research design.
  • Public libraries: Now a sparingly used method of conducting quantitative research, it is still a reliable source of information, though. Public libraries have copies of important research that was conducted earlier. They are a storehouse of valuable information and documents from which information can be extracted.
  • Educational institutions: Educational institutions conduct in-depth research on multiple topics, and hence, the reports that they publish are an important source of validation in quantitative research.
  • Commercial information sources: Local newspapers, journals, magazines, radio, and TV stations are great sources to obtain data for secondary quantitative research. These commercial information sources have in-depth, first-hand information on market research, demographic segmentation, and similar subjects.

Quantitative Research Examples

Some examples of quantitative research are:

  • A customer satisfaction template can be used if any organization would like to conduct a customer satisfaction (CSAT) survey . Through this kind of survey, an organization can collect quantitative data and metrics on the goodwill of the brand or organization in the customer’s mind based on multiple parameters such as product quality, pricing, customer experience, etc. This data can be collected by asking a net promoter score (NPS) question , matrix table questions, etc. that provide data in the form of numbers that can be analyzed and worked upon.
  • Another example of quantitative research is an organization that conducts an event, collecting feedback from attendees about the value they see from the event. By using an event survey , the organization can collect actionable feedback about the satisfaction levels of customers during various phases of the event such as the sales, pre and post-event, the likelihood of recommending the organization to their friends and colleagues, hotel preferences for the future events and other such questions.

What are the Advantages of Quantitative Research?

There are many advantages to quantitative research. Some of the major advantages of why researchers use this method in market research are:

advantages-of-quantitative-research

Collect Reliable and Accurate Data:

Quantitative research is a powerful method for collecting reliable and accurate quantitative data. Since data is collected, analyzed, and presented in numbers, the results obtained are incredibly reliable and objective. Numbers do not lie and offer an honest and precise picture of the conducted research without discrepancies. In situations where a researcher aims to eliminate bias and predict potential conflicts, quantitative research is the method of choice.

Quick Data Collection:

Quantitative research involves studying a group of people representing a larger population. Researchers use a survey or another quantitative research method to efficiently gather information from these participants, making the process of analyzing the data and identifying patterns faster and more manageable through the use of statistical analysis. This advantage makes quantitative research an attractive option for projects with time constraints.

Wider Scope of Data Analysis:

Quantitative research, thanks to its utilization of statistical methods, offers an extensive range of data collection and analysis. Researchers can delve into a broader spectrum of variables and relationships within the data, enabling a more thorough comprehension of the subject under investigation. This expanded scope is precious when dealing with complex research questions that require in-depth numerical analysis.

Eliminate Bias:

One of the significant advantages of quantitative research is its ability to eliminate bias. This research method leaves no room for personal comments or the biasing of results, as the findings are presented in numerical form. This objectivity makes the results fair and reliable in most cases, reducing the potential for researcher bias or subjectivity.

In summary, quantitative research involves collecting, analyzing, and presenting quantitative data using statistical analysis. It offers numerous advantages, including the collection of reliable and accurate data, quick data collection, a broader scope of data analysis, and the elimination of bias, making it a valuable approach in the field of research. When considering the benefits of quantitative research, it’s essential to recognize its strengths in contrast to qualitative methods and its role in collecting and analyzing numerical data for a more comprehensive understanding of research topics.

Best Practices to Conduct Quantitative Research

Here are some best practices for conducting quantitative research:

Tips to conduct quantitative research

  • Differentiate between quantitative and qualitative: Understand the difference between the two methodologies and apply the one that suits your needs best.
  • Choose a suitable sample size: Ensure that you have a sample representative of your population and large enough to be statistically weighty.
  • Keep your research goals clear and concise: Know your research goals before you begin data collection to ensure you collect the right amount and the right quantity of data.
  • Keep the questions simple: Remember that you will be reaching out to a demographically wide audience. Pose simple questions for your respondents to understand easily.

Quantitative Research vs Qualitative Research

Quantitative research and qualitative research are two distinct approaches to conducting research, each with its own set of methods and objectives. Here’s a comparison of the two:

list of quantitative research examples

Quantitative Research

  • Objective: The primary goal of quantitative research is to quantify and measure phenomena by collecting numerical data. It aims to test hypotheses, establish patterns, and generalize findings to a larger population.
  • Data Collection: Quantitative research employs systematic and standardized approaches for data collection, including techniques like surveys, experiments, and observations that involve predefined variables. It is often collected from a large and representative sample.
  • Data Analysis: Data is analyzed using statistical techniques, such as descriptive statistics, inferential statistics, and mathematical modeling. Researchers use statistical tests to draw conclusions and make generalizations based on numerical data.
  • Sample Size: Quantitative research often involves larger sample sizes to ensure statistical significance and generalizability.
  • Results: The results are typically presented in tables, charts, and statistical summaries, making them highly structured and objective.
  • Generalizability: Researchers intentionally structure quantitative research to generate outcomes that can be helpful to a larger population, and they frequently seek to establish causative connections.
  • Emphasis on Objectivity: Researchers aim to minimize bias and subjectivity, focusing on replicable and objective findings.

Qualitative Research

  • Objective: Qualitative research seeks to gain a deeper understanding of the underlying motivations, behaviors, and experiences of individuals or groups. It explores the context and meaning of phenomena.
  • Data Collection: Qualitative research employs adaptable and open-ended techniques for data collection, including methods like interviews, focus groups, observations, and content analysis. It allows participants to express their perspectives in their own words.
  • Data Analysis: Data is analyzed through thematic analysis, content analysis, or grounded theory. Researchers focus on identifying patterns, themes, and insights in the data.
  • Sample Size: Qualitative research typically involves smaller sample sizes due to the in-depth nature of data collection and analysis.
  • Results: Findings are presented in narrative form, often in the participants’ own words. Results are subjective, context-dependent, and provide rich, detailed descriptions.
  • Generalizability: Qualitative research does not aim for broad generalizability but focuses on in-depth exploration within a specific context. It provides a detailed understanding of a particular group or situation.
  • Emphasis on Subjectivity: Researchers acknowledge the role of subjectivity and the researcher’s influence on the Research Process . Participant perspectives and experiences are central to the findings.

Researchers choose between quantitative and qualitative research methods based on their research objectives and the nature of the research question. Each approach has its advantages and drawbacks, and the decision between them hinges on the particular research objectives and the data needed to address research inquiries effectively.

Quantitative research is a structured way of collecting and analyzing data from various sources. Its purpose is to quantify the problem and understand its extent, seeking results that someone can project to a larger population.

Companies that use quantitative rather than qualitative research typically aim to measure magnitudes and seek objectively interpreted statistical results. So if you want to obtain quantitative data that helps you define the structured cause-and-effect relationship between the research problem and the factors, you should opt for this type of research.

At QuestionPro , we have various Best Data Collection Tools and features to conduct investigations of this type. You can create questionnaires and distribute them through our various methods. We also have sample services or various questions to guarantee the success of your study and the quality of the collected data.

Quantitative research is a systematic and structured approach to studying phenomena that involves the collection of measurable data and the application of statistical, mathematical, or computational techniques for analysis.

Quantitative research is characterized by structured tools like surveys, substantial sample sizes, closed-ended questions, reliance on prior studies, data presented numerically, and the ability to generalize findings to the broader population.

The two main methods of quantitative research are Primary quantitative research methods, involving data collection directly from sources, and Secondary quantitative research methods, which utilize existing data for analysis.

1.Surveying to measure employee engagement with numerical rating scales. 2.Analyzing sales data to identify trends in product demand and market share. 4.Examining test scores to assess the impact of a new teaching method on student performance. 4.Using website analytics to track user behavior and conversion rates for an online store.

1.Differentiate between quantitative and qualitative approaches. 2.Choose a representative sample size. 3.Define clear research goals before data collection. 4.Use simple and easily understandable survey questions.

MORE LIKE THIS

Interactive forms

Interactive Forms: Key Features, Benefits, Uses + Design Tips

Sep 4, 2024

closed-loop management

Closed-Loop Management: The Key to Customer Centricity

Sep 3, 2024

Net Trust Score

Net Trust Score: Tool for Measuring Trust in Organization

Sep 2, 2024

list of quantitative research examples

Why You Should Attend XDAY 2024

Aug 30, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence
  • (855) 776-7763

Training Maker

All Products

Qualaroo Insights

ProProfs.com

  • Get Started Free

FREE. All Features. FOREVER!

Try our Forever FREE account with all premium features!

What Is Quantitative Research? Types, Characteristics & Methods

list of quantitative research examples

Market Research Specialist

Emma David, a seasoned market research professional, specializes in employee engagement, survey administration, and data management. Her expertise in leveraging data for informed decisions has positively impacted several brands, enhancing their market position.

list of quantitative research examples

Step into the fascinating world of quantitative research , where numbers reveal extraordinary insights!

By gathering and studying data in a systematic way, quantitative research empowers us to understand our ever-changing world better. It helps understand a problem or an already-formed hypothesis by generating numerical data. The results don’t end here, as you can process these numbers to get actionable insights that aid decision-making.

You can use quantitative research to quantify opinions, behaviors, attitudes, and other definitive variables related to the market, customers, competitors, etc. The research is conducted on a larger sample population to draw predictive, average, and pattern-based insights.

Here, we delve into the intricacies of this research methodology, exploring various quantitative methods, their advantages, and real-life examples that showcase their impact and relevance.

Ready to embark on a journey of discovery and knowledge? Let’s go!

What Is Quantitative Research?

Quantitative research is a method that uses numbers and statistics to test theories about customer attitudes and behaviors. It helps researchers gather and analyze data systematically to gain valuable insights and draw evidence-based conclusions about customer preferences and trends.

Researchers use online surveys, questionnaires , polls , and quizzes to question a large number of people to obtain measurable and bias-free data.

In technical terms, quantitative research is mainly concerned with discovering facts about social phenomena while assuming a fixed and measurable reality.

Offering numbers and stats-based insights, this research methodology is a crucial part of primary research and helps understand how well an organizational decision is going to work out.

Let’s consider an example.

Suppose your qualitative analysis shows that your customers are looking for social media-based customer support. In that case, quantitative analysis will help you see how many of your customers are looking for this support.

If 10% of your customers are looking for such a service, you might or might not consider offering this feature. But, if 40% of your regular customers are seeking support via social media, then it is something you just cannot overlook.

Characteristics of Quantitative Research

Quantitative research clarifies the fuzziness of research data from qualitative research analysis. With numerical insights, you can formulate a better and more profitable business decision.

Hence, quantitative research is more readily contestable, sharpens intelligent discussion, helps you see the rival hypotheses, and dynamically contributes to the research process.

Let us have a quick look at some of its characteristics.

1. Measurable Variables

The data collection methods in quantitative research are structured and contain items requiring measurable variables, such as age, number of family members, salary range, highest education, etc.

These structured data collection methods comprise polls, surveys, questionnaires, etc., and may have questions like the ones shown in the following image:

list of quantitative research examples

As you can see, all the variables are measurable. This ensures that the research is in-depth and provides less erroneous data for reliable, actionable insights.

2. Sample Size

No matter what data analysis methods for quantitative research are being used, the sample size is kept such that it represents the target market.

As the main aim of the research methodology is to get numerical insights, the sample size should be fairly large. Depending on the survey objective and scope, it might span hundreds of thousands of people.

3. Normal Population Distribution

To maintain the reliability of a quantitative research methodology, we assume that the population distribution curve is normal.

list of quantitative research examples

This type of population distribution curve is preferred over a non-normal distribution as the sample size is large, and the characteristics of the sample vary with its size.

This requires adhering to the random sampling principle to avoid the researcher’s bias in result interpretation. Any bias can ruin the fairness of the entire process and defeats the purpose of research.

4. Well-Structured Data Representation

Data analysis in quantitative research produces highly structured results and can form well-defined graphical representations. Some common examples include tables, figures, graphs, etc., that combine large blocks of data.

list of quantitative research examples

This way, you can discover hidden data trends, relationships, and differences among various measurable variables. This can help researchers understand the survey data and formulate actionable insights for decision-making.

5. Predictive Outcomes

Quantitative analysis of data can also be used for estimations and prediction outcomes. You can construct if-then scenarios and analyze the data for the identification of any upcoming trends or events.

However, this requires advanced analytics and involves complex mathematical computations. So, it is mostly done via quantitative research tools that come with advanced analytics capabilities.

Types of Quantitative Research Methods

Quantitative research is usually conducted using two methods. They are-

  • Primary quantitative research methods
  • Secondary quantitative research methods

1. Primary quantitative research methods

Primary quantitative research is the most popular way of conducting market research. The differentiating factor of this method is that the researcher relies on collecting data firsthand instead of relying on data collected from previous research.

There are multiple types of primary quantitative research. They can be distinguished based on three distinctive aspects, which are:

1.1. Techniques & Types of Studies:

  • Survey Research

Surveys are the easiest, most common, and one of the most sought-after quantitative research techniques. The main aim of a survey is to widely gather and describe the characteristics of a target population or customers. Surveys are the foremost quantitative method preferred by both small and large organizations.

They help them understand their customers, products, and other brand offerings in a proper manner.

Surveys can be conducted using various methods, such as online polls, web-based surveys, paper questionnaires, phone calls, or face-to-face interviews. Survey research allows organizations to understand customer opinions, preferences, and behavior, making it crucial for market research and decision-making.

You can watch this quick video to learn more about creating surveys.

Watch: How to Create a Survey Using ProProfs Survey Maker

Surveys are of two types:

  • Cross-Sectional Surveys Cross-sectional surveys are used to collect data from a sample of the target population at a specific point in time. Researchers evaluate various variables simultaneously to understand the relationships and patterns within the data.
  • Cross-sectional surveys are popular in retail, small and medium-sized enterprises (SMEs), and healthcare industries, where they assess customer satisfaction, market trends, and product feedback.
  • Longitudinal Surveys Longitudinal surveys are conducted over an extended period, observing changes in respondent behavior and thought processes.
  • Researchers gather data from the same sample multiple times, enabling them to study trends and developments over time. These surveys are valuable in fields such as medicine, applied sciences, and market trend analysis.

Surveys can be distributed via various channels. Some of the most popular ones are listed below:

  • Email: Sending surveys via email is a popular and effective method. People recognize your brand, leading to a higher response rate. With ProProfs Survey Maker’s in-mail survey-filling feature, you can easily send out and collect survey responses.
  • Embed on a website: Boost your response rate by embedding the survey on your website. When visitors are already engaged with your brand, they are more likely to take the survey.
  • Social media: Take advantage of social media platforms to distribute your survey. People familiar with your brand are likely to respond, increasing your response numbers.
  • QR codes: QR codes store your survey’s URL, and you can print or publish these codes in magazines, signs, business cards, or any object to make it easy for people to access your survey.
  • SMS survey: Collect a high number of responses quickly with SMS surveys. It’s a time-effective way to reach your target audience.

1.2. Correlational Research:

Correlational research aims to establish relationships between two or more variables.

Researchers use statistical analysis to identify patterns and trends in the data, but it does not determine causality between the variables. This method helps understand how changes in one variable may impact another.

Examples of correlational research questions include studying the relationship between stress and depression, fame and money, or classroom activities and student performance.

1.3. Causal-Comparative Research:

Causal-comparative research, also known as quasi-experimental research, seeks to determine cause-and-effect relationships between variables.

Researchers analyze how an independent variable influences a dependent variable, but they do not manipulate the independent variable. Instead, they observe and compare different groups to draw conclusions.

Causal-comparative research is useful in situations where it’s not ethical or feasible to conduct true experiments.

Examples of questions for this type of research include analyzing the effect of training programs on employee performance, studying the influence of customer support on client retention, investigating the impact of supply chain efficiency on cost reduction, etc.

1.4. Experimental Research:

Experimental research is based on testing theories to validate or disprove them. Researchers conduct experiments and manipulate variables to observe their impact on the outcomes.

This type of research is prevalent in natural and social sciences, and it is a powerful method to establish cause-and-effect relationships. By randomly assigning participants to experimental and control groups, researchers can draw more confident conclusions.

Examples of experimental research include studying the effectiveness of a new drug, the impact of teaching methods on student performance, or the outcomes of a marketing campaign.

2. Data collection methodologies

After defining research objectives, the next significant step in primary quantitative research is data collection. This involves using two main methods: sampling and conducting surveys or polls.

2.1Sampling methods:

In quantitative research, there are two primary sampling methods: Probability and Non-probability sampling.

2.2Probability Sampling

In probability sampling, researchers use the concept of probability to create samples from a population. This method ensures that every individual in the target audience has an equal chance of being selected for the sample.

There are four main types of probability sampling:

  • Simple random sampling: Here, the elements or participants of a sample are selected randomly, and this technique is used in studies that are conducted over considerably large audiences. It works well for large target populations.
  • Stratified random sampling: In this method, the entire population is divided into strata or groups, and the sample members get chosen randomly from these strata only. It is always ensured that different segregated strata do not overlap with each other.
  • Cluster sampling: Here, researchers divide the population into clusters, often based on geography or demographics. Then, random clusters are selected for the sample.
  • Systematic sampling: In this method, only the starting point of the sample is randomly chosen. All the other participants are chosen using a fixed interval. Researchers calculate this interval by dividing the size of the study population by the target sample size.

2.3Non-probability Sampling

Non-probability sampling is a method where the researcher’s knowledge and experience guide the selection of samples. This approach doesn’t give all members of the target population an equal chance of being included in the sample.

There are five non-probability sampling models:

  • Convenience sampling: The elements or participants are chosen on the basis of their nearness to the researcher. The people in close proximity can be studied and analyzed easily and quickly, as there is no other selection criterion involved. Researchers simply choose samples based on what is most convenient for them.
  • Consecutive sampling: Similar to convenience sampling, researchers select samples one after another over a significant period. They can opt for a single participant or a group of samples to conduct quantitative research in a consecutive manner for a significant period of time. Once this is over, they can conduct the research from the start.
  • Quota sampling: With quota sampling, researchers use their understanding of target traits and personalities to form groups (strata). They then choose samples from each stratum based on their own judgment.
  • Snowball sampling: This method is used where the target audiences are difficult to contact and interviewed for data collection. Researchers start with a few participants and then ask them to refer others, creating a snowball effect.
  • Judgmental sampling: In judgmental sampling, researchers rely solely on their experience and research skills to handpick samples that they believe will be most relevant to the study.

3. Data analysis techniques

To analyze the quantitative data accurately, you’ll need to use specific statistical methods such as:

  • SWOT Analysis: This stands for Strengths, Weaknesses, Opportunities, and Threats analysis. Organizations use SWOT analysis to evaluate their performance internally and externally. It helps develop effective improvement strategies.
  • Conjoint Analysis: This market research method uncovers how individuals make complex purchasing decisions. It involves considering trade-offs in their daily activities when choosing from a list of product/service options.
  • Cross-tabulation: A preliminary statistical market analysis method that reveals relationships, patterns, and trends within various research study parameters.
  • TURF Analysis: Short for Totally Unduplicated Reach and Frequency Analysis, this method helps analyze the reach and frequency of favorable communication sources. It provides insights into the potential of a target market.
  • By using these statistical techniques and inferential statistics methods like confidence intervals and margin of error, you can draw meaningful insights from your primary quantitative research that you can use in making informed decisions.

2. Secondary Quantitative Research Methods

  • Secondary quantitative research, also known as desk research, is a valuable method that uses existing data, called secondary data.
  • Instead of collecting new data, researchers analyze and combine already available information to enhance their research. This approach involves gathering quantitative data from various sources such as the internet, government databases, libraries, and research reports.
  • Secondary quantitative research plays a crucial role in validating data collected through primary quantitative research. It helps reinforce or challenge existing findings.

Here are five commonly used secondary quantitative research methods:

A. Data Available on the Internet:

The Internet has become a vast repository of data, making it easier for researchers to access a wealth of information. Online databases, websites, and research repositories provide valuable quantitative data for researchers to analyze and validate their primary research findings.

B. Government and Non-Government Sources:

Government agencies and non-government organizations often conduct extensive research and publish reports. These reports cover a wide range of topics, providing researchers with reliable and comprehensive data for quantitative analysis.

C. Public Libraries:

While less commonly used in the digital age, public libraries still hold valuable research reports, historical data, and publications that can contribute to quantitative research.

D. Educational Institutions:

Educational institutions frequently conduct research on various subjects. Their research reports and publications can serve as valuable sources of information for researchers, validating and supporting primary quantitative research outcomes.

E. Commercial Information Sources:

Commercial sources such as local newspapers, journals, magazines, and media outlets often publish relevant data on economic trends, market research, and demographic analyses. Researchers can access this data to supplement their own findings and draw better conclusions.

Advantages of Quantitative Research Methods

Quantitative research data is often standardized and can be easily used to generalize findings for making crucial business decisions and uncover insights to supplement the qualitative research findings.

Here are some core benefits this research methodology offers.

Direct Result Comparison

As the studies can be replicated for different cultural settings and different times, even with different groups of participants, they tend to be extremely useful. Researchers can compare the results of different studies in a statistical manner and arrive at comprehensive conclusions for a broader understanding.

Replication

Researchers can repeat the study by using standardized data collection protocols over well-structured data sets. They can also apply tangible definitions of abstract concepts to arrive at different conclusions for similar research objectives with minor variations.

Large Samples

As the research data comes from large samples, the researchers can process and analyze the data via highly reliable and consistent analysis procedures. They can arrive at well-defined conclusions that can be used to make the primary research more thorough and reliable.

Hypothesis Testing

This research methodology follows standardized and established hypothesis testing procedures. So, you have to be careful while reporting and analyzing your research data , and the overall quality of results gets improved.

Proven Examples of Quantitative Research Methods

Below, we discuss two excellent examples of quantitative research methods that were used by highly distinguished business and consulting organizations. Both examples show how different types of analysis can be performed with qualitative approaches and how the analysis is done once the data is collected.

1. STEP Project Global Consortium / KPMG 2019 Global Family Business survey

This research utilized quantitative methods to identify ways that kept the family businesses sustainably profitable with time.

The study also identified the ways in which the family business behavior changed with demographic changes and had “why” and “how” questions. Their qualitative research methods allowed the KPMG team to dig deeper into the mindsets and perspectives of the business owners and uncover unexpected research avenues as well.

It was a joint effort in which STEP Project Global Consortium collected 26 cases, and KPMG collected 11 cases.

The research reached the stage of data analysis in 2020, and the analysis process spanned over 4 stages.

The results, which were also the reasons why family businesses tend to lose their strength with time, were found to be:

  • Family governance
  • Family business legacy

2. EY Seren Teams Research 2020

This is yet another commendable example of qualitative research where the EY Seren Team digs into the unexplored depths of human behavior and how it affected their brand or service expectations.

The research was done across 200+ sources and involved in-depth virtual interviews with people in their homes, exploring their current needs and wishes. It also involved diary studies across the entire UK customer base to analyze human behavior changes and patterns.

The study also included interviews with professionals and design leaders from a wide range of industries to explore how COVID-19 transformed their industries. Finally, quantitative surveys were conducted to gain insights into the EY community after every 15 days.

The insights and results were:

  • A culture of fear, daily resilience, and hopes for a better world and a better life – these were the macro trends.
  • People felt massive digitization to be a resourceful yet demanding aspect as they have to adapt every day.
  • Some people wished to have a new world with lots of possibilities, and some were looking for a new purpose.

8 Best Practices to Conduct Quantitative Research

Here are some best practices to keep in mind while conducting quantitative research:

1. Define Research Objectives

There can be many ways to collect data via quantitative research methods that are chosen as per the research objective and scope. These methods allow you to build your own observations regarding any hypotheses – unknown, entirely new, or unexplained. 

You can hypothesize a proof and build a prediction of outcomes supporting the same. You can also create a detailed stepwise plan for data collection, analysis, and testing. 

Below, we explore quantitative research methods and discuss some examples to enhance your understanding of them.

2. Keep Your Questions Simple

The surveys are meant to reach people en-masse, and that includes a wide demographic range with recipients from all walks of life. Asking simple questions will ensure that they grasp what’s being asked easily.

3. Develop a Solid Research Design

Choose an appropriate research design that aligns with your objectives, whether it’s experimental, quasi-experimental, or correlational. You also need to pay attention to the sample size and sampling technique such that it represents the target population accurately.

4. Use Reliable & Valid Instruments

It’s crucial to select or develop measurement instruments such as questionnaires, scales, or tests that have been validated and are reliable. Before proceeding with the main study, pilot-test these instruments on a small sample to assess their effectiveness and make any necessary improvements.

5. Ensure Data Quality

Implement data collection protocols to minimize errors and bias during data gathering. Double-check data entries and cleaning procedures to eliminate any inconsistencies or missing values that may affect the accuracy of your results. For instance, you might regularly cross-verify data entries to identify and correct any discrepancies.

6. Employ Appropriate Data Analysis Techniques

Select statistical methods that match the nature of your data and research questions. Whether it’s regression analysis, t-tests, ANOVA, or other techniques, using the right approach is important for drawing meaningful conclusions. Utilize software tools like SPSS or R for data analysis to ensure the accuracy and reproducibility of your findings.

7. Interpret Results Objectively

Present your findings in a clear and unbiased manner. Avoid making unwarranted causal claims, especially in correlational studies. Instead, focus on describing the relationships and patterns observed in your data.

8. Address Ethical Considerations

Prioritize ethical considerations throughout your research process. Obtain informed consent from participants, ensuring their voluntary participation and confidentiality of data. Comply with ethical guidelines and gain approval from a governing body if necessary.

Enhance Your Quantitative Research With Cutting-Edge Software

While no single research methodology can produce 100% reliable results, you can always opt for a hybrid research method by opting for the methods that are most relevant to your objective.

This understanding comes gradually as you learn how to implement the correct combination of qualitative and quantitative research methods for your research projects. For the best results, we recommend investing in smart, efficient, and scalable research tools that come with delightful reporting and advanced analytics to make every research initiative a success.

These software tools, such as ProProfs Survey Maker, come with pre-built survey templates and question libraries and allow you to create a high-converting survey in just a few minutes.

So, choose the best research partner, create the right research plan, and gather insights that drive sustainable growth for your business.

Emma David

About the author

Emma David is a seasoned market research professional with 8+ years of experience. Having kick-started her journey in research, she has developed rich expertise in employee engagement, survey creation and administration, and data management. Emma believes in the power of data to shape business performance positively. She continues to help brands and businesses make strategic decisions and improve their market standing through her understanding of research methodologies.

Related Posts

list of quantitative research examples

360 Feedback Questions: The Roadmap to Enhanced Employee Performance

list of quantitative research examples

Email Surveys Guide: Types, Questions And Examples

list of quantitative research examples

Product Market Fit: An Ultimate Guide

list of quantitative research examples

Voice of Customer Survey: Questions, Examples ,Types & Strategies

list of quantitative research examples

What Is a Business Survey Question? Definition, Importance & Examples

list of quantitative research examples

50+ NPS Survey Questions Examples for Every Scenario

Tallwave a digital agency

9 Quantitative Research Methods With Real Client Examples

  • June 21, 2021
  • Tallwave Team

Share Article

Quantitative research is essential to developing a clear understanding of consumer engagement and how to increase satisfaction.

Primary Quantitative Research Methods

When it comes to quantitative research, many people often confuse this type of research with the methodology. The research type refers to style of research while the data collection method can be different.

Research types

These are the primary types of quantitative research used by businesses today.

  • Survey research: Ideally when conducting survey research businesses will use a statistically relevant sample to understand the sentiments and actions of a large group of people. This could be their current customers or consumers who fit into their ideal demographic.
  • Correlational research: Correlational research compares two variables to come to a conclusion about whether there is a relationship between the two. Keep in mind that correlation does not always imply causation, which is to say you need to account for external variables that could cause an apparent relationship.
  • Experimental research: This form of research takes a scientific approach, testing a hypothesis by manipulating certain variables to understand what changes this could cause. In these experiments, there is a control group and a manipulated group.

Also read:  6 Factors Influencing Customer Behaviors in 2021

Data collection methods

Launching the above research requires creating a plan to collect data. After all, quantitative research relies on data. Here are the common primary data collection methods for quantitative research.

  • Surveys: A common approach to collecting data is using a survey. This is ideal especially if the business can obtain a statistically relevant sample from their responses. Surveys are often conducted through web or email questionnaires.
  • Interviews: Yes, interviews can be used to obtain quantitative data. While this form of data collection is typically associated with qualitative research, interviewers can ask a standard set of questions to collate formal, quantitative data.
  • Documentation review: With an increasing amount of business occurring digitally, there is more documentation now than ever before to help inform quantitative conclusions. Businesses can assess website metrics such as return visits, time on page or even use a pixel to track customer movement across websites. They can also view how many times their app has been opened and actions users have taken on their platform to determine customer engagement.
Secondary research can be helpful when formulating a plan for obtaining primary quantitative data. It can help narrow areas of focus or illuminate key challenges.

Secondary Quantitative Research Methods

Secondary data is information that is already collected and not necessarily exclusive to the company but still relevant when understanding overall industry and marketplace trends. Here are a few examples of secondary data:

  • Government reports: Government research can indicate potential regulatory roadblocks, customer pain points and future opportunities. For example, a fitness company might use government data that shows an increase in use of outdoor running trials to develop a new product used to meet that specific use case.
  • Survey-based secondary data: Polls or surveys that have been conducted for a primary use could be reused for secondary purposes. This could include survey data obtained by other companies or governments.
  • Academic research: Research that has been previously conducted and published in peer-reviewed journals can help inform trends and consumer behavior, even if it doesn’t apply to a company’s specific customers.

Secondary research can be helpful when formulating a plan for obtaining primary quantitative data. It can help narrow areas of focus or illuminate key challenges. It can also help when it comes to interpreting primary data, especially when trying to understand the relationship between two variables of correlated data.

Also read:  The What, Why, & How of Customer Behavior Analysis

Real Examples of Quantitative Research

We regularly use quantitative research to help our clients understand where they can best add value to increase customer engagement. Here are three examples of quantitative research in motion.

Example 1: Leading food distribution company

We helped a leading food distribution company identify changes in the needs and values of their restaurant clients as a result of COVID-19. This helped inform opportunities to become more valuable partners.

The research plan involved creating a survey that was emailed to clients. The questions were specific and numeric. For example, respondents were asked what percentage of their weekly spend was used with the food distribution company. They were also asked to assign a percentage to the way their food ordering had changed during COVID-19 and to rate their satisfaction with the food distribution company.

The results showed changes that had occurred for clients of the food distribution company as a result of the unique stressors of the pandemic. We were able to determine changes in weekly food supply and customer count as well as menu adaptations and purchase behavior.

Example 2: Leading credit card company

Our work with a leading credit card company required us to understand what current travel card members valued about the rewards program and their preferred communication method for booking travel in order to create an omnichannel servicing strategy and ideal customer journey.

Through an online survey of younger cardholders, the target demographic for this project, we asked questions such as length of card membership, total spend and the number of annual leisure trips in addition to more specific questions that showed how members get inspiration for trip planning and where they research.

The results highlighted ways to overcome resistance to pricing by proving more value. It also illuminated ways to make the benefits of membership more tangible to card holders and how to influence travelers in the early stages of planning their journey.

Example 3: Internal research report

We’re in the business of drinking our own champagne, so to speak, which is why we conducted our own quantitative research aimed at understanding the consumer trends that were spurred by the pandemic and how these will transform behaviors in the future.

There’s no question that new customer experiences emerged from the pandemic. Think of offerings such as “buy online, pickup in store (BOPIS),” or blended restaurant meals that are cooked at home. We wanted to understand how consumers truly felt about these new experiences and which they were likely to continue using even after restrictions were lifted. We also wanted to know more about the changing expectations for branded communication and how all of these pieces of the puzzle fit together to create consumer engagement. Our method of data collection was a survey.

Our research led us to develop insights we could use to inform our customers in their decision making. For example, we found convenience is paramount for consumers who are seeking out hybrid experiences such as BOPIS to take the best of both worlds. We also found many of these changes are permanent as consumers embraced new experiences that made their lives easier.

We regularly use quantitative research to help our clients understand where they can best add value to increase customer engagement.

The Bottom Line

Quantitative research is essential to developing a clear understanding of consumer engagement and how to increase satisfaction. Though online surveys are one of the most common methods for obtaining data, research isn’t limited to this strategy. It’s important to use whatever strategies are within your scope to constantly evaluate new trends and consumer behaviors that could significantly impact your offerings. The results can show you how to re-engage customers and drive loyalty.

Interested in partnering with us to learn more about your customers needs, wants, and behaviors to inform future experience design? Contact us today !

Tallwave Headquarters

6720 N. Scottsdale Road, Suite 140 Scottsdale, Arizona 85253 (602) 840-0400

For business inquiries, contact Ed Borromeo, Tallwave Partner at [email protected]

list of quantitative research examples

©2024 Tallwave LLC. All rights reserved.

Terms of Use

2024 MSA Partner Trust Badge

Bunger Steel

Doing some things and making some impacts

list of quantitative research examples

EDUCBA

Quantitative Research Examples

Madhuri Thakur

Updated October 9, 2023

Quantitative Research Example

Quantitative Research Examples – Introduction

Quantitative research is a systematic approach to collecting and analyzing data from various sources. It uses statistical, computational, and mathematical methods to extract valuable findings and draw conclusions. In this article, you will see different quantitative research examples, explaining how to collect and analyze data in quantitative research.

Start Your Free Investment Banking Course

Download Corporate Valuation, Investment Banking, Accounting, CFA Calculator & others

7 Easy Quantitative Research Examples

Let us first see a few simple hypothetical quantitative research examples (Example #1 to Example #4).

Consider a researcher who conducted a quantitative survey among parents of children aged 1-8 years to study how many parents are fine with their children using phones. A total of 150 participated in the survey, where they rated their agreement on a 7-point scale.

Agreement Level Strongly Disagree Disagree Slightly Disagree Neutral Slightly Agree Agree Strongly Agree

Method: To find the average perspective of parents on giving mobile phones to children, the researcher finds the average of all 150 collected values (Sum of all values ÷ 150).

Result : The results of the survey show the following insights:

  • The average rating was 4.6, indicating a tendency towards agreement regarding giving mobile phones to children.
  • 20% of respondents “strongly agreed” (rated 7), 45% “agreed” (rated 6), and 17% “slightly agreed” (rated 5).
  • 13% of respondents were “neutral” (rated 4).
  • Only 5% “slightly disagreed” (rated 3), and 0% “disagreed” or “strongly disagreed.”

We can see from the analyzed data that most parents are more likely to provide their children with mobile phones in today’s technological world.

Example 2

Suppose a startup company, BVN corporation, wants to test their employee’s satisfaction levels. The company divides the employees into six groups of 5 employees each. They then conduct a survey asking the following questions where the answers must range from 1 (lowest) to 10 (highest).

  • Are you satisfied with the job?
  • What is your level of satisfaction with your work-life balance?
  • Would you recommend BVN corporation to other employees?
  • Once the employer gathers data from each employee in Group 1, they calculate the average rating for that group. They repeat this process for all the other groups.
  • Then, they determine the overall average for each aspect (like job satisfaction or work-life balance) by considering all the groups together.

Result: The following image depicts the rating given by groups and the overall average rating.

Example 2 Result

The interpretation of the results is as follows.

  • The average rating for job satisfaction among all groups is 7.0, meaning that employees are moderately satisfied with their jobs.
  • The average rating for work-life balance is 6.3. It means that employees are unsatisfied and the company needs some improvement.
  • The average rating for recommendations is 6.7. This score shows that employees have some good feelings towards the company. However, a company can improve its environment or culture to improve the recommendation ratings.

Let’s say a hospital performs quantitative research to analyze how efficient the hospital’s operations are. The hospital conducts a survey to collect data from both doctors and patients.

The survey included questions such as:

  • How much time does the doctor take for one patient? (Options: <10 mins, 10 to 30 mins, 30-50 mins, and 50+ mins).
  • How often does a patient come into the hospital? (1 time, 2-4 times, 4-8 times, and 8+ times)
  • Rate your (patient) satisfaction level (scale of 1 to 10).

Method: After getting all the information, the researcher determines the option that most people choose. For example, if 6 out of 10 people picked “<10 mins” for “How long the doctor spends with each patient?”, that’s what they consider as the average.

Result: The following are the key results from the survey.

  • The average time spent by a doctor for one patient varies from 10-30 mins.
  • The average number of patient visits per month is 3.
  • The average satisfaction of patients following doctor consultations is 7.

Let’s consider an NGO that wants to run an educational program in the village. Their aim is to improve the literacy rate in the village. However, before they launched the program, first, the organization first surveyed the entire village population (N=450) to know how many were likely to participate.

Result: In the survey, the NGO found that Individuals aged 30-45 showed 60% interest, while those below 30 years showed 45% interest, and those above 45 years showed 40% interest. Finally, 50% (225) of the village population participated in the program.

The four examples we just saw were simple hypothetical quantitative research examples. Now, let us see some real-life examples of quantitative research.

In 2015 , researchers conducted an experimental study on the effect of lack of sleep on colds. The study was a two-part experiment conducted on 164 healthy individuals. Participants had to record their one-week bedtime in the first part. In the second part, researchers quarantine the participants in a hotel and give them nose drops containing virus-causing colds, i.e., rhinovirus.

Data collection method: Participants recorded their bedtime, like sleeping and waking up time. Also, researchers used wrist actigraphy data to monitor sleep movement. Blood samples were collected to check the level (number) of rhinovirus antibodies. Tissues with mucus were used as a sign of illness, meaning if a participant used 10g or more tissues, they were sick. Method: The researchers used SPSS , a computer program, and logistic regression to predict which participants got colds and which didn’t. After that, they grouped the participants into categories based on how much they slept and, among those, how many people caught a cold.

Result: A few highlights from the study were as follows:

  • Of 164 participants, 124 received the virus, and only 48 among the 124 got sick.
  • Individuals who slept less than 5 hours during night-time were 4.5 times more likely to get sick.
  • Those who slept 5 -6 hours were 4.2 times more likely to get sick.
  • Participants who slept for 7+ hours had very low chances of catching a cold.

The image below shows the correlation between the total % of participants who got the cold and their respective sleeping hours.

Example 5

In April 2020 , researchers conducted a cross-sectional survey in Bangladesh to explore the total sleep duration, night-time sleep, and daily naptime. 9,730 participants took a survey, including a questionnaire related to socio-demographic variables (age, gender, occupation), behavioral and health factors (smoking, alcohol consumption), depression, suicidal thoughts, night sleep duration, naptime duration, etc.

Data collection method: In this study, researchers collected the data through online survey forms from participants aged 18–64 in Bangladesh.

Analysis tools: SPSS 25.0, Stata 16, ArcGIS 10.7, etc.

Method: The researchers made digital maps of Bangladesh using GIS mapping. They divided the maps into different sections to show nap times, how long people slept at night, and the total sleep duration. They also made another map that revealed how areas with COVID-19 cases related to the amount of sleep people got at night in those places.

Result: Using the GIS maps, the researchers observed the following:

  • The study found that 64.7% slept for 7-9 hours at night, and the daily nap duration was 30-60 mins for 43.7% of participants.
  • Sleep duration was affected by unemployment, marital status, self-isolation, smoking cigarettes, social media use, financial difficulties, and depression.
  • Barisal region had 24% of participants with nap durations over 1 hour, and Rangpur had 67.60% with 7-9 hours of nightly sleep.

A study conducted in Kerman, Iran, in 2010-2011 , wanted to find the correlation between computer games and behavioral problems in adolescent boys. The study involved 384 male school students with a questionnaire and Achenbach’s Youth Self-Report (YSR) to assess their behavior problems. The YSR evaluates various issues, such as anxiety, depression, social problems, and more, comprising 10 categories.

Data collection method: The students filled out the questionnaire form regarding computer game usage, including how likely they were to play those games and if they contained any violent content.

Analysis tools: Bivariate regression, ANOVA, and SPSS 20.0.

Method: In the questionnaire, participants listed their top five favorite video games and rated their frequency of play, the level of violent content, and the presence of violent images on a 7-point scale. To calculate the exposure score, the researchers added the content and image scores and multiplied the result by the play frequency divided by 5.

In the YSR questionnaire, participants rated each game on a 5-point scale. To get dimension scores, the researchers totaled the scores for each item. Finally, they summed up the dimension scores to calculate the total score (all items combined).

Result: The study found that:

  • There is a 95% correlation between time spent on computer games and students’ depression/anxiety, social problems, aggressive behavior, and more.
  • Researchers observed that 17% showed aggressive behaviors, 12% had depression/anxiety, 9% had rule-breaking problems, and 6.4% had social issues.

Final Thoughts

Quantitative research examples rely on factual information, numerical data, and statistics. Its main advantage lies in the ease of predicting outcomes. Researchers gather information through different tools, equipment, surveys, questionnaires, quantified behaviors, and research methods, among other variables.

Recommended Articles

This article is a complete guide to different quantitative research examples. You can also go through our other suggested articles to learn more.

  • Qualitative Research vs. Quantitative Research
  • Types of Quantitative Research
  • Types of Qualitative Research
  • Types of Research Reports

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy .

Corporate Valuation, Investment Banking, Accounting, CFA Calculator & others

Forgot Password?

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Quiz

Explore 1000+ varieties of Mock tests View more

Submit Next Question

Early-Bird Offer: ENROLL NOW

quiz

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Quantitative research questionsQuantitative research hypotheses
Descriptive research questionsSimple hypothesis
Comparative research questionsComplex hypothesis
Relationship research questionsDirectional hypothesis
Non-directional hypothesis
Associative hypothesis
Causal hypothesis
Null hypothesis
Alternative hypothesis
Working hypothesis
Statistical hypothesis
Logical hypothesis
Hypothesis-testing
Qualitative research questionsQualitative research hypotheses
Contextual research questionsHypothesis-generating
Descriptive research questions
Evaluation research questions
Explanatory research questions
Exploratory research questions
Generative research questions
Ideological research questions
Ethnographic research questions
Phenomenological research questions
Grounded theory questions
Qualitative case study questions

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Quantitative research questions
Descriptive research question
- Measures responses of subjects to variables
- Presents variables to measure, analyze, or assess
What is the proportion of resident doctors in the hospital who have mastered ultrasonography (response of subjects to a variable) as a diagnostic technique in their clinical training?
Comparative research question
- Clarifies difference between one group with outcome variable and another group without outcome variable
Is there a difference in the reduction of lung metastasis in osteosarcoma patients who received the vitamin D adjunctive therapy (group with outcome variable) compared with osteosarcoma patients who did not receive the vitamin D adjunctive therapy (group without outcome variable)?
- Compares the effects of variables
How does the vitamin D analogue 22-Oxacalcitriol (variable 1) mimic the antiproliferative activity of 1,25-Dihydroxyvitamin D (variable 2) in osteosarcoma cells?
Relationship research question
- Defines trends, association, relationships, or interactions between dependent variable and independent variable
Is there a relationship between the number of medical student suicide (dependent variable) and the level of medical student stress (independent variable) in Japan during the first wave of the COVID-19 pandemic?

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Quantitative research hypotheses
Simple hypothesis
- Predicts relationship between single dependent variable and single independent variable
If the dose of the new medication (single independent variable) is high, blood pressure (single dependent variable) is lowered.
Complex hypothesis
- Foretells relationship between two or more independent and dependent variables
The higher the use of anticancer drugs, radiation therapy, and adjunctive agents (3 independent variables), the higher would be the survival rate (1 dependent variable).
Directional hypothesis
- Identifies study direction based on theory towards particular outcome to clarify relationship between variables
Privately funded research projects will have a larger international scope (study direction) than publicly funded research projects.
Non-directional hypothesis
- Nature of relationship between two variables or exact study direction is not identified
- Does not involve a theory
Women and men are different in terms of helpfulness. (Exact study direction is not identified)
Associative hypothesis
- Describes variable interdependency
- Change in one variable causes change in another variable
A larger number of people vaccinated against COVID-19 in the region (change in independent variable) will reduce the region’s incidence of COVID-19 infection (change in dependent variable).
Causal hypothesis
- An effect on dependent variable is predicted from manipulation of independent variable
A change into a high-fiber diet (independent variable) will reduce the blood sugar level (dependent variable) of the patient.
Null hypothesis
- A negative statement indicating no relationship or difference between 2 variables
There is no significant difference in the severity of pulmonary metastases between the new drug (variable 1) and the current drug (variable 2).
Alternative hypothesis
- Following a null hypothesis, an alternative hypothesis predicts a relationship between 2 study variables
The new drug (variable 1) is better on average in reducing the level of pain from pulmonary metastasis than the current drug (variable 2).
Working hypothesis
- A hypothesis that is initially accepted for further research to produce a feasible theory
Dairy cows fed with concentrates of different formulations will produce different amounts of milk.
Statistical hypothesis
- Assumption about the value of population parameter or relationship among several population characteristics
- Validity tested by a statistical experiment or analysis
The mean recovery rate from COVID-19 infection (value of population parameter) is not significantly different between population 1 and population 2.
There is a positive correlation between the level of stress at the workplace and the number of suicides (population characteristics) among working people in Japan.
Logical hypothesis
- Offers or proposes an explanation with limited or no extensive evidence
If healthcare workers provide more educational programs about contraception methods, the number of adolescent pregnancies will be less.
Hypothesis-testing (Quantitative hypothesis-testing research)
- Quantitative research uses deductive reasoning.
- This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative research questions
Contextual research question
- Ask the nature of what already exists
- Individuals or groups function to further clarify and understand the natural context of real-world problems
What are the experiences of nurses working night shifts in healthcare during the COVID-19 pandemic? (natural context of real-world problems)
Descriptive research question
- Aims to describe a phenomenon
What are the different forms of disrespect and abuse (phenomenon) experienced by Tanzanian women when giving birth in healthcare facilities?
Evaluation research question
- Examines the effectiveness of existing practice or accepted frameworks
How effective are decision aids (effectiveness of existing practice) in helping decide whether to give birth at home or in a healthcare facility?
Explanatory research question
- Clarifies a previously studied phenomenon and explains why it occurs
Why is there an increase in teenage pregnancy (phenomenon) in Tanzania?
Exploratory research question
- Explores areas that have not been fully investigated to have a deeper understanding of the research problem
What factors affect the mental health of medical students (areas that have not yet been fully investigated) during the COVID-19 pandemic?
Generative research question
- Develops an in-depth understanding of people’s behavior by asking ‘how would’ or ‘what if’ to identify problems and find solutions
How would the extensive research experience of the behavior of new staff impact the success of the novel drug initiative?
Ideological research question
- Aims to advance specific ideas or ideologies of a position
Are Japanese nurses who volunteer in remote African hospitals able to promote humanized care of patients (specific ideas or ideologies) in the areas of safe patient environment, respect of patient privacy, and provision of accurate information related to health and care?
Ethnographic research question
- Clarifies peoples’ nature, activities, their interactions, and the outcomes of their actions in specific settings
What are the demographic characteristics, rehabilitative treatments, community interactions, and disease outcomes (nature, activities, their interactions, and the outcomes) of people in China who are suffering from pneumoconiosis?
Phenomenological research question
- Knows more about the phenomena that have impacted an individual
What are the lived experiences of parents who have been living with and caring for children with a diagnosis of autism? (phenomena that have impacted an individual)
Grounded theory question
- Focuses on social processes asking about what happens and how people interact, or uncovering social relationships and behaviors of groups
What are the problems that pregnant adolescents face in terms of social and cultural norms (social processes), and how can these be addressed?
Qualitative case study question
- Assesses a phenomenon using different sources of data to answer “why” and “how” questions
- Considers how the phenomenon is influenced by its contextual situation.
How does quitting work and assuming the role of a full-time mother (phenomenon assessed) change the lives of women in Japan?
Qualitative research hypotheses
Hypothesis-generating (Qualitative hypothesis-generating research)
- Qualitative research uses inductive reasoning.
- This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the hypothesis.
- Qualitative exploratory studies explore areas deeper, clarifying subjective experience and allowing formulation of a formal hypothesis potentially testable in a future quantitative approach.

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

VariablesUnclear and weak statement (Statement 1) Clear and good statement (Statement 2) Points to avoid
Research questionWhich is more effective between smoke moxibustion and smokeless moxibustion?“Moreover, regarding smoke moxibustion versus smokeless moxibustion, it remains unclear which is more effective, safe, and acceptable to pregnant women, and whether there is any difference in the amount of heat generated.” 1) Vague and unfocused questions
2) Closed questions simply answerable by yes or no
3) Questions requiring a simple choice
HypothesisThe smoke moxibustion group will have higher cephalic presentation.“Hypothesis 1. The smoke moxibustion stick group (SM group) and smokeless moxibustion stick group (-SLM group) will have higher rates of cephalic presentation after treatment than the control group.1) Unverifiable hypotheses
Hypothesis 2. The SM group and SLM group will have higher rates of cephalic presentation at birth than the control group.2) Incompletely stated groups of comparison
Hypothesis 3. There will be no significant differences in the well-being of the mother and child among the three groups in terms of the following outcomes: premature birth, premature rupture of membranes (PROM) at < 37 weeks, Apgar score < 7 at 5 min, umbilical cord blood pH < 7.1, admission to neonatal intensive care unit (NICU), and intrauterine fetal death.” 3) Insufficiently described variables or outcomes
Research objectiveTo determine which is more effective between smoke moxibustion and smokeless moxibustion.“The specific aims of this pilot study were (a) to compare the effects of smoke moxibustion and smokeless moxibustion treatments with the control group as a possible supplement to ECV for converting breech presentation to cephalic presentation and increasing adherence to the newly obtained cephalic position, and (b) to assess the effects of these treatments on the well-being of the mother and child.” 1) Poor understanding of the research question and hypotheses
2) Insufficient description of population, variables, or study outcomes

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

VariablesUnclear and weak statement (Statement 1)Clear and good statement (Statement 2)Points to avoid
Research questionDoes disrespect and abuse (D&A) occur in childbirth in Tanzania?How does disrespect and abuse (D&A) occur and what are the types of physical and psychological abuses observed in midwives’ actual care during facility-based childbirth in urban Tanzania?1) Ambiguous or oversimplistic questions
2) Questions unverifiable by data collection and analysis
HypothesisDisrespect and abuse (D&A) occur in childbirth in Tanzania.Hypothesis 1: Several types of physical and psychological abuse by midwives in actual care occur during facility-based childbirth in urban Tanzania.1) Statements simply expressing facts
Hypothesis 2: Weak nursing and midwifery management contribute to the D&A of women during facility-based childbirth in urban Tanzania.2) Insufficiently described concepts or variables
Research objectiveTo describe disrespect and abuse (D&A) in childbirth in Tanzania.“This study aimed to describe from actual observations the respectful and disrespectful care received by women from midwives during their labor period in two hospitals in urban Tanzania.” 1) Statements unrelated to the research question and hypotheses
2) Unattainable or unexplorable objectives

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

list of quantitative research examples

Research Question Examples 🧑🏻‍🏫

25+ Practical Examples & Ideas To Help You Get Started 

By: Derek Jansen (MBA) | October 2023

A well-crafted research question (or set of questions) sets the stage for a robust study and meaningful insights.  But, if you’re new to research, it’s not always clear what exactly constitutes a good research question. In this post, we’ll provide you with clear examples of quality research questions across various disciplines, so that you can approach your research project with confidence!

Research Question Examples

  • Psychology research questions
  • Business research questions
  • Education research questions
  • Healthcare research questions
  • Computer science research questions

Examples: Psychology

Let’s start by looking at some examples of research questions that you might encounter within the discipline of psychology.

How does sleep quality affect academic performance in university students?

This question is specific to a population (university students) and looks at a direct relationship between sleep and academic performance, both of which are quantifiable and measurable variables.

What factors contribute to the onset of anxiety disorders in adolescents?

The question narrows down the age group and focuses on identifying multiple contributing factors. There are various ways in which it could be approached from a methodological standpoint, including both qualitatively and quantitatively.

Do mindfulness techniques improve emotional well-being?

This is a focused research question aiming to evaluate the effectiveness of a specific intervention.

How does early childhood trauma impact adult relationships?

This research question targets a clear cause-and-effect relationship over a long timescale, making it focused but comprehensive.

Is there a correlation between screen time and depression in teenagers?

This research question focuses on an in-demand current issue and a specific demographic, allowing for a focused investigation. The key variables are clearly stated within the question and can be measured and analysed (i.e., high feasibility).

Free Webinar: How To Find A Dissertation Research Topic

Examples: Business/Management

Next, let’s look at some examples of well-articulated research questions within the business and management realm.

How do leadership styles impact employee retention?

This is an example of a strong research question because it directly looks at the effect of one variable (leadership styles) on another (employee retention), allowing from a strongly aligned methodological approach.

What role does corporate social responsibility play in consumer choice?

Current and precise, this research question can reveal how social concerns are influencing buying behaviour by way of a qualitative exploration.

Does remote work increase or decrease productivity in tech companies?

Focused on a particular industry and a hot topic, this research question could yield timely, actionable insights that would have high practical value in the real world.

How do economic downturns affect small businesses in the homebuilding industry?

Vital for policy-making, this highly specific research question aims to uncover the challenges faced by small businesses within a certain industry.

Which employee benefits have the greatest impact on job satisfaction?

By being straightforward and specific, answering this research question could provide tangible insights to employers.

Examples: Education

Next, let’s look at some potential research questions within the education, training and development domain.

How does class size affect students’ academic performance in primary schools?

This example research question targets two clearly defined variables, which can be measured and analysed relatively easily.

Do online courses result in better retention of material than traditional courses?

Timely, specific and focused, answering this research question can help inform educational policy and personal choices about learning formats.

What impact do US public school lunches have on student health?

Targeting a specific, well-defined context, the research could lead to direct changes in public health policies.

To what degree does parental involvement improve academic outcomes in secondary education in the Midwest?

This research question focuses on a specific context (secondary education in the Midwest) and has clearly defined constructs.

What are the negative effects of standardised tests on student learning within Oklahoma primary schools?

This research question has a clear focus (negative outcomes) and is narrowed into a very specific context.

Need a helping hand?

list of quantitative research examples

Examples: Healthcare

Shifting to a different field, let’s look at some examples of research questions within the healthcare space.

What are the most effective treatments for chronic back pain amongst UK senior males?

Specific and solution-oriented, this research question focuses on clear variables and a well-defined context (senior males within the UK).

How do different healthcare policies affect patient satisfaction in public hospitals in South Africa?

This question is has clearly defined variables and is narrowly focused in terms of context.

Which factors contribute to obesity rates in urban areas within California?

This question is focused yet broad, aiming to reveal several contributing factors for targeted interventions.

Does telemedicine provide the same perceived quality of care as in-person visits for diabetes patients?

Ideal for a qualitative study, this research question explores a single construct (perceived quality of care) within a well-defined sample (diabetes patients).

Which lifestyle factors have the greatest affect on the risk of heart disease?

This research question aims to uncover modifiable factors, offering preventive health recommendations.

Research topic evaluator

Examples: Computer Science

Last but certainly not least, let’s look at a few examples of research questions within the computer science world.

What are the perceived risks of cloud-based storage systems?

Highly relevant in our digital age, this research question would align well with a qualitative interview approach to better understand what users feel the key risks of cloud storage are.

Which factors affect the energy efficiency of data centres in Ohio?

With a clear focus, this research question lays a firm foundation for a quantitative study.

How do TikTok algorithms impact user behaviour amongst new graduates?

While this research question is more open-ended, it could form the basis for a qualitative investigation.

What are the perceived risk and benefits of open-source software software within the web design industry?

Practical and straightforward, the results could guide both developers and end-users in their choices.

Remember, these are just examples…

In this post, we’ve tried to provide a wide range of research question examples to help you get a feel for what research questions look like in practice. That said, it’s important to remember that these are just examples and don’t necessarily equate to good research topics . If you’re still trying to find a topic, check out our topic megalist for inspiration.

list of quantitative research examples

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

Tlholohelo Molalle

Research ideas on Political Science

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Privacy Policy

Research Method

Home » Quantitative Data – Types, Methods and Examples

Quantitative Data – Types, Methods and Examples

Table of Contents

 Quantitative Data

Quantitative Data

Definition:

Quantitative data refers to numerical data that can be measured or counted. This type of data is often used in scientific research and is typically collected through methods such as surveys, experiments, and statistical analysis.

Quantitative Data Types

There are two main types of quantitative data: discrete and continuous.

  • Discrete data: Discrete data refers to numerical values that can only take on specific, distinct values. This type of data is typically represented as whole numbers and cannot be broken down into smaller units. Examples of discrete data include the number of students in a class, the number of cars in a parking lot, and the number of children in a family.
  • Continuous data: Continuous data refers to numerical values that can take on any value within a certain range or interval. This type of data is typically represented as decimal or fractional values and can be broken down into smaller units. Examples of continuous data include measurements of height, weight, temperature, and time.

Quantitative Data Collection Methods

There are several common methods for collecting quantitative data. Some of these methods include:

  • Surveys : Surveys involve asking a set of standardized questions to a large number of people. Surveys can be conducted in person, over the phone, via email or online, and can be used to collect data on a wide range of topics.
  • Experiments : Experiments involve manipulating one or more variables and observing the effects on a specific outcome. Experiments can be conducted in a controlled laboratory setting or in the real world.
  • Observational studies : Observational studies involve observing and collecting data on a specific phenomenon without intervening or manipulating any variables. Observational studies can be conducted in a natural setting or in a laboratory.
  • Secondary data analysis : Secondary data analysis involves using existing data that was collected for a different purpose to answer a new research question. This method can be cost-effective and efficient, but it is important to ensure that the data is appropriate for the research question being studied.
  • Physiological measures: Physiological measures involve collecting data on biological or physiological processes, such as heart rate, blood pressure, or brain activity.
  • Computerized tracking: Computerized tracking involves collecting data automatically from electronic sources, such as social media, online purchases, or website analytics.

Quantitative Data Analysis Methods

There are several methods for analyzing quantitative data, including:

  • Descriptive statistics: Descriptive statistics are used to summarize and describe the basic features of the data, such as the mean, median, mode, standard deviation, and range.
  • Inferential statistics : Inferential statistics are used to make generalizations about a population based on a sample of data. These methods include hypothesis testing, confidence intervals, and regression analysis.
  • Data visualization: Data visualization involves creating charts, graphs, and other visual representations of the data to help identify patterns and trends. Common types of data visualization include histograms, scatterplots, and bar charts.
  • Time series analysis: Time series analysis involves analyzing data that is collected over time to identify patterns and trends in the data.
  • Multivariate analysis : Multivariate analysis involves analyzing data with multiple variables to identify relationships between the variables.
  • Factor analysis : Factor analysis involves identifying underlying factors or dimensions that explain the variation in the data.
  • Cluster analysis: Cluster analysis involves identifying groups or clusters of observations that are similar to each other based on multiple variables.

Quantitative Data Formats

Quantitative data can be represented in different formats, depending on the nature of the data and the purpose of the analysis. Here are some common formats:

  • Tables : Tables are a common way to present quantitative data, particularly when the data involves multiple variables. Tables can be used to show the frequency or percentage of data in different categories or to display summary statistics.
  • Charts and graphs: Charts and graphs are useful for visualizing quantitative data and can be used to highlight patterns and trends in the data. Some common types of charts and graphs include line charts, bar charts, scatterplots, and pie charts.
  • Databases : Quantitative data can be stored in databases, which allow for easy sorting, filtering, and analysis of large amounts of data.
  • Spreadsheets : Spreadsheets can be used to organize and analyze quantitative data, particularly when the data is relatively small in size. Spreadsheets allow for calculations and data manipulation, as well as the creation of charts and graphs.
  • Statistical software : Statistical software, such as SPSS, R, and SAS, can be used to analyze quantitative data. These programs allow for more advanced statistical analyses and data modeling, as well as the creation of charts and graphs.

Quantitative Data Gathering Guide

Here is a basic guide for gathering quantitative data:

  • Define the research question: The first step in gathering quantitative data is to clearly define the research question. This will help determine the type of data to be collected, the sample size, and the methods of data analysis.
  • Choose the data collection method: Select the appropriate method for collecting data based on the research question and available resources. This could include surveys, experiments, observational studies, or other methods.
  • Determine the sample size: Determine the appropriate sample size for the research question. This will depend on the level of precision needed and the variability of the population being studied.
  • Develop the data collection instrument: Develop a questionnaire or survey instrument that will be used to collect the data. The instrument should be designed to gather the specific information needed to answer the research question.
  • Pilot test the data collection instrument : Before collecting data from the entire sample, pilot test the instrument on a small group to identify any potential problems or issues.
  • Collect the data: Collect the data from the selected sample using the chosen data collection method.
  • Clean and organize the data : Organize the data into a format that can be easily analyzed. This may involve checking for missing data, outliers, or errors.
  • Analyze the data: Analyze the data using appropriate statistical methods. This may involve descriptive statistics, inferential statistics, or other types of analysis.
  • Interpret the results: Interpret the results of the analysis in the context of the research question. Identify any patterns, trends, or relationships in the data and draw conclusions based on the findings.
  • Communicate the findings: Communicate the findings of the analysis in a clear and concise manner, using appropriate tables, graphs, and other visual aids as necessary. The results should be presented in a way that is accessible to the intended audience.

Examples of Quantitative Data

Here are some examples of quantitative data:

  • Height of a person (measured in inches or centimeters)
  • Weight of a person (measured in pounds or kilograms)
  • Temperature (measured in Fahrenheit or Celsius)
  • Age of a person (measured in years)
  • Number of cars sold in a month
  • Amount of rainfall in a specific area (measured in inches or millimeters)
  • Number of hours worked in a week
  • GPA (grade point average) of a student
  • Sales figures for a product
  • Time taken to complete a task.
  • Distance traveled (measured in miles or kilometers)
  • Speed of an object (measured in miles per hour or kilometers per hour)
  • Number of people attending an event
  • Price of a product (measured in dollars or other currency)
  • Blood pressure (measured in millimeters of mercury)
  • Amount of sugar in a food item (measured in grams)
  • Test scores (measured on a numerical scale)
  • Number of website visitors per day
  • Stock prices (measured in dollars)
  • Crime rates (measured by the number of crimes per 100,000 people)

Applications of Quantitative Data

Quantitative data has a wide range of applications across various fields, including:

  • Scientific research: Quantitative data is used extensively in scientific research to test hypotheses and draw conclusions. For example, in biology, researchers might use quantitative data to measure the growth rate of cells or the effectiveness of a drug treatment.
  • Business and economics: Quantitative data is used to analyze business and economic trends, forecast future performance, and make data-driven decisions. For example, a company might use quantitative data to analyze sales figures and customer demographics to determine which products are most popular among which segments of their customer base.
  • Education: Quantitative data is used in education to measure student performance, evaluate teaching methods, and identify areas where improvement is needed. For example, a teacher might use quantitative data to track the progress of their students over the course of a semester and adjust their teaching methods accordingly.
  • Public policy: Quantitative data is used in public policy to evaluate the effectiveness of policies and programs, identify areas where improvement is needed, and develop evidence-based solutions. For example, a government agency might use quantitative data to evaluate the impact of a social welfare program on poverty rates.
  • Healthcare : Quantitative data is used in healthcare to evaluate the effectiveness of medical treatments, track the spread of diseases, and identify risk factors for various health conditions. For example, a doctor might use quantitative data to monitor the blood pressure levels of their patients over time and adjust their treatment plan accordingly.

Purpose of Quantitative Data

The purpose of quantitative data is to provide a numerical representation of a phenomenon or observation. Quantitative data is used to measure and describe the characteristics of a population or sample, and to test hypotheses and draw conclusions based on statistical analysis. Some of the key purposes of quantitative data include:

  • Measuring and describing : Quantitative data is used to measure and describe the characteristics of a population or sample, such as age, income, or education level. This allows researchers to better understand the population they are studying.
  • Testing hypotheses: Quantitative data is often used to test hypotheses and theories by collecting numerical data and analyzing it using statistical methods. This can help researchers determine whether there is a statistically significant relationship between variables or whether there is support for a particular theory.
  • Making predictions : Quantitative data can be used to make predictions about future events or trends based on past data. This is often done through statistical modeling or time series analysis.
  • Evaluating programs and policies: Quantitative data is often used to evaluate the effectiveness of programs and policies. This can help policymakers and program managers identify areas where improvements can be made and make evidence-based decisions about future programs and policies.

When to use Quantitative Data

Quantitative data is appropriate to use when you want to collect and analyze numerical data that can be measured and analyzed using statistical methods. Here are some situations where quantitative data is typically used:

  • When you want to measure a characteristic or behavior : If you want to measure something like the height or weight of a population or the number of people who smoke, you would use quantitative data to collect this information.
  • When you want to compare groups: If you want to compare two or more groups, such as comparing the effectiveness of two different medical treatments, you would use quantitative data to collect and analyze the data.
  • When you want to test a hypothesis : If you have a hypothesis or theory that you want to test, you would use quantitative data to collect data that can be analyzed statistically to determine whether your hypothesis is supported by the data.
  • When you want to make predictions: If you want to make predictions about future trends or events, such as predicting sales for a new product, you would use quantitative data to collect and analyze data from past trends to make your prediction.
  • When you want to evaluate a program or policy : If you want to evaluate the effectiveness of a program or policy, you would use quantitative data to collect data about the program or policy and analyze it statistically to determine whether it has had the intended effect.

Characteristics of Quantitative Data

Quantitative data is characterized by several key features, including:

  • Numerical values : Quantitative data consists of numerical values that can be measured and counted. These values are often expressed in terms of units, such as dollars, centimeters, or kilograms.
  • Continuous or discrete : Quantitative data can be either continuous or discrete. Continuous data can take on any value within a certain range, while discrete data can only take on certain values.
  • Objective: Quantitative data is objective, meaning that it is not influenced by personal biases or opinions. It is based on empirical evidence that can be measured and analyzed using statistical methods.
  • Large sample size: Quantitative data is often collected from a large sample size in order to ensure that the results are statistically significant and representative of the population being studied.
  • Statistical analysis: Quantitative data is typically analyzed using statistical methods to determine patterns, relationships, and other characteristics of the data. This allows researchers to make more objective conclusions based on empirical evidence.
  • Precision : Quantitative data is often very precise, with measurements taken to multiple decimal points or significant figures. This precision allows for more accurate analysis and interpretation of the data.

Advantages of Quantitative Data

Some advantages of quantitative data are:

  • Objectivity : Quantitative data is usually objective because it is based on measurable and observable variables. This means that different people who collect the same data will generally get the same results.
  • Precision : Quantitative data provides precise measurements of variables. This means that it is easier to make comparisons and draw conclusions from quantitative data.
  • Replicability : Since quantitative data is based on objective measurements, it is often easier to replicate research studies using the same or similar data.
  • Generalizability : Quantitative data allows researchers to generalize findings to a larger population. This is because quantitative data is often collected using random sampling methods, which help to ensure that the data is representative of the population being studied.
  • Statistical analysis : Quantitative data can be analyzed using statistical methods, which allows researchers to test hypotheses and draw conclusions about the relationships between variables.
  • Efficiency : Quantitative data can often be collected quickly and efficiently using surveys or other standardized instruments, which makes it a cost-effective way to gather large amounts of data.

Limitations of Quantitative Data

Some Limitations of Quantitative Data are as follows:

  • Limited context: Quantitative data does not provide information about the context in which the data was collected. This can make it difficult to understand the meaning behind the numbers.
  • Limited depth: Quantitative data is often limited to predetermined variables and questions, which may not capture the complexity of the phenomenon being studied.
  • Difficulty in capturing qualitative aspects: Quantitative data is unable to capture the subjective experiences and qualitative aspects of human behavior, such as emotions, attitudes, and motivations.
  • Possibility of bias: The collection and interpretation of quantitative data can be influenced by biases, such as sampling bias, measurement bias, or researcher bias.
  • Simplification of complex phenomena: Quantitative data may oversimplify complex phenomena by reducing them to numerical measurements and statistical analyses.
  • Lack of flexibility: Quantitative data collection methods may not allow for changes or adaptations in the research process, which can limit the ability to respond to unexpected findings or new insights.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Information

Information in Research – Types and Examples

Research Data

Research Data – Types Methods and Examples

Primary Data

Primary Data – Types, Methods and Examples

Secondary Data

Secondary Data – Types, Methods and Examples

Qualitative Data

Qualitative Data – Types, Methods and Examples

  • Databank Solution
  • Credit Risk Solution
  • Valuation Analytics Solution
  • ESG Sustainability Solution
  • Quantitative Finance Solution
  • Regulatory Technology Solution
  • Product Introduction
  • Service Provide Method
  • Learning Video

Quantitative Data Analysis Guide: Methods, Examples & Uses

list of quantitative research examples

This guide will introduce the types of data analysis used in quantitative research, then discuss relevant examples and applications in the finance industry.

Table of Contents

An Overview of Quantitative Data Analysis

What is quantitative data analysis and what is it for .

Quantitative data analysis is the process of interpreting meaning and extracting insights from numerical data , which involves mathematical calculations and statistical reviews to uncover patterns, trends, and relationships between variables.

Beyond academic and statistical research, this approach is particularly useful in the finance industry. Financial data, such as stock prices, interest rates, and economic indicators, can all be quantified with statistics and metrics to offer crucial insights for informed investment decisions. To illustrate this, here are some examples of what quantitative data is usually used for:

  • Measuring Differences between Groups: For instance, analyzing historical stock prices of different companies or asset classes can reveal which companies consistently outperform the market average.
  • Assessing Relationships between Variables: An investor could analyze the relationship between a company’s price-to-earnings ratio (P/E ratio) and relevant factors, like industry performance, inflation rates, interests, etc, allowing them to predict future stock price growth.
  • Testing Hypotheses: For example, an investor might hypothesize that companies with strong ESG (Environment, Social, and Governance) practices outperform those without. By categorizing these companies into two groups (strong ESG vs. weak ESG practices), they can compare the average return on investment (ROI) between the groups while assessing relevant factors to find evidence for the hypothesis. 

Ultimately, quantitative data analysis helps investors navigate the complex financial landscape and pursue profitable opportunities.

Quantitative Data Analysis VS. Qualitative Data Analysis

Although quantitative data analysis is a powerful tool, it cannot be used to provide context for your research, so this is where qualitative analysis comes in. Qualitative analysis is another common research method that focuses on collecting and analyzing non-numerical data , like text, images, or audio recordings to gain a deeper understanding of experiences, opinions, and motivations. Here’s a table summarizing its key differences between quantitative data analysis:

Types of Data UsedNumerical data: numbers, percentages, etc.Non-numerical data: text, images, audio, narratives, etc
Perspective More objective and less prone to biasMore subjective as it may be influenced by the researcher’s interpretation
Data CollectionClosed-ended questions, surveys, pollsOpen-ended questions, interviews, observations
Data AnalysisStatistical methods, numbers, graphs, chartsCategorization, thematic analysis, verbal communication
Focus and and
Best Use CaseMeasuring trends, comparing groups, testing hypothesesUnderstanding user experience, exploring consumer motivations, uncovering new ideas

Due to their characteristics, quantitative analysis allows you to measure and compare large datasets; while qualitative analysis helps you understand the context behind the data. In some cases, researchers might even use both methods together for a more comprehensive understanding, but we’ll mainly focus on quantitative analysis for this article.

The 2 Main Quantitative Data Analysis Methods

Once you have your data collected, you have to use descriptive statistics or inferential statistics analysis to draw summaries and conclusions from your raw numbers. 

As its name suggests, the purpose of descriptive statistics is to describe your sample . It provides the groundwork for understanding your data by focusing on the details and characteristics of the specific group you’ve collected data from. 

On the other hand, inferential statistics act as bridges that connect your sample data to the broader population you’re truly interested in, helping you to draw conclusions in your research. Moreover, choosing the right inferential technique for your specific data and research questions is dependent on the initial insights from descriptive statistics, so both of these methods usually go hand-in-hand.

Descriptive Statistics Analysis

With sophisticated descriptive statistics, you can detect potential errors in your data by highlighting inconsistencies and outliers that might otherwise go unnoticed. Additionally, the characteristics revealed by descriptive statistics will help determine which inferential techniques are suitable for further analysis.

Measures in Descriptive Statistics

One of the key statistical tests used for descriptive statistics is central tendency . It consists of mean, median, and mode, telling you where most of your data points cluster:

  • Mean: It refers to the “average” and is calculated by adding all the values in your data set and dividing by the number of values.
  • Median: The middle value when your data is arranged in ascending or descending order. If you have an odd number of data points, the median is the exact middle value; with even numbers, it’s the average of the two middle values. 
  • Mode: This refers to the most frequently occurring value in your data set, indicating the most common response or observation. Some data can have multiple modes (bimodal) or no mode at all.

Another statistic to test in descriptive analysis is the measures of dispersion , which involves range and standard deviation, revealing how spread out your data is relative to the central tendency measures:

  • Range: It refers to the difference between the highest and lowest values in your data set. 
  • Standard Deviation (SD): This tells you how the data is distributed within the range, revealing how much, on average, each data point deviates from the mean. Lower standard deviations indicate data points clustered closer to the mean, while higher standard deviations suggest a wider spread.

The shape of the distribution will then be measured through skewness. 

  • Skewness: A statistic that indicates whether your data leans to one side (positive or negative) or is symmetrical (normal distribution). A positive skew suggests more data points concentrated on the lower end, while a negative skew indicates more data points on the higher end.

While the core measures mentioned above are fundamental, there are additional descriptive statistics used in specific contexts, including percentiles and interquartile range.

  • Percentiles: This divides your data into 100 equal parts, revealing what percentage of data falls below a specific value. The 25th percentile (Q1) is the first quartile, the 50th percentile (Q2) is the median, and the 75th percentile (Q3) is the third quartile. Knowing these quartiles can help visualize the spread of your data.
  • Interquartile Range (IQR): This measures the difference between Q3 and Q1, representing the middle 50% of your data.

Example of Descriptive Quantitative Data Analysis 

Let’s illustrate these concepts with a real-world example. Imagine a financial advisor analyzing a client’s portfolio. They have data on the client’s various holdings, including stock prices over the past year. With descriptive statistics they can obtain the following information:

  • Central Tendency: The mean price for each stock reveals its average price over the year. The median price can further highlight if there were any significant price spikes or dips that skewed the mean.
  • Measures of Dispersion: The standard deviation for each stock indicates its price volatility. A high standard deviation suggests the stock’s price fluctuated considerably, while a low standard deviation implies a more stable price history. This helps the advisor assess each stock’s risk profile.
  • Shape of the Distribution: If data allows, analyzing skewness can be informative. A positive skew for a stock might suggest more frequent price drops, while a negative skew might indicate more frequent price increases.

By calculating these descriptive statistics, the advisor gains a quick understanding of the client’s portfolio performance and risk distribution. For instance, they could use correlation analysis to see if certain stock prices tend to move together, helping them identify expansion opportunities within the portfolio.

While descriptive statistics provide a foundational understanding, they should be followed by inferential analysis to uncover deeper insights that are crucial for making investment decisions.

Inferential Statistics Analysis

Inferential statistics analysis is particularly useful for hypothesis testing , as you can formulate predictions about group differences or potential relationships between variables , then use statistical tests to see if your sample data supports those hypotheses.

However, the power of inferential statistics hinges on one crucial factor: sample representativeness . If your sample doesn’t accurately reflect the population, your predictions won’t be very reliable. 

Statistical Tests for Inferential Statistics

Here are some of the commonly used tests for inferential statistics in commerce and finance, which can also be integrated to most analysis software:

  • T-Tests: This compares the means, standard deviation, or skewness of two groups to assess if they’re statistically different, helping you determine if the observed difference is just a quirk within the sample or a significant reflection of the population.
  • ANOVA (Analysis of Variance): While T-Tests handle comparisons between two groups, ANOVA focuses on comparisons across multiple groups, allowing you to identify potential variations and trends within the population.
  • Correlation Analysis: This technique tests the relationship between two variables, assessing if one variable increases or decreases with the other. However, it’s important to note that just because two financial variables are correlated and move together, doesn’t necessarily mean one directly influences the other.
  • Regression Analysis: Building on correlation, regression analysis goes a step further to verify the cause-and-effect relationships between the tested variables, allowing you to investigate if one variable actually influences the other.
  • Cross-Tabulation: This breaks down the relationship between two categorical variables by displaying the frequency counts in a table format, helping you to understand how different groups within your data set might behave. The data in cross-tabulation can be mutually exclusive or have several connections with each other. 
  • Trend Analysis: This examines how a variable in quantitative data changes over time, revealing upward or downward trends, as well as seasonal fluctuations. This can help you forecast future trends, and also lets you assess the effectiveness of the interventions in your marketing or investment strategy.
  • MaxDiff Analysis: This is also known as the “best-worst” method. It evaluates customer preferences by asking respondents to choose the most and least preferred options from a set of products or services, allowing stakeholders to optimize product development or marketing strategies.
  • Conjoint Analysis: Similar to MaxDiff, conjoint analysis gauges customer preferences, but it goes a step further by allowing researchers to see how changes in different product features (price, size, brand) influence overall preference.
  • TURF Analysis (Total Unduplicated Reach and Frequency Analysis): This assesses a marketing campaign’s reach and frequency of exposure in different channels, helping businesses identify the most efficient channels to reach target audiences.
  • Gap Analysis: This compares current performance metrics against established goals or benchmarks, using numerical data to represent the factors involved. This helps identify areas where performance falls short of expectations, serving as a springboard for developing strategies to bridge the gap and achieve those desired outcomes.
  • SWOT Analysis (Strengths, Weaknesses, Opportunities, and Threats): This uses ratings or rankings to represent an organization’s internal strengths and weaknesses, along with external opportunities and threats. Based on this analysis, organizations can create strategic plans to capitalize on opportunities while minimizing risks.
  • Text Analysis: This is an advanced method that uses specialized software to categorize and quantify themes, sentiment (positive, negative, neutral), and topics within textual data, allowing companies to obtain structured quantitative data from surveys, social media posts, or customer reviews.

Example of Inferential Quantitative Data Analysis

If you’re a financial analyst studying the historical performance of a particular stock, here are some predictions you can make with inferential statistics:

  • The Differences between Groups: You can conduct T-Tests to compare the average returns of stocks in the technology sector with those in the healthcare sector. It can help assess if the observed difference in returns between these two sectors is simply due to random chance or if it’s statistically significant due to a significant difference in their performance.
  • The Relationships between Variables: If you’re curious about the connection between a company’s price-to-earnings ratio (P/E ratios) and its future stock price movements, conducting correlation analysis can let you measure the strength and direction of this relationship. Is there a negative correlation, suggesting that higher P/E ratios might be associated with lower future stock prices? Or is there no significant correlation at all?

Understanding these inferential analysis techniques can help you uncover potential relationships and group differences that might not be readily apparent from descriptive statistics alone. Nonetheless, it’s important to remember that each technique has its own set of assumptions and limitations . Some methods are designed for parametric data with a normal distribution, while others are suitable for non-parametric data. 

Guide to Conduct Data Analysis in Quantitative Research

Now that we have discussed the types of data analysis techniques used in quantitative research, here’s a quick guide to help you choose the right method and grasp the essential steps of quantitative data analysis.

How to Choose the Right Quantitative Analysis Method?

Choosing between all these quantitative analysis methods may seem like a complicated task, but if you consider the 2 following factors, you can definitely choose the right technique:

Factor 1: Data Type

The data used in quantitative analysis can be categorized into two types, discrete data and continuous data, based on how they’re measured. They can also be further differentiated by their measurement scale. The four main types of measurement scales include: nominal, ordinal, interval or ratio. Understanding the distinctions between them is essential for choosing the appropriate statistical methods to interpret the results of your quantitative data analysis accurately.

Discrete data , which is also known as attribute data, represents whole numbers that can be easily counted and separated into distinct categories. It is often visualized using bar charts or pie charts, making it easy to see the frequency of each value. In the financial world, examples of discrete quantitative data include:

  • The number of shares owned by an investor in a particular company
  • The number of customer transactions processed by a bank per day
  • Bond ratings (AAA, BBB, etc.) that represent discrete categories indicating the creditworthiness of a bond issuer
  • The number of customers with different account types (checking, savings, investment) as seen in the pie chart below:

Pie chart illustrating the distribution customers with different account types (checking, savings, investment, salary)

Discrete data usually use nominal or ordinal measurement scales, which can be then quantified to calculate their mode or median. Here are some examples:

  • Nominal: This scale categorizes data into distinct groups with no inherent order. For instance, data on bank account types can be considered nominal data as it classifies customers in distinct categories which are independent of each other, either checking, savings, or investment accounts. and no inherent order or ranking implied by these account types.
  • Ordinal: Ordinal data establishes a rank or order among categories. For example, investment risk ratings (low, medium, high) are ordered based on their perceived risk of loss, making it a type or ordinal data.

Conversely, continuous data can take on any value and fluctuate over time. It is usually visualized using line graphs, effectively showcasing how the values can change within a specific time frame. Examples of continuous data in the financial industry include:

  • Interest rates set by central banks or offered by banks on loans and deposits
  • Currency exchange rates which also fluctuate constantly throughout the day
  • Daily trading volume of a particular stock on a specific day
  • Stock prices that fluctuate throughout the day, as seen in the line graph below:

Line chart illustrating the fluctuating stock prices

Source: Freepik

The measurement scale for continuous data is usually interval or ratio . Here is breakdown of their differences:

  • Interval: This builds upon ordinal data by having consistent intervals between each unit, and its zero point doesn’t represent a complete absence of the variable. Let’s use credit score as an example. While the scale ranges from 300 to 850, the interval between each score rating is consistent (50 points), and a score of zero wouldn’t indicate an absence of credit history, but rather no credit score available. 
  • Ratio: This scale has all the same characteristics of interval data but also has a true zero point, indicating a complete absence of the variable. Interest rates expressed as percentages are a classic example of ratio data. A 0% interest rate signifies the complete absence of any interest charged or earned, making it a true zero point.

Factor 2: Research Question

You also need to make sure that the analysis method aligns with your specific research questions. If you merely want to focus on understanding the characteristics of your data set, descriptive statistics might be all you need; if you need to analyze the connection between variables, then you have to include inferential statistics as well.

How to Analyze Quantitative Data 

Step 1: data collection  .

Depending on your research question, you might choose to conduct surveys or interviews. Distributing online or paper surveys can reach a broad audience, while interviews allow for deeper exploration of specific topics. You can also choose to source existing datasets from government agencies or industry reports.

Step 2: Data Cleaning

Raw data might contain errors, inconsistencies, or missing values, so data cleaning has to be done meticulously to ensure accuracy and consistency. This might involve removing duplicates, correcting typos, and handling missing information.

Furthermore, you should also identify the nature of your variables and assign them appropriate measurement scales , it could be nominal, ordinal, interval or ratio. This is important because it determines the types of descriptive statistics and analysis methods you can employ later. Once you categorize your data based on these measurement scales, you can arrange the data of each category in a proper order and organize it in a format that is convenient for you.

Step 3: Data Analysis

Based on the measurement scales of your variables, calculate relevant descriptive statistics to summarize your data. This might include measures of central tendency (mean, median, mode) and dispersion (range, standard deviation, variance). With these statistics, you can identify the pattern within your raw data. 

Then, these patterns can be analyzed further with inferential methods to test out the hypotheses you have developed. You may choose any of the statistical tests mentioned above, as long as they are compatible with the characteristics of your data.

Step 4. Data Interpretation and Communication 

Now that you have the results from your statistical analysis, you may draw conclusions based on the findings and incorporate them into your business strategies. Additionally, you should also transform your findings into clear and shareable information to facilitate discussion among stakeholders. Visualization techniques like tables, charts, or graphs can make complex data more digestible so that you can communicate your findings efficiently. 

Useful Quantitative Data Analysis Tools and Software 

We’ve compiled some commonly used quantitative data analysis tools and software. Choosing the right one depends on your experience level, project needs, and budget. Here’s a brief comparison: 

EasiestBeginners & basic analysisOne-time purchase with Microsoft Office Suite
EasySocial scientists & researchersPaid commercial license
EasyStudents & researchersPaid commercial license or student discounts
ModerateBusinesses & advanced researchPaid commercial license
ModerateResearchers & statisticiansPaid commercial license
Moderate (Coding optional)Programmers & data scientistsFree & Open-Source
Steep (Coding required)Experienced users & programmersFree & Open-Source
Steep (Coding required)Scientists & engineersPaid commercial license
Steep (Coding required)Scientists & engineersPaid commercial license

Quantitative Data in Finance and Investment

So how does this all affect the finance industry? Quantitative finance (or quant finance) has become a growing trend, with the quant fund market valued at $16,008.69 billion in 2023. This value is expected to increase at the compound annual growth rate of 10.09% and reach $31,365.94 billion by 2031, signifying its expanding role in the industry.

What is Quant Finance?

Quant finance is the process of using massive financial data and mathematical models to identify market behavior, financial trends, movements, and economic indicators, so that they can predict future trends.These calculated probabilities can be leveraged to find potential investment opportunities and maximize returns while minimizing risks.

Common Quantitative Investment Strategies

There are several common quantitative strategies, each offering unique approaches to help stakeholders navigate the market:

1. Statistical Arbitrage

This strategy aims for high returns with low volatility. It employs sophisticated algorithms to identify minuscule price discrepancies across the market, then capitalize on them at lightning speed, often generating short-term profits. However, its reliance on market efficiency makes it vulnerable to sudden market shifts, posing a risk of disrupting the calculations.

2. Factor Investing 

This strategy identifies and invests in assets based on factors like value, momentum, or quality. By analyzing these factors in quantitative databases , investors can construct portfolios designed to outperform the broader market. Overall, this method offers diversification and potentially higher returns than passive investing, but its success relies on the historical validity of these factors, which can evolve over time.

3. Risk Parity

This approach prioritizes portfolio balance above all else. Instead of allocating assets based on their market value, risk parity distributes them based on their risk contribution to achieve a desired level of overall portfolio risk, regardless of individual asset volatility. Although it is efficient in managing risks while potentially offering positive returns, it is important to note that this strategy’s complex calculations can be sensitive to unexpected market events.

4. Machine Learning & Artificial Intelligence (AI)

Quant analysts are beginning to incorporate these cutting-edge technologies into their strategies. Machine learning algorithms can act as data sifters, identifying complex patterns within massive datasets; whereas AI goes a step further, leveraging these insights to make investment decisions, essentially mimicking human-like decision-making with added adaptability. Despite the hefty development and implementation costs, its superior risk-adjusted returns and uncovering hidden patterns make this strategy a valuable asset.

Pros and Cons of Quantitative Data Analysis

Advantages of quantitative data analysis, minimum bias for reliable results.

Quantitative data analysis relies on objective, numerical data. This minimizes bias and human error, allowing stakeholders to make investment decisions without emotional intuitions that can cloud judgment. In turn, this offers reliable and consistent results for investment strategies.

Precise Calculations for Data-Driven Decisions

Quantitative analysis generates precise numerical results through statistical methods. This allows accurate comparisons between investment options and even predictions of future market behavior, helping investors make informed decisions about where to allocate their capital while managing potential risks.

Generalizability for Broader Insights 

By analyzing large datasets and identifying patterns, stakeholders can generalize the findings from quantitative analysis into broader populations, applying them to a wider range of investments for better portfolio construction and risk management

Efficiency for Extensive Research

Quantitative research is more suited to analyze large datasets efficiently, letting companies save valuable time and resources. The softwares used for quantitative analysis can automate the process of sifting through extensive financial data, facilitating quicker decision-making in the fast-paced financial environment.

Disadvantages of Quantitative Data Analysis

Limited scope .

By focusing on numerical data, quantitative analysis may provide a limited scope, as it can’t capture qualitative context such as emotions, motivations, or cultural factors. Although quantitative analysis provides a strong starting point, neglecting qualitative factors can lead to incomplete insights in the financial industry, impacting areas like customer relationship management and targeted marketing strategies.

Oversimplification 

Breaking down complex phenomena into numerical data could cause analysts to overlook the richness of the data, leading to the issue of oversimplification. Stakeholders who fail to understand the complexity of economic factors or market trends could face flawed investment decisions and missed opportunities.

Reliable Quantitative Data Solution 

In conclusion, quantitative data analysis offers a deeper insight into market trends and patterns, empowering you to make well-informed financial decisions. However, collecting comprehensive data and analyzing them can be a complex task that may divert resources from core investment activity. 

As a reliable provider, TEJ understands these concerns. Our TEJ Quantitative Investment Database offers high-quality financial and economic data for rigorous quantitative analysis. This data captures the true market conditions at specific points in time, enabling accurate backtesting of investment strategies.

Furthermore, TEJ offers diverse data sets that go beyond basic stock prices, encompassing various financial metrics, company risk attributes, and even broker trading information, all designed to empower your analysis and strategy development. Save resources and unlock the full potential of quantitative finance with TEJ’s data solutions today!

list of quantitative research examples

Subscribe to newsletter

  • Data Analysis 107
  • Market Research 48
  • TQuant Lab 25
  • Solution&DataSets
  • Privacy Policy Statement
  • Personal Data Policy
  • Copyright Information
  • Website licensing terms
  • Information Security Policy 

list of quantitative research examples

  • 11th Floor, No. 57, DongXing Road, Taipei 11070, Taiwan(R.O.C.)
  • +886-2-8768-1088
  • +886-2-8768-1336
  • [email protected]

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Qualitative vs Quantitative Research | Examples & Methods

Qualitative vs Quantitative Research | Examples & Methods

Published on 4 April 2022 by Raimo Streefkerk . Revised on 8 May 2023.

When collecting and analysing data, quantitative research deals with numbers and statistics, while qualitative research  deals with words and meanings. Both are important for gaining different kinds of knowledge.

Common quantitative methods include experiments, observations recorded as numbers, and surveys with closed-ended questions. Qualitative research Qualitative research is expressed in words . It is used to understand concepts, thoughts or experiences. This type of research enables you to gather in-depth insights on topics that are not well understood.

Table of contents

The differences between quantitative and qualitative research, data collection methods, when to use qualitative vs quantitative research, how to analyse qualitative and quantitative data, frequently asked questions about qualitative and quantitative research.

Quantitative and qualitative research use different research methods to collect and analyse data, and they allow you to answer different kinds of research questions.

Qualitative vs quantitative research

Prevent plagiarism, run a free check.

Quantitative and qualitative data can be collected using various methods. It is important to use a data collection method that will help answer your research question(s).

Many data collection methods can be either qualitative or quantitative. For example, in surveys, observations or case studies , your data can be represented as numbers (e.g. using rating scales or counting frequencies) or as words (e.g. with open-ended questions or descriptions of what you observe).

However, some methods are more commonly used in one type or the other.

Quantitative data collection methods

  • Surveys :  List of closed or multiple choice questions that is distributed to a sample (online, in person, or over the phone).
  • Experiments : Situation in which variables are controlled and manipulated to establish cause-and-effect relationships.
  • Observations: Observing subjects in a natural environment where variables can’t be controlled.

Qualitative data collection methods

  • Interviews : Asking open-ended questions verbally to respondents.
  • Focus groups: Discussion among a group of people about a topic to gather opinions that can be used for further research.
  • Ethnography : Participating in a community or organisation for an extended period of time to closely observe culture and behavior.
  • Literature review : Survey of published works by other authors.

A rule of thumb for deciding whether to use qualitative or quantitative data is:

  • Use quantitative research if you want to confirm or test something (a theory or hypothesis)
  • Use qualitative research if you want to understand something (concepts, thoughts, experiences)

For most research topics you can choose a qualitative, quantitative or mixed methods approach . Which type you choose depends on, among other things, whether you’re taking an inductive vs deductive research approach ; your research question(s) ; whether you’re doing experimental , correlational , or descriptive research ; and practical considerations such as time, money, availability of data, and access to respondents.

Quantitative research approach

You survey 300 students at your university and ask them questions such as: ‘on a scale from 1-5, how satisfied are your with your professors?’

You can perform statistical analysis on the data and draw conclusions such as: ‘on average students rated their professors 4.4’.

Qualitative research approach

You conduct in-depth interviews with 15 students and ask them open-ended questions such as: ‘How satisfied are you with your studies?’, ‘What is the most positive aspect of your study program?’ and ‘What can be done to improve the study program?’

Based on the answers you get you can ask follow-up questions to clarify things. You transcribe all interviews using transcription software and try to find commonalities and patterns.

Mixed methods approach

You conduct interviews to find out how satisfied students are with their studies. Through open-ended questions you learn things you never thought about before and gain new insights. Later, you use a survey to test these insights on a larger scale.

It’s also possible to start with a survey to find out the overall trends, followed by interviews to better understand the reasons behind the trends.

Qualitative or quantitative data by itself can’t prove or demonstrate anything, but has to be analysed to show its meaning in relation to the research questions. The method of analysis differs for each type of data.

Analysing quantitative data

Quantitative data is based on numbers. Simple maths or more advanced statistical analysis is used to discover commonalities or patterns in the data. The results are often reported in graphs and tables.

Applications such as Excel, SPSS, or R can be used to calculate things like:

  • Average scores
  • The number of times a particular answer was given
  • The correlation or causation between two or more variables
  • The reliability and validity of the results

Analysing qualitative data

Qualitative data is more difficult to analyse than quantitative data. It consists of text, images or videos instead of numbers.

Some common approaches to analysing qualitative data include:

  • Qualitative content analysis : Tracking the occurrence, position and meaning of words or phrases
  • Thematic analysis : Closely examining the data to identify the main themes and patterns
  • Discourse analysis : Studying how communication works in social contexts

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organise your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Streefkerk, R. (2023, May 08). Qualitative vs Quantitative Research | Examples & Methods. Scribbr. Retrieved 3 September 2024, from https://www.scribbr.co.uk/research-methods/quantitative-qualitative-research/

Is this article helpful?

Raimo Streefkerk

Raimo Streefkerk

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative to broader populations. .
Quantitative .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary . methods.
Secondary

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive . .
Experimental

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

Research methods for analyzing data
Research method Qualitative or quantitative? When to use
Quantitative To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyze the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyze data collected from interviews, , or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyze large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

"I thought AI Proofreading was useless but.."

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

IMAGES

  1. 😎 List of quantitative research titles. What Are Typical Quantitative

    list of quantitative research examples

  2. Quantitative Research

    list of quantitative research examples

  3. The Steps of Quantitative Research

    list of quantitative research examples

  4. quantitative research 10 examples

    list of quantitative research examples

  5. quantitative research 10 examples

    list of quantitative research examples

  6. Quantitative Research Examples

    list of quantitative research examples

VIDEO

  1. Variables in quantitative research: Types and examples

  2. Quantitative Research Purposes: Updating the Previous Theories

  3. Types of Quantitative Research

  4. Exploring Qualitative and Quantitative Research Methods and why you should use them

  5. 10 Difference Between Qualitative and Quantitative Research (With Table)

  6. Quantitative Research||Characteristics, Types, Advantages and Disadvantages of Quantitative Research

COMMENTS

  1. 500+ Quantitative Research Titles and Topics

    Table of Contents Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology, economics, and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there ...

  2. 100+ Best Quantitative Research Topics For Students In 2023

    The 100+ best quantitative research topics for students explain events with mathematical analysis and data points. Here are examples to guide you.

  3. What is Quantitative Research? Definition, Methods, Types, and Examples

    Before adopting quantitative research for your study, you need to understand what is quantitative research. Read this article to learn the quantitative research definition, key characteristics, types of quantitative research, methods and examples, and pros and cons of quantitative research.

  4. Examples of Quantitative Research Questions

    Learn the secrets of quantitative research with examples of quantitative research questions. How to formulate clear and concise inquiries.

  5. Quantitative Research

    Quantitative Research Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions. This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection ...

  6. What Is Quantitative Research?

    Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations.

  7. What is Quantitative Research? Definition, Examples, Key Advantages

    Quantitative research stands as a powerful research methodology dedicated to the systematic collection and analysis of measurable data. Learn more about quantitative research Examples, key advantages, methods and best practices.

  8. 98 Quantitative Research Questions & Examples

    Looking for quantitative market research questions to use in your business? We explain the use cases and give you 98 questions to take inspiration from.

  9. Research Guides: Research Methodologies: Quantitative Research

    What is Quantitative Research? Quantitative methodologies use statistics to analyze numerical data gathered by researchers to answer their research questions. Quantitative methods can be used to answer questions such as: What are the relationships between two or more variables?

  10. Quantitative Research: What It Is, Practices & Methods

    What is Quantitative Research? Quantitative research is a systematic investigation of phenomena by gathering quantifiable data and performing statistical, mathematical, or computational techniques. Quantitative research collects statistically significant information from existing and potential customers using sampling methods and sending out online surveys, online polls, and questionnaires ...

  11. What Is Quantitative Research? Types, Characteristics & Methods

    Learn what quantitative research is, its types, and the different methodologies it uses for researching data sets with examples.

  12. 10 Research Question Examples to Guide your Research Project

    Learn how to turn a weak research question into a strong one with examples suitable for a research paper, thesis or dissertation.

  13. 9 Quantitative Research Methods With Real Client Examples

    Primary Quantitative Research Methods When it comes to quantitative research, many people often confuse this type of research with the methodology. The research type refers to style of research while the data collection method can be different. Research types These are the primary types of quantitative research used by businesses today.

  14. Quantitative Research Examples

    Quantitative Research Examples - Introduction Quantitative research is a systematic approach to collecting and analyzing data from various sources. It uses statistical, computational, and mathematical methods to extract valuable findings and draw conclusions.

  15. A Practical Guide to Writing Quantitative and Qualitative Research

    The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development ...

  16. Research Question Examples & Ideas: The ULTIMATE List

    Examples: Education. Next, let's look at some potential research questions within the education, training and development domain. How does class size affect students' academic performance in primary schools? This example research question targets two clearly defined variables, which can be measured and analysed relatively easily.

  17. Quantitative research

    Quantitative research is a research strategy that focuses on quantifying the collection and analysis of data. [1] It is formed from a deductive approach where emphasis is placed on the testing of theory, shaped by empiricist and positivist philosophies.

  18. Qualitative vs. Quantitative Research

    When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

  19. Quantitative Data

    Quantitative data refers to numerical data that can be measured or counted. This type of data is often used in scientific research and is typically collected through methods such as surveys, experiments, and statistical analysis.

  20. Quantitative Data Analysis Guide: Methods, Examples & Uses

    Although quantitative data analysis is a powerful tool, it cannot be used to provide context for your research, so this is where qualitative analysis comes in. Qualitative analysis is another common research method that focuses on collecting and analyzing non-numerical data, like text, images, or audio recordings to gain a deeper understanding ...

  21. Qualitative vs Quantitative Research

    When collecting and analysing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

  22. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  23. Sampling in Quantitative Research (docx)

    Unlike quantitative research, we are hoping to get a representative sample, in a representative sample that can then data be generalized back to the population. That is the less the case in qualitative research. Since your sample size is so small in qualitative research, usually 8 to 14 participants.

  24. Research Methods

    Research Methods | Definitions, Types, Examples Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make.