Critical Thinking Models: A Comprehensive Guide for Effective Decision Making

Critical Thinking Models

Critical thinking models are valuable frameworks that help individuals develop and enhance their critical thinking skills . These models provide a structured approach to problem-solving and decision-making by encouraging the evaluation of information and arguments in a logical, systematic manner. By understanding and applying these models, one can learn to make well-reasoned judgments and decisions.

reason model of critical thinking

Key Takeaways

Fundamentals of critical thinking.

reason model of critical thinking

Definition and Importance

Critical thinking is the intellectual process of logically, objectively, and systematically evaluating information to form reasoned judgments, utilizing reasoning , logic , and evidence . It involves:

Core Cognitive Skills

Influence of cognitive biases.

A key aspect of critical thinking is recognizing and mitigating the impact of cognitive biases on our thought processes. Cognitive biases are cognitive shortcuts or heuristics that can lead to flawed reasoning and distort our understanding of a situation. Examples of cognitive biases include confirmation bias, anchoring bias, and availability heuristic.

To counter the influence of cognitive biases, critical thinkers must be aware of their own assumptions and strive to apply consistent and objective evaluation criteria in their thinking process. The practice of actively recognizing and addressing cognitive biases promotes an unbiased and rational approach to problem-solving and decision-making.

The Critical Thinking Process

reason model of critical thinking

Stages of Critical Thinking

The critical thinking process starts with gathering and evaluating data . This stage involves identifying relevant information and ensuring it is credible and reliable. Next, an individual engages in analysis by examining the data closely to understand its context and interpret its meaning. This step can involve breaking down complex ideas into simpler components for better understanding.

Values play a significant role in the critical thinking process. Critical thinkers assess the significance of moral, ethical, or cultural values shaping the issue, argument, or decision at hand. They determine whether these values align with the evidence and logic they have analyzed.

Application in Decision Making

Critical thinking models, the red model.

The RED Model stands for Recognize Assumptions, Evaluate Arguments, and Draw Conclusions. It emphasizes the importance of questioning assumptions, weighing evidence, and reaching logical conclusions.

Bloom’s Taxonomy

Bloom’s Taxonomy is a hierarchical model that classifies cognitive skills into six levels of complexity. These levels are remembering, understanding, applying, analyzing, evaluating, and creating. By progressing through these levels, individuals can develop higher-order thinking skills.

Paul-Elder Model

The Paul-Elder Model introduces the concept of “elements of thought,” focusing on a structured approach to critical thinking. This model promotes intellectual standards, such as clarity, accuracy, and relevance. It consists of three stages:

The Halpern Critical Thinking Assessment

These four critical thinking models can be used as frameworks to improve and enhance cognitive abilities. By learning and practicing these models, individuals can become better equipped to analyze complex information, evaluate options, and make well-informed decisions.

Evaluating Information and Arguments

Evidence assessment, logic and fallacies.

Being aware of these fallacies enables a thinker to effectively evaluate the strength of an argument and make sound judgments accordingly.

Argument Analysis

Enhancing critical thinking, strategies for improvement, critical thinking in education.

In the field of education, critical thinking is an essential component of effective learning and pedagogy. Integrating critical thinking into the curriculum encourages student autonomy, fosters innovation, and improves student outcomes. Teachers can use various approaches to promote critical thinking, such as:

Developing a Critical Thinking Mindset

Critical thinking in various contexts, the workplace and beyond.

In the workplace context, critical thinkers are able to recognize assumptions, evaluate arguments, and draw conclusions, following models such as the RED model . They can also adapt their thinking to suit various scenarios, allowing them to tackle complex and diverse problems.

Creative and Lateral Thinking

In conclusion, critical thinking is a multifaceted skill that comprises various thought processes, including creative and lateral thinking. By embracing these skills, individuals can excel in the workplace and in their personal lives, making better decisions and solving problems effectively.

Overcoming Challenges

Recognizing and addressing bias.

By adopting these practices, individuals can minimize the impact of biases and enhance the overall quality of their critical thinking skills.

Dealing with Information Overload

By implementing these techniques, individuals can effectively manage information overload, enabling them to process and analyze data more effectively, leading to better decision-making.

Measuring Critical Thinking

Assessment tools and criteria.

Furthermore, criteria for assessing critical thinking often include precision, relevance, and the ability to gather and analyze relevant information. Some assessors utilize the Halpern Critical Thinking Assessment , which measures the application of cognitive skills such as deduction, observation, and induction in real-world scenarios.

The Role of IQ and Tests

Frequently asked questions, what are the main steps involved in the paul-elder critical thinking model.

The Paul-Elder Critical Thinking Model is a comprehensive framework for developing critical thinking skills. The main steps include: identifying the purpose, formulating questions, gathering information, identifying assumptions, interpreting information, and evaluating arguments. The model emphasizes clarity, accuracy, precision, relevance, depth, breadth, logic, and fairness throughout the critical thinking process. By following these steps, individuals can efficiently analyze and evaluate complex ideas and issues.

Can you list five techniques to enhance critical thinking skills?

What is the red model of critical thinking and how is it applied, how do the ‘3 c’s’ of critical thinking contribute to effective problem-solving.

The ‘3 C’s’ of critical thinking – Curiosity, Creativity, and Criticism – collectively contribute to effective problem-solving. Curiosity allows individuals to explore various perspectives and ask thought-provoking questions, while Creativity helps develop innovative solutions and unique approaches to challenges. Criticism, or the ability to evaluate and analyze ideas objectively, ensures that the problem-solving process remains grounded in logic and relevance.

What characteristics distinguish critical thinking from creative thinking?

What are some recommended books to help improve problem-solving and critical thinking skills, you may also like, boost your associative thinking skills in problem solving: tips and strategies, critical thinking jokes, the 7 best critical thinking books for beginners, effective argumentation techniques: mastering persuasive communication, download this free ebook.

Video Series

reason model of critical thinking

  • Analyze the logic of a problem or issue
  • Analyze the logic of an article, essay, or text
  • Analyze the logic of any book of nonfiction
  • Evaluate an Author’s Reasoning
  • Analyze the logic of a character in a novel
  • Analyze the logic of a profession, subject, or discipline
  • Analyze the logic of a concept or idea
  • Distinguishing Inferences and Assumptions
  • Thinking Through Conflicting Ideas
  • Could you elaborate further?
  • Could you give me an example?
  • Could you illustrate what you mean?
  • How could we check on that?
  • How could we find out if that is true?
  • How could we verify or test that?
  • Could you be more specific?
  • Could you give me more details?
  • Could you be more exact?
  • How does that relate to the problem?
  • How does that bear on the question?
  • How does that help us with the issue?
  • What factors make this a difficult problem?
  • What are some of the complexities of this question?
  • What are some of the difficulties we need to deal with?
  • Do we need to look at this from another perspective?
  • Do we need to consider another point of view?
  • Do we need to look at this in other ways?
  • Does all this make sense together?
  • Does your first paragraph fit in with your last?
  • Does what you say follow from the evidence?
  • Is this the most important problem to consider?
  • Is this the central idea to focus on?
  • Which of these facts are most important?
  • Do I have any vested interest in this issue?
  • Am I sympathetically representing the viewpoints of others?

Everyone thinks; it is our nature to do so. But much of our thinking, left to itself, is biased, distorted, partial, uninformed, or downright prejudiced. If we want to think well, we must understand at least the udiments of thought, the most basic structures out of which all thinking is made. We must learn how to take thinking apart.

All Thinking Is Defined by the Eight Elements That Make It Up. Eight basic structures are present in all thinking: Whenever we think, we think for a purpose within a point of view based on assumptions leading to implications and consequences. We use concepts, ideas and theories to interpret data, facts, and experiences in order to answer questions, solve problems, and resolve issues.

  • generates purposes
  • raises questions
  • uses information
  • utilizes concepts
  • makes inferences
  • makes assumptions
  • generates implications
  • embodies a point of view
  • What is your, my, their purpose in doing________?
  • What is the objective of this assignment (task, job, experiment, policy, strategy, etc.)?
  • Should we question, refine, modify our purpose (goal, objective, etc.)?
  • What is the purpose of this meeting (chapter, relationship, action)?
  • What is your central aim in this line of thought?
  • What is the purpose of education?
  • Why did you say…?
  • Take time to state your purpose clearly.
  • Distinguish your purpose from related purposes.
  • Check periodically to be sure you are still on target.
  • Choose significant and realistic purposes.
  • What is the question I am trying to answer?
  • What important questions are embedded in the issue?
  • Is there a better way to put the question?
  • Is this question clear? Is it complex?
  • I am not sure exactly what question you are asking. Could you explain it?
  • The question in my mind is this: How do you see the question?
  • What kind of question is this? Historical? Scientific? Ethical? Political? Economic? Or…?
  • What would we have to do to settle this question?
  • State the question at issue clearly and precisely.
  • Express the question in several ways to clarify its meaning.
  • Break the question into sub-questions.
  • Distinguish questions that have definitive answers from those that are a matter of opinion or that require multiple viewpoints.
  • What information do I need to answer this question?
  • What data are relevant to this problem?
  • Do we need to gather more information?
  • Is this information relevant to our purpose or goal?
  • On what information are you basing that comment?
  • What experience convinced you of this? Could your experience be distorted?
  • How do we know this information (data, testimony) is accurate?
  • Have we left out any important information that we need to consider?
  • Restrict your claims to those supported by the data you have.
  • Search for information that opposes your position as well as information that supports it.
  • Make sure that all information used is clear, accurate and relevant.
  • Make sure you have gathered sufficient information.
  • What conclusions am I coming to?
  • Is my inference logical?
  • Are there other conclusions I should consider?
  • Does this interpretation make sense?
  • Does our solution necessarily follow from our data?
  • How did you reach that conclusion?
  • What are you basing your reasoning on?
  • Is there an alternative plausible conclusion?
  • Given all the facts what is the best possible conclusion?
  • How shall we interpret these data?
  • Infer only what the evidence implies.
  • Check inferences for their consistency with each other.
  • Identify assumptions underlying your inferences.
  • What idea am I using in my thinking? Is this idea causing problems for me or for others?
  • I think this is a good theory, but could you explain it more fully?
  • What is the main hypothesis you are using in your reasoning?
  • Are you using this term in keeping with established usage?
  • What main distinctions should we draw in reasoning through this problem?
  • What idea is this author using in his or her thinking? Is there a problem with it?
  • Identify key concepts and explain them clearly.
  • Consider alternative concepts or alternative definitions of concepts.
  • Make sure you are using concepts with precision.
  • What am I assuming or taking for granted?
  • Am I assuming something I shouldn’t?
  • What assumption is leading me to this conclusion?
  • What is… (this policy, strategy, explanation) assuming?
  • What exactly do sociologists (historians, mathematicians, etc.) take for granted?
  • What is being presupposed in this theory?
  • What are some important assumptions I make about my roommate, my friends, my parents, my instructors, my country?
  • Clearly identify your assumptions and determine whether they are justifiable.
  • Consider how your assumptions are shaping your point of view.
  • If I decide to do “X”, what things might happen?
  • If I decide not to do “X”, what things might happen?
  • What are you implying when you say that?
  • What is likely to happen if we do this versus that?
  • Are you implying that…?
  • How significant are the implications of this decision?
  • What, if anything, is implied by the fact that a much higher percentage of poor people are in jail than wealthy people?
  • Trace the implications and consequences that follow from your reasoning.
  • Search for negative as well as positive implications.
  • Consider all possible consequences.
  • How am I looking at this situation? Is there another way to look at it that I should consider?
  • What exactly am I focused on? And how am I seeing it?
  • Is my view the only reasonable view? What does my point of view ignore?
  • Have you ever considered the way ____(Japanese, Muslims, South Americans, etc.) view this?
  • Which of these possible viewpoints makes the most sense given the situation?
  • Am I having difficulty looking at this situation from a viewpoint with which I disagree?
  • What is the point of view of the author of this story?
  • Do I study viewpoints that challenge my personal beliefs?
  • Identify your point of view.
  • Seek other points of view and identify their strengths as well as weaknesses.
  • Strive to be fairminded in evaluating all points of view.

ABLE blog: thoughts, learnings and experiences

  • Productivity
  • Thoughtful learning

Critical thinking models: definition, benefits, and skills

Critical thinking models: definition, benefits, and skills

In the age of memes and misinformation, critical thinking is a must. It's a crucial skill to differentiate between what may be true or false and develop (and explain) reasons for your beliefs.

The hardest part of critical thinking is knowing when to do it. Most of the time, it's easier to accept things as fact rather than to dig deeper to reach a conscious conclusion. This happens for various reasons. The most common being the ease of following the crowd and the fact it would be rather cumbersome to think critically about every single thing in the world!

How then do we know what to think critically about? How do we get the right answers, and how do we know they're correct? This is where a critical thinking model comes in. In this article, we’ll share three critical thinking models, essential critical reasoning skills, and why improving your critical thinking process is a good idea.

What Is Critical Thinking?

"Critical thinking is reasonable and reflective thinking focused on deciding what to believe or do.” This is how renowned professor and author Robert Hugh Ennis defines it. Put another way, the definition of critical thinking is careful consideration and analysis of information to reach a rational conclusion or decision. We practice critical thinking to inform—and own—our beliefs and actions and ensure they truly align with our values and intentions.

That said, critical thinking is not our natural way of thinking . Most of us are never aware of our brain's metacognitive actions, conceptualizations, or synthesis. Instead, we rely on habits, patterns, and competencies from past experiences to understand and interact with the world. While this may save us time and effort, it doesn’t always provide the best results—and often results in fallacies.

What Are Critical Thinking Models?

A critical thinking model provides the structure for practicing this type of thinking. It helps us notice our own thinking biases and allows us to try viewing the world objectively all while providing guidelines for asking the right questions, reaching logical conclusions, and explaining how we did it.

3 Critical Thinking Models That Are Useful in Everyday Life

Critical thinking model: Putting the pieces of a puzzle together

There are thousands of critical thinking models for almost any subject or discipline. Let’s take a look at three models of critical thinking we find useful in everyday life.

Proximate vs. Root Cause

The proximate vs. root cause critical thinking model encourages people to discover the primary cause of an event. A proximate cause is closest to the observed result or immediately responsible for it. In contrast, the root cause is the actual cause of the result. Both are causes of the event, but the root cause is the main cause, while the proximate cause is the immediate next cause.

This mental model forces you to look beyond obvious reasons to determine the core reason for impact. It helps with innovative problem-solving, so instead of relying on “Band-Aid solutions” or improving currently-existing solutions, you uncover the root of the matter and create something altogether new.

Example: You've gained a lot of weight since March 2021. Upon investigation, you may draw the following inferences:

  • Proximate cause: You burn fewer calories than you consume (moving less and eating more due to boredom or food accessibility), thus the weight gain.
  • Root cause: Your habits changed because of the lifestyle change from working at the office to working from home.

When you know the root cause of an issue, you can begin to deal with it to reduce the odds of recurrence. In this case, change your habits to fit the work-from-home lifestyle better. The proximate vs. root cause model improves your critical thinking ability and helps formulate a proper understanding of issues before working on them.

Cognitive Bias

Cognitive bias is a tendency to think in ways that can lead to deviations from rationality and objectivity. We all have cognitive biases. This error in thinking happens because of our tendency to process and interpret information swiftly, which can affect our decision-making and the eventual outcome of a situation.

Example: A soccer player scores a goal. In his mind, that means he's a great player. But if he had missed, he would reason that it was because the grass was wet. In self-serving bias, the tendency is to claim more responsibility for successes than failures. In other words: if there's a success, it's because I did something right. If there's a failure, it's something else's fault, not mine.

When you only pay attention or engage with news sources, stories, and conversations that confirm your worldview, you limit yourself from other perspectives and opinions that may be good for you without realizing it. Being aware of your own cognitive bias allows you to create some distance between how you expect the world to be and become more open to how it actually is on any given day.

The human brain is a powerful machine, but it has its limitations. One of them is neglecting facts and evidence to make sense of the world quickly and easily. This habit of mind may allow us to make faster decisions, but it doesn't serve us optimally. When unchecked, cognitive biases hinder fair-mindedness, inclusion, and impartiality.

Hanlon's Razor

"Never attribute to malice that which is adequately explained by incompetence."

Hanlon's Razor promotes good thinking and teaches us not to assume the worst intentions about people's actions without investigation. It helps regulate our emotions and improve relationships and decision-making. It also helps us develop empathy by giving others the benefit of the doubt and not assuming negative intent with evidence.

Example: You get to work earlier than usual on a Monday morning and notice your things scattered around. This must mean someone used your office! You immediately think a certain coworker did this to annoy you. But when you pause and consider, you realize that a coworker may have used your office during the weekend because it was vacant and they forgot their keys at home.

The stories we tell ourselves about why things happen the way they do are rarely true. It's worth spending some time to objectively view situations and choose a positive narrative that leads to better outcomes in our mental and emotional health and relationships.

reason model of critical thinking

Be the first to try it out!

We're developing ABLE, a powerful tool for building your personal knowledge, capturing information from the web, conducting research, taking notes, and writing content.

Critical Thinking Skills and Their Benefits

reason model of critical thinking

Critical thinking skills are useful for everyone. They help us think coherently and make advancements with our personal and professional goals. Some of the benefits you can gain from critical thinking are:

  • Greater reflective thinking and self-awareness
  • Ability to audit new information
  • Better interpersonal relationships
  • More creative thinking and problem-solving skills
  • Expanded open-mindedness
  • Improved communication and presentation skills
  • Freedom from past experiences and attachments

To gain these types of benefits, it’s important to practice the critical thinking skills listed below.

1. Observation

Observation is the foundation for critical thinking. It’s the ability to notice and predict opportunities, problems, and solutions. Taking the time to observe helps you process information better. Positive habits like meditating, journaling, and active listening will help you improve your observation skills.

2. Analysis

After observing, it's time to analyze the information. Analyzing helps you gain a clearer grasp of the situation at hand. Ask questions that help you get a clearer picture of the subject and get to the root cause or reason. For example, if you’re analyzing a controversial tweet you read, you may ask questions such as:

  • Who wrote this?
  • What is it about?
  • When was it written?
  • Why did they write it? Do they have a hidden agenda?
  • How sound is the premise?
  • What if this tweet was altered to send a misleading message?

These questions help you break your subject into rational bits and consider the relationship between each one and the whole.

3. Inference

Inference is the ability to draw conclusions from the information you've analyzed and other relevant data. It's a higher-level critical thinking skill that helps you reach careful decisions rather than hastily drawn (and likely biased) conclusions.

4. Communication

Once you have a solid foundation for your beliefs, communicating your theory is the next essential part of critical thinking. Share your point of view and get feedback from others to know if it holds up. You can improve your communication skills by participating in thematic forum discussions and sharing your research and insights with others in your community, both online and offline.

5. Problem-solving

Problem-solving is one of the main reasons for critical thinking. The end goal of critical thinking is using your new conclusion to close gaps and solve problems. You start by identifying your viewpoint, analyzing relevant information, and deciding on the right solution for a particular scenario. You can improve your problem-solving skills by self-learning the subject at hand and considering hidden, alternative outcomes.

Tap Into the Power of Critical Thinking

Becoming a critical thinker is challenging but oh-so worth it. It leads to continuous growth in all areas of your life: better relationships, confidence, and problem-solving skills. Critical thinking helps us overcome familiar patterns and ways of thinking, opening us to new perspectives.

To improve your critical thinking, spend time honing the five crucial critical thinking skills: observation, analysis, inference, communication, and problem-solving. Have fun with the process as you pay more attention to your beliefs and experiences and other people's perspectives and experiences as well.

You can use critical thinking models to guide your critical thinking journey, prompting you to realize when to pause and ask questions and when to accept the answers you have and move on. For example, in today’s age of misinformation, you may learn that it’s almost always counterproductive to engage with news and information from unknown sources.

Critical thinking is needed to remove scales from our eyes and improve our knowledge and experience of the world, but it’s also important to know when to turn our attention to focus on a new subject and move on.

Improve your critical thinking with ABLE

Ask better questions and get better answers with ABLEs integrated web search, annotation and note-taking features. Check how ABLE helps you to improve your critical thinking.

We hope you have enjoyed reading this article. Feel free to share, recommend and connect on Twitter: https://twitter.com/meet_able 🙏

Boris

Straight from the ABLE team: how we work and what we build. Thoughts, learnings, notes, experiences and what really matters.

Read more posts by this author

follow me :

Simplifying complexity: How to conquer clarity and brevity

How to organize information: the best methods for lifelong learning.

What is abstract thinking? 10 activities to improve your abstract thinking skills

What is abstract thinking? 10 activities to improve your abstract thinking skills

5 examples of cognitive learning theory (and how you can use them)

5 examples of cognitive learning theory (and how you can use them)

0 results found.

  • Aegis Alpha SA
  • We build in public

Building with passion in

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of jintell

Critical Thinking: A Model of Intelligence for Solving Real-World Problems

Diane f. halpern.

1 Department of Psychology, Claremont McKenna College, Emerita, Altadena, CA 91001, USA

Dana S. Dunn

2 Department of Psychology, Moravian College, Bethlehem, PA 18018, USA; ude.naivarom@nnud

Most theories of intelligence do not directly address the question of whether people with high intelligence can successfully solve real world problems. A high IQ is correlated with many important outcomes (e.g., academic prominence, reduced crime), but it does not protect against cognitive biases, partisan thinking, reactance, or confirmation bias, among others. There are several newer theories that directly address the question about solving real-world problems. Prominent among them is Sternberg’s adaptive intelligence with “adaptation to the environment” as the central premise, a construct that does not exist on standardized IQ tests. Similarly, some scholars argue that standardized tests of intelligence are not measures of rational thought—the sort of skill/ability that would be needed to address complex real-world problems. Other investigators advocate for critical thinking as a model of intelligence specifically designed for addressing real-world problems. Yes, intelligence (i.e., critical thinking) can be enhanced and used for solving a real-world problem such as COVID-19, which we use as an example of contemporary problems that need a new approach.

1. Introduction

The editors of this Special Issue asked authors to respond to a deceptively simple statement: “How Intelligence Can Be a Solution to Consequential World Problems.” This statement holds many complexities, including how intelligence is defined and which theories are designed to address real-world problems.

2. The Problem with Using Standardized IQ Measures for Real-World Problems

For the most part, we identify high intelligence as having a high score on a standardized test of intelligence. Like any test score, IQ can only reflect what is on the given test. Most contemporary standardized measures of intelligence include vocabulary, working memory, spatial skills, analogies, processing speed, and puzzle-like elements (e.g., Wechsler Adult Intelligence Scale Fourth Edition; see ( Drozdick et al. 2012 )). Measures of IQ correlate with many important outcomes, including academic performance ( Kretzschmar et al. 2016 ), job-related skills ( Hunter and Schmidt 1996 ), reduced likelihood of criminal behavior ( Burhan et al. 2014 ), and for those with exceptionally high IQs, obtaining a doctorate and publishing scholarly articles ( McCabe et al. 2020 ). Gottfredson ( 1997, p. 81 ) summarized these effects when she said the “predictive validity of g is ubiquitous.” More recent research using longitudinal data, found that general mental abilities and specific abilities are good predictors of several work variables including job prestige, and income ( Lang and Kell 2020 ). Although assessments of IQ are useful in many contexts, having a high IQ does not protect against falling for common cognitive fallacies (e.g., blind spot bias, reactance, anecdotal reasoning), relying on biased and blatantly one-sided information sources, failing to consider information that does not conform to one’s preferred view of reality (confirmation bias), resisting pressure to think and act in a certain way, among others. This point was clearly articulated by Stanovich ( 2009, p. 3 ) when he stated that,” IQ tests measure only a small set of the thinking abilities that people need.”

3. Which Theories of Intelligence Are Relevant to the Question?

Most theories of intelligence do not directly address the question of whether people with high intelligence can successfully solve real world problems. For example, Grossmann et al. ( 2013 ) cite many studies in which IQ scores have not predicted well-being, including life satisfaction and longevity. Using a stratified random sample of Americans, these investigators found that wise reasoning is associated with life satisfaction, and that “there was no association between intelligence and well-being” (p. 944). (critical thinking [CT] is often referred to as “wise reasoning” or “rational thinking,”). Similar results were reported by Wirthwein and Rost ( 2011 ) who compared life satisfaction in several domains for gifted adults and adults of average intelligence. There were no differences in any of the measures of subjective well-being, except for leisure, which was significantly lower for the gifted adults. Additional research in a series of experiments by Stanovich and West ( 2008 ) found that participants with high cognitive ability were as likely as others to endorse positions that are consistent with their biases, and they were equally likely to prefer one-sided arguments over those that provided a balanced argument. There are several newer theories that directly address the question about solving real-world problems. Prominent among them is Sternberg’s adaptive intelligence with “adaptation to the environment” as the central premise, a construct that does not exist on standardized IQ tests (e.g., Sternberg 2019 ). Similarly, Stanovich and West ( 2014 ) argue that standardized tests of intelligence are not measures of rational thought—the sort of skill/ability that would be needed to address complex real-world problems. Halpern and Butler ( 2020 ) advocate for CT as a useful model of intelligence for addressing real-world problems because it was designed for this purpose. Although there is much overlap among these more recent theories, often using different terms for similar concepts, we use Halpern and Butler’s conceptualization to make our point: Yes, intelligence (i.e., CT) can be enhanced and used for solving a real-world problem like COVID-19.

4. Critical Thinking as an Applied Model for Intelligence

One definition of intelligence that directly addresses the question about intelligence and real-world problem solving comes from Nickerson ( 2020, p. 205 ): “the ability to learn, to reason well, to solve novel problems, and to deal effectively with novel problems—often unpredictable—that confront one in daily life.” Using this definition, the question of whether intelligent thinking can solve a world problem like the novel coronavirus is a resounding “yes” because solutions to real-world novel problems are part of his definition. This is a popular idea in the general public. For example, over 1000 business managers and hiring executives said that they want employees who can think critically based on the belief that CT skills will help them solve work-related problems ( Hart Research Associates 2018 ).

We define CT as the use of those cognitive skills or strategies that increase the probability of a desirable outcome. It is used to describe thinking that is purposeful, reasoned, and goal directed--the kind of thinking involved in solving problems, formulating inferences, calculating likelihoods, and making decisions, when the thinker is using skills that are thoughtful and effective for the particular context and type of thinking task. International surveys conducted by the OECD ( 2019, p. 16 ) established “key information-processing competencies” that are “highly transferable, in that they are relevant to many social contexts and work situations; and ‘learnable’ and therefore subject to the influence of policy.” One of these skills is problem solving, which is one subset of CT skills.

The CT model of intelligence is comprised of two components: (1) understanding information at a deep, meaningful level and (2) appropriate use of CT skills. The underlying idea is that CT skills can be identified, taught, and learned, and when they are recognized and applied in novel settings, the individual is demonstrating intelligent thought. CT skills include judging the credibility of an information source, making cost–benefit calculations, recognizing regression to the mean, understanding the limits of extrapolation, muting reactance responses, using analogical reasoning, rating the strength of reasons that support and fail to support a conclusion, and recognizing hindsight bias or confirmation bias, among others. Critical thinkers use these skills appropriately, without prompting, and usually with conscious intent in a variety of settings.

One of the key concepts in this model is that CT skills transfer in appropriate situations. Thus, assessments using situational judgments are needed to assess whether particular skills have transferred to a novel situation where it is appropriate. In an assessment created by the first author ( Halpern 2018 ), short paragraphs provide information about 20 different everyday scenarios (e.g., A speaker at the meeting of your local school board reported that when drug use rises, grades decline; so schools need to enforce a “war on drugs” to improve student grades); participants provide two response formats for every scenario: (a) constructed responses where they respond with short written responses, followed by (b) forced choice responses (e.g., multiple choice, rating or ranking of alternatives) for the same situations.

There is a large and growing empirical literature to support the assertion that CT skills can be learned and will transfer (when taught for transfer). See for example, Holmes et al. ( 2015 ), who wrote in the prestigious Proceedings of the National Academy of Sciences , that there was “significant and sustained improvement in students’ critical thinking behavior” (p. 11,199) for students who received CT instruction. Abrami et al. ( 2015, para. 1 ) concluded from a meta-analysis that “there are effective strategies for teaching CT skills, both generic and content specific, and CT dispositions, at all educational levels and across all disciplinary areas.” Abrami et al. ( 2008, para. 1 ), included 341 effect sizes in a meta-analysis. They wrote: “findings make it clear that improvement in students’ CT skills and dispositions cannot be a matter of implicit expectation.” A strong test of whether CT skills can be used for real-word problems comes from research by Butler et al. ( 2017 ). Community adults and college students (N = 244) completed several scales including an assessment of CT, an intelligence test, and an inventory of real-life events. Both CT scores and intelligence scores predicted individual outcomes on the inventory of real-life events, but CT was a stronger predictor.

Heijltjes et al. ( 2015, p. 487 ) randomly assigned participants to either a CT instruction group or one of six other control conditions. They found that “only participants assigned to CT instruction improved their reasoning skills.” Similarly, when Halpern et al. ( 2012 ) used random assignment of participants to either a learning group where they were taught scientific reasoning skills using a game format or a control condition (which also used computerized learning and was similar in length), participants in the scientific skills learning group showed higher proportional learning gains than students who did not play the game. As the body of additional supportive research is too large to report here, interested readers can find additional lists of CT skills and support for the assertion that these skills can be learned and will transfer in Halpern and Dunn ( Forthcoming ). There is a clear need for more high-quality research on the application and transfer of CT and its relationship to IQ.

5. Pandemics: COVID-19 as a Consequential Real-World Problem

A pandemic occurs when a disease runs rampant over an entire country or even the world. Pandemics have occurred throughout history: At the time of writing this article, COVID-19 is a world-wide pandemic whose actual death rate is unknown but estimated with projections of several million over the course of 2021 and beyond ( Mega 2020 ). Although vaccines are available, it will take some time to inoculate most or much of the world’s population. Since March 2020, national and international health agencies have created a list of actions that can slow and hopefully stop the spread of COVID (e.g., wearing face masks, practicing social distancing, avoiding group gatherings), yet many people in the United States and other countries have resisted their advice.

Could instruction in CT encourage more people to accept and comply with simple life-saving measures? There are many possible reasons to believe that by increasing citizens’ CT abilities, this problematic trend can be reversed for, at least, some unknown percentage of the population. We recognize the long history of social and cognitive research showing that changing attitudes and behaviors is difficult, and it would be unrealistic to expect that individuals with extreme beliefs supported by their social group and consistent with their political ideologies are likely to change. For example, an Iranian cleric and an orthodox rabbi both claimed (separately) that the COVID-19 vaccine can make people gay ( Marr 2021 ). These unfounded opinions are based on deeply held prejudicial beliefs that we expect to be resistant to CT. We are targeting those individuals who beliefs are less extreme and may be based on reasonable reservations, such as concern about the hasty development of the vaccine and the lack of long-term data on its effects. There should be some unknown proportion of individuals who can change their COVID-19-related beliefs and actions with appropriate instruction in CT. CT can be a (partial) antidote for the chaos of the modern world with armies of bots creating content on social media, political and other forces deliberately attempting to confuse issues, and almost all media labeled “fake news” by social influencers (i.e., people with followers that sometimes run to millions on various social media). Here, are some CT skills that could be helpful in getting more people to think more critically about pandemic-related issues.

Reasoning by Analogy and Judging the Credibility of the Source of Information

Early communications about the ability of masks to prevent the spread of COVID from national health agencies were not consistent. In many regions of the world, the benefits of wearing masks incited prolonged and acrimonious debates ( Tang 2020 ). However, after the initial confusion, virtually all of the global and national health organizations (e.g., WHO, National Health Service in the U. K., U. S. Centers for Disease Control and Prevention) endorse masks as a way to slow the spread of COVID ( Cheng et al. 2020 ; Chu et al. 2020 ). However, as we know, some people do not trust governmental agencies and often cite the conflicting information that was originally given as a reason for not wearing a mask. There are varied reasons for refusing to wear a mask, but the one most often cited is that it is against civil liberties ( Smith 2020 ). Reasoning by analogy is an appropriate CT skill for evaluating this belief (and a key skill in legal thinking). It might be useful to cite some of the many laws that already regulate our behavior such as, requiring health inspections for restaurants, setting speed limits, mandating seat belts when riding in a car, and establishing the age at which someone can consume alcohol. Individuals would be asked to consider how the mandate to wear a mask compares to these and other regulatory laws.

Another reason why some people resist the measures suggested by virtually every health agency concerns questions about whom to believe. Could training in CT change the beliefs and actions of even a small percentage of those opposed to wearing masks? Such training would include considering the following questions with practice across a wide domain of knowledge: (a) Does the source have sufficient expertise? (b) Is the expertise recent and relevant? (c) Is there a potential for gain by the information source, such as financial gain? (d) What would the ideal information source be and how close is the current source to the ideal? (e) Does the information source offer evidence that what they are recommending is likely to be correct? (f) Have you traced URLs to determine if the information in front of you really came from the alleged source?, etc. Of course, not everyone will respond in the same way to each question, so there is little likelihood that we would all think alike, but these questions provide a framework for evaluating credibility. Donovan et al. ( 2015 ) were successful using a similar approach to improve dynamic decision-making by asking participants to reflect on questions that relate to the decision. Imagine the effect of rigorous large-scale education in CT from elementary through secondary schools, as well as at the university-level. As stated above, empirical evidence has shown that people can become better thinkers with appropriate instruction in CT. With training, could we encourage some portion of the population to become more astute at judging the credibility of a source of information? It is an experiment worth trying.

6. Making Cost—Benefit Assessments for Actions That Would Slow the Spread of COVID-19

Historical records show that refusal to wear a mask during a pandemic is not a new reaction. The epidemic of 1918 also included mandates to wear masks, which drew public backlash. Then, as now, many people refused, even when they were told that it was a symbol of “wartime patriotism” because the 1918 pandemic occurred during World War I ( Lovelace 2020 ). CT instruction would include instruction in why and how to compute cost–benefit analyses. Estimates of “lives saved” by wearing a mask can be made meaningful with graphical displays that allow more people to understand large numbers. Gigerenzer ( 2020 ) found that people can understand risk ratios in medicine when the numbers are presented as frequencies instead of probabilities. If this information were used when presenting the likelihood of illness and death from COVID-19, could we increase the numbers of people who understand the severity of this disease? Small scale studies by Gigerenzer have shown that it is possible.

Analyzing Arguments to Determine Degree of Support for a Conclusion

The process of analyzing arguments requires that individuals rate the strength of support for and against a conclusion. By engaging in this practice, they must consider evidence and reasoning that may run counter to a preferred outcome. Kozyreva et al. ( 2020 ) call the deliberate failure to consider both supporting and conflicting data “deliberate ignorance”—avoiding or failing to consider information that could be useful in decision-making because it may collide with an existing belief. When applied to COVID-19, people would have to decide if the evidence for and against wearing a face mask is a reasonable way to stop the spread of this disease, and if they conclude that it is not, what are the costs and benefits of not wearing masks at a time when governmental health organizations are making them mandatory in public spaces? Again, we wonder if rigorous and systematic instruction in argument analysis would result in more positive attitudes and behaviors that relate to wearing a mask or other real-world problems. We believe that it is an experiment worth doing.

7. Conclusions

We believe that teaching CT is a worthwhile approach for educating the general public in order to improve reasoning and motivate actions to address, avert, or ameliorate real-world problems like the COVID-19 pandemic. Evidence suggests that CT can guide intelligent responses to societal and global problems. We are NOT claiming that CT skills will be a universal solution for the many real-world problems that we confront in contemporary society, or that everyone will substitute CT for other decision-making practices, but we do believe that systematic education in CT can help many people become better thinkers, and we believe that this is an important step toward creating a society that values and practices routine CT. The challenges are great, but the tools to tackle them are available, if we are willing to use them.

Author Contributions

Conceptualization, D.F.H. and D.S.D.; resources, D.F.H.; data curation, writing—original draft preparation, D.F.H.; writing—review and editing, D.F.H. and D.S.D. All authors have read and agreed to the published version of the manuscript.

This research received no external funding.

Institutional Review Board Statement

No IRB Review.

Informed Consent Statement

No Informed Consent.

Conflicts of Interest

The authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Abrami Philip C., Bernard Robert M., Borokhovski Evgueni, Wade C. Anne, Surkes Michael A., Tamim Rana, Zhang Dai. Instructional interventions affecting critical thinking skills and dispositions: A Stage 1 meta-analysis. Review of Educational Research. 2008; 78 :1102–34. doi: 10.3102/0034654308326084. [ CrossRef ] [ Google Scholar ]
  • Abrami Philip C., Bernard Robert M., Borokhovski Evgueni, Waddington David I., Wade C. Anne. Strategies for teaching students to think critically: A meta-analysis. Review of Educational Research. 2015; 85 :275–341. doi: 10.3102/0034654314551063. [ CrossRef ] [ Google Scholar ]
  • Burhan Nik Ahmad Sufian, Kurniawan Yohan, Sidek Abdul Halim, Mohamad Mohd Rosli. Crimes and the Bell curve: Th e role of people with high, average, and low intelligence. Intelligence. 2014; 47 :12–22. doi: 10.1016/j.intell.2014.08.005. [ CrossRef ] [ Google Scholar ]
  • Butler Heather A., Pentoney Christopher, Bong Maebelle P. Predicting real-world outcomes: Critical thinking ability is a better predictor of life decisions than intelligence. Thinking Skills and Creativity. 2017; 25 :38–46. doi: 10.1016/j.tsc.2017.06.005. [ CrossRef ] [ Google Scholar ]
  • Cheng Vincent Chi-Chung, Wong Shuk-Ching, Chuang Vivien Wai-Man, So Simon Yung-Chun, Chen Jonathan Hon-Kwan, Sridhar Sidharth, To Kelvin Kai-Wwang, Chan Jasper Fuk-Wu, Hung Ivan Fan-Ngai, Ho Pak-Leung, et al. The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. Journal of Infectious Disease. 2020; 81 :107–14. doi: 10.1016/j.jinf.2020.04.024. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Chu Derek K., Aki Elie A., Duda Stephanie, Solo Karla, Yaacoub Sally, Schunemann Holger J. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A system atic review and meta-analysis. Lancet. 2020; 395 :1973–87. doi: 10.1016/S0140-6736(20)31142-9. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Donovan Sarah J., Guss C. Dominick, Naslund Dag. Improving dynamic decision-making through training and self-re flection. Judgment and Decision Making. 2015; 10 :284–95. [ Google Scholar ]
  • Drozdick Lisa Whipple, Wahlstrom Dustin, Zhu Jianjun, Weiss Lawrence G. The Wechsler Adult Intelligence Scale—Fourth Edition and the Wechsler Memory Scale—Fourth Edition. In: Flanagan Dawn P., Harrison Patti L., editors. Contemporary Intellectual as Sessment: Theories, Tests, and Issues. The Guilford Press; New York: 2012. pp. 197–223. [ Google Scholar ]
  • Gigerenzer Gerd. When all is just a click away: Is critical thinking obsolete in the digital age? In: Sternberg Robert J., Halpern Diane F., editors. Critical Thinking IN Psychology. 2nd ed. Cambridge University Press; Cambridge: 2020. pp. 197–223. [ Google Scholar ]
  • Gottfredson Linda S. Why g matters: The complexity of everyday life. Intelligence. 1997; 24 :79–132. doi: 10.1016/S0160-2896(97)90014-3. [ CrossRef ] [ Google Scholar ]
  • Grossmann Igor, Varnum Michael E. W., Na Jinkyung, Kitayama Shinobu, Nisbett Richard E. A route to well-being: Intelligence ver sus wise reasoning. Journal of Experimental Psychology: General. 2013; 142 :944–53. doi: 10.1037/a0029560. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Halpern Diane F. Halpern Critical Thinking Assessment. Schuhfried Test Publishers; Modling: 2018. [(accessed on 30 March 2021)]. Available online: www.schuhfried.com [ Google Scholar ]
  • Halpern Diane F., Butler Heather A. Is critical thinking a better model of intelligence? In: Sternberg Robert J., editor. The nature of Intelligence. 2nd ed. Cambridge University Press; Cambridge: 2020. pp. 183–96. [ Google Scholar ]
  • Halpern Diane F., Dunn Dana S. Thought and Knowledge: An Introduction to Critical Thinking. 6th ed. Taylor & Francis; New York: Forthcoming. in press. [ Google Scholar ]
  • Halpern Diane F., Millis Keith, Graesser Arthur, Butler Heather, Forsyth Carol, Cai Zhiqiang. Operation ARA: A computerized learn ing game that teaches critical thinking and scientific reasoning. Thinking Skills and Creativity. 2012; 7 :93–100. doi: 10.1016/j.tsc.2012.03.006. [ CrossRef ] [ Google Scholar ]
  • Hart Research Associates [(accessed on 30 March 2021)]; Employers Express Confidence in Colleges and Universities: See College as Worth the Investment, New Research Finds. 2018 Aug 29; Available online: https://hartresearch.com/employers-express-confidence-in-colleges-and-universities-see-college-as-worth-the-investment-new-research-finds/
  • Heijltjes Anita, Gog Tamara van, Lippink Jimmie, Paas Fred. Unraveling the effects of critical thinking instructions, practice, and self-explanation on students’ reasoning performance. Instructional Science. 2015; 43 :487–506. doi: 10.1007/s11251-015-9347-8. [ CrossRef ] [ Google Scholar ]
  • Holmes Natasha G., Wieman Carl E., Bonn DougA. Teaching critical thinking. Proceedings of the National Academy of Sciences. 2015; 112 :11199–204. doi: 10.1073/pnas.1505329112. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hunter John E., Schmidt Frank L. Intelligence and job performance: Economic and social implications. Psychology, Public Policy, and Law. 1996; 2 :447–72. doi: 10.1037/1076-8971.2.3-4.447. [ CrossRef ] [ Google Scholar ]
  • Kozyreva Anastasia, Lewandowsky Stephan, Hertwig Ralph. Citizens versus the internet: Confronting digital challenges with cognitive tools. [(accessed on 30 March 2021)]; Psychological Science in the Public Interest. 2020 21 doi: 10.1177/1529100620946707. Available online: https://www.psychologi calscience.org/publications/confronting-digital-challenges-with-cognitive-tools.html [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kretzschmar Andre, Neubert Jonas C., Wusternberg Sascha, Greiff Samuel. Construct validity of complex problem- solv ing: A comprehensive view on different facts of intelligence and school grades. Intelligence. 2016; 54 :55–69. doi: 10.1016/j.intell.2015.11.004. [ CrossRef ] [ Google Scholar ]
  • Lang Jonas W.B., Kell Harrison J. General mental ability and specific abilities: Their relative importance for extrinsic career success. Journal of Applied Psychology. 2020; 105 :1047–61. doi: 10.1037/apl0000472. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lovelace Berkeley., Jr. Medical Historians Compare the Coronavirus to the 1918 Flu Pandemic: Both Were Highly Political. [(accessed on 30 March 2021)]; CNBC. 2020 Available online: https://www.cnbc.com/2020/09/28/comparing-1918-flu-vs-corona virus.html?fbclid=IwAR1RAVRUOIdN9qqvNnMPimf5Q4XfV-pn_qdC3DwcfnPu9kavwumDI2zq9Xs
  • Marr Rhuaridh. Iranian Cleric Claims COVID-19 Vaccine Can Make People Gay. [(accessed on 30 March 2021)]; Metro Weekly. 2021 Available online: https://www.metroweekly.com/2021/02/iranian-cleric-claims-covid-19-vaccine-can-make-people-gay/
  • McCabe Kira O., Lubinski David, Benbow Camilla P. Who shines most among the brightest?: A 25-year longitudinal study of elite STEM graduate students. Journal of Personality and Social Psychology. 2020; 119 :390–416. doi: 10.1037/pspp0000239. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mega Emiliano R. COVID Has Killed more than One Million People. How Many more will Die? [(accessed on 30 March 2021)]; Nature. 2020 Available online: https://www.nature.com/articles/d41586-020-02762-y [ PubMed ]
  • Nickerson Raymond S. Developing intelligence through instruction. In: Sternberg Robert J., editor. The Cambridge Handbook of Intelligence. 2nd ed. Cambridge University Press; Cambridge: 2020. pp. 205–37. [ Google Scholar ]
  • OECD . The Survey of Adult Skills: Reader’s Companion. 3rd ed. OECD Publishing; Paris: 2019. OECD Skills Studies. [ CrossRef ] [ Google Scholar ]
  • Smith Matthew. Why won’t Britons Wear Face Masks? [(accessed on 30 March 2021)]; YouGov. 2020 Available online: https://yougov.co.uk/topics/health/articles-reports/2020/07/15/why-wont-britons-wear-face-masks
  • Stanovich Keith E. What Intelligence Tests Miss: The Psychology of Rational Thought. Yale University Press; New Haven: 2009. [ Google Scholar ]
  • Stanovich Keith E., West Richard F. On the failure of cognitive ability to predict my-side bias and one-sided thinking biases. Thinking & Reasoning. 2008; 14 :129–67. doi: 10.1080/13546780701679764. [ CrossRef ] [ Google Scholar ]
  • Stanovich Keith E., West Richard F. What intelligence tests miss. The Psychologist. 2014; 27 :80–83. doi: 10.5840/inquiryctnews201126216. [ CrossRef ] [ Google Scholar ]
  • Sternberg Robert J. A theory of adaptive intelligence and its relation to general intelligence. Journal of Intelligence. 2019; 7 :23. doi: 10.3390/jintelligence7040023. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tang Julian W. COVID-19: Interpreting scientific evidence—Uncertainty, confusion, and delays. BMC Infectious Diseases. 2020; 20 :653. doi: 10.1186/s12879-020-05387-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wirthwein Linda, Rost Detlef H. Giftedness and subjective well-being: A study with adults. Learning and Individuals Differences. 2011; 21 :182–86. doi: 10.1016/j.lindif.2011.01.001. [ CrossRef ] [ Google Scholar ]

loading

University of Louisville

  • Programs & Services
  • Delphi Center

Ideas to Action (i2a)

  • What is Critical Thinking?

The ability to think critically calls for a higher-order thinking than simply the ability to recall information.

Definitions of critical thinking, its elements, and its associated activities fill the educational literature of the past forty years. Critical thinking has been described as an ability to question; to acknowledge and test previously held assumptions; to recognize ambiguity; to examine, interpret, evaluate, reason, and reflect; to make informed judgments and decisions; and to clarify, articulate, and justify positions (Hullfish & Smith, 1961; Ennis, 1962; Ruggiero, 1975; Scriven, 1976; Hallet, 1984; Kitchener, 1986; Pascarella & Terenzini, 1991; Mines et al., 1990; Halpern, 1996; Paul & Elder, 2001; Petress, 2004; Holyoak & Morrison, 2005; among others).

After a careful review of the mountainous body of literature defining critical thinking and its elements, UofL has chosen to adopt the language of Michael Scriven and Richard Paul (2003) as a comprehensive, concise operating definition:

Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action.

Paul and Scriven go on to suggest that critical thinking is based on: "universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness. It entails the examination of those structures or elements of thought implicit in all reasoning: purpose, problem, or question-at-issue, assumptions, concepts, empirical grounding; reasoning leading to conclusions, implication and consequences, objections from alternative viewpoints, and frame of reference. Critical thinking - in being responsive to variable subject matter, issues, and purposes - is incorporated in a family of interwoven modes of thinking, among them: scientific thinking, mathematical thinking, historical thinking, anthropological thinking, economic thinking, moral thinking, and philosophical thinking."

This conceptualization of critical thinking has been refined and developed further by Richard Paul and Linder Elder into the Paul-Elder framework of critical thinking. Currently, this approach is one of the most widely published and cited frameworks in the critical thinking literature. According to the Paul-Elder framework, critical thinking is the:

  • Analysis of thinking by focusing on the parts or structures of thinking ("the Elements of Thought")
  • Evaluation of thinking by focusing on the quality ("the Universal Intellectual Standards")
  • Improvement of thinking by using what you have learned ("the Intellectual Traits")

Selection of a Critical Thinking Framework

The University of Louisville chose the Paul-Elder model of Critical Thinking as the approach to guide our efforts in developing and enhancing our critical thinking curriculum. The Paul-Elder framework was selected based on criteria adapted from the characteristics of a good model of critical thinking developed at Surry Community College. The Paul-Elder critical thinking framework is comprehensive, uses discipline-neutral terminology, is applicable to all disciplines, defines specific cognitive skills including metacognition, and offers high quality resources.

Why the selection of a single critical thinking framework?

The use of a single critical thinking framework is an important aspect of institution-wide critical thinking initiatives (Paul and Nosich, 1993; Paul, 2004). According to this view, critical thinking instruction should not be relegated to one or two disciplines or departments with discipline specific language and conceptualizations. Rather, critical thinking instruction should be explicitly infused in all courses so that critical thinking skills can be developed and reinforced in student learning across the curriculum. The use of a common approach with a common language allows for a central organizer and for the development of critical thinking skill sets in all courses.

  • SACS & QEP
  • Planning and Implementation
  • Why Focus on Critical Thinking?
  • Paul-Elder Critical Thinking Framework
  • Culminating Undergraduate Experience
  • Community Engagement
  • Frequently Asked Questions
  • What is i2a?

Copyright © 2012 - University of Louisville , Delphi Center

  • Blogs @Oregon State University

Teaching With Writing: The WIC Newsletter

Critical thinking: multiple models for teaching and learning (abridged), excerpts from critical thinking: multiple models for teaching and learning.

By  Aubrae Vanderpool and Tracy Ann Robinson

“A great truth wants to be criticized, not idolized.”

The development of critical thinking skills increasingly is being identified not only as an essential component of writing courses but even more broadly, as a desired outcome of an undergraduate education. In this article, adapted from a paper by Aubrae Vanderpool that focuses on critical thinking in first-year writing classes, we take a look at what critical thinking means, offer some strategies and suggestions for incorporating critical thinking pedagogy into subject-matter courses, and comment on assessment issues and strategies.

Critical Thinking Defined…Or Not…

For some critical thinking has a lot to do with understanding one’s own perspective and those of others. Another model [of critical thinking] is dialectic, an idea or work is critiqued in a way that produces a counter-perspective and ultimately leads to a synthesis. For some critical thinking evokes a synthetic or inductive model based on testing evidence and making arguments. The exercise of reflective judgment is also a form of critical thinking.  (“Critical Thinking and Broad Knowledge”)

While widely accepted as an educational imperative, critical thinking, as the above statement (excerpted from meeting notes for a Critical Thinking dialogue group at Western Washington University) indicates, is quite variously conceived and described. . . . Clearly, however, how an institution or department defines this intellectual practice will influence where in the curriculum critical thinking is taught, how it is taught, and, equally importantly, how it is assessed. For those in the process of formulating a working definition, familiarity with the following widely utilized models may serve as a helpful starting point.

Bloom’s Taxonomy

According to Benjamin Bloom’s Taxonomy of Educational Objectives (1956)—a cross-disciplinary model for developing higher-order thinking in students—learning how to think critically involves the mastery of six increasingly complex cognitive skills: knowledge (i.e., possession of specific facts or pieces of information) , comprehension, application, analysis, synthesis, and evaluation . See sidebar for details.

Bloom’s Taxonomy conceives critical thinking mastery as a sequential process, that is, one cannot move to the next cognitive tier without successfully negotiating the previous level.  (“Teaching Critical Thinking”). Thus, some view the taxonomy as “a set of microlevel skills which may be used in critical thinking but do not represent critical thinking” (French and Rhoder 195). Philosopher Richard Paul objects to the taxonomy’s product-oriented conceptualization of thinking as a “one-way hierarchy” as opposed to thinking being a process that involves the recursive use of interrelated skills (French and Rhoder 195).  Nonetheless, Bloom’s Taxonomy has been and continues to be an influential model for those developing critical thinking programs, as its inclusion in the Dartmouth College Composition Center’s critical thinking web page attests (Gocsik).

Knowledge: the remembering (recalling) of appropriate, previously learned terminology/specific facts/ways and means of dealing with specifics (conventions, trends and sequences, classifications and categories, criteria, methodology)/universals and abstractions in a field (principles and generalizations, theories and structures). defines; describes; enumerates; identifies; labels; lists; matches; names; reads; records; reproduces; selects; states; views.

Comprehension: Grasping (understanding) the meaning of informational materials. classifies; cites; converts; describes; discusses; estimates; explains; generalizes; gives examples; makes sense out of; paraphrases; restates (in own words); summarizes; traces; understands.

Application: The use of previously learned information in new and concrete situations to solve problems that have single or best answers. acts; administers; articulates; assesses; charts; collects; computes; constructs; contributes; controls; determines; develops; discovers; establishes; extends; implements; includes; informs; instructs; operationalizes; participates; predicts; prepares; preserves; produces; projects; provides; relates; reports; shows; solves; teaches; transfers; uses; utilizes.

Analysis: The breaking down of informational materials into their component parts, examining (and trying to understand the organizational structure of) such information to develop divergent conclusions by identifying motives or causes, making inferences, and/or finding evidence to support generalizations. breaks down; correlates; diagrams; differentiates; discriminates; distinguishes; focuses; illustrates; infers; limits; outlines; points out; prioritizes; recognizes; separates; subdivides.

Synthesis: Creatively or divergently applying prior knowledge and skills to produce a new or original whole. adapts; anticipates; categorizes; collaborates; combines; communicates; compares; compiles; composes; contrasts; creates; designs; devises; expresses; facilitates; formulates; generates; incorporates; individualizes; initiates; integrates; intervenes; models; modifies; negotiates; plans; progresses; rearranges; reconstructs; reinforces; reorganizes; revises; structures; substitutes; validates.

Evaluation: Judging the value of material based on personal values/opinions, resulting in an end product, with a given purpose, without real right or wrong answers. appraises; compares & contrasts; concludes; criticizes; critiques; decides; defends; interprets; judges; justifies; reframes; supports.

SOURCE: http://faculty.washington.edu/krumme/guides/bloom.html (no longer available)

Beyer’s evaluative thinking model

Barry Beyer, a prominent contemporary thinking skills theorist and teacher, interprets critical thinking as a more specifically evaluative activity than Bloom’s Taxonomy would imply:

Critical thinking is not making decisions or solving problems. It is not the same as reflective thinking, creative thinking, or conceptualizing. Each of these other types of thinking serves a specific purpose. We make decisions in order to choose among alternatives. We solve problems when we encounter an obstacle to a preferred condition. We engage in creative or conceptual thinking to invent or improve things. Critical thinking serves a purpose quite different from these other types of thinking. (Beyer 1995, 8)

For Beyer, the crux of critical thinking is criteria : “ The word critical in critical thinking comes from the Greek word for criterion, kriterion , which means a benchmark for judging” (Beyer 1995, 8-9). Thus, critical (or, to use Beyer’s preferred term, evaluative) thinking provides the means to assess the “accuracy, authenticity, plausibility, or sufficiency of claims” (Beyer 1995, 10).

Beyer asserts that critical thinking involves 10 cognitive operations, which can be employed in any sequence or combination as needed for the thinking task at hand:

  • Distinguishing between verifiable facts and value claims
  • Distinguishing relevant from irrelevant information, claims, or reasons
  • Determining the factual accuracy of a statement
  • Determining the credibility of a source
  • Identifying ambiguous claims or arguments
  • Identifying unstated assumptions
  • Detecting bias
  • Recognizing logical fallacies
  • Recognizing logical inconsistencies in a line of reasoning
  • Determining the strength of an argument or claim (Beyer 1988, 57)

Further, Beyer argues that successful critical thinking requires “complex and often simultaneous interaction” of the following six elements:

o Dispositions. Critical thinkers develop habits of mind that “guide and sustain critical thinking”, including skepticism, fairmindedness, openmindedness, respect for evidence and reasoning, respect for clarity and precision, ability to consider different points of view, and a willingness to alter one’s position when reason and evidence call for such a shift.

o Criteria . Critical thinkers know about and have the ability to construct appropriate benchmarks for judging the issue at hand.

o Argument —defined as “a proposition with its supporting evidence and reasoning.” Critical thinkers are skillful at constructing, identifying, and evaluating the strength of arguments.

o Reasoning —the “cement that holds an argument together.” Critical thinkers determine the strength and validity of a conclusion by examining the soundness of the inductive or deductive process through which the conclusion was reached.

o Point of View. Critical thinkers are aware of their own point of view and capable of examining other points of view in order to better evaluate an issue.

o Procedures for applying criteria and judging. Critical thinkers have a repertoire of strategies appropriate to the subject matter and type of judgment to be made (Beyer 1995, 10-20)

In other words, critical thinkers habitually question the authenticity of anything that confronts them to ascertain exactly the extent to which it is an authentic instance of what it purports to be. In addition, they make judgments based on certain standards or other measures that serve as criteria for plausibility and truthfulness. And they pay special attention to the reasons and reasoning that undergird conclusions and claims.” (Beyer 1995, 22)

Critical thinking as a divergent process

While Beyer depicts critical thinking as a “ con vergent,” narrowing process, others prefer to view it as a di vergent, expanding, exploratory practice (French and Rhoder, 184-85) —a way to open  up new solutions as well as evaluate those that have already been identified.  For example, consider this statement from Peter Taylor of the UMass/Boston Graduate College of Education’s Critical and Creative Thinking Program. (In February, 2001, Taylor led a critical thinking workshop at OSU, sponsored jointly by the College of Liberal Arts’ Center for Excellence in Teaching, Learning, and Research, the Center for Water and Environmental Sustain-ability, and the Office of Academic Affairs; and organized by Anita Helle [English] and Denise Lach [CWest].)

My sense of critical thinking […] depends on inquiry being informed by a strong sense of how things could be otherwise. I want students to see that they understand things better when they have placed established facts, theories, and practices in tension with alternatives . Critical thinking at this level should not depend on students rejecting conventional accounts, but they do have to move through uncertainty. Their knowledge is, at least for a time, destabilized; what has been established cannot be taken for granted.

This view suggests a much closer connection between critical and creative thinking than Beyer, for instance, would subscribe to. However, many of the concerns that underlie the current interest in furthering college students’ critical thinking skills recognize and affirm this connection.

Teaching Considerations and Strategies

. . .  B. Lehman and D. Hayes propose the following strategies for promoting critical thinking in the classroom:

o Help students recognize what they already know about a topic. [For suggestions, see next section.]

o Help students learn to recognize their biases and keep an open mind about the topic. Have students list and share opinions on the subject, but postpone evaluation until more information is gathered.

o Formulate open-ended questions to help students analyze, synthesize, and evaluate the topic.

o Guide students in finding and using diverse sources to explain and support their ideas.

o Have students check the validity of sources and qualifications of authors.

o Help students see there is no single, final authority. By reading several sources on the same topic, students will discover that information is often conflicting and contradictory.

o Help students develop criteria for evaluation. As students learn to support their opinions with logical thinking and comparison of sources, they [develop] critical thinking skills. (Smith 350) . . . .

 The Writing–Critical Thinking Connection

For centuries, the rhetorical assumption about language was that “one first finds knowledge and then puts it into words” (Bizzell, Herzberg, and Reynolds 1)—in other words, thinking always precedes writing or speaking. Today, however, we recognize that “knowledge is actually created by words” (Bizzell, Herzberg, and Reynolds 1) and that writing and thinking are recursive, interdependent processes that promote and enhance one another.

James Sheridan  points out that “the act of generating written discourse is not merely a result of critical thinking but also a stimulus to new thinking and new discoveries” (52). This claim echoes Linda Flower’s assertion that “writing is a generative act—a process of not just ‘expressing’ but ‘making’ meaning” (193-94). The fact is that “when students write, they cannot remain passive players in the learning game” (Gocsik-source no longer available). As Peter Elbow suggests, “writing helps us achieve the perennially difficult task of standing outside our own thinking” (27). Hence, the concept of “writing to learn,” which has become so integral to Writing Across the Curriculum courses and programs.

Using writing to uncover knowledge

As well as using writing to reinforce and integrate new information, writing can be a way of discovering existing knowledge. Many critical thinking experts advocate beginning any new learning unit by identifying what students already know (but often don’t know they know) about the topic.  This strategy promotes critical thinking and active learning by allowing students to “establish a context for new information and share ideas with others” (Smith 350). Two writing strategies that can assist in this discovery process are freewriting and the “write-and-pass” exercise:

Freewriting. Describing freewriting as an activity that “helps students break the writing-is-grammar chain [, which] stultifies the freedom and risk-taking necessary for innovative critical thinking” (53), James Sheridan suggests the process has only two r equirements:

( 1) “You cannot stop writing during the 10-minute exercise.” (2) “You are forbidden to think. [. . .] Write whatever comes into your right (or left) hand. You must keep on writing. Even if you say ‘I don’t know what to write,’ write that. You cannot scratch your head. You cannot gaze pensively at the ceiling. Just write. You are not responsible for what you say; your hand is doing it all. Say anything. Say ‘This is the worst exercise I ever heard of and I can’t believe they’re paying this guy good bucks to have us do it.’ Yell, scream, shout, kick (in written words). Say anything, but keep writing” (52)

With unfocused freewriting, students write about whatever they want. With focused , or directed , freewriting, students are given a topic or question to write on.

Write-and-pass.  Another informal writing assignment that helps students discover what they already know is to ask them to spend a few minutes writing everything they can think of about a given topic or question (for example, “What is critical thinking?”). After several minutes, students pass what they’ve written to the person next to them, and that person reads and expands on the original response. The process is repeated a few more times; generally, with each pass, adding new information becomes more challenging..  The exercise provides a way both for students to focus their thoughts on a particular topic and to benefit from one another’s stores of knowledge.

Assessing Critical Thinking: Current Models

[A]n informed choice of an approach to assessing critical thinking can be made only after faculty have [asked and answered] these questions: What do we think critical thinking is? How do the critical thinking skills, processes, and strategies work together, and what aspects or combinations of them do we wish to assess? What are our students like? What are their motivations [and] environments? What are our assumptions relative to the knowledge and abilities that students need prior to engaging in college-level critical thinking? (Carpenter and Doig 34-35)

Carpenter and Doig’s observation comes from a 1988 review of assessment instruments developed for specific critical thinking courses and programs. Alternatively, the  rubric developed in 2002 by Washington State University’s Critical Thinking Project can be used in subject-matter courses across the curriculum that focus on critical thinking. This rubric includes the following criteria for student writing:

  • Identifies and summarizes the problem/question at issue.
  • Identifies and presents the student’s own perspective and position as it is important to the analysis of the issue.
  • Identifies and considers other salient perspectives and positions that are important to the analysis of the issue.
  • Identifies and assesses the key assumptions.
  • Identifies and assesses the quality of supporting data/evidence and provides additional data/evidence related to the issue.
  • Identifies and considers the influence of the context (e.g. cultural/social, scientific, educational, economic, technological, ethical, political, personal, and so on) on the issue.
  • Identifies and assesses conclusions, implications, and consequences. “Critical Thinking Rubric” no longer available online.

Each item in the rubric includes a description of what would be considered “scant” vs “substantially developed” coverage of that item. The Washington State Critical Thinking Project website is no longer available online.

A Final Note

In this article, we have focused on what Kerry S. Walters describes as the “logicistic” model of critical thinking—that is (according to Walters) “the unwarranted assumption that good thinking is reducible to logical thinking” (1). In Re-Thinking Reason: New Perspectives in Critical Thinking , Walters explores an alternative model being forwarded by an emerging “second-wave” of critical thinking research and pedagogy. Second-wave advocates argue that while “logical skills are essential functions of good thinking, […] so are non-analytic ones such as imagination and intuition, and the good thinker knows how to utilize both types” (2).  This reconception of critical thinking is grounded in current scholarship in the fields of philosophy, psychology, education, feminist theory, and critical pedagogy; Walters’s book serves as an introduction to and dialogue among some of the proponents and practitioners of this alternative. While beyond the scope of this article, the second-wave perspective on critical thinking deserves our serious attention and consideration as well.

This article was previously published in entirety in Teaching with Writing , Winter 2004.

Works Cited (some sources no longer available)

Beyer, Barry K. Critical Thinking. Bloomington, IN: Phi Delta Kappa Educational Foundation, 1995.

________. Developing a Thinking Skills Program. Boston: Allyn and Bacon, 1988.

Bizzell, Patricia, Bruce Hertzberg, and Nedra Reynolds. The Bedford Bibliography for Teachers of Writing. 5th Ed. Boston: Bedford/St. Martin’s, 2000.

Carpenter, C. Blaine, and James C. Doig. “Assessing Critical Thinking Across the Curriculum.” Assessing Student’s Learning 34 (Summer 1988): 33-46.

“Critical Thinking and Broad Knowledge Meeting Notes.” 2 Nov. 2001. Center for Instructional Innovation, Western Washington University. 4 March 2003.  http://pandora.cii.wwu.edu/gened/dialogue/critical_notes_nov.htm Source no longer available.

Elbow, Peter. “Teaching Two Kinds of Thinking by Teaching Writing.” Re-Thinking Reason: New Perspectives in Critical Thinking . Ed. Kerry S. Walters. Albany: SUNY Press, 1994. 25-31.

Flower, Linda. “Taking Thought: The Role of Conscious Processing in the Making of Meaning.” Thinking, Reasoning, and Writing. Ed. Elaine P. Maimon, Barbara F. Nodine, and Finbarr W. O’Connor. NY: Longman, 1989. 185-212.

French, Joyce N. and Carol Rhoder. Teaching Thinking Skills: Theory and Practice. NY: Garland, 1992.

Gocsik, Karen. “Teaching Critical Thinking.: 1997 Dartmouth College Composition Center. Source no longer available.

Scriven, Michael and Richard Paul. “Defining Critical Thinking.” Draft Statement for the National Council for Excellence in Critical Thinking. Foundation for Critical Thinking. 27 Feb. 2003. <http://www.criticalthinking.org/pages/definint-critical-thinking/766>

Sheridan, James J. “Skipping on the Brink of the Abyss: Teaching Thinking Through Writing.” Cr itical Thinking: Educational Imperative. Ed. Cynthia A. Barnes. New Directions for Community Colleges, No. 77. San Francisco: Jossey-Bass, 1992. 51-61.

Smith, Carl B. “Two Approaches to Critical Thinking.” The Reading Teacher 4.4  (Dec. 1990): 350-51.

Stewart, Ruth. “Teaching Critical Thinking in First-Year Composition: Sometimes More Is More.” Teaching English at the Two-Year College 29 (Dec. 2001): 162-171.

Taylor, Peter. “We Know More Than We Are, At First, Prepared To Acknowledge: Journeying to Develop Critical Thinking.” 12 March 2003 <http://www.faculty.umb.edu/pjt/journey.html>

Walters, Kerry S. Re-Thinking Reason: New Perspectives in Critical Thinking. Albany: SUNY Press, 1994.

Print Friendly, PDF & Email

Comments are closed.

Contact Info

Disruptive Leadership Institute

  • Our CEO Master Executive Coach
  • Our Consulting Team & Coaches
  • Our Advisory Board
  • Our Strategic Partners
  • Client Testimonials
  • C.R.I.S.I.S. Leadership Book
  • Abstract of Second Edition Book
  • Second Edition Book
  • First Edition Book
  • NextGen Book
  • Second Edition Book (2023)
  • First Edition Book (2020)
  • NextGen Book (2019)
  • Board & CEO Advisory Services
  • Organizational Transformation Framework
  • Culture Development
  • Talent Management & Succession Planning
  • Digital Transformation
  • Post-Pandemic Recovery
  • Crisis Management
  • Cognitive Readiness
  • Leadership 360 Assessments
  • L.E.A.D.E.R. Framework
  • C.R.I.S.I.S. Model
  • R.B.L. Framework
  • Fourth Industrial Revolution Framework
  • VUCA Framework
  • LEAP Framework
  • Disruptive Digital Leadership Framework
  • Megatrends of Future Disruptors
  • Goleman’s Leadership Framework
  • Goleman’s ESI Framework
  • SCORE™ Framework
  • AGREE Framework
  • Paragon⁷ Framework
  • R.E.D. Model
  • A.D.A.M. Model
  • G.R.O.W. Model
  • A.R.T. Framework
  • HPLD Framework
  • Keynote Presentation
  • Online Master Programs
  • Master in Disruptive Leadership (MDL)
  • Master in Digital Transformation (MDT)
  • CEO & C-Suite Executive Coaching
  • Disruptive Leadership Masterclass
  • Crisis Leadership Masterclass
  • Critical Thinking Bootcamp
  • Prophetic Leadership Masterclass
  • HiPO Development Program
  • Program for Advanced Leadership & Management (PALM)
  • Udemy Online Training
  • Skillsoft E-learning
  • White Papers
  • Research Reports
  • Online Resources
  • IPMA Journal
  • LinkedIn Posts
  • Singapore Business Review
  • The Straits Times Forum

The R.E.D. Model of Development of Critical Thinking Skills

  • The R.E.D. Model of Development…

“How and why is critical thinking applied in the workplace? Critical thinking in the workplace comes in many forms. We see critical thinking being used in teams to help effectively resolve problems. We even see critical thinking being used in the workplace to help teams figure out what issues exist, and then we see teams come up with possible answers for those issues. Critical thinking is applied to leadership approaches because leaders need to have critical thinking skills, be able to understand logical relationships between ideas, recognize the importance and the relationship of an argument, as well as recognize mistakes in reasoning and then be able to make the right decisions.”

– sattar bawany (2023), what is critical thinking.

Critical thinking is an active form of reflection which is deliberate, persistent, and careful. It challenges preconceptions, perceptions, and received wisdom. And it is, most important of all, focused on deciding what to believe and what to do. It is, therefore, inherently practical and generates a set of guidelines for the practitioner. It involves what some have called metacognition or the act of thinking about how we think.

Critical thinking aims to better understand the meaning and implications of information, conclusions, options, and decisions and to identify and evaluate the assumptions upon which thinking (our own and others’) is based. It can bring a powerful rigor to crisis management if it is applied with perseverance, determination, and self-awareness.

Critical thinking in the business literature is often confused with skills like “problem solving.” In reality, “problem solving” is quite different from “critical thinking.”

Sometimes problem solving requires thinking skills, like how best to balance profit and loss statements, but not critical thinking skills—rational, reflective thinking. Some business-related problems, for example, require emotional intelligence, which is thinking that is neither rational nor reflective.

In other words, while critical thinking often refers to “problem solving,” not all problem solving is an example of critical thinking. Critical thinking consists more of “habits of mind” providing a framework in which problem solving can occur. Often, these distinctions aren’t clear in business education literature.

How and why is critical thinking applied in the workplace? Critical thinking in the workplace comes in many forms. We see critical thinking being used in teams to help effectively resolve problems. We even see critical thinking being used in the workplace to help teams figure out what issues exist, and then we see teams come up with possible answers for those issues.

Critical thinking is applied to leadership approaches because leaders need to have critical thinking skills, be able to understand logical relationships between ideas, recognize the importance and the relationship of an argument, as well as recognize mistakes in reasoning and then be able to make the right decisions.

The need for critical thinking in leadership has always been around. A model was developed in 1925, called the Watson–Glaser critical thinking model, which helps organizations identify factors in people that are important for critical thinking and judgment making, which explains why critical thinking needs to be a part of leadership approaches.

The Elements of the “R.E.D.” Model of Critical Thinking

reason model of critical thinking

Pearson has developed the following RED model—Recognize assumptions, Evaluate arguments, and Draw conclusions as a way to view and apply critical thinking principles when faced with a decision ( Chartrand, Ishikawa, and Flander 2018 ).

Recognize assumptions. This is the ability to separate fact from opinion. It is deceptively easy to listen to a comment or presentation and assume the information presented is true even though no evidence was given to back it up. Perhaps the speaker is particularly credible or trustworthy or the information makes sense or matches our own view. We just don’t question it. Noticing and questioning assumptions helps to reveal information gaps or unfounded logic. Taking it a step further, when we examine assumptions through the eyes of different people (e.g., the viewpoint of different stakeholders), the end result is a richer perspective on a topic.

Why does it matter? This is the ability to separate fact from opinion. It is deceptively easy to listen to a comment or presentation and assume the information presented is true even though no evidence was given to back it up. Noticing and questioning assumptions helps to reveal information gaps or unfounded logic. Taking it a step further, when we examine assumptions through the eyes of different people (e.g., the viewpoint of different stakeholders) the end result is a richer perspective on a topic.

How/when to use it? When you’re gathering information, listening to what people say, or assessing a situation, think about what assumptions you have going in. Perhaps you assume that a trusted co-worker is providing reliable information, but is there really evidence to back it up? Learn to see gaps in logic and opinion disguised as fact.

Evaluate arguments. It is difficult to suspend judgment systematically and walk through various arguments and information with the impartiality of Sherlock Holmes. The art of evaluating arguments entails analyzing information objectively and accurately, questioning the quality of supporting evidence, and understanding how emotion influences the situation. Common barriers include confirmation bias, which is the tendency to seek out and agree with the information that is consistent with your own point of view or allow emotions—yours or others’—to get in the way of objective evaluation. People may quickly conclude simply to avoid conflict. Being able to remain objective and sort through the validity of different positions helps people draw more accurate conclusions.

Why does it matter? We often have problems sorting through conflicting information because we unknowingly let our emotions or pride get in the way or because we only hear what we want to hear (confirmation bias). Being able to remain objective and sort through the validity of different positions helps people draw more accurate conclusions.

How/when to use it? The art of evaluating arguments entails analyzing information objectively and accurately, questioning the quality of supporting evidence, and understanding how emotions—yours or others—influence the situation or get in the way of objectivity. People may quickly conclude simply to avoid conflict. Learn how to push all that aside, and analyze information accurately and objectively.

Draw conclusions. People who possess these skills can bring diverse information together to arrive at conclusions that logically follow from the available evidence, and they do not inappropriately generalize beyond the evidence. Furthermore, they will change their position when the evidence warrants doing so. They are often characterized as having “good judgment” because they typically arrive at a quality decision.

Why does it matter? People who possess this skill can bring diverse information together to arrive at conclusions that logically follow from the available evidence, and they do not inappropriately generalize beyond that evidence. Furthermore, they will change their position when the evidence warrants doing so. They are often characterized as having “good judgment” because of their quality decisions.

How/when to use it? This is the payoff. When you think critically, the true picture becomes clear, and you can make the tough decision or attack the difficult problem.

Each of these critical thinking skills fits together in a process that is both fluid and sequential.

When presented with information, people typically alternate between recognizing assumptions and evaluating arguments. Critical thinking is sequential in that recognizing faulty assumptions or weak arguments improves the likelihood of reaching an appropriate conclusion. It is helpful to focus on each of the RED skills individually when practicing skill development. With concentrated practice over time, typically several months, critical thinking skills can be significantly increased.

Reference: Sattar Bawany (2023), Leadership in Disruptive Times: Negotiating the New Balance. Business Expert Press (BEP) LLC, New York, NY. Abstract available at: https://www.disruptiveleadership.institute/second-edition-book/

Privacy Overview

CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Click one of our representatives below to chat on WhatsApp or send us an email to [email protected]

Disruptive Leadership

Need help? Please contact +65 9002 3848

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

  • Campus Life
  • ...a student.
  • ...a veteran.
  • ...an alum.
  • ...a parent.
  • ...faculty or staff.
  • Class Schedule
  • Crisis Resources
  • People Finder
  • Change Password

UTC RAVE Alert

Critical thinking and problem-solving, jump to: , what is critical thinking, characteristics of critical thinking, why teach critical thinking.

  • Teaching Strategies to Help Promote Critical Thinking Skills

References and Resources

When examining the vast literature on critical thinking, various definitions of critical thinking emerge. Here are some samples:

  • "Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action" (Scriven, 1996).
  • "Most formal definitions characterize critical thinking as the intentional application of rational, higher order thinking skills, such as analysis, synthesis, problem recognition and problem solving, inference, and evaluation" (Angelo, 1995, p. 6).
  • "Critical thinking is thinking that assesses itself" (Center for Critical Thinking, 1996b).
  • "Critical thinking is the ability to think about one's thinking in such a way as 1. To recognize its strengths and weaknesses and, as a result, 2. To recast the thinking in improved form" (Center for Critical Thinking, 1996c).

Perhaps the simplest definition is offered by Beyer (1995) : "Critical thinking... means making reasoned judgments" (p. 8). Basically, Beyer sees critical thinking as using criteria to judge the quality of something, from cooking to a conclusion of a research paper. In essence, critical thinking is a disciplined manner of thought that a person uses to assess the validity of something (statements, news stories, arguments, research, etc.).

Back        

Wade (1995) identifies eight characteristics of critical thinking. Critical thinking involves asking questions, defining a problem, examining evidence, analyzing assumptions and biases, avoiding emotional reasoning, avoiding oversimplification, considering other interpretations, and tolerating ambiguity. Dealing with ambiguity is also seen by Strohm & Baukus (1995) as an essential part of critical thinking, "Ambiguity and doubt serve a critical-thinking function and are a necessary and even a productive part of the process" (p. 56).

Another characteristic of critical thinking identified by many sources is metacognition. Metacognition is thinking about one's own thinking. More specifically, "metacognition is being aware of one's thinking as one performs specific tasks and then using this awareness to control what one is doing" (Jones & Ratcliff, 1993, p. 10 ).

In the book, Critical Thinking, Beyer elaborately explains what he sees as essential aspects of critical thinking. These are:

  • Dispositions: Critical thinkers are skeptical, open-minded, value fair-mindedness, respect evidence and reasoning, respect clarity and precision, look at different points of view, and will change positions when reason leads them to do so.
  • Criteria: To think critically, must apply criteria. Need to have conditions that must be met for something to be judged as believable. Although the argument can be made that each subject area has different criteria, some standards apply to all subjects. "... an assertion must... be based on relevant, accurate facts; based on credible sources; precise; unbiased; free from logical fallacies; logically consistent; and strongly reasoned" (p. 12).
  • Argument: Is a statement or proposition with supporting evidence. Critical thinking involves identifying, evaluating, and constructing arguments.
  • Reasoning: The ability to infer a conclusion from one or multiple premises. To do so requires examining logical relationships among statements or data.
  • Point of View: The way one views the world, which shapes one's construction of meaning. In a search for understanding, critical thinkers view phenomena from many different points of view.
  • Procedures for Applying Criteria: Other types of thinking use a general procedure. Critical thinking makes use of many procedures. These procedures include asking questions, making judgments, and identifying assumptions.

Oliver & Utermohlen (1995) see students as too often being passive receptors of information. Through technology, the amount of information available today is massive. This information explosion is likely to continue in the future. Students need a guide to weed through the information and not just passively accept it. Students need to "develop and effectively apply critical thinking skills to their academic studies, to the complex problems that they will face, and to the critical choices they will be forced to make as a result of the information explosion and other rapid technological changes" (Oliver & Utermohlen, p. 1 ).

As mentioned in the section, Characteristics of Critical Thinking , critical thinking involves questioning. It is important to teach students how to ask good questions, to think critically, in order to continue the advancement of the very fields we are teaching. "Every field stays alive only to the extent that fresh questions are generated and taken seriously" (Center for Critical Thinking, 1996a ).

Beyer sees the teaching of critical thinking as important to the very state of our nation. He argues that to live successfully in a democracy, people must be able to think critically in order to make sound decisions about personal and civic affairs. If students learn to think critically, then they can use good thinking as the guide by which they live their lives.

Teaching Strategies to Help Promote Critical Thinking

The 1995, Volume 22, issue 1, of the journal, Teaching of Psychology , is devoted to the teaching critical thinking. Most of the strategies included in this section come from the various articles that compose this issue.

  • CATS (Classroom Assessment Techniques): Angelo stresses the use of ongoing classroom assessment as a way to monitor and facilitate students' critical thinking. An example of a CAT is to ask students to write a "Minute Paper" responding to questions such as "What was the most important thing you learned in today's class? What question related to this session remains uppermost in your mind?" The teacher selects some of the papers and prepares responses for the next class meeting.
  • Cooperative Learning Strategies: Cooper (1995) argues that putting students in group learning situations is the best way to foster critical thinking. "In properly structured cooperative learning environments, students perform more of the active, critical thinking with continuous support and feedback from other students and the teacher" (p. 8).
  • Case Study /Discussion Method: McDade (1995) describes this method as the teacher presenting a case (or story) to the class without a conclusion. Using prepared questions, the teacher then leads students through a discussion, allowing students to construct a conclusion for the case.
  • Using Questions: King (1995) identifies ways of using questions in the classroom:
  • Reciprocal Peer Questioning: Following lecture, the teacher displays a list of question stems (such as, "What are the strengths and weaknesses of...). Students must write questions about the lecture material. In small groups, the students ask each other the questions. Then, the whole class discusses some of the questions from each small group.
  • Reader's Questions: Require students to write questions on assigned reading and turn them in at the beginning of class. Select a few of the questions as the impetus for class discussion.
  • Conference Style Learning: The teacher does not "teach" the class in the sense of lecturing. The teacher is a facilitator of a conference. Students must thoroughly read all required material before class. Assigned readings should be in the zone of proximal development. That is, readings should be able to be understood by students, but also challenging. The class consists of the students asking questions of each other and discussing these questions. The teacher does not remain passive, but rather, helps "direct and mold discussions by posing strategic questions and helping students build on each others' ideas" (Underwood & Wald, 1995, p. 18 ).
  • Use Writing Assignments: Wade sees the use of writing as fundamental to developing critical thinking skills. "With written assignments, an instructor can encourage the development of dialectic reasoning by requiring students to argue both [or more] sides of an issue" (p. 24).
  • Written dialogues: Give students written dialogues to analyze. In small groups, students must identify the different viewpoints of each participant in the dialogue. Must look for biases, presence or exclusion of important evidence, alternative interpretations, misstatement of facts, and errors in reasoning. Each group must decide which view is the most reasonable. After coming to a conclusion, each group acts out their dialogue and explains their analysis of it.
  • Spontaneous Group Dialogue: One group of students are assigned roles to play in a discussion (such as leader, information giver, opinion seeker, and disagreer). Four observer groups are formed with the functions of determining what roles are being played by whom, identifying biases and errors in thinking, evaluating reasoning skills, and examining ethical implications of the content.
  • Ambiguity: Strohm & Baukus advocate producing much ambiguity in the classroom. Don't give students clear cut material. Give them conflicting information that they must think their way through.
  • Angelo, T. A. (1995). Beginning the dialogue: Thoughts on promoting critical thinking: Classroom assessment for critical thinking. Teaching of Psychology, 22(1), 6-7.
  • Beyer, B. K. (1995). Critical thinking. Bloomington, IN: Phi Delta Kappa Educational Foundation.
  • Center for Critical Thinking (1996a). The role of questions in thinking, teaching, and learning. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Center for Critical Thinking (1996b). Structures for student self-assessment. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univclass/trc.nclk
  • Center for Critical Thinking (1996c). Three definitions of critical thinking [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Cooper, J. L. (1995). Cooperative learning and critical thinking. Teaching of Psychology, 22(1), 7-8.
  • Jones, E. A. & Ratcliff, G. (1993). Critical thinking skills for college students. National Center on Postsecondary Teaching, Learning, and Assessment, University Park, PA. (Eric Document Reproduction Services No. ED 358 772)
  • King, A. (1995). Designing the instructional process to enhance critical thinking across the curriculum: Inquiring minds really do want to know: Using questioning to teach critical thinking. Teaching of Psychology, 22 (1) , 13-17.
  • McDade, S. A. (1995). Case study pedagogy to advance critical thinking. Teaching Psychology, 22(1), 9-10.
  • Oliver, H. & Utermohlen, R. (1995). An innovative teaching strategy: Using critical thinking to give students a guide to the future.(Eric Document Reproduction Services No. 389 702)
  • Robertson, J. F. & Rane-Szostak, D. (1996). Using dialogues to develop critical thinking skills: A practical approach. Journal of Adolescent & Adult Literacy, 39(7), 552-556.
  • Scriven, M. & Paul, R. (1996). Defining critical thinking: A draft statement for the National Council for Excellence in Critical Thinking. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Strohm, S. M., & Baukus, R. A. (1995). Strategies for fostering critical thinking skills. Journalism and Mass Communication Educator, 50 (1), 55-62.
  • Underwood, M. K., & Wald, R. L. (1995). Conference-style learning: A method for fostering critical thinking with heart. Teaching Psychology, 22(1), 17-21.
  • Wade, C. (1995). Using writing to develop and assess critical thinking. Teaching of Psychology, 22(1), 24-28.

Other Reading

  • Bean, J. C. (1996). Engaging ideas: The professor's guide to integrating writing, critical thinking, & active learning in the classroom. Jossey-Bass.
  • Bernstein, D. A. (1995). A negotiation model for teaching critical thinking. Teaching of Psychology, 22(1), 22-24.
  • Carlson, E. R. (1995). Evaluating the credibility of sources. A missing link in the teaching of critical thinking. Teaching of Psychology, 22(1), 39-41.
  • Facione, P. A., Sanchez, C. A., Facione, N. C., & Gainen, J. (1995). The disposition toward critical thinking. The Journal of General Education, 44(1), 1-25.
  • Halpern, D. F., & Nummedal, S. G. (1995). Closing thoughts about helping students improve how they think. Teaching of Psychology, 22(1), 82-83.
  • Isbell, D. (1995). Teaching writing and research as inseparable: A faculty-librarian teaching team. Reference Services Review, 23(4), 51-62.
  • Jones, J. M. & Safrit, R. D. (1994). Developing critical thinking skills in adult learners through innovative distance learning. Paper presented at the International Conference on the practice of adult education and social development. Jinan, China. (Eric Document Reproduction Services No. ED 373 159)
  • Sanchez, M. A. (1995). Using critical-thinking principles as a guide to college-level instruction. Teaching of Psychology, 22(1), 72-74.
  • Spicer, K. L. & Hanks, W. E. (1995). Multiple measures of critical thinking skills and predisposition in assessment of critical thinking. Paper presented at the annual meeting of the Speech Communication Association, San Antonio, TX. (Eric Document Reproduction Services No. ED 391 185)
  • Terenzini, P. T., Springer, L., Pascarella, E. T., & Nora, A. (1995). Influences affecting the development of students' critical thinking skills. Research in Higher Education, 36(1), 23-39.

On the Internet

  • Carr, K. S. (1990). How can we teach critical thinking. Eric Digest. [On-line]. Available HTTP: http://ericps.ed.uiuc.edu/eece/pubs/digests/1990/carr90.html
  • The Center for Critical Thinking (1996). Home Page. Available HTTP: http://www.criticalthinking.org/University/
  • Ennis, Bob (No date). Critical thinking. [On-line], April 4, 1997. Available HTTP: http://www.cof.orst.edu/cof/teach/for442/ct.htm
  • Montclair State University (1995). Curriculum resource center. Critical thinking resources: An annotated bibliography. [On-line]. Available HTTP: http://www.montclair.edu/Pages/CRC/Bibliographies/CriticalThinking.html
  • No author, No date. Critical Thinking is ... [On-line], April 4, 1997. Available HTTP: http://library.usask.ca/ustudy/critical/
  • Sheridan, Marcia (No date). Internet education topics hotlink page. [On-line], April 4, 1997. Available HTTP: http://sun1.iusb.edu/~msherida/topics/critical.html

Walker Center for Teaching and Learning

  • 433 Library
  • Dept 4354
  • 615 McCallie Ave
  •   423-425-4188

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

reason model of critical thinking

Try for free

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

reason model of critical thinking

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved September 4, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

A Short Guide to Building Your Team’s Critical Thinking Skills

  • Matt Plummer

reason model of critical thinking

Critical thinking isn’t an innate skill. It can be learned.

Most employers lack an effective way to objectively assess critical thinking skills and most managers don’t know how to provide specific instruction to team members in need of becoming better thinkers. Instead, most managers employ a sink-or-swim approach, ultimately creating work-arounds to keep those who can’t figure out how to “swim” from making important decisions. But it doesn’t have to be this way. To demystify what critical thinking is and how it is developed, the author’s team turned to three research-backed models: The Halpern Critical Thinking Assessment, Pearson’s RED Critical Thinking Model, and Bloom’s Taxonomy. Using these models, they developed the Critical Thinking Roadmap, a framework that breaks critical thinking down into four measurable phases: the ability to execute, synthesize, recommend, and generate.

With critical thinking ranking among the most in-demand skills for job candidates , you would think that educational institutions would prepare candidates well to be exceptional thinkers, and employers would be adept at developing such skills in existing employees. Unfortunately, both are largely untrue.

reason model of critical thinking

  • Matt Plummer (@mtplummer) is the founder of Zarvana, which offers online programs and coaching services to help working professionals become more productive by developing time-saving habits. Before starting Zarvana, Matt spent six years at Bain & Company spin-out, The Bridgespan Group, a strategy and management consulting firm for nonprofits, foundations, and philanthropists.  

Partner Center

Bookmark this page

  • Call for Volunteers!
  • Our Team of Presenters
  • Fellows of the Foundation
  • Dr. Richard Paul
  • Dr. Linda Elder
  • Dr. Gerald Nosich
  • Contact Us - Office Information
  • Permission to Use Our Work
  • Create a CriticalThinking.Org Account
  • Contributions to the Foundation for Critical Thinking
  • Testimonials
  • Center for Critical Thinking
  • The National Council for Excellence in Critical Thinking
  • International Center for the Assessment of Higher Order Thinking
  • Library of Critical Thinking Resources
  • Professional Development
  • Inservice Information Request Form
  • Certification Online Course
  • The State of Critical Thinking Today
  • Higher Education
  • K-12 Instruction
  • Customized Webinars and Online Courses for Faculty
  • Business & Professional Groups
  • The Center for Critical Thinking Community Online
  • Certification in the Paul-Elder Approach to Critical Thinking
  • Professional Development Model - College and University
  • Professional Development Model for K-12
  • Workshop Descriptions
  • Online Courses in Critical Thinking
  • Critical Thinking Training for Law Enforcement
  • Consulting for Leaders and Key Personnel at Your Organization
  • Critical Thinking Therapy
  • Conferences & Events
  • Upcoming Learning Opportunities
  • 2024 Fall Academy on Critical Thinking
  • Daily Schedule
  • Transportation, Lodging, and Social Functions
  • Academy Presuppositions
  • Save the Date: 45th Annual International Conference on Critical Thinking
  • Presuppositions of the Conference
  • Call for Proposals
  • Conference Archives
  • 44th Annual International Conference on Critical Thinking
  • Focal Session Descriptions
  • Guest Presentation Program
  • Presuppositions of the 44th Annual International Conference on Critical Thinking
  • Recommended Reading
  • 43rd Annual International Conference on Critical Thinking
  • Register as an Ambassador
  • Testimonials from Past Attendees
  • Thank You to Our Donors
  • 42nd Annual International Conference on Critical Thinking
  • Overview of Sessions (Flyer)
  • Presuppositions of the Annual International Conference
  • Testimonials from Past Conferences
  • 41st Annual International Conference on Critical Thinking
  • Recommended Publications
  • Dedication to Our Donors
  • 40th Annual International Conference on Critical Thinking
  • Session Descriptions
  • Testimonials from Prior Conferences
  • International Critical Thinking Manifesto
  • Scholarships Available
  • 39th Annual International Conference on Critical Thinking
  • Travel and Lodging Info
  • FAQ & General Announcements
  • Focal and Plenary Session Descriptions
  • Program and Proceedings of the 39th Annual International Conference on Critical Thinking
  • The Venue: KU Leuven
  • Call for Critical Thinking Ambassadors
  • Conference Background Information
  • 38th Annual International Conference on Critical Thinking
  • Call for Ambassadors for Critical Thinking
  • Conference Focal Session Descriptions
  • Conference Concurrent Session Descriptions
  • Conference Roundtable Discussions
  • Conference Announcements and FAQ
  • Conference Program and Proceedings
  • Conference Daily Schedule
  • Conference Hotel Information
  • Conference Academic Credit
  • Conference Presuppositions
  • What Participants Have Said About the Conference
  • 37th Annual International Conference on Critical Thinking
  • Registration & Fees
  • FAQ and Announcements
  • Conference Presenters
  • 37th Conference Flyer
  • Program and Proceedings of the 37th Conference
  • 36th International Conference
  • Conference Sessions
  • Conference Flyer
  • Program and Proceedings
  • Academic Credit
  • 35th International Conference
  • Conference Session Descriptions
  • Available Online Sessions
  • Bertrand Russell Distinguished Scholar - Daniel Ellsberg
  • 35th International Conference Program
  • Concurrent Sessions
  • Posthumous Bertrand Russell Scholar
  • Hotel Information
  • Conference FAQs
  • Visiting UC Berkeley
  • 34th INTERNATIONAL CONFERENCE
  • Bertrand Russell Distinguished Scholar - Ralph Nader
  • Conference Concurrent Presenters
  • Conference Program
  • Conference Theme
  • Roundtable Discussions
  • Flyer for Bulletin Boards
  • 33rd INTERNATIONAL CONFERENCE
  • 33rd International Conference Program
  • 33rd International Conference Sessions
  • 33rd International Conference Presenters
  • The Bertrand Russell Distinguished Scholars Critical Thinking Conversations
  • 33rd International Conference - Fees & Registration
  • 33rd International Conference Concurrent Presenters
  • 33rd International Conference - Hotel Information
  • 33rd International Conference Flyer
  • 32nd INTERNATIONAL CONFERENCE
  • 32nd Annual Conference Sessions
  • 32nd Annual Conference Presenter Information
  • 32nd Conference Program
  • The Bertrand Russell Distinguished Scholars Critical Thinking Lecture Series
  • 32nd Annual Conference Concurrent Presenters
  • 32nd Annual Conference Academic Credit
  • 31st INTERNATIONAL CONFERENCE
  • 31st Conference Sessions
  • Comments about previous conferences
  • Conference Hotel (2011)
  • 31st Concurrent Presenters
  • Registration Fees
  • 31st International Conference
  • 30th INTERNATIONAL CONFERENCE ON CRITICAL THINKING
  • 30th International Conference Theme
  • 30th Conference Sessions
  • PreConference Sessions
  • 30th Concurrent Presenters
  • 30th Conference Presuppositions
  • Hilton Garden Inn
  • 29th International Conference
  • 29th Conference Theme
  • 29th Conference Sessions
  • 29th Preconference Sessions
  • 29th Conference Concurrent Sessions
  • 2008 International Conference on Critical Thinking
  • 2008 Preconference Sessions (28th Intl. Conference)
  • 2007 Conference on Critical Thinking (Main Page)
  • 2007 Conference Theme and sessions
  • 2007 Pre-Conference Workshops
  • 2006 Annual International Conference (archived)
  • 2006 International Conference Theme
  • 2005 International Conference (archived)
  • Prior Conference Programs (Pre 2000)
  • Workshop Archives
  • Spring 2022 Online Workshops
  • 2021 Online Workshops for Winter & Spring
  • 2019 Seminar for Military and Intelligence Trainers and Instructors
  • Transportation, Lodging, and Recreation
  • Seminar Flyer
  • 2013 Spring Workshops
  • Our Presenters
  • 2013 Spring Workshops - Hotel Information
  • 2013 Spring Workshops Flyer
  • 2013 Spring Workshops - Schedule
  • Spring Workshop 2012
  • 2012 Spring Workshop Strands
  • 2012 Spring Workshop Flier
  • 2011 Spring Workshop
  • Spring 2010 Workshop Strands
  • 2009 Spring Workshops on Critical Thinking
  • 2008 SPRING Workshops and Seminars on Critical Thinking
  • 2008 Ethical Reasoning Workshop
  • 2008 - On Richard Paul's Teaching Design
  • 2008 Engineering Reasoning Workshop
  • 2008 Academia sobre Formulando Preguntas Esenciales
  • Fellows Academy Archives
  • 2017 Fall International Fellows Academy
  • 4th International Fellows Academy - 2016
  • 3rd International Fellows Academy
  • 2nd International Fellows Academy
  • 1st International Fellows Academy
  • Academy Archives
  • October 2019 Critical Thinking Academy for Educators and Administrators
  • Transportation, Lodging, and Leisure
  • Advanced Seminar: Oxford Tutorial
  • Recreational Group Activities
  • Limited Scholarships Available
  • September 2019 Critical Thinking Educators and Administrators Academy
  • 2019 Critical Thinking Training for Trainers and Advanced Academy
  • Academy Flyer
  • Seattle, WA 2017 Spring Academy
  • San Diego, CA 2017 Spring Academy
  • 2016 Spring Academy -- Washington D.C.
  • 2016 Spring Academy -- Houston, TX
  • The 2nd International Academy on Critical Thinking (Oxford 2008)
  • 2007 National Academy on Critical Thinking Testing and Assessment
  • 2006 Cambridge Academy (archived)
  • 2006 Cambridge Academy Theme
  • 2006 Cambridge Academy Sessions
  • Accommodations at St. John's College
  • Assessment & Testing
  • A Model for the National Assessment of Higher Order Thinking
  • International Critical Thinking Essay Test
  • Online Critical Thinking Basic Concepts Test
  • Online Critical Thinking Basic Concepts Sample Test
  • Consequential Validity: Using Assessment to Drive Instruction
  • News & Announcements
  • Newest Pages Added to CriticalThinking.Org
  • Online Learning
  • Critical Thinking Online Courses
  • Critical Thinking Blog
  • 2019 Blog Entries
  • 2020 Blog Entries
  • 2021 Blog Entries
  • 2022 Blog Entries
  • 2023 Blog Entries
  • Online Courses for Your Students
  • 2023 Webinar Archives
  • 2022 Webinar Archives
  • 2021 Webinar Archive
  • 2020 Webinar Archive
  • Guided Study Groups
  • Critical Thinking Channel on YouTube
  • CT800: Fall 2024

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

reason model of critical thinking

Critical Thinking: Where to Begin

reason model of critical thinking

  • For College and University Faculty
  • For College and University Students
  • For High School Teachers
  • For Jr. High School Teachers
  • For Elementary Teachers (Grades 4-6)
  • For Elementary Teachers (Kindergarten - 3rd Grade)
  • For Science and Engineering Instruction
  • For Business and Professional Development
  • For Nursing and Health Care
  • For Home Schooling and Home Study

If you are new to critical thinking or wish to deepen your conception of it, we recommend you review the content below and bookmark this page for future reference.

Our Conception of Critical Thinking...

getting started with critical thinking

"Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. In its exemplary form, it is based on universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness..."

"Critical thinking is self-guided, self-disciplined thinking which attempts to reason at the highest level of quality in a fairminded way. People who think critically attempt, with consistent and conscious effort, to live rationally, reasonably, and empathically. They are keenly aware of the inherently flawed nature of human thinking when left unchecked. They strive to diminish the power of their egocentric and sociocentric tendencies. They use the intellectual tools that critical thinking offers – concepts and principles that enable them to analyze, assess, and improve thinking. They work diligently to develop the intellectual virtues of intellectual integrity, intellectual humility, intellectual civility, intellectual empathy, intellectual sense of justice and confidence in reason. They realize that no matter how skilled they are as thinkers, they can always improve their reasoning abilities and they will at times fall prey to mistakes in reasoning, human irrationality, prejudices, biases, distortions, uncritically accepted social rules and taboos, self-interest, and vested interest.

They strive to improve the world in whatever ways they can and contribute to a more rational, civilized society. At the same time, they recognize the complexities often inherent in doing so. They strive never to think simplistically about complicated issues and always to consider the rights and needs of relevant others. They recognize the complexities in developing as thinkers, and commit themselves to life-long practice toward self-improvement. They embody the Socratic principle: The unexamined life is not worth living , because they realize that many unexamined lives together result in an uncritical, unjust, dangerous world."

Why Critical Thinking?

reason model of critical thinking

The Problem:

Everyone thinks; it is our nature to do so. But much of our thinking, left to itself, is biased, distorted, partial, uninformed, or down-right prejudiced. Yet the quality of our lives and that of what we produce, make, or build depends precisely on the quality of our thought. Shoddy thinking is costly, both in money and in quality of life. Excellence in thought, however, must be systematically cultivated.

A Brief Definition:

Critical thinking is the art of analyzing and evaluating thinking with a view to improving it. The Result: 

  A well-cultivated critical thinker:

  • raises vital questions and problems, formulating them clearly and precisely;
  • gathers and assesses relevant information, using abstract ideas to interpret it effectively;
  • comes to well-reasoned conclusions and solutions, testing them against relevant criteria and standards;
  • thinks openmindedly within alternative systems of thought, recognizing and assessing, as need be, their assumptions, implications, and practical consequences; and
  • communicates effectively with others in figuring out solutions to complex problems.

Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It requires rigorous standards of excellence and mindful command of their use. It entails effective communication and problem-solving abilities, and a commitment to overcoming our native egocentrism and sociocentrism. Read more about our concept of critical thinking .

The Essential Dimensions of Critical Thinking

reason model of critical thinking

Our conception of critical thinking is based on the substantive approach developed by Dr. Richard Paul and his colleagues at the Center and Foundation for Critical Thinking over multiple decades. It is relevant to every subject, discipline, and profession, and to reasoning through the problems of everyday life. It entails five essential dimensions of critical thinking:

At the left is an overview of the first three dimensions. In sum, the elements or structures of thought enable us to "take our thinking apart" and analyze it. The intellectual standards are used to assess and evaluate the elements. The intellectual traits are dispositions of mind embodied by the fairminded critical thinker. To cultivate the mind, we need command of these essential dimensions, and we need to consistently apply them as we think through the many problems and issues in our lives.

The Elements of Reasoning and Intellectual Standards

reason model of critical thinking

To learn more about the elements of thought and how to apply the intellectual standards, check out our interactive model. Simply click on the link below, scroll to the bottom of the page, and explore the model with your mouse.

Why the Analysis of Thinking Is Important If you want to think well, you must understand at least the rudiments of thought, the most basic structures out of which all thinking is made. You must learn how to take thinking apart. Analyzing the Logic of a Subject When we understand the elements of reasoning, we realize that all subjects, all disciplines, have a fundamental logic defined by the structures of thought embedded within them. Therefore, to lay bare a subject’s most fundamental logic, we should begin with these questions:

reason model of critical thinking

Going Deeper...

reason model of critical thinking

The Critical Thinking Bookstore  

Our online bookstore houses numerous books and teacher's manuals , Thinker's Guides , videos , and other educational materials .  

Learn From Our Fellows and Scholars

Watch our Event Calendar , which provides an overview of all upcoming conferences and academies hosted by the Foundation for Critical Thinking. Clicking an entry on the Event Calendar will bring up that event's details, and the option to register. For those interested in online learning, the Foundation offers accredited online courses in critical thinking for both educators and the general public, as well as an online test for evaluating basic comprehension of critical thinking concepts . We are in the process of developing more online learning tools and tests to offer the community.  

Utilizing this Website

This website contains large amounts research and an online library of articles , both of which are freely available to the public. We also invite you to become a member of the Critical Thinking Community , where you will gain access to more tools and materials.  If you cannot locate a resource on a specific topic or concept, try searching for it using our Search Tool . The Search Tool is at the upper-right of every page on the website.

MMCTAgent: Multi-modal Critical Thinking Agent Framework for Complex Visual Reasoning

  • Somnath Kumar ,
  • Yash Gadhia ,
  • Tanuja Ganu ,
  • Akshay Nambi

Recent advancements in Multi-modal Large Language Models (MLLMs) have significantly improved their performance in tasks combining vision and language. However, challenges persist in detailed multi-modal understanding, comprehension of complex tasks, and reasoning over multi-modal information. This paper introduces MMCTAgent, a novel multi-modal critical thinking agent framework designed to address the inherent limitations of current MLLMs in complex visual reasoning tasks. Inspired by human cognitive processes and critical thinking, MMCTAgent iteratively analyzes multi-modal information, decomposes queries, plans strategies, and dynamically evolves its reasoning. Additionally, MMCTAgent incorporates critical thinking elements such as verification of final answers and self-reflection through a novel approach that defines a vision-based critic and identifies task-specific evaluation criteria, thereby enhancing its decision-making abilities. Through rigorous evaluations across various image and video understanding benchmarks, we demonstrate that MMCTAgent (with and without the critic) outperforms both foundational MLLMs and other tool-augmented pipelines.

  • Follow on X
  • Like on Facebook
  • Follow on LinkedIn
  • Subscribe on Youtube
  • Follow on Instagram
  • Subscribe to our RSS feed

Share this page:

  • Share on Facebook
  • Share on LinkedIn
  • Share on Reddit

Macquarie University

The development of statistical reasoning in primary school students

While formal statistical practices are not generally accessible to students in the primary years of schooling, the principles underpinning statistical thinking and reasoning—such as posing questions, collecting data, comparing groups, and representing and inferring from data—are relevant in primary mathematics (Watson et al., 2018). Recent Australian studies by English (2012, 2013, 2018), Fielding-Wells (2014, 2018 a,b), Kinnear (2013, 2018), Makar (2014, 2016, 2018), Mulligan (2015) and Watson (2018) have focused on primary school students’ capacities to engage in data modelling and on statistical reasoning more broadly. An early years’ approach to the teaching of statistics involves including students’ personal experiences, encourages self-collected data sets, and emphasises the reasoning process rather than outcomes or conclusions (Doerr, et al., 2017). How young students’ develop and apply the modelling and refinement process is not clearly understood however, especially when working with an abstract or complex data set. This thesis aimed to gain a more coherent understanding of the developmental aspects of Grade 1 through 4 students’ statistical reasoning and metarepresentational competence with explicit emphasis upon predictive reasoning.

Three interconnected design studies on model-based reasoning and predictive reasoning were conducted with 46 Australian students drawn from one cohort of a single, independent, metropolitan primary school. In the first design study, nine high-ability Grade 1 students created a word-based model for categorisation of self-portraits drawn by students in other grades, and assessed the model using three reasoning tasks. Of interest were the features of the modelling process observed in Grade 1 students, and how students’ used test data collected from the model to inform judgements regarding its efficacy and limitations. The second design study focused on predictive reasoning. How Grade 2 students used the variability of the temperature table to inform their predictions, how they justified predictions and their use of probabilistic language was the focus. Ten high-ability Grade 2 students, including seven students retained from the previous study, predicted maximum monthly temperatures from a temperature table then plotted their predictions against background temperature readings using TinkerPlots TM .

For both design studies, student predictions, representations and explanations were coded using three levels of statistical reasoning: idiosyncratic, transitional and quantitative (Leavy, 2008). Seven of the Grade 1 students were observed using data-based reasoning when justifying and revising their decisions. Six of the Grade 2 students made predictions similar to other monthly values in the data table, increasing to nine students after plotting the predictions with TinkerPlots TM . All ten students used probabilistic language when describing the data set, including terms such as outliers, clusters and range.

Following this pilot work, the main study employed 46 students from Grade 3, and 44 of the same students from Grade 4 in a longitudinal teaching experiment. Students predicted maximum monthly temperatures for the current year using a data table containing past maximum temperatures, represented the data table using informal freehand inscriptions or graphing and described their predictive strategies in verbal and written form. Data were collected at the beginning of Grade 3 and the beginning and end of Grade 4 using the same tasks. Data were coded using a data lenses framework (Konold et al., 2015) in Grade 3 and a framework for analysis of structural features (Awareness of Mathematical Pattern and Structure [AMPS]) (Mulligan & Mitchelmore, 2009) in Grades 3 and 4. Most Grade 4 students (87%) made predictions within the historical range, relative to half in Grade 3 (54%). Representations included co-ordinate graphing including column, line and dot plots and were more sophisticated in Grade 4, with 57% demonstrating data transnumeration, while in Grade 3 they were predominately idiosyncratic or copies of the data table. Grade 4 students were more likely (79%) than Grade 3 (51%) to use and describe predictions based on extraction, clustering, aggregation, noticing seasonal trends and range, identifying causal and random variation, and observing measures of central tendency. Large individual differences emerged: three developmental pathways are illustrated through case studies of high, average, and low ability students. This range suggests that pathways for predictive reasoning are somewhat flexible or idiosyncratic.

The design studies in this thesis demonstrated the advanced potential of some young students to reason statistically: Grade 1 students developed a viable word-based model using a complex data set, and Grade 2 students employed TinkerPlots TM to critique their data predictions. Levels of statistical reasoning in these students was higher than previously reported in studies of students in first and second grade such those by Makar (2016) and Lehrer and Schauble (2000b), as demonstrated through their use of data when justifying their reasoning.

The longitudinal study on student predictive reasoning and meta-representational competence contributes to a more in-depth or fine grained analysis of the possible developmental sequence of these capacities across Grades 3 and 4. Primary school students used contextual cues and data content when they make predictions, and appear to make realistic predictions from data tables prior to being able to describe viable prediction strategies, or to select data for representational purposes. However, other skills appear to develop unevenly— some students developing meta-representational competence and formal graphing prior to reasoning about their strategies, while other students developing reasoning strategies prior to meta-representational competence. Intermediate stages of transnumeration of data tables to formal graphs were described, providing a comprehensive longitudinal set of student representations from a single data set. The studies contribute to a growing body of research that investigates the predictive and data-modelling capacities of young students, and makes a distinct contribution by reporting on the use of TinkerPlots TM as a visualisation tool with second graders. The research supports the inclusion and extension of curriculum reform highlighting data-driven learning, and the development of statistical concepts that are integral to statistical literacy and mathematics learning. Research implications include arguments for more explicit outcomes in the Statistics and Probability strand of the mathematics curriculum on informal statistical inference and data exploration in the early years. This needs to be accompanied by newly developed professional development programs, resources and support for teachers’ acquisition of pedagogical content knowledge in statistical reasoning, and for primary school students to have extended opportunities for informal data representation prior to the introduction of formal graphing instruction.

Table of Contents

Awarding institution, degree type, department, centre or school, year of award, principal supervisor, additional supervisor 1, usage metrics.

Macquarie University Theses

  • Other education not elsewhere classified

This week: the arXiv Accessibility Forum

Help | Advanced Search

Computer Science > Artificial Intelligence

Title: strategic chain-of-thought: guiding accurate reasoning in llms through strategy elicitation.

Abstract: The Chain-of-Thought (CoT) paradigm has emerged as a critical approach for enhancing the reasoning capabilities of large language models (LLMs). However, despite their widespread adoption and success, CoT methods often exhibit instability due to their inability to consistently ensure the quality of generated reasoning paths, leading to sub-optimal reasoning performance. To address this challenge, we propose the \textbf{Strategic Chain-of-Thought} (SCoT), a novel methodology designed to refine LLM performance by integrating strategic knowledge prior to generating intermediate reasoning steps. SCoT employs a two-stage approach within a single prompt: first eliciting an effective problem-solving strategy, which is then used to guide the generation of high-quality CoT paths and final answers. Our experiments across eight challenging reasoning datasets demonstrate significant improvements, including a 21.05\% increase on the GSM8K dataset and 24.13\% on the Tracking\_Objects dataset, respectively, using the Llama3-8b model. Additionally, we extend the SCoT framework to develop a few-shot method with automatically matched demonstrations, yielding even stronger results. These findings underscore the efficacy of SCoT, highlighting its potential to substantially enhance LLM performance in complex reasoning tasks.
Subjects: Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Human-Computer Interaction (cs.HC)
Cite as: [cs.AI]
  (or [cs.AI] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

IMAGES

  1. Critical Thinking: How to Effectively Reason, Understand Irrationality

    reason model of critical thinking

  2. What is critical thinking?

    reason model of critical thinking

  3. The 6 Stages of Critical Thinking Charles Leon

    reason model of critical thinking

  4. Critical Thinking Skills

    reason model of critical thinking

  5. Components of Critical Thinking Processes Stock Photo

    reason model of critical thinking

  6. Critical Thinking Skills Chart

    reason model of critical thinking

VIDEO

  1. Week 7

  2. Foundation Engineering_Chapter 1: Review of Soil Mechanics (Part 16)_Cam-clay model and Cap Model

  3. The Role of Reason. #DecisionMaking #LogicAndRationality #EmotionalIntelligence #BetterDecisions

  4. Model Critical Thinking Video

  5. Critical Thinking Class

  6. NteQ Model

COMMENTS

  1. Critical Thinking Models: A Comprehensive Guide for Effective Decision

    Critical thinking models provide structured approaches for enhancing decision-making abilities. These models help individuals analyze situations, scrutinize assumptions, and consider alternative perspectives. The application of critical thinking models can significantly improve one's reasoning and judgment skills.

  2. Wheel of Reason

    This model is based fundamentally in the original work of Dr. Richard Paul, and is an essential component in the Paul- Elder framework for critical thinking™. Refer back to this model frequently to refresh your memory as to the eight elements of reasoning that are present in your thinking whenever you reason through anything.

  3. Critical Thinking

    Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. The goal of this process is to help us have good beliefs, where "good" means that our beliefs meet certain goals of thought, such as truth, usefulness, or rationality. Critical thinking is widely ...

  4. Paul-Elder Critical Thinking Framework

    Paul-Elder Critical Thinking Framework

  5. PDF What is the RED Model of Critical Thinking?

    RED. model of critical thinking: Recognize assumptions. This is all about comprehension. Actually understanding what is being stated and considering whether the information presented is true, and whether any evidence has been provided to back it up. Correctly identifying when assumptions have been made is an essential part of this, and being ...

  6. PDF The Miniature Guide to Critical Thinking: Concepts & Tools

    The Miniature Guide to Critical Thinking: Concepts & Tools

  7. Critical Thinking Models: Definition, Benefits, and Skills

    Critical Thinking Models: Definition, Benefits, and Skills

  8. Critical Thinking: A Model of Intelligence for Solving Real-World

    Critical Thinking: A Model of Intelligence for Solving Real- ...

  9. Critical Thinking

    Critical Thinking - Developing the Right Mindset and Skills

  10. What is Critical Thinking?

    Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. Paul and Scriven go on to suggest that ...

  11. Critical Thinking: Multiple Models for Teaching and Learning (abridged

    In Re-Thinking Reason: New Perspectives in Critical Thinking, Walters explores an alternative model being forwarded by an emerging "second-wave" of critical thinking research and pedagogy. Second-wave advocates argue that while "logical skills are essential functions of good thinking, […] so are non-analytic ones such as imagination and ...

  12. What Are Critical Thinking Skills and Why Are They Important?

    What Are Critical Thinking Skills and Why Are They ...

  13. PDF Critical Thinking: Frameworks and Models for Teaching

    critical thinking strategies to similar contexts of education are brought forward. This paper is a humble effort to clarify what CT and CTers' characteristics are, to introduce the models proposed for the application of CT in educational settings, and to indicate how CT could be taught in educational settings. 2. Review of the Related ...

  14. The R.E.D. Model of Development of Critical Thinking Skills

    Pearson has developed the following RED model—Recognize assumptions, Evaluate arguments, and Draw conclusions as a way to view and apply critical thinking principles when faced with a decision (Chartrand, Ishikawa, and Flander 2018). Recognize assumptions. This is the ability to separate fact from opinion.

  15. Critical Thinking

    Critical Thinking - Stanford Encyclopedia of Philosophy

  16. Critical Thinking and Problem-Solving

    Critical thinking involves asking questions, defining a problem, examining evidence, analyzing assumptions and biases, avoiding emotional reasoning, avoiding oversimplification, considering other interpretations, and tolerating ambiguity. Dealing with ambiguity is also seen by Strohm & Baukus (1995) as an essential part of critical thinking ...

  17. The Elements of Reasoning and the Intellectual Sta

    The Elements of Reasoning and the Intellectual Standards

  18. Defining Critical Thinking

    Defining Critical Thinking

  19. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  20. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  21. A Short Guide to Building Your Team's Critical Thinking Skills

    Using these models, they developed the Critical Thinking Roadmap, a framework that breaks critical thinking down into four measurable phases: the ability to execute, synthesize, recommend, and ...

  22. Critical Thinking: Where to Begin

    A Brief Definition: Critical thinking is the art of analyzing and evaluating thinking with a view to improving it. A well-cultivated critical thinker: communicates effectively with others in figuring out solutions to complex problems. Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking.

  23. MMCTAgent: Multi-modal Critical Thinking Agent Framework for Complex

    Recent advancements in Multi-modal Large Language Models (MLLMs) have significantly improved their performance in tasks combining vision and language. However, challenges persist in detailed multi-modal understanding, comprehension of complex tasks, and reasoning over multi-modal information. This paper introduces MMCTAgent, a novel multi-modal critical thinking agent framework designed to ...

  24. The Most Useful Critical Thinking Mental Models to Know About

    Plausible — Thinking that just because something is plausible means that it is true. Likely — Thinking that just because something is possible means that it is likely. — "Manipulating an emotional response in place of a valid or compelling argument.". — "Attacking your opponent's character or personal traits in an attempt to ...

  25. The development of statistical reasoning in primary school students

    While formal statistical practices are not generally accessible to students in the primary years of schooling, the principles underpinning statistical thinking and reasoning—such as posing questions, collecting data, comparing groups, and representing and inferring from data—are relevant in primary mathematics (Watson et al., 2018). Recent Australian studies by English (2012, 2013, 2018 ...

  26. Strategic Chain-of-Thought: Guiding Accurate Reasoning in LLMs through

    The Chain-of-Thought (CoT) paradigm has emerged as a critical approach for enhancing the reasoning capabilities of large language models (LLMs). However, despite their widespread adoption and success, CoT methods often exhibit instability due to their inability to consistently ensure the quality of generated reasoning paths, leading to sub-optimal reasoning performance. To address this ...