Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • What Is a Research Methodology? | Steps & Tips

What Is a Research Methodology? | Steps & Tips

Published on 25 February 2019 by Shona McCombes . Revised on 10 October 2022.

Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research.

It should include:

  • The type of research you conducted
  • How you collected and analysed your data
  • Any tools or materials you used in the research
  • Why you chose these methods
  • Your methodology section should generally be written in the past tense .
  • Academic style guides in your field may provide detailed guidelines on what to include for different types of studies.
  • Your citation style might provide guidelines for your methodology section (e.g., an APA Style methods section ).

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

How to write a research methodology, why is a methods section important, step 1: explain your methodological approach, step 2: describe your data collection methods, step 3: describe your analysis method, step 4: evaluate and justify the methodological choices you made, tips for writing a strong methodology chapter, frequently asked questions about methodology.

The only proofreading tool specialized in correcting academic writing

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

what to include in research methodology

Correct my document today

Your methods section is your opportunity to share how you conducted your research and why you chose the methods you chose. It’s also the place to show that your research was rigorously conducted and can be replicated .

It gives your research legitimacy and situates it within your field, and also gives your readers a place to refer to if they have any questions or critiques in other sections.

You can start by introducing your overall approach to your research. You have two options here.

Option 1: Start with your “what”

What research problem or question did you investigate?

  • Aim to describe the characteristics of something?
  • Explore an under-researched topic?
  • Establish a causal relationship?

And what type of data did you need to achieve this aim?

  • Quantitative data , qualitative data , or a mix of both?
  • Primary data collected yourself, or secondary data collected by someone else?
  • Experimental data gathered by controlling and manipulating variables, or descriptive data gathered via observations?

Option 2: Start with your “why”

Depending on your discipline, you can also start with a discussion of the rationale and assumptions underpinning your methodology. In other words, why did you choose these methods for your study?

  • Why is this the best way to answer your research question?
  • Is this a standard methodology in your field, or does it require justification?
  • Were there any ethical considerations involved in your choices?
  • What are the criteria for validity and reliability in this type of research ?

Once you have introduced your reader to your methodological approach, you should share full details about your data collection methods .

Quantitative methods

In order to be considered generalisable, you should describe quantitative research methods in enough detail for another researcher to replicate your study.

Here, explain how you operationalised your concepts and measured your variables. Discuss your sampling method or inclusion/exclusion criteria, as well as any tools, procedures, and materials you used to gather your data.

Surveys Describe where, when, and how the survey was conducted.

  • How did you design the questionnaire?
  • What form did your questions take (e.g., multiple choice, Likert scale )?
  • Were your surveys conducted in-person or virtually?
  • What sampling method did you use to select participants?
  • What was your sample size and response rate?

Experiments Share full details of the tools, techniques, and procedures you used to conduct your experiment.

  • How did you design the experiment ?
  • How did you recruit participants?
  • How did you manipulate and measure the variables ?
  • What tools did you use?

Existing data Explain how you gathered and selected the material (such as datasets or archival data) that you used in your analysis.

  • Where did you source the material?
  • How was the data originally produced?
  • What criteria did you use to select material (e.g., date range)?

The survey consisted of 5 multiple-choice questions and 10 questions measured on a 7-point Likert scale.

The goal was to collect survey responses from 350 customers visiting the fitness apparel company’s brick-and-mortar location in Boston on 4–8 July 2022, between 11:00 and 15:00.

Here, a customer was defined as a person who had purchased a product from the company on the day they took the survey. Participants were given 5 minutes to fill in the survey anonymously. In total, 408 customers responded, but not all surveys were fully completed. Due to this, 371 survey results were included in the analysis.

Qualitative methods

In qualitative research , methods are often more flexible and subjective. For this reason, it’s crucial to robustly explain the methodology choices you made.

Be sure to discuss the criteria you used to select your data, the context in which your research was conducted, and the role you played in collecting your data (e.g., were you an active participant, or a passive observer?)

Interviews or focus groups Describe where, when, and how the interviews were conducted.

  • How did you find and select participants?
  • How many participants took part?
  • What form did the interviews take ( structured , semi-structured , or unstructured )?
  • How long were the interviews?
  • How were they recorded?

Participant observation Describe where, when, and how you conducted the observation or ethnography .

  • What group or community did you observe? How long did you spend there?
  • How did you gain access to this group? What role did you play in the community?
  • How long did you spend conducting the research? Where was it located?
  • How did you record your data (e.g., audiovisual recordings, note-taking)?

Existing data Explain how you selected case study materials for your analysis.

  • What type of materials did you analyse?
  • How did you select them?

In order to gain better insight into possibilities for future improvement of the fitness shop’s product range, semi-structured interviews were conducted with 8 returning customers.

Here, a returning customer was defined as someone who usually bought products at least twice a week from the store.

Surveys were used to select participants. Interviews were conducted in a small office next to the cash register and lasted approximately 20 minutes each. Answers were recorded by note-taking, and seven interviews were also filmed with consent. One interviewee preferred not to be filmed.

Mixed methods

Mixed methods research combines quantitative and qualitative approaches. If a standalone quantitative or qualitative study is insufficient to answer your research question, mixed methods may be a good fit for you.

Mixed methods are less common than standalone analyses, largely because they require a great deal of effort to pull off successfully. If you choose to pursue mixed methods, it’s especially important to robustly justify your methods here.

Prevent plagiarism, run a free check.

Next, you should indicate how you processed and analysed your data. Avoid going into too much detail: you should not start introducing or discussing any of your results at this stage.

In quantitative research , your analysis will be based on numbers. In your methods section, you can include:

  • How you prepared the data before analysing it (e.g., checking for missing data , removing outliers , transforming variables)
  • Which software you used (e.g., SPSS, Stata or R)
  • Which statistical tests you used (e.g., two-tailed t test , simple linear regression )

In qualitative research, your analysis will be based on language, images, and observations (often involving some form of textual analysis ).

Specific methods might include:

  • Content analysis : Categorising and discussing the meaning of words, phrases and sentences
  • Thematic analysis : Coding and closely examining the data to identify broad themes and patterns
  • Discourse analysis : Studying communication and meaning in relation to their social context

Mixed methods combine the above two research methods, integrating both qualitative and quantitative approaches into one coherent analytical process.

Above all, your methodology section should clearly make the case for why you chose the methods you did. This is especially true if you did not take the most standard approach to your topic. In this case, discuss why other methods were not suitable for your objectives, and show how this approach contributes new knowledge or understanding.

In any case, it should be overwhelmingly clear to your reader that you set yourself up for success in terms of your methodology’s design. Show how your methods should lead to results that are valid and reliable, while leaving the analysis of the meaning, importance, and relevance of your results for your discussion section .

  • Quantitative: Lab-based experiments cannot always accurately simulate real-life situations and behaviours, but they are effective for testing causal relationships between variables .
  • Qualitative: Unstructured interviews usually produce results that cannot be generalised beyond the sample group , but they provide a more in-depth understanding of participants’ perceptions, motivations, and emotions.
  • Mixed methods: Despite issues systematically comparing differing types of data, a solely quantitative study would not sufficiently incorporate the lived experience of each participant, while a solely qualitative study would be insufficiently generalisable.

Remember that your aim is not just to describe your methods, but to show how and why you applied them. Again, it’s critical to demonstrate that your research was rigorously conducted and can be replicated.

1. Focus on your objectives and research questions

The methodology section should clearly show why your methods suit your objectives  and convince the reader that you chose the best possible approach to answering your problem statement and research questions .

2. Cite relevant sources

Your methodology can be strengthened by referencing existing research in your field. This can help you to:

  • Show that you followed established practice for your type of research
  • Discuss how you decided on your approach by evaluating existing research
  • Present a novel methodological approach to address a gap in the literature

3. Write for your audience

Consider how much information you need to give, and avoid getting too lengthy. If you are using methods that are standard for your discipline, you probably don’t need to give a lot of background or justification.

Regardless, your methodology should be a clear, well-structured text that makes an argument for your approach, not just a list of technical details and procedures.

Methodology refers to the overarching strategy and rationale of your research. Developing your methodology involves studying the research methods used in your field and the theories or principles that underpin them, in order to choose the approach that best matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. interviews, experiments , surveys , statistical tests ).

In a dissertation or scientific paper, the methodology chapter or methods section comes after the introduction and before the results , discussion and conclusion .

Depending on the length and type of document, you might also include a literature review or theoretical framework before the methodology.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). What Is a Research Methodology? | Steps & Tips. Scribbr. Retrieved 19 August 2024, from https://www.scribbr.co.uk/thesis-dissertation/methodology/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a dissertation proposal | a step-by-step guide, what is a literature review | guide, template, & examples, what is a theoretical framework | a step-by-step guide.

Still have questions? Leave a comment

Add Comment

Checklist: Dissertation Proposal

Enter your email id to get the downloadable right in your inbox!

Examples: Edited Papers

Need editing and proofreading services, research methodology guide: writing tips, types, & examples.

calender

  • Tags: Academic Research , Research

No dissertation or research paper is complete without the research methodology section. Since this is the chapter where you explain how you carried out your research, this is where all the meat is! Here’s where you clearly lay out the steps you have taken to test your hypothesis or research problem.

Through this blog, we’ll unravel the complexities and meaning of research methodology in academic writing , from its fundamental principles and ethics to the diverse types of research methodology in use today. Alongside offering research methodology examples, we aim to guide you on how to write research methodology, ensuring your research endeavors are both impactful and impeccably grounded!

Ensure your research methodology is foolproof. Learn more

Let’s first take a closer look at a simple research methodology definition:

Defining what is research methodology

Research methodology is the set of procedures and techniques used to collect, analyze, and interpret data to understand and solve a research problem. Methodology in research not only includes the design and methods but also the basic principles that guide the choice of specific methods.

Grasping the concept of methodology in research is essential for students and scholars, as it demonstrates the thorough and structured method used to explore a hypothesis or research question. Understanding the definition of methodology in research aids in identifying the methods used to collect data. Be it through any type of research method approach, ensuring adherence to the proper research paper format is crucial.

Now let’s explore some research methodology types:

Types of research methodology

1. qualitative research methodology.

Qualitative research methodology is aimed at understanding concepts, thoughts, or experiences. This approach is descriptive and is often utilized to gather in-depth insights into people’s attitudes, behaviors, or cultures. Qualitative research methodology involves methods like interviews, focus groups, and observation. The strength of this methodology lies in its ability to provide contextual richness.

2. Quantitative research methodology

Quantitative research methodology, on the other hand, is focused on quantifying the problem by generating numerical data or data that can be transformed into usable statistics. It uses measurable data to formulate facts and uncover patterns in research. Quantitative research methodology typically involves surveys, experiments, or statistical analysis. This methodology is appreciated for its ability to produce objective results that are generalizable to a larger population.

3. Mixed-Methods research methodology

Mixed-methods research combines both qualitative and quantitative research methodologies to provide a more comprehensive understanding of the research problem. This approach leverages the strengths of both methodologies to provide a deeper insight into the research question of a research paper .

Research methodology vs. research methods

The research methodology or design is the overall strategy and rationale that you used to carry out the research. Whereas, research methods are the specific tools and processes you use to gather and understand the data you need to test your hypothesis.

Research methodology examples and application

To further understand research methodology, let’s explore some examples of research methodology:

a. Qualitative research methodology example: A study exploring the impact of author branding on author popularity might utilize in-depth interviews to gather personal experiences and perspectives.

b. Quantitative research methodology example: A research project investigating the effects of a book promotion technique on book sales could employ a statistical analysis of profit margins and sales before and after the implementation of the method.

c. Mixed-Methods research methodology example: A study examining the relationship between social media use and academic performance might combine both qualitative and quantitative approaches. It could include surveys to quantitatively assess the frequency of social media usage and its correlation with grades, alongside focus groups or interviews to qualitatively explore students’ perceptions and experiences regarding how social media affects their study habits and academic engagement.

These examples highlight the meaning of methodology in research and how it guides the research process, from data collection to analysis, ensuring the study’s objectives are met efficiently.

Importance of methodology in research papers

When it comes to writing your study, the methodology in research papers or a dissertation plays a pivotal role. A well-crafted methodology section of a research paper or thesis not only enhances the credibility of your research but also provides a roadmap for others to replicate or build upon your work.

How to structure the research methods chapter

Wondering how to write the research methodology section? Follow these steps to create a strong methods chapter:

Step 1: Explain your research methodology

At the start of a research paper , you would have provided the background of your research and stated your hypothesis or research problem. In this section, you will elaborate on your research strategy. 

Begin by restating your research question and proceed to explain what type of research you opted for to test it. Depending on your research, here are some questions you can consider: 

a. Did you use qualitative or quantitative data to test the hypothesis? 

b. Did you perform an experiment where you collected data or are you writing a dissertation that is descriptive/theoretical without data collection? 

c. Did you use primary data that you collected or analyze secondary research data or existing data as part of your study? 

These questions will help you establish the rationale for your study on a broader level, which you will follow by elaborating on the specific methods you used to collect and understand your data. 

Step 2: Explain the methods you used to test your hypothesis 

Now that you have told your reader what type of research you’ve undertaken for the dissertation, it’s time to dig into specifics. State what specific methods you used and explain the conditions and variables involved. Explain what the theoretical framework behind the method was, what samples you used for testing it, and what tools and materials you used to collect the data. 

Step 3: Explain how you analyzed the results

Once you have explained the data collection process, explain how you analyzed and studied the data. Here, your focus is simply to explain the methods of analysis rather than the results of the study. 

Here are some questions you can answer at this stage: 

a. What tools or software did you use to analyze your results? 

b. What parameters or variables did you consider while understanding and studying the data you’ve collected? 

c. Was your analysis based on a theoretical framework? 

Your mode of analysis will change depending on whether you used a quantitative or qualitative research methodology in your study. If you’re working within the hard sciences or physical sciences, you are likely to use a quantitative research methodology (relying on numbers and hard data). If you’re doing a qualitative study, in the social sciences or humanities, your analysis may rely on understanding language and socio-political contexts around your topic. This is why it’s important to establish what kind of study you’re undertaking at the onset. 

Step 4: Defend your choice of methodology 

Now that you have gone through your research process in detail, you’ll also have to make a case for it. Justify your choice of methodology and methods, explaining why it is the best choice for your research question. This is especially important if you have chosen an unconventional approach or you’ve simply chosen to study an existing research problem from a different perspective. Compare it with other methodologies, especially ones attempted by previous researchers, and discuss what contributions using your methodology makes.  

Step 5: Discuss the obstacles you encountered and how you overcame them

No matter how thorough a methodology is, it doesn’t come without its hurdles. This is a natural part of scientific research that is important to document so that your peers and future researchers are aware of it. Writing in a research paper about this aspect of your research process also tells your evaluator that you have actively worked to overcome the pitfalls that came your way and you have refined the research process. 

Tips to write an effective methodology chapter

1. Remember who you are writing for. Keeping sight of the reader/evaluator will help you know what to elaborate on and what information they are already likely to have. You’re condensing months’ work of research in just a few pages, so you should omit basic definitions and information about general phenomena people already know.

2. Do not give an overly elaborate explanation of every single condition in your study. 

3. Skip details and findings irrelevant to the results.

4. Cite references that back your claim and choice of methodology. 

5. Consistently emphasize the relationship between your research question and the methodology you adopted to study it. 

To sum it up, what is methodology in research? It’s the blueprint of your research, essential for ensuring that your study is systematic, rigorous, and credible. Whether your focus is on qualitative research methodology, quantitative research methodology, or a combination of both, understanding and clearly defining your methodology is key to the success of your research.

Once you write the research methodology and complete writing the entire research paper, the next step is to edit your paper. As experts in research paper editing and proofreading services , we’d love to help you perfect your paper!

Here are some other articles that you might find useful: 

  • Essential Research Tips for Essay Writing
  • How to Write a Lab Report: Examples from Academic Editors
  • The Essential Types of Editing Every Writer Needs to Know
  • Editing and Proofreading Academic Papers: A Short Guide
  • The Top 10 Editing and Proofreading Services of 2023

Frequently Asked Questions

What does research methodology mean, what types of research methodologies are there, what is qualitative research methodology, how to determine sample size in research methodology, what is action research methodology.

Found this article helpful?

One comment on “ Research Methodology Guide: Writing Tips, Types, & Examples ”

This is very simplified and direct. Very helpful to understand the research methodology section of a dissertation

Leave a Comment: Cancel reply

Your email address will not be published.

Your vs. You’re: When to Use Your and You’re

Your organization needs a technical editor: here’s why, your guide to the best ebook readers in 2024, writing for the web: 7 expert tips for web content writing.

Subscribe to our Newsletter

Get carefully curated resources about writing, editing, and publishing in the comfort of your inbox.

How to Copyright Your Book?

If you’ve thought about copyrighting your book, you’re on the right path.

© 2024 All rights reserved

  • Terms of service
  • Privacy policy
  • Self Publishing Guide
  • Pre-Publishing Steps
  • Fiction Writing Tips
  • Traditional Publishing
  • Additional Resources
  • Dissertation Writing Guide
  • Essay Writing Guide
  • Academic Writing and Publishing
  • Citation and Referencing
  • Partner with us
  • Annual report
  • Website content
  • Marketing material
  • Job Applicant
  • Cover letter
  • Resource Center
  • Case studies
  • Privacy Policy

Research Method

Home » Research Methodology – Types, Examples and writing Guide

Research Methodology – Types, Examples and writing Guide

Table of Contents

Research Methodology

Research Methodology

Definition:

Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect , analyze , and interpret data to answer research questions or solve research problems . Moreover, They are philosophical and theoretical frameworks that guide the research process.

Structure of Research Methodology

Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section:

I. Introduction

  • Provide an overview of the research problem and the need for a research methodology section
  • Outline the main research questions and objectives

II. Research Design

  • Explain the research design chosen and why it is appropriate for the research question(s) and objectives
  • Discuss any alternative research designs considered and why they were not chosen
  • Describe the research setting and participants (if applicable)

III. Data Collection Methods

  • Describe the methods used to collect data (e.g., surveys, interviews, observations)
  • Explain how the data collection methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or instruments used for data collection

IV. Data Analysis Methods

  • Describe the methods used to analyze the data (e.g., statistical analysis, content analysis )
  • Explain how the data analysis methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or software used for data analysis

V. Ethical Considerations

  • Discuss any ethical issues that may arise from the research and how they were addressed
  • Explain how informed consent was obtained (if applicable)
  • Detail any measures taken to ensure confidentiality and anonymity

VI. Limitations

  • Identify any potential limitations of the research methodology and how they may impact the results and conclusions

VII. Conclusion

  • Summarize the key aspects of the research methodology section
  • Explain how the research methodology addresses the research question(s) and objectives

Research Methodology Types

Types of Research Methodology are as follows:

Quantitative Research Methodology

This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

Qualitative Research Methodology

This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

Mixed-Methods Research Methodology

This is a research methodology that combines elements of both quantitative and qualitative research. This approach can be particularly useful for studies that aim to explore complex phenomena and to provide a more comprehensive understanding of a particular topic.

Case Study Research Methodology

This is a research methodology that involves in-depth examination of a single case or a small number of cases. Case studies are often used in psychology, sociology, and anthropology to gain a detailed understanding of a particular individual or group.

Action Research Methodology

This is a research methodology that involves a collaborative process between researchers and practitioners to identify and solve real-world problems. Action research is often used in education, healthcare, and social work.

Experimental Research Methodology

This is a research methodology that involves the manipulation of one or more independent variables to observe their effects on a dependent variable. Experimental research is often used to study cause-and-effect relationships and to make predictions.

Survey Research Methodology

This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

Grounded Theory Research Methodology

This is a research methodology that involves the development of theories based on the data collected during the research process. Grounded theory is often used in sociology and anthropology to generate theories about social phenomena.

Research Methodology Example

An Example of Research Methodology could be the following:

Research Methodology for Investigating the Effectiveness of Cognitive Behavioral Therapy in Reducing Symptoms of Depression in Adults

Introduction:

The aim of this research is to investigate the effectiveness of cognitive-behavioral therapy (CBT) in reducing symptoms of depression in adults. To achieve this objective, a randomized controlled trial (RCT) will be conducted using a mixed-methods approach.

Research Design:

The study will follow a pre-test and post-test design with two groups: an experimental group receiving CBT and a control group receiving no intervention. The study will also include a qualitative component, in which semi-structured interviews will be conducted with a subset of participants to explore their experiences of receiving CBT.

Participants:

Participants will be recruited from community mental health clinics in the local area. The sample will consist of 100 adults aged 18-65 years old who meet the diagnostic criteria for major depressive disorder. Participants will be randomly assigned to either the experimental group or the control group.

Intervention :

The experimental group will receive 12 weekly sessions of CBT, each lasting 60 minutes. The intervention will be delivered by licensed mental health professionals who have been trained in CBT. The control group will receive no intervention during the study period.

Data Collection:

Quantitative data will be collected through the use of standardized measures such as the Beck Depression Inventory-II (BDI-II) and the Generalized Anxiety Disorder-7 (GAD-7). Data will be collected at baseline, immediately after the intervention, and at a 3-month follow-up. Qualitative data will be collected through semi-structured interviews with a subset of participants from the experimental group. The interviews will be conducted at the end of the intervention period, and will explore participants’ experiences of receiving CBT.

Data Analysis:

Quantitative data will be analyzed using descriptive statistics, t-tests, and mixed-model analyses of variance (ANOVA) to assess the effectiveness of the intervention. Qualitative data will be analyzed using thematic analysis to identify common themes and patterns in participants’ experiences of receiving CBT.

Ethical Considerations:

This study will comply with ethical guidelines for research involving human subjects. Participants will provide informed consent before participating in the study, and their privacy and confidentiality will be protected throughout the study. Any adverse events or reactions will be reported and managed appropriately.

Data Management:

All data collected will be kept confidential and stored securely using password-protected databases. Identifying information will be removed from qualitative data transcripts to ensure participants’ anonymity.

Limitations:

One potential limitation of this study is that it only focuses on one type of psychotherapy, CBT, and may not generalize to other types of therapy or interventions. Another limitation is that the study will only include participants from community mental health clinics, which may not be representative of the general population.

Conclusion:

This research aims to investigate the effectiveness of CBT in reducing symptoms of depression in adults. By using a randomized controlled trial and a mixed-methods approach, the study will provide valuable insights into the mechanisms underlying the relationship between CBT and depression. The results of this study will have important implications for the development of effective treatments for depression in clinical settings.

How to Write Research Methodology

Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It’s an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a research methodology:

  • Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it’s important. This helps readers understand the purpose of your research and the rationale behind your methods.
  • Describe your research design: Explain the overall approach you used to conduct research. This could be a qualitative or quantitative research design, experimental or non-experimental, case study or survey, etc. Discuss the advantages and limitations of the chosen design.
  • Discuss your sample: Describe the participants or subjects you included in your study. Include details such as their demographics, sampling method, sample size, and any exclusion criteria used.
  • Describe your data collection methods : Explain how you collected data from your participants. This could include surveys, interviews, observations, questionnaires, or experiments. Include details on how you obtained informed consent, how you administered the tools, and how you minimized the risk of bias.
  • Explain your data analysis techniques: Describe the methods you used to analyze the data you collected. This could include statistical analysis, content analysis, thematic analysis, or discourse analysis. Explain how you dealt with missing data, outliers, and any other issues that arose during the analysis.
  • Discuss the validity and reliability of your research : Explain how you ensured the validity and reliability of your study. This could include measures such as triangulation, member checking, peer review, or inter-coder reliability.
  • Acknowledge any limitations of your research: Discuss any limitations of your study, including any potential threats to validity or generalizability. This helps readers understand the scope of your findings and how they might apply to other contexts.
  • Provide a summary: End the methodology section by summarizing the methods and techniques you used to conduct your research. This provides a clear overview of your research methodology and helps readers understand the process you followed to arrive at your findings.

When to Write Research Methodology

Research methodology is typically written after the research proposal has been approved and before the actual research is conducted. It should be written prior to data collection and analysis, as it provides a clear roadmap for the research project.

The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

The methodology should be written in a clear and concise manner, and it should be based on established research practices and standards. It is important to provide enough detail so that the reader can understand how the research was conducted and evaluate the validity of the results.

Applications of Research Methodology

Here are some of the applications of research methodology:

  • To identify the research problem: Research methodology is used to identify the research problem, which is the first step in conducting any research.
  • To design the research: Research methodology helps in designing the research by selecting the appropriate research method, research design, and sampling technique.
  • To collect data: Research methodology provides a systematic approach to collect data from primary and secondary sources.
  • To analyze data: Research methodology helps in analyzing the collected data using various statistical and non-statistical techniques.
  • To test hypotheses: Research methodology provides a framework for testing hypotheses and drawing conclusions based on the analysis of data.
  • To generalize findings: Research methodology helps in generalizing the findings of the research to the target population.
  • To develop theories : Research methodology is used to develop new theories and modify existing theories based on the findings of the research.
  • To evaluate programs and policies : Research methodology is used to evaluate the effectiveness of programs and policies by collecting data and analyzing it.
  • To improve decision-making: Research methodology helps in making informed decisions by providing reliable and valid data.

Purpose of Research Methodology

Research methodology serves several important purposes, including:

  • To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data.
  • To ensure research quality: Research methodology helps researchers to ensure that their research is rigorous, reliable, and valid. It provides guidelines for minimizing bias and error in data collection and analysis, and for ensuring that research findings are accurate and trustworthy.
  • To replicate research: Research methodology provides a clear and detailed account of the research process, making it possible for other researchers to replicate the study and verify its findings.
  • To advance knowledge: Research methodology enables researchers to generate new knowledge and to contribute to the body of knowledge in their field. It provides a means for testing hypotheses, exploring new ideas, and discovering new insights.
  • To inform decision-making: Research methodology provides evidence-based information that can inform policy and decision-making in a variety of fields, including medicine, public health, education, and business.

Advantages of Research Methodology

Research methodology has several advantages that make it a valuable tool for conducting research in various fields. Here are some of the key advantages of research methodology:

  • Systematic and structured approach : Research methodology provides a systematic and structured approach to conducting research, which ensures that the research is conducted in a rigorous and comprehensive manner.
  • Objectivity : Research methodology aims to ensure objectivity in the research process, which means that the research findings are based on evidence and not influenced by personal bias or subjective opinions.
  • Replicability : Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy.
  • Reliability : Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.
  • Validity : Research methodology ensures that the research findings are valid, which means that they accurately reflect the research question or hypothesis being tested.
  • Efficiency : Research methodology provides a structured and efficient way of conducting research, which helps to save time and resources.
  • Flexibility : Research methodology allows researchers to choose the most appropriate research methods and techniques based on the research question, data availability, and other relevant factors.
  • Scope for innovation: Research methodology provides scope for innovation and creativity in designing research studies and developing new research techniques.

Research Methodology Vs Research Methods

Research MethodologyResearch Methods
Research methodology refers to the philosophical and theoretical frameworks that guide the research process. refer to the techniques and procedures used to collect and analyze data.
It is concerned with the underlying principles and assumptions of research.It is concerned with the practical aspects of research.
It provides a rationale for why certain research methods are used.It determines the specific steps that will be taken to conduct research.
It is broader in scope and involves understanding the overall approach to research.It is narrower in scope and focuses on specific techniques and tools used in research.
It is concerned with identifying research questions, defining the research problem, and formulating hypotheses.It is concerned with collecting data, analyzing data, and interpreting results.
It is concerned with the validity and reliability of research.It is concerned with the accuracy and precision of data.
It is concerned with the ethical considerations of research.It is concerned with the practical considerations of research.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Ethical Considerations

Ethical Considerations – Types, Examples and...

APA Table of Contents

APA Table of Contents – Format and Example

Research Recommendations

Research Recommendations – Examples and Writing...

Research Project

Research Project – Definition, Writing Guide and...

Table of Contents

Table of Contents – Types, Formats, Examples

Background of The Study

Background of The Study – Examples and Writing...

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative to broader populations. .
Quantitative .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary . methods.
Secondary

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive . .
Experimental

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

what to include in research methodology

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

Research methods for analyzing data
Research method Qualitative or quantitative? When to use
Quantitative To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyze the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyze data collected from interviews, , or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyze large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

Get unlimited documents corrected

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Reference management. Clean and simple.

What is research methodology?

what to include in research methodology

The basics of research methodology

Why do you need a research methodology, what needs to be included, why do you need to document your research method, what are the different types of research instruments, qualitative / quantitative / mixed research methodologies, how do you choose the best research methodology for you, frequently asked questions about research methodology, related articles.

When you’re working on your first piece of academic research, there are many different things to focus on, and it can be overwhelming to stay on top of everything. This is especially true of budding or inexperienced researchers.

If you’ve never put together a research proposal before or find yourself in a position where you need to explain your research methodology decisions, there are a few things you need to be aware of.

Once you understand the ins and outs, handling academic research in the future will be less intimidating. We break down the basics below:

A research methodology encompasses the way in which you intend to carry out your research. This includes how you plan to tackle things like collection methods, statistical analysis, participant observations, and more.

You can think of your research methodology as being a formula. One part will be how you plan on putting your research into practice, and another will be why you feel this is the best way to approach it. Your research methodology is ultimately a methodological and systematic plan to resolve your research problem.

In short, you are explaining how you will take your idea and turn it into a study, which in turn will produce valid and reliable results that are in accordance with the aims and objectives of your research. This is true whether your paper plans to make use of qualitative methods or quantitative methods.

The purpose of a research methodology is to explain the reasoning behind your approach to your research - you'll need to support your collection methods, methods of analysis, and other key points of your work.

Think of it like writing a plan or an outline for you what you intend to do.

When carrying out research, it can be easy to go off-track or depart from your standard methodology.

Tip: Having a methodology keeps you accountable and on track with your original aims and objectives, and gives you a suitable and sound plan to keep your project manageable, smooth, and effective.

With all that said, how do you write out your standard approach to a research methodology?

As a general plan, your methodology should include the following information:

  • Your research method.  You need to state whether you plan to use quantitative analysis, qualitative analysis, or mixed-method research methods. This will often be determined by what you hope to achieve with your research.
  • Explain your reasoning. Why are you taking this methodological approach? Why is this particular methodology the best way to answer your research problem and achieve your objectives?
  • Explain your instruments.  This will mainly be about your collection methods. There are varying instruments to use such as interviews, physical surveys, questionnaires, for example. Your methodology will need to detail your reasoning in choosing a particular instrument for your research.
  • What will you do with your results?  How are you going to analyze the data once you have gathered it?
  • Advise your reader.  If there is anything in your research methodology that your reader might be unfamiliar with, you should explain it in more detail. For example, you should give any background information to your methods that might be relevant or provide your reasoning if you are conducting your research in a non-standard way.
  • How will your sampling process go?  What will your sampling procedure be and why? For example, if you will collect data by carrying out semi-structured or unstructured interviews, how will you choose your interviewees and how will you conduct the interviews themselves?
  • Any practical limitations?  You should discuss any limitations you foresee being an issue when you’re carrying out your research.

In any dissertation, thesis, or academic journal, you will always find a chapter dedicated to explaining the research methodology of the person who carried out the study, also referred to as the methodology section of the work.

A good research methodology will explain what you are going to do and why, while a poor methodology will lead to a messy or disorganized approach.

You should also be able to justify in this section your reasoning for why you intend to carry out your research in a particular way, especially if it might be a particularly unique method.

Having a sound methodology in place can also help you with the following:

  • When another researcher at a later date wishes to try and replicate your research, they will need your explanations and guidelines.
  • In the event that you receive any criticism or questioning on the research you carried out at a later point, you will be able to refer back to it and succinctly explain the how and why of your approach.
  • It provides you with a plan to follow throughout your research. When you are drafting your methodology approach, you need to be sure that the method you are using is the right one for your goal. This will help you with both explaining and understanding your method.
  • It affords you the opportunity to document from the outset what you intend to achieve with your research, from start to finish.

A research instrument is a tool you will use to help you collect, measure and analyze the data you use as part of your research.

The choice of research instrument will usually be yours to make as the researcher and will be whichever best suits your methodology.

There are many different research instruments you can use in collecting data for your research.

Generally, they can be grouped as follows:

  • Interviews (either as a group or one-on-one). You can carry out interviews in many different ways. For example, your interview can be structured, semi-structured, or unstructured. The difference between them is how formal the set of questions is that is asked of the interviewee. In a group interview, you may choose to ask the interviewees to give you their opinions or perceptions on certain topics.
  • Surveys (online or in-person). In survey research, you are posing questions in which you ask for a response from the person taking the survey. You may wish to have either free-answer questions such as essay-style questions, or you may wish to use closed questions such as multiple choice. You may even wish to make the survey a mixture of both.
  • Focus Groups.  Similar to the group interview above, you may wish to ask a focus group to discuss a particular topic or opinion while you make a note of the answers given.
  • Observations.  This is a good research instrument to use if you are looking into human behaviors. Different ways of researching this include studying the spontaneous behavior of participants in their everyday life, or something more structured. A structured observation is research conducted at a set time and place where researchers observe behavior as planned and agreed upon with participants.

These are the most common ways of carrying out research, but it is really dependent on your needs as a researcher and what approach you think is best to take.

It is also possible to combine a number of research instruments if this is necessary and appropriate in answering your research problem.

There are three different types of methodologies, and they are distinguished by whether they focus on words, numbers, or both.

Data typeWhat is it?Methodology

Quantitative

This methodology focuses more on measuring and testing numerical data. What is the aim of quantitative research?

When using this form of research, your objective will usually be to confirm something.

Surveys, tests, existing databases.

For example, you may use this type of methodology if you are looking to test a set of hypotheses.

Qualitative

Qualitative research is a process of collecting and analyzing both words and textual data.

This form of research methodology is sometimes used where the aim and objective of the research are exploratory.

Observations, interviews, focus groups.

Exploratory research might be used where you are trying to understand human actions i.e. for a study in the sociology or psychology field.

Mixed-method

A mixed-method approach combines both of the above approaches.

The quantitative approach will provide you with some definitive facts and figures, whereas the qualitative methodology will provide your research with an interesting human aspect.

Where you can use a mixed method of research, this can produce some incredibly interesting results. This is due to testing in a way that provides data that is both proven to be exact while also being exploratory at the same time.

➡️ Want to learn more about the differences between qualitative and quantitative research, and how to use both methods? Check out our guide for that!

If you've done your due diligence, you'll have an idea of which methodology approach is best suited to your research.

It’s likely that you will have carried out considerable reading and homework before you reach this point and you may have taken inspiration from other similar studies that have yielded good results.

Still, it is important to consider different options before setting your research in stone. Exploring different options available will help you to explain why the choice you ultimately make is preferable to other methods.

If proving your research problem requires you to gather large volumes of numerical data to test hypotheses, a quantitative research method is likely to provide you with the most usable results.

If instead you’re looking to try and learn more about people, and their perception of events, your methodology is more exploratory in nature and would therefore probably be better served using a qualitative research methodology.

It helps to always bring things back to the question: what do I want to achieve with my research?

Once you have conducted your research, you need to analyze it. Here are some helpful guides for qualitative data analysis:

➡️  How to do a content analysis

➡️  How to do a thematic analysis

➡️  How to do a rhetorical analysis

Research methodology refers to the techniques used to find and analyze information for a study, ensuring that the results are valid, reliable and that they address the research objective.

Data can typically be organized into four different categories or methods: observational, experimental, simulation, and derived.

Writing a methodology section is a process of introducing your methods and instruments, discussing your analysis, providing more background information, addressing your research limitations, and more.

Your research methodology section will need a clear research question and proposed research approach. You'll need to add a background, introduce your research question, write your methodology and add the works you cited during your data collecting phase.

The research methodology section of your study will indicate how valid your findings are and how well-informed your paper is. It also assists future researchers planning to use the same methodology, who want to cite your study or replicate it.

Rhetorical analysis illustration

  • How it works

"Christmas Offer"

Terms & conditions.

As the Christmas season is upon us, we find ourselves reflecting on the past year and those who we have helped to shape their future. It’s been quite a year for us all! The end of the year brings no greater joy than the opportunity to express to you Christmas greetings and good wishes.

At this special time of year, Research Prospect brings joyful discount of 10% on all its services. May your Christmas and New Year be filled with joy.

We are looking back with appreciation for your loyalty and looking forward to moving into the New Year together.

"Claim this offer"

In unfamiliar and hard times, we have stuck by you. This Christmas, Research Prospect brings you all the joy with exciting discount of 10% on all its services.

Offer valid till 5-1-2024

We love being your partner in success. We know you have been working hard lately, take a break this holiday season to spend time with your loved ones while we make sure you succeed in your academics

Discount code: RP23720

researchprospect post subheader

Published by Nicolas at March 21st, 2024 , Revised On March 12, 2024

The Ultimate Guide To Research Methodology

Research methodology is a crucial aspect of any investigative process, serving as the blueprint for the entire research journey. If you are stuck in the methodology section of your research paper , then this blog will guide you on what is a research methodology, its types and how to successfully conduct one. 

Table of Contents

What Is Research Methodology?

Research methodology can be defined as the systematic framework that guides researchers in designing, conducting, and analyzing their investigations. It encompasses a structured set of processes, techniques, and tools employed to gather and interpret data, ensuring the reliability and validity of the research findings. 

Research methodology is not confined to a singular approach; rather, it encapsulates a diverse range of methods tailored to the specific requirements of the research objectives.

Here is why Research methodology is important in academic and professional settings.

Facilitating Rigorous Inquiry

Research methodology forms the backbone of rigorous inquiry. It provides a structured approach that aids researchers in formulating precise thesis statements , selecting appropriate methodologies, and executing systematic investigations. This, in turn, enhances the quality and credibility of the research outcomes.

Ensuring Reproducibility And Reliability

In both academic and professional contexts, the ability to reproduce research outcomes is paramount. A well-defined research methodology establishes clear procedures, making it possible for others to replicate the study. This not only validates the findings but also contributes to the cumulative nature of knowledge.

Guiding Decision-Making Processes

In professional settings, decisions often hinge on reliable data and insights. Research methodology equips professionals with the tools to gather pertinent information, analyze it rigorously, and derive meaningful conclusions.

This informed decision-making is instrumental in achieving organizational goals and staying ahead in competitive environments.

Contributing To Academic Excellence

For academic researchers, adherence to robust research methodology is a hallmark of excellence. Institutions value research that adheres to high standards of methodology, fostering a culture of academic rigour and intellectual integrity. Furthermore, it prepares students with critical skills applicable beyond academia.

Enhancing Problem-Solving Abilities

Research methodology instills a problem-solving mindset by encouraging researchers to approach challenges systematically. It equips individuals with the skills to dissect complex issues, formulate hypotheses , and devise effective strategies for investigation.

Understanding Research Methodology

In the pursuit of knowledge and discovery, understanding the fundamentals of research methodology is paramount. 

Basics Of Research

Research, in its essence, is a systematic and organized process of inquiry aimed at expanding our understanding of a particular subject or phenomenon. It involves the exploration of existing knowledge, the formulation of hypotheses, and the collection and analysis of data to draw meaningful conclusions. 

Research is a dynamic and iterative process that contributes to the continuous evolution of knowledge in various disciplines.

Types of Research

Research takes on various forms, each tailored to the nature of the inquiry. Broadly classified, research can be categorized into two main types:

  • Quantitative Research: This type involves the collection and analysis of numerical data to identify patterns, relationships, and statistical significance. It is particularly useful for testing hypotheses and making predictions.
  • Qualitative Research: Qualitative research focuses on understanding the depth and details of a phenomenon through non-numerical data. It often involves methods such as interviews, focus groups, and content analysis, providing rich insights into complex issues.

Components Of Research Methodology

To conduct effective research, one must go through the different components of research methodology. These components form the scaffolding that supports the entire research process, ensuring its coherence and validity.

Research Design

Research design serves as the blueprint for the entire research project. It outlines the overall structure and strategy for conducting the study. The three primary types of research design are:

  • Exploratory Research: Aimed at gaining insights and familiarity with the topic, often used in the early stages of research.
  • Descriptive Research: Involves portraying an accurate profile of a situation or phenomenon, answering the ‘what,’ ‘who,’ ‘where,’ and ‘when’ questions.
  • Explanatory Research: Seeks to identify the causes and effects of a phenomenon, explaining the ‘why’ and ‘how.’

Data Collection Methods

Choosing the right data collection methods is crucial for obtaining reliable and relevant information. Common methods include:

  • Surveys and Questionnaires: Employed to gather information from a large number of respondents through standardized questions.
  • Interviews: In-depth conversations with participants, offering qualitative insights.
  • Observation: Systematic watching and recording of behaviour, events, or processes in their natural setting.

Data Analysis Techniques

Once data is collected, analysis becomes imperative to derive meaningful conclusions. Different methodologies exist for quantitative and qualitative data:

  • Quantitative Data Analysis: Involves statistical techniques such as descriptive statistics, inferential statistics, and regression analysis to interpret numerical data.
  • Qualitative Data Analysis: Methods like content analysis, thematic analysis, and grounded theory are employed to extract patterns, themes, and meanings from non-numerical data.

The research paper we write have:

  • Precision and Clarity
  • Zero Plagiarism
  • High-level Encryption
  • Authentic Sources

proposals we write

Choosing a Research Method

Selecting an appropriate research method is a critical decision in the research process. It determines the approach, tools, and techniques that will be used to answer the research questions. 

Quantitative Research Methods

Quantitative research involves the collection and analysis of numerical data, providing a structured and objective approach to understanding and explaining phenomena.

Experimental Research

Experimental research involves manipulating variables to observe the effect on another variable under controlled conditions. It aims to establish cause-and-effect relationships.

Key Characteristics:

  • Controlled Environment: Experiments are conducted in a controlled setting to minimize external influences.
  • Random Assignment: Participants are randomly assigned to different experimental conditions.
  • Quantitative Data: Data collected is numerical, allowing for statistical analysis.

Applications: Commonly used in scientific studies and psychology to test hypotheses and identify causal relationships.

Survey Research

Survey research gathers information from a sample of individuals through standardized questionnaires or interviews. It aims to collect data on opinions, attitudes, and behaviours.

  • Structured Instruments: Surveys use structured instruments, such as questionnaires, to collect data.
  • Large Sample Size: Surveys often target a large and diverse group of participants.
  • Quantitative Data Analysis: Responses are quantified for statistical analysis.

Applications: Widely employed in social sciences, marketing, and public opinion research to understand trends and preferences.

Descriptive Research

Descriptive research seeks to portray an accurate profile of a situation or phenomenon. It focuses on answering the ‘what,’ ‘who,’ ‘where,’ and ‘when’ questions.

  • Observation and Data Collection: This involves observing and documenting without manipulating variables.
  • Objective Description: Aim to provide an unbiased and factual account of the subject.
  • Quantitative or Qualitative Data: T his can include both types of data, depending on the research focus.

Applications: Useful in situations where researchers want to understand and describe a phenomenon without altering it, common in social sciences and education.

Qualitative Research Methods

Qualitative research emphasizes exploring and understanding the depth and complexity of phenomena through non-numerical data.

A case study is an in-depth exploration of a particular person, group, event, or situation. It involves detailed, context-rich analysis.

  • Rich Data Collection: Uses various data sources, such as interviews, observations, and documents.
  • Contextual Understanding: Aims to understand the context and unique characteristics of the case.
  • Holistic Approach: Examines the case in its entirety.

Applications: Common in social sciences, psychology, and business to investigate complex and specific instances.

Ethnography

Ethnography involves immersing the researcher in the culture or community being studied to gain a deep understanding of their behaviours, beliefs, and practices.

  • Participant Observation: Researchers actively participate in the community or setting.
  • Holistic Perspective: Focuses on the interconnectedness of cultural elements.
  • Qualitative Data: In-depth narratives and descriptions are central to ethnographic studies.

Applications: Widely used in anthropology, sociology, and cultural studies to explore and document cultural practices.

Grounded Theory

Grounded theory aims to develop theories grounded in the data itself. It involves systematic data collection and analysis to construct theories from the ground up.

  • Constant Comparison: Data is continually compared and analyzed during the research process.
  • Inductive Reasoning: Theories emerge from the data rather than being imposed on it.
  • Iterative Process: The research design evolves as the study progresses.

Applications: Commonly applied in sociology, nursing, and management studies to generate theories from empirical data.

Research design is the structural framework that outlines the systematic process and plan for conducting a study. It serves as the blueprint, guiding researchers on how to collect, analyze, and interpret data.

Exploratory, Descriptive, And Explanatory Designs

Exploratory design.

Exploratory research design is employed when a researcher aims to explore a relatively unknown subject or gain insights into a complex phenomenon.

  • Flexibility: Allows for flexibility in data collection and analysis.
  • Open-Ended Questions: Uses open-ended questions to gather a broad range of information.
  • Preliminary Nature: Often used in the initial stages of research to formulate hypotheses.

Applications: Valuable in the early stages of investigation, especially when the researcher seeks a deeper understanding of a subject before formalizing research questions.

Descriptive Design

Descriptive research design focuses on portraying an accurate profile of a situation, group, or phenomenon.

  • Structured Data Collection: Involves systematic and structured data collection methods.
  • Objective Presentation: Aims to provide an unbiased and factual account of the subject.
  • Quantitative or Qualitative Data: Can incorporate both types of data, depending on the research objectives.

Applications: Widely used in social sciences, marketing, and educational research to provide detailed and objective descriptions.

Explanatory Design

Explanatory research design aims to identify the causes and effects of a phenomenon, explaining the ‘why’ and ‘how’ behind observed relationships.

  • Causal Relationships: Seeks to establish causal relationships between variables.
  • Controlled Variables : Often involves controlling certain variables to isolate causal factors.
  • Quantitative Analysis: Primarily relies on quantitative data analysis techniques.

Applications: Commonly employed in scientific studies and social sciences to delve into the underlying reasons behind observed patterns.

Cross-Sectional Vs. Longitudinal Designs

Cross-sectional design.

Cross-sectional designs collect data from participants at a single point in time.

  • Snapshot View: Provides a snapshot of a population at a specific moment.
  • Efficiency: More efficient in terms of time and resources.
  • Limited Temporal Insights: Offers limited insights into changes over time.

Applications: Suitable for studying characteristics or behaviours that are stable or not expected to change rapidly.

Longitudinal Design

Longitudinal designs involve the collection of data from the same participants over an extended period.

  • Temporal Sequence: Allows for the examination of changes over time.
  • Causality Assessment: Facilitates the assessment of cause-and-effect relationships.
  • Resource-Intensive: Requires more time and resources compared to cross-sectional designs.

Applications: Ideal for studying developmental processes, trends, or the impact of interventions over time.

Experimental Vs Non-experimental Designs

Experimental design.

Experimental designs involve manipulating variables under controlled conditions to observe the effect on another variable.

  • Causality Inference: Enables the inference of cause-and-effect relationships.
  • Quantitative Data: Primarily involves the collection and analysis of numerical data.

Applications: Commonly used in scientific studies, psychology, and medical research to establish causal relationships.

Non-Experimental Design

Non-experimental designs observe and describe phenomena without manipulating variables.

  • Natural Settings: Data is often collected in natural settings without intervention.
  • Descriptive or Correlational: Focuses on describing relationships or correlations between variables.
  • Quantitative or Qualitative Data: This can involve either type of data, depending on the research approach.

Applications: Suitable for studying complex phenomena in real-world settings where manipulation may not be ethical or feasible.

Effective data collection is fundamental to the success of any research endeavour. 

Designing Effective Surveys

Objective Design:

  • Clearly define the research objectives to guide the survey design.
  • Craft questions that align with the study’s goals and avoid ambiguity.

Structured Format:

  • Use a structured format with standardized questions for consistency.
  • Include a mix of closed-ended and open-ended questions for detailed insights.

Pilot Testing:

  • Conduct pilot tests to identify and rectify potential issues with survey design.
  • Ensure clarity, relevance, and appropriateness of questions.

Sampling Strategy:

  • Develop a robust sampling strategy to ensure a representative participant group.
  • Consider random sampling or stratified sampling based on the research goals.

Conducting Interviews

Establishing Rapport:

  • Build rapport with participants to create a comfortable and open environment.
  • Clearly communicate the purpose of the interview and the value of participants’ input.

Open-Ended Questions:

  • Frame open-ended questions to encourage detailed responses.
  • Allow participants to express their thoughts and perspectives freely.

Active Listening:

  • Practice active listening to understand areas and gather rich data.
  • Avoid interrupting and maintain a non-judgmental stance during the interview.

Ethical Considerations:

  • Obtain informed consent and assure participants of confidentiality.
  • Be transparent about the study’s purpose and potential implications.

Observation

1. participant observation.

Immersive Participation:

  • Actively immerse yourself in the setting or group being observed.
  • Develop a deep understanding of behaviours, interactions, and context.

Field Notes:

  • Maintain detailed and reflective field notes during observations.
  • Document observed patterns, unexpected events, and participant reactions.

Ethical Awareness:

  • Be conscious of ethical considerations, ensuring respect for participants.
  • Balance the role of observer and participant to minimize bias.

2. Non-participant Observation

Objective Observation:

  • Maintain a more detached and objective stance during non-participant observation.
  • Focus on recording behaviours, events, and patterns without direct involvement.

Data Reliability:

  • Enhance the reliability of data by reducing observer bias.
  • Develop clear observation protocols and guidelines.

Contextual Understanding:

  • Strive for a thorough understanding of the observed context.
  • Consider combining non-participant observation with other methods for triangulation.

Archival Research

1. using existing data.

Identifying Relevant Archives:

  • Locate and access archives relevant to the research topic.
  • Collaborate with institutions or repositories holding valuable data.

Data Verification:

  • Verify the accuracy and reliability of archived data.
  • Cross-reference with other sources to ensure data integrity.

Ethical Use:

  • Adhere to ethical guidelines when using existing data.
  • Respect copyright and intellectual property rights.

2. Challenges and Considerations

Incomplete or Inaccurate Archives:

  • Address the possibility of incomplete or inaccurate archival records.
  • Acknowledge limitations and uncertainties in the data.

Temporal Bias:

  • Recognize potential temporal biases in archived data.
  • Consider the historical context and changes that may impact interpretation.

Access Limitations:

  • Address potential limitations in accessing certain archives.
  • Seek alternative sources or collaborate with institutions to overcome barriers.

Common Challenges in Research Methodology

Conducting research is a complex and dynamic process, often accompanied by a myriad of challenges. Addressing these challenges is crucial to ensure the reliability and validity of research findings.

Sampling Issues

Sampling bias:.

  • The presence of sampling bias can lead to an unrepresentative sample, affecting the generalizability of findings.
  • Employ random sampling methods and ensure the inclusion of diverse participants to reduce bias.

Sample Size Determination:

  • Determining an appropriate sample size is a delicate balance. Too small a sample may lack statistical power, while an excessively large sample may strain resources.
  • Conduct a power analysis to determine the optimal sample size based on the research objectives and expected effect size.

Data Quality And Validity

Measurement error:.

  • Inaccuracies in measurement tools or data collection methods can introduce measurement errors, impacting the validity of results.
  • Pilot test instruments, calibrate equipment, and use standardized measures to enhance the reliability of data.

Construct Validity:

  • Ensuring that the chosen measures accurately capture the intended constructs is a persistent challenge.
  • Use established measurement instruments and employ multiple measures to assess the same construct for triangulation.

Time And Resource Constraints

Timeline pressures:.

  • Limited timeframes can compromise the depth and thoroughness of the research process.
  • Develop a realistic timeline, prioritize tasks, and communicate expectations with stakeholders to manage time constraints effectively.

Resource Availability:

  • Inadequate resources, whether financial or human, can impede the execution of research activities.
  • Seek external funding, collaborate with other researchers, and explore alternative methods that require fewer resources.

Managing Bias in Research

Selection bias:.

  • Selecting participants in a way that systematically skews the sample can introduce selection bias.
  • Employ randomization techniques, use stratified sampling, and transparently report participant recruitment methods.

Confirmation Bias:

  • Researchers may unintentionally favour information that confirms their preconceived beliefs or hypotheses.
  • Adopt a systematic and open-minded approach, use blinded study designs, and engage in peer review to mitigate confirmation bias.

Tips On How To Write A Research Methodology

Conducting successful research relies not only on the application of sound methodologies but also on strategic planning and effective collaboration. Here are some tips to enhance the success of your research methodology:

Tip 1. Clear Research Objectives

Well-defined research objectives guide the entire research process. Clearly articulate the purpose of your study, outlining specific research questions or hypotheses.

Tip 2. Comprehensive Literature Review

A thorough literature review provides a foundation for understanding existing knowledge and identifying gaps. Invest time in reviewing relevant literature to inform your research design and methodology.

Tip 3. Detailed Research Plan

A detailed plan serves as a roadmap, ensuring all aspects of the research are systematically addressed. Develop a detailed research plan outlining timelines, milestones, and tasks.

Tip 4. Ethical Considerations

Ethical practices are fundamental to maintaining the integrity of research. Address ethical considerations early, obtain necessary approvals, and ensure participant rights are safeguarded.

Tip 5. Stay Updated On Methodologies

Research methodologies evolve, and staying updated is essential for employing the most effective techniques. Engage in continuous learning by attending workshops, conferences, and reading recent publications.

Tip 6. Adaptability In Methods

Unforeseen challenges may arise during research, necessitating adaptability in methods. Be flexible and willing to modify your approach when needed, ensuring the integrity of the study.

Tip 7. Iterative Approach

Research is often an iterative process, and refining methods based on ongoing findings enhance the study’s robustness. Regularly review and refine your research design and methods as the study progresses.

Frequently Asked Questions

What is the research methodology.

Research methodology is the systematic process of planning, executing, and evaluating scientific investigation. It encompasses the techniques, tools, and procedures used to collect, analyze, and interpret data, ensuring the reliability and validity of research findings.

What are the methodologies in research?

Research methodologies include qualitative and quantitative approaches. Qualitative methods involve in-depth exploration of non-numerical data, while quantitative methods use statistical analysis to examine numerical data. Mixed methods combine both approaches for a comprehensive understanding of research questions.

How to write research methodology?

To write a research methodology, clearly outline the study’s design, data collection, and analysis procedures. Specify research tools, participants, and sampling methods. Justify choices and discuss limitations. Ensure clarity, coherence, and alignment with research objectives for a robust methodology section.

How to write the methodology section of a research paper?

In the methodology section of a research paper, describe the study’s design, data collection, and analysis methods. Detail procedures, tools, participants, and sampling. Justify choices, address ethical considerations, and explain how the methodology aligns with research objectives, ensuring clarity and rigour.

What is mixed research methodology?

Mixed research methodology combines both qualitative and quantitative research approaches within a single study. This approach aims to enhance the details and depth of research findings by providing a more comprehensive understanding of the research problem or question.

You May Also Like

A preliminary literature review is an initial exploration of existing research on a topic, setting the foundation for in-depth study.

Explore the essential elements in choosing effective control variables for robust and valid research outcomes.

This blog discusses the difference between R and P. Read it to get into the world of statistics and programming.

Ready to place an order?

USEFUL LINKS

Learning resources.

DMCA.com Protection Status

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 6. The Methodology
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The methods section describes actions taken to investigate a research problem and the rationale for the application of specific procedures or techniques used to identify, select, process, and analyze information applied to understanding the problem, thereby, allowing the reader to critically evaluate a study’s overall validity and reliability. The methodology section of a research paper answers two main questions: How was the data collected or generated? And, how was it analyzed? The writing should be direct and precise and always written in the past tense.

Kallet, Richard H. "How to Write the Methods Section of a Research Paper." Respiratory Care 49 (October 2004): 1229-1232.

Importance of a Good Methodology Section

You must explain how you obtained and analyzed your results for the following reasons:

  • Readers need to know how the data was obtained because the method you chose affects the results and, by extension, how you interpreted their significance in the discussion section of your paper.
  • Methodology is crucial for any branch of scholarship because an unreliable method produces unreliable results and, as a consequence, undermines the value of your analysis of the findings.
  • In most cases, there are a variety of different methods you can choose to investigate a research problem. The methodology section of your paper should clearly articulate the reasons why you have chosen a particular procedure or technique.
  • The reader wants to know that the data was collected or generated in a way that is consistent with accepted practice in the field of study. For example, if you are using a multiple choice questionnaire, readers need to know that it offered your respondents a reasonable range of answers to choose from.
  • The method must be appropriate to fulfilling the overall aims of the study. For example, you need to ensure that you have a large enough sample size to be able to generalize and make recommendations based upon the findings.
  • The methodology should discuss the problems that were anticipated and the steps you took to prevent them from occurring. For any problems that do arise, you must describe the ways in which they were minimized or why these problems do not impact in any meaningful way your interpretation of the findings.
  • In the social and behavioral sciences, it is important to always provide sufficient information to allow other researchers to adopt or replicate your methodology. This information is particularly important when a new method has been developed or an innovative use of an existing method is utilized.

Bem, Daryl J. Writing the Empirical Journal Article. Psychology Writing Center. University of Washington; Denscombe, Martyn. The Good Research Guide: For Small-Scale Social Research Projects . 5th edition. Buckingham, UK: Open University Press, 2014; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008.

Structure and Writing Style

I.  Groups of Research Methods

There are two main groups of research methods in the social sciences:

  • The e mpirical-analytical group approaches the study of social sciences in a similar manner that researchers study the natural sciences . This type of research focuses on objective knowledge, research questions that can be answered yes or no, and operational definitions of variables to be measured. The empirical-analytical group employs deductive reasoning that uses existing theory as a foundation for formulating hypotheses that need to be tested. This approach is focused on explanation.
  • The i nterpretative group of methods is focused on understanding phenomenon in a comprehensive, holistic way . Interpretive methods focus on analytically disclosing the meaning-making practices of human subjects [the why, how, or by what means people do what they do], while showing how those practices arrange so that it can be used to generate observable outcomes. Interpretive methods allow you to recognize your connection to the phenomena under investigation. However, the interpretative group requires careful examination of variables because it focuses more on subjective knowledge.

II.  Content

The introduction to your methodology section should begin by restating the research problem and underlying assumptions underpinning your study. This is followed by situating the methods you used to gather, analyze, and process information within the overall “tradition” of your field of study and within the particular research design you have chosen to study the problem. If the method you choose lies outside of the tradition of your field [i.e., your review of the literature demonstrates that the method is not commonly used], provide a justification for how your choice of methods specifically addresses the research problem in ways that have not been utilized in prior studies.

The remainder of your methodology section should describe the following:

  • Decisions made in selecting the data you have analyzed or, in the case of qualitative research, the subjects and research setting you have examined,
  • Tools and methods used to identify and collect information, and how you identified relevant variables,
  • The ways in which you processed the data and the procedures you used to analyze that data, and
  • The specific research tools or strategies that you utilized to study the underlying hypothesis and research questions.

In addition, an effectively written methodology section should:

  • Introduce the overall methodological approach for investigating your research problem . Is your study qualitative or quantitative or a combination of both (mixed method)? Are you going to take a special approach, such as action research, or a more neutral stance?
  • Indicate how the approach fits the overall research design . Your methods for gathering data should have a clear connection to your research problem. In other words, make sure that your methods will actually address the problem. One of the most common deficiencies found in research papers is that the proposed methodology is not suitable to achieving the stated objective of your paper.
  • Describe the specific methods of data collection you are going to use , such as, surveys, interviews, questionnaires, observation, archival research. If you are analyzing existing data, such as a data set or archival documents, describe how it was originally created or gathered and by whom. Also be sure to explain how older data is still relevant to investigating the current research problem.
  • Explain how you intend to analyze your results . Will you use statistical analysis? Will you use specific theoretical perspectives to help you analyze a text or explain observed behaviors? Describe how you plan to obtain an accurate assessment of relationships, patterns, trends, distributions, and possible contradictions found in the data.
  • Provide background and a rationale for methodologies that are unfamiliar for your readers . Very often in the social sciences, research problems and the methods for investigating them require more explanation/rationale than widely accepted rules governing the natural and physical sciences. Be clear and concise in your explanation.
  • Provide a justification for subject selection and sampling procedure . For instance, if you propose to conduct interviews, how do you intend to select the sample population? If you are analyzing texts, which texts have you chosen, and why? If you are using statistics, why is this set of data being used? If other data sources exist, explain why the data you chose is most appropriate to addressing the research problem.
  • Provide a justification for case study selection . A common method of analyzing research problems in the social sciences is to analyze specific cases. These can be a person, place, event, phenomenon, or other type of subject of analysis that are either examined as a singular topic of in-depth investigation or multiple topics of investigation studied for the purpose of comparing or contrasting findings. In either method, you should explain why a case or cases were chosen and how they specifically relate to the research problem.
  • Describe potential limitations . Are there any practical limitations that could affect your data collection? How will you attempt to control for potential confounding variables and errors? If your methodology may lead to problems you can anticipate, state this openly and show why pursuing this methodology outweighs the risk of these problems cropping up.

NOTE:   Once you have written all of the elements of the methods section, subsequent revisions should focus on how to present those elements as clearly and as logically as possibly. The description of how you prepared to study the research problem, how you gathered the data, and the protocol for analyzing the data should be organized chronologically. For clarity, when a large amount of detail must be presented, information should be presented in sub-sections according to topic. If necessary, consider using appendices for raw data.

ANOTHER NOTE: If you are conducting a qualitative analysis of a research problem , the methodology section generally requires a more elaborate description of the methods used as well as an explanation of the processes applied to gathering and analyzing of data than is generally required for studies using quantitative methods. Because you are the primary instrument for generating the data [e.g., through interviews or observations], the process for collecting that data has a significantly greater impact on producing the findings. Therefore, qualitative research requires a more detailed description of the methods used.

YET ANOTHER NOTE:   If your study involves interviews, observations, or other qualitative techniques involving human subjects , you may be required to obtain approval from the university's Office for the Protection of Research Subjects before beginning your research. This is not a common procedure for most undergraduate level student research assignments. However, i f your professor states you need approval, you must include a statement in your methods section that you received official endorsement and adequate informed consent from the office and that there was a clear assessment and minimization of risks to participants and to the university. This statement informs the reader that your study was conducted in an ethical and responsible manner. In some cases, the approval notice is included as an appendix to your paper.

III.  Problems to Avoid

Irrelevant Detail The methodology section of your paper should be thorough but concise. Do not provide any background information that does not directly help the reader understand why a particular method was chosen, how the data was gathered or obtained, and how the data was analyzed in relation to the research problem [note: analyzed, not interpreted! Save how you interpreted the findings for the discussion section]. With this in mind, the page length of your methods section will generally be less than any other section of your paper except the conclusion.

Unnecessary Explanation of Basic Procedures Remember that you are not writing a how-to guide about a particular method. You should make the assumption that readers possess a basic understanding of how to investigate the research problem on their own and, therefore, you do not have to go into great detail about specific methodological procedures. The focus should be on how you applied a method , not on the mechanics of doing a method. An exception to this rule is if you select an unconventional methodological approach; if this is the case, be sure to explain why this approach was chosen and how it enhances the overall process of discovery.

Problem Blindness It is almost a given that you will encounter problems when collecting or generating your data, or, gaps will exist in existing data or archival materials. Do not ignore these problems or pretend they did not occur. Often, documenting how you overcame obstacles can form an interesting part of the methodology. It demonstrates to the reader that you can provide a cogent rationale for the decisions you made to minimize the impact of any problems that arose.

Literature Review Just as the literature review section of your paper provides an overview of sources you have examined while researching a particular topic, the methodology section should cite any sources that informed your choice and application of a particular method [i.e., the choice of a survey should include any citations to the works you used to help construct the survey].

It’s More than Sources of Information! A description of a research study's method should not be confused with a description of the sources of information. Such a list of sources is useful in and of itself, especially if it is accompanied by an explanation about the selection and use of the sources. The description of the project's methodology complements a list of sources in that it sets forth the organization and interpretation of information emanating from those sources.

Azevedo, L.F. et al. "How to Write a Scientific Paper: Writing the Methods Section." Revista Portuguesa de Pneumologia 17 (2011): 232-238; Blair Lorrie. “Choosing a Methodology.” In Writing a Graduate Thesis or Dissertation , Teaching Writing Series. (Rotterdam: Sense Publishers 2016), pp. 49-72; Butin, Dan W. The Education Dissertation A Guide for Practitioner Scholars . Thousand Oaks, CA: Corwin, 2010; Carter, Susan. Structuring Your Research Thesis . New York: Palgrave Macmillan, 2012; Kallet, Richard H. “How to Write the Methods Section of a Research Paper.” Respiratory Care 49 (October 2004):1229-1232; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008. Methods Section. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Rudestam, Kjell Erik and Rae R. Newton. “The Method Chapter: Describing Your Research Plan.” In Surviving Your Dissertation: A Comprehensive Guide to Content and Process . (Thousand Oaks, Sage Publications, 2015), pp. 87-115; What is Interpretive Research. Institute of Public and International Affairs, University of Utah; Writing the Experimental Report: Methods, Results, and Discussion. The Writing Lab and The OWL. Purdue University; Methods and Materials. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College.

Writing Tip

Statistical Designs and Tests? Do Not Fear Them!

Don't avoid using a quantitative approach to analyzing your research problem just because you fear the idea of applying statistical designs and tests. A qualitative approach, such as conducting interviews or content analysis of archival texts, can yield exciting new insights about a research problem, but it should not be undertaken simply because you have a disdain for running a simple regression. A well designed quantitative research study can often be accomplished in very clear and direct ways, whereas, a similar study of a qualitative nature usually requires considerable time to analyze large volumes of data and a tremendous burden to create new paths for analysis where previously no path associated with your research problem had existed.

To locate data and statistics, GO HERE .

Another Writing Tip

Knowing the Relationship Between Theories and Methods

There can be multiple meaning associated with the term "theories" and the term "methods" in social sciences research. A helpful way to delineate between them is to understand "theories" as representing different ways of characterizing the social world when you research it and "methods" as representing different ways of generating and analyzing data about that social world. Framed in this way, all empirical social sciences research involves theories and methods, whether they are stated explicitly or not. However, while theories and methods are often related, it is important that, as a researcher, you deliberately separate them in order to avoid your theories playing a disproportionate role in shaping what outcomes your chosen methods produce.

Introspectively engage in an ongoing dialectic between the application of theories and methods to help enable you to use the outcomes from your methods to interrogate and develop new theories, or ways of framing conceptually the research problem. This is how scholarship grows and branches out into new intellectual territory.

Reynolds, R. Larry. Ways of Knowing. Alternative Microeconomics . Part 1, Chapter 3. Boise State University; The Theory-Method Relationship. S-Cool Revision. United Kingdom.

Yet Another Writing Tip

Methods and the Methodology

Do not confuse the terms "methods" and "methodology." As Schneider notes, a method refers to the technical steps taken to do research . Descriptions of methods usually include defining and stating why you have chosen specific techniques to investigate a research problem, followed by an outline of the procedures you used to systematically select, gather, and process the data [remember to always save the interpretation of data for the discussion section of your paper].

The methodology refers to a discussion of the underlying reasoning why particular methods were used . This discussion includes describing the theoretical concepts that inform the choice of methods to be applied, placing the choice of methods within the more general nature of academic work, and reviewing its relevance to examining the research problem. The methodology section also includes a thorough review of the methods other scholars have used to study the topic.

Bryman, Alan. "Of Methods and Methodology." Qualitative Research in Organizations and Management: An International Journal 3 (2008): 159-168; Schneider, Florian. “What's in a Methodology: The Difference between Method, Methodology, and Theory…and How to Get the Balance Right?” PoliticsEastAsia.com. Chinese Department, University of Leiden, Netherlands.

  • << Previous: Scholarly vs. Popular Publications
  • Next: Qualitative Methods >>
  • Last Updated: Aug 13, 2024 12:57 PM
  • URL: https://libguides.usc.edu/writingguide
  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Happiness Hub Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • Happiness Hub
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • College University and Postgraduate
  • Academic Writing

How to Write Research Methodology

Last Updated: May 27, 2024 Approved

This article was co-authored by Alexander Ruiz, M.Ed. and by wikiHow staff writer, Jennifer Mueller, JD . Alexander Ruiz is an Educational Consultant and the Educational Director of Link Educational Institute, a tutoring business based in Claremont, California that provides customizable educational plans, subject and test prep tutoring, and college application consulting. With over a decade and a half of experience in the education industry, Alexander coaches students to increase their self-awareness and emotional intelligence while achieving skills and the goal of achieving skills and higher education. He holds a BA in Psychology from Florida International University and an MA in Education from Georgia Southern University. wikiHow marks an article as reader-approved once it receives enough positive feedback. In this case, several readers have written to tell us that this article was helpful to them, earning it our reader-approved status. This article has been viewed 527,752 times.

The research methodology section of any academic research paper gives you the opportunity to convince your readers that your research is useful and will contribute to your field of study. An effective research methodology is grounded in your overall approach – whether qualitative or quantitative – and adequately describes the methods you used. Justify why you chose those methods over others, then explain how those methods will provide answers to your research questions. [1] X Research source

Describing Your Methods

Step 1 Restate your research problem.

  • In your restatement, include any underlying assumptions that you're making or conditions that you're taking for granted. These assumptions will also inform the research methods you've chosen.
  • Generally, state the variables you'll test and the other conditions you're controlling or assuming are equal.

Step 2 Establish your overall methodological approach.

  • If you want to research and document measurable social trends, or evaluate the impact of a particular policy on various variables, use a quantitative approach focused on data collection and statistical analysis.
  • If you want to evaluate people's views or understanding of a particular issue, choose a more qualitative approach.
  • You can also combine the two. For example, you might look primarily at a measurable social trend, but also interview people and get their opinions on how that trend is affecting their lives.

Step 3 Define how you collected or generated data.

  • For example, if you conducted a survey, you would describe the questions included in the survey, where and how the survey was conducted (such as in person, online, over the phone), how many surveys were distributed, and how long your respondents had to complete the survey.
  • Include enough detail that your study can be replicated by others in your field, even if they may not get the same results you did. [4] X Research source

Step 4 Provide background for uncommon methods.

  • Qualitative research methods typically require more detailed explanation than quantitative methods.
  • Basic investigative procedures don't need to be explained in detail. Generally, you can assume that your readers have a general understanding of common research methods that social scientists use, such as surveys or focus groups.

Step 5 Cite any sources that contributed to your choice of methodology.

  • For example, suppose you conducted a survey and used a couple of other research papers to help construct the questions on your survey. You would mention those as contributing sources.

Justifying Your Choice of Methods

Step 1 Explain your selection criteria for data collection.

  • Describe study participants specifically, and list any inclusion or exclusion criteria you used when forming your group of participants.
  • Justify the size of your sample, if applicable, and describe how this affects whether your study can be generalized to larger populations. For example, if you conducted a survey of 30 percent of the student population of a university, you could potentially apply those results to the student body as a whole, but maybe not to students at other universities.

Step 2 Distinguish your research from any weaknesses in your methods.

  • Reading other research papers is a good way to identify potential problems that commonly arise with various methods. State whether you actually encountered any of these common problems during your research.

Step 3 Describe how you overcame obstacles.

  • If you encountered any problems as you collected data, explain clearly the steps you took to minimize the effect that problem would have on your results.

Step 4 Evaluate other methods you could have used.

  • In some cases, this may be as simple as stating that while there were numerous studies using one method, there weren't any using your method, which caused a gap in understanding of the issue.
  • For example, there may be multiple papers providing quantitative analysis of a particular social trend. However, none of these papers looked closely at how this trend was affecting the lives of people.

Connecting Your Methods to Your Research Goals

Step 1 Describe how you analyzed your results.

  • Depending on your research questions, you may be mixing quantitative and qualitative analysis – just as you could potentially use both approaches. For example, you might do a statistical analysis, and then interpret those statistics through a particular theoretical lens.

Step 2 Explain how your analysis suits your research goals.

  • For example, suppose you're researching the effect of college education on family farms in rural America. While you could do interviews of college-educated people who grew up on a family farm, that would not give you a picture of the overall effect. A quantitative approach and statistical analysis would give you a bigger picture.

Step 3 Identify how your analysis answers your research questions.

  • If in answering your research questions, your findings have raised other questions that may require further research, state these briefly.
  • You can also include here any limitations to your methods, or questions that weren't answered through your research.

Step 4 Assess whether your findings can be transferred or generalized.

  • Generalization is more typically used in quantitative research. If you have a well-designed sample, you can statistically apply your results to the larger population your sample belongs to.

Template to Write Research Methodology

what to include in research methodology

Community Q&A

AneHane

  • Organize your methodology section chronologically, starting with how you prepared to conduct your research methods, how you gathered data, and how you analyzed that data. [13] X Research source Thanks Helpful 0 Not Helpful 0
  • Write your research methodology section in past tense, unless you're submitting the methodology section before the research described has been carried out. [14] X Research source Thanks Helpful 0 Not Helpful 0
  • Discuss your plans in detail with your advisor or supervisor before committing to a particular methodology. They can help identify possible flaws in your study. [15] X Research source Thanks Helpful 0 Not Helpful 0

what to include in research methodology

You Might Also Like

Write

  • ↑ http://expertjournals.com/how-to-write-a-research-methodology-for-your-academic-article/
  • ↑ http://libguides.usc.edu/writingguide/methodology
  • ↑ https://www.skillsyouneed.com/learn/dissertation-methodology.html
  • ↑ https://uir.unisa.ac.za/bitstream/handle/10500/4245/05Chap%204_Research%20methodology%20and%20design.pdf
  • ↑ https://elc.polyu.edu.hk/FYP/html/method.htm

About This Article

Alexander Ruiz, M.Ed.

To write a research methodology, start with a section that outlines the problems or questions you'll be studying, including your hypotheses or whatever it is you're setting out to prove. Then, briefly explain why you chose to use either a qualitative or quantitative approach for your study. Next, go over when and where you conducted your research and what parameters you used to ensure you were objective. Finally, cite any sources you used to decide on the methodology for your research. To learn how to justify your choice of methods in your research methodology, scroll down! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Prof. Dr. Ahmed Askar

Prof. Dr. Ahmed Askar

Apr 18, 2020

Did this article help you?

Prof. Dr. Ahmed Askar

M. Mahmood Shah Khan

Mar 17, 2020

Shimola Makondo

Shimola Makondo

Jul 20, 2019

Zain Sharif Mohammed Alnadhery

Zain Sharif Mohammed Alnadhery

Jan 7, 2019

Lundi Dukashe

Lundi Dukashe

Feb 17, 2020

Do I Have a Dirty Mind Quiz

Featured Articles

Protect Yourself from Predators (for Kids)

Trending Articles

Best Excuses to Use to Explain Away a Hickey

Watch Articles

Clean the Bottom of an Oven

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

Academia Insider

What Is Research Methodology? Types, Process, Examples In Research Design

Research methodology is the backbone of any successful study, providing a structured approach to collecting and analysing data. It encompasses a broad spectrum of methods, each with specific processes and applications, tailored to answer distinct research questions.

This article will explore various types of research methodologies, delve into their processes, and illustrate with examples how they are applied in real-world research.

Understanding these methodologies is essential for any researcher aiming to conduct thorough and impactful studies.

Types Of Research Methodology

Research methodology contains various strategies and approaches to conduct scientific research, each tailored to specific types of questions and data.

Think of research methodology as the master plan for your study. It guides you on why and how to gather and analyse data, ensuring your approach aligns perfectly with your research question.

This methodology includes deciding between qualitative research, which explores topics in depth through interviews or focus groups, or quantitative research, which quantifies data through surveys and statistical analysis.

research methodology

There is even an option to mix both, and approach called the mixed method.

If you’re analysing the lived experiences of individuals in a specific setting, qualitative methodologies allow you to capture the nuances of human emotions and behaviours through detailed narratives.

Quantitative methodologies would enable you to measure and compare these experiences in a more structured, numerical format.

Choosing a robust methodology not only provides the rationale for the methods you choose but also highlights the research limitations and ethical considerations, keeping your study transparent and grounded.

It’s a thoughtful composition that gives research its direction and purpose, much like how an architect’s plan is essential before the actual construction begins.

Qualitative Research Methodology

Qualitative research dives deep into the social context of a topic. It collects words and textual data rather than numerical data.

Within the family, qualitative research methodologies can be broken down into several approaches: 

Ethnography: Deeply rooted in the traditions of anthropology, you immerse yourself in the community or social setting you’re studying when conducting an ethnography study.

Case Study Research:  Here, you explore the complexity of a single case in detail. This could be an institution, a group, or an individual. You might look into interviews, documents, and reports, to build a comprehensive picture of the subject.

Grounded Theory:  Here, you try to generate theories from the data itself rather than testing existing hypotheses. You might start with a research question but allow your theories to develop as you gather more data.

Narrative Research:  You explore the stories people tell about their lives and personal experiences in their own words. Through techniques like in-depth interviews or life story collections, you analyse the narrative to understand the individual’s experiences.

Discourse Analysis: You analyse written or spoken words to understand the social norms and power structures that underlie the language used. This method can reveal a lot about the social context and the dynamics of power in communication. 

These methods help to uncover patterns in how people think and interact. For example, in exploring consumer attitudes toward a new product, you would likely conduct focus groups or participant observations to gather qualitative data.

This method helps you understand the motivations and feelings behind consumer choices.

Quantitative Research Methodology

research methodology

Quantitative research relies on numerical data to find patterns and test hypotheses. This methodology uses statistical analysis to quantify data and uncover relationships between variables.

There are several approaches in quantitative research:

Experimental Research:  This is the gold standard when you aim to determine causality. By manipulating one variable and controlling others, you observe changes in the dependent variables.

Survey Research: A popular approach, because of its efficiency in collecting data from a large sample of participants. By using standardised questions, you can gather data that are easy to analyse statistically. 

Correlational Research: This approach tries to identify relationships between two or more variables without establishing a causal link. The strength and direction of these relationships are quantified, albeit without confirming one variable causes another.

Longitudinal Studies: You track variables over time, providing a dynamic view of how situations evolve. This approach requires commitment and can be resource-intensive, but the depth of data they provide is unparalleled.

Cross-sectional Studies: Offers a snapshot of a population at a single point in time. They are quicker and cheaper than longitudinal studies. 

Mixed Research Methodology

what to include in research methodology

Mixed methods research combines both approaches to benefit from the depth of qualitative data and the breadth of quantitative analysis.

You might start with qualitative interviews to develop hypotheses about health behaviours in a community. Then, you could conduct a large-scale survey to test these hypotheses quantitatively.

This approach is particularly useful when you want to explore a new area where previous data may not exist, giving you a comprehensive insight into both the empirical and social dimensions of a research problem.

Factors To Consider When Deciding On Research Methodology

When you dive into a research project, choosing the right methodology is akin to selecting the best tools for building a house.

It shapes how you approach the research question, gather data, and interpret the results. Here are a couple of crucial factors to keep in mind.

Research Question Compatibility

The type of research question you pose can heavily influence the methodology you choose. Qualitative methodologies are superb for exploratory research where you aim to understand concepts, perceptions, and experiences.

If you’re exploring how patients feel about a new healthcare policy, interviews and focus groups would be instrumental.

Quantitative methods are your go-to for questions that require measurable and statistical data, like assessing the prevalence of a medical condition across different regions.

Data Requirements

Consider what data is necessary to address your research question effectively. Qualitative data can provide depth and detail through:

  • images, and

This makes qualitative method ideal for understanding complex social interactions or historical contexts. 

Quantitative data, however, offers the breadth and is often numerical, allowing for a broad analysis of patterns and correlations.

If your study aims to investigate both the breadth and depth, a mixed methods approach might be necessary, enabling you to draw on the strengths of both qualitative and quantitative data.

Resources and Constraints

While deciding on research methodology, you must evaluate the resources available, including:

  • funding, and

Quantitative research often requires larger samples and hence, might be more costly and time-consuming.

Qualitative research, while generally less resource-intensive, demands substantial time for data collection and analysis, especially if you conduct lengthy interviews or detailed content analysis.

If resources are limited, adapting your methodology to fit these constraints without compromising the integrity of your research is crucial.

Skill Set and Expertise

Your familiarity and comfort level with various research methodologies will significantly affect your choice.

Conducting sophisticated statistical analyses requires a different skill set than carrying out in-depth qualitative interviews.

If your background is in social science, you might find qualitative methods more within your wheelhouse; whereas, a postgraduate student in epidemiology might be more adept at quantitative methods.

It’s also worth considering the availability of workshops, courses, or collaborators who could complement your skills.

Ethical and Practical Considerations

Different methodologies raise different ethical concerns.

In qualitative research, maintaining anonymity and dealing with sensitive information can be challenging, especially when using direct quotes or detailed descriptions from participants.

what to include in research methodology

Quantitative research might involve considerations around participant consent for large surveys or experiments.

Practically, you need to think about the sampling design to ensure it is representative of the population studied. Non-probability sampling might be quicker and cheaper but can introduce bias, limiting the generalisability of your findings.

By meticulously considering these factors, you tailor your research design to not just answer the research questions effectively but also to reflect the realities of your operational environment.

This thoughtful approach helps ensure that your research is not only robust but also practical and ethical, standing up to both academic scrutiny and real-world application.

What Is Research Methodology? Answered

Research methodology is a crucial framework that guides the entire research process. It involves choosing between various qualitative and quantitative approaches, each tailored to specific research questions and objectives.

Your chosen methodology shapes how data is gathered, analysed, and interpreted, ultimately influencing the reliability and validity of your research findings.

Understanding these methodologies ensures that researchers can effectively write research proposal, address their study’s aims and contribute valuable insights to their field.

what to include in research methodology

Dr Andrew Stapleton has a Masters and PhD in Chemistry from the UK and Australia. He has many years of research experience and has worked as a Postdoctoral Fellow and Associate at a number of Universities. Although having secured funding for his own research, he left academia to help others with his YouTube channel all about the inner workings of academia and how to make it work for you.

Thank you for visiting Academia Insider.

We are here to help you navigate Academia as painlessly as possible. We are supported by our readers and by visiting you are helping us earn a small amount through ads and affiliate revenue - Thank you!

what to include in research methodology

2024 © Academia Insider

what to include in research methodology

  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

Choosing the Right Research Methodology: A Guide for Researchers

  • 3 minute read

Table of Contents

Choosing an optimal research methodology is crucial for the success of any research project. The methodology you select will determine the type of data you collect, how you collect it, and how you analyse it. Understanding the different types of research methods available along with their strengths and weaknesses, is thus imperative to make an informed decision.

Understanding different research methods:

There are several research methods available depending on the type of study you are conducting, i.e., whether it is laboratory-based, clinical, epidemiological, or survey based . Some common methodologies include qualitative research, quantitative research, experimental research, survey-based research, and action research. Each method can be opted for and modified, depending on the type of research hypotheses and objectives.

Qualitative vs quantitative research:

When deciding on a research methodology, one of the key factors to consider is whether your research will be qualitative or quantitative. Qualitative research is used to understand people’s experiences, concepts, thoughts, or behaviours . Quantitative research, on the contrary, deals with numbers, graphs, and charts, and is used to test or confirm hypotheses, assumptions, and theories. 

Qualitative research methodology:

Qualitative research is often used to examine issues that are not well understood, and to gather additional insights on these topics. Qualitative research methods include open-ended survey questions, observations of behaviours described through words, and reviews of literature that has explored similar theories and ideas. These methods are used to understand how language is used in real-world situations, identify common themes or overarching ideas, and describe and interpret various texts. Data analysis for qualitative research typically includes discourse analysis, thematic analysis, and textual analysis. 

Quantitative research methodology:

The goal of quantitative research is to test hypotheses, confirm assumptions and theories, and determine cause-and-effect relationships. Quantitative research methods include experiments, close-ended survey questions, and countable and numbered observations. Data analysis for quantitative research relies heavily on statistical methods.

Analysing qualitative vs quantitative data:

The methods used for data analysis also differ for qualitative and quantitative research. As mentioned earlier, quantitative data is generally analysed using statistical methods and does not leave much room for speculation. It is more structured and follows a predetermined plan. In quantitative research, the researcher starts with a hypothesis and uses statistical methods to test it. Contrarily, methods used for qualitative data analysis can identify patterns and themes within the data, rather than provide statistical measures of the data. It is an iterative process, where the researcher goes back and forth trying to gauge the larger implications of the data through different perspectives and revising the analysis if required.

When to use qualitative vs quantitative research:

The choice between qualitative and quantitative research will depend on the gap that the research project aims to address, and specific objectives of the study. If the goal is to establish facts about a subject or topic, quantitative research is an appropriate choice. However, if the goal is to understand people’s experiences or perspectives, qualitative research may be more suitable. 

Conclusion:

In conclusion, an understanding of the different research methods available, their applicability, advantages, and disadvantages is essential for making an informed decision on the best methodology for your project. If you need any additional guidance on which research methodology to opt for, you can head over to Elsevier Author Services (EAS). EAS experts will guide you throughout the process and help you choose the perfect methodology for your research goals.

Why is data validation important in research

Why is data validation important in research?

Importance-of-Data-Collection

When Data Speak, Listen: Importance of Data Collection and Analysis Methods

You may also like.

what is a descriptive research design

Descriptive Research Design and Its Myriad Uses

Doctor doing a Biomedical Research Paper

Five Common Mistakes to Avoid When Writing a Biomedical Research Paper

Writing in Environmental Engineering

Making Technical Writing in Environmental Engineering Accessible

Risks of AI-assisted Academic Writing

To Err is Not Human: The Dangers of AI-assisted Academic Writing

Importance-of-Data-Collection

Writing a good review article

Scholarly Sources What are They and Where can You Find Them

Scholarly Sources: What are They and Where can You Find Them?

Input your search keywords and press Enter.

Pfeiffer Library

Research Methodologies

  • What are research designs?

What are research methodologies?

Quantitative research methodologies, qualitative research methodologies, mixed method methodologies, selecting a methodology.

  • What are research methods?
  • Additional Sources

According to Dawson (2019),a research methodology is the primary principle that will guide your research.  It becomes the general approach in conducting research on your topic and determines what research method you will use. A research methodology is different from a research method because research methods are the tools you use to gather your data (Dawson, 2019).  You must consider several issues when it comes to selecting the most appropriate methodology for your topic.  Issues might include research limitations and ethical dilemmas that might impact the quality of your research.  Descriptions of each type of methodology are included below.

Quantitative research methodologies are meant to create numeric statistics by using survey research to gather data (Dawson, 2019).  This approach tends to reach a larger amount of people in a shorter amount of time.  According to Labaree (2020), there are three parts that make up a quantitative research methodology:

  • Sample population
  • How you will collect your data (this is the research method)
  • How you will analyze your data

Once you decide on a methodology, you can consider the method to which you will apply your methodology.

Qualitative research methodologies examine the behaviors, opinions, and experiences of individuals through methods of examination (Dawson, 2019).  This type of approach typically requires less participants, but more time with each participant.  It gives research subjects the opportunity to provide their own opinion on a certain topic.

Examples of Qualitative Research Methodologies

  • Action research:  This is when the researcher works with a group of people to improve something in a certain environment.  It is a common approach for research in organizational management, community development, education, and agriculture (Dawson, 2019).
  • Ethnography:  The process of organizing and describing cultural behaviors (Dawson, 2019).  Researchers may immerse themselves into another culture to receive in "inside look" into the group they are studying.  It is often a time consuming process because the researcher will do this for a long period of time.  This can also be called "participant observation" (Dawson, 2019).
  • Feminist research:  The goal of this methodology is to study topics that have been dominated by male test subjects.  It aims to study females and compare the results to previous studies that used male participants (Dawson, 2019).
  • Grounded theory:  The process of developing a theory to describe a phenomenon strictly through the data results collected in a study.  It is different from other research methodologies where the researcher attempts to prove a hypothesis that they create before collecting data.  Popular research methods for this approach include focus groups and interviews (Dawson, 2019).

A mixed methodology allows you to implement the strengths of both qualitative and quantitative research methods.  In some cases, you may find that your research project would benefit from this.  This approach is beneficial because it allows each methodology to counteract the weaknesses of the other (Dawson, 2019).  You should consider this option carefully, as it can make your research complicated if not planned correctly.

What should you do to decide on a research methodology?  The most logical way to determine your methodology is to decide whether you plan on conducting qualitative or qualitative research.  You also have the option to implement a mixed methods approach.  Looking back on Dawson's (2019) five "W's" on the previous page , may help you with this process.  You should also look for key words that indicate a specific type of research methodology in your hypothesis or proposal.  Some words may lean more towards one methodology over another.

Quantitative Research Key Words

  • How satisfied

Qualitative Research Key Words

  • Experiences
  • Thoughts/Think
  • Relationship
  • << Previous: What are research designs?
  • Next: What are research methods? >>
  • Last Updated: Aug 2, 2022 2:36 PM
  • URL: https://library.tiffin.edu/researchmethodologies

Expert Journals

  • Expert Journal of Finance
  • Expert Journal of Economics
  • Expert Journal of Marketing
  • Expert Journal of Business and Management
  • Send Your Article
  • Google Plus

How to Write a Research Methodology for Your Academic Article

This article is part of an ongoing series on academic writing help of scholarly articles. Previous parts explored how to write an introduction for a research paper and a literature review outline and format .

The Methodology section portrays the reasoning for the application of certain techniques and methods in the context of the study.

For your academic article, when you describe and explain your chosen methods it is very important to correlate them to your research questions and/or hypotheses. The description of the methods used should include enough details so that the study can be replicated by other Researchers, or at least repeated in a similar situation or framework.

Every stage of your research needs to be explained and justified with clear information on why you chose those particular methods, and how they help you answer your research question or purpose.

As the Authors, in this section you get to explain the rationale of your article for other Researchers. You should focus on answering the following questions:

  • How did you collect the data or how did you generate the data?
  • Which research methods did you use?
  • Why did you choose these methods and techniques?
  • How did you use these methods for analyzing the research question or problem?

The responses to these questions should be clear and precise, and the answers should be written in past tense.

First off, let’s establish the differences between research methods and research methodology.

Research Methods and Research Methodology

As an Academic and Author of valuable research papers, it’s important not to confuse these two terms.

Research Methodology Definition

Research Methodology refers the discussion regarding the specific methods chosen and used in a research paper. This discussion also encompasses the theoretical concepts that further provide information about the methods selection and application.

In other words, you should highlight how these theoretical concepts are connected with these methods in a larger knowledge framework and explain their relevance in examining the purpose, problem and questions of your study. Thus, the discussion that forms your academic article’s research methodology also incorporates an extensive literature review about similar methods, used by other Authors to examine a certain research subject.

Research Method Definition

A Research Method represents the technical steps involved in conducting the research. Details about the methods focus on characterizing and defining them, but also explaining your chosen techniques, and providing a full account on the procedures used for selecting, collecting and analyzing the data.

Important Tips for a Good Methodology Section

The methodology section is very important for the credibility of your article and for a professional academic writing style.

Data Collection or Generation for Your Academic Article

Readers, academics and other researchers need to know how the information used in your academic article was collected. The research methods used for collecting or generating data will influence the discoveries and, by extension, how you will interpret them and explain their contribution to general knowledge.

The most basic methods for data collection are:

Secondary data

Secondary data are data that have been previously collected or gathered for other purposes than the aim of the academic article’s study. This type of data is already available, in different forms, from a variety of sources.

Secondary data collection could lead to Internal or External secondary data research.

Primary data

Primary data represent data originated for the specific purpose of the study, with its research questions. The methods vary on how Authors and Researchers conduct an experiment, survey or study, but, in general, it uses a particular scientific method.

Primary data collection could lead to Quantitative and Qualitative research.

Readers need to understand how the information was gathered or generated in a way that is consistent with research practices in a field of study . For instance, if you are using a multiple choice survey, the readers need to know which questionnaire items you have examined in your primary quantitative research. Similarly, if your academic article involves secondary data from FED or Eurostat it is important to mention the variables used in your study, their values, and their time-frame.

For primary research, that involve surveys, experiments or observations, for a valuable academic article, Authors should provide information about:

  • Study participants or group participants,
  • Inclusion or exclusion criteria

Selecting and Applying Research Methods

Establishing the main premises of methodology is pivotal for any research because a method or technique that is not reliable for a certain study context will lead to unreliable results, and the outcomes’ interpretation (and overall academic article) will not be valuable.

In most cases, there is a wide variety of methods and procedures that you can use to explore a research topic in your academic article. The methods section should fully explain the reasons for choosing a specific methodology or technique .

Also, it’s essential that you describe the specific research methods of data collection you are going to use , whether they are primary or secondary data collection.

For primary research methods, describe the surveys, interviews, observation methods, etc.

For secondary research methods, describe how the data was originally created, gathered and which institution created and published it.

Reasons for Choosing Specific Research Methods

For this aspect that characterizes a good research methodology, indicate how the research approach fits with the general study , considering the literature review outline and format , and the following sections.

The methods you choose should have a clear connection with the overall research approach and you need to explain the reasons for choosing the research techniques in your study, and how they help you towards understanding your study’s purpose.

Data Analysis Methods

This section should also focus on information on how you intend to analyze your results .

Describe how you plan and intend to achieve an accurate assessment of the hypotheses, relationships, patterns, trends, distributions associated with your data and research purpose.

The data type, how it was measured, and which statistical tests were conducted and performed, should be detailed and reported in an accurate manner.

For explaining the data analysis methods, you should aim to answer questions, such as:

  • Will your research be based on statistical analysis?
  • Will you use theoretical frameworks to help you (and your Readers) analyze a set of hypotheses or relationships?
  • Which data analysis methods will you choose?
  • Which other Authors or studies have used the same methods and should be cited in your academic article?

Issues to Avoid

There are certain aspects that you need to pay extra attention in relation to your research methodology section. The most common issues to avoid are:

  • Irrelevant details and complicated background information that provides too information and does not provide accurate understanding for Readers
  • Unnecessary description and explanations of basic or well-known procedures, for an academic audience who is already has a basin understanding of the study
  • For unconventional research approaches, it is important to provide accurate details and explain why your innovative method contributes to general knowledge (save more details for your Discussion/ Conclusion section in which you can highlight your contributions)
  • Research limitations and obstacles should be described in a separate section (Research Limitations)
  • The methodology should include sources and references that support your choice of methods and procedures, compared to the literature review that provides a general outlook and framework for your study.

Which aspects are you generally focusing on when writing your academic article’s research methodology section?

You may also like, related policies and links, responsibilities of the publisher in the relationship with journal editors, general duties of publisher.

what to include in research methodology

what to include in research methodology

How to Write a Research Proposal: (with Examples & Templates)

how to write a research proposal

Table of Contents

Before conducting a study, a research proposal should be created that outlines researchers’ plans and methodology and is submitted to the concerned evaluating organization or person. Creating a research proposal is an important step to ensure that researchers are on track and are moving forward as intended. A research proposal can be defined as a detailed plan or blueprint for the proposed research that you intend to undertake. It provides readers with a snapshot of your project by describing what you will investigate, why it is needed, and how you will conduct the research.  

Your research proposal should aim to explain to the readers why your research is relevant and original, that you understand the context and current scenario in the field, have the appropriate resources to conduct the research, and that the research is feasible given the usual constraints.  

This article will describe in detail the purpose and typical structure of a research proposal , along with examples and templates to help you ace this step in your research journey.  

What is a Research Proposal ?  

A research proposal¹ ,²  can be defined as a formal report that describes your proposed research, its objectives, methodology, implications, and other important details. Research proposals are the framework of your research and are used to obtain approvals or grants to conduct the study from various committees or organizations. Consequently, research proposals should convince readers of your study’s credibility, accuracy, achievability, practicality, and reproducibility.   

With research proposals , researchers usually aim to persuade the readers, funding agencies, educational institutions, and supervisors to approve the proposal. To achieve this, the report should be well structured with the objectives written in clear, understandable language devoid of jargon. A well-organized research proposal conveys to the readers or evaluators that the writer has thought out the research plan meticulously and has the resources to ensure timely completion.  

Purpose of Research Proposals  

A research proposal is a sales pitch and therefore should be detailed enough to convince your readers, who could be supervisors, ethics committees, universities, etc., that what you’re proposing has merit and is feasible . Research proposals can help students discuss their dissertation with their faculty or fulfill course requirements and also help researchers obtain funding. A well-structured proposal instills confidence among readers about your ability to conduct and complete the study as proposed.  

Research proposals can be written for several reasons:³  

  • To describe the importance of research in the specific topic  
  • Address any potential challenges you may encounter  
  • Showcase knowledge in the field and your ability to conduct a study  
  • Apply for a role at a research institute  
  • Convince a research supervisor or university that your research can satisfy the requirements of a degree program  
  • Highlight the importance of your research to organizations that may sponsor your project  
  • Identify implications of your project and how it can benefit the audience  

What Goes in a Research Proposal?    

Research proposals should aim to answer the three basic questions—what, why, and how.  

The What question should be answered by describing the specific subject being researched. It should typically include the objectives, the cohort details, and the location or setting.  

The Why question should be answered by describing the existing scenario of the subject, listing unanswered questions, identifying gaps in the existing research, and describing how your study can address these gaps, along with the implications and significance.  

The How question should be answered by describing the proposed research methodology, data analysis tools expected to be used, and other details to describe your proposed methodology.   

Research Proposal Example  

Here is a research proposal sample template (with examples) from the University of Rochester Medical Center. 4 The sections in all research proposals are essentially the same although different terminology and other specific sections may be used depending on the subject.  

Research Proposal Template

Structure of a Research Proposal  

If you want to know how to make a research proposal impactful, include the following components:¹  

1. Introduction  

This section provides a background of the study, including the research topic, what is already known about it and the gaps, and the significance of the proposed research.  

2. Literature review  

This section contains descriptions of all the previous relevant studies pertaining to the research topic. Every study cited should be described in a few sentences, starting with the general studies to the more specific ones. This section builds on the understanding gained by readers in the Introduction section and supports it by citing relevant prior literature, indicating to readers that you have thoroughly researched your subject.  

3. Objectives  

Once the background and gaps in the research topic have been established, authors must now state the aims of the research clearly. Hypotheses should be mentioned here. This section further helps readers understand what your study’s specific goals are.  

4. Research design and methodology  

Here, authors should clearly describe the methods they intend to use to achieve their proposed objectives. Important components of this section include the population and sample size, data collection and analysis methods and duration, statistical analysis software, measures to avoid bias (randomization, blinding), etc.  

5. Ethical considerations  

This refers to the protection of participants’ rights, such as the right to privacy, right to confidentiality, etc. Researchers need to obtain informed consent and institutional review approval by the required authorities and mention this clearly for transparency.  

6. Budget/funding  

Researchers should prepare their budget and include all expected expenditures. An additional allowance for contingencies such as delays should also be factored in.  

7. Appendices  

This section typically includes information that supports the research proposal and may include informed consent forms, questionnaires, participant information, measurement tools, etc.  

8. Citations  

what to include in research methodology

Important Tips for Writing a Research Proposal  

Writing a research proposal begins much before the actual task of writing. Planning the research proposal structure and content is an important stage, which if done efficiently, can help you seamlessly transition into the writing stage. 3,5  

The Planning Stage  

  • Manage your time efficiently. Plan to have the draft version ready at least two weeks before your deadline and the final version at least two to three days before the deadline.
  • What is the primary objective of your research?  
  • Will your research address any existing gap?  
  • What is the impact of your proposed research?  
  • Do people outside your field find your research applicable in other areas?  
  • If your research is unsuccessful, would there still be other useful research outcomes?  

  The Writing Stage  

  • Create an outline with main section headings that are typically used.  
  • Focus only on writing and getting your points across without worrying about the format of the research proposal , grammar, punctuation, etc. These can be fixed during the subsequent passes. Add details to each section heading you created in the beginning.   
  • Ensure your sentences are concise and use plain language. A research proposal usually contains about 2,000 to 4,000 words or four to seven pages.  
  • Don’t use too many technical terms and abbreviations assuming that the readers would know them. Define the abbreviations and technical terms.  
  • Ensure that the entire content is readable. Avoid using long paragraphs because they affect the continuity in reading. Break them into shorter paragraphs and introduce some white space for readability.  
  • Focus on only the major research issues and cite sources accordingly. Don’t include generic information or their sources in the literature review.  
  • Proofread your final document to ensure there are no grammatical errors so readers can enjoy a seamless, uninterrupted read.  
  • Use academic, scholarly language because it brings formality into a document.  
  • Ensure that your title is created using the keywords in the document and is neither too long and specific nor too short and general.  
  • Cite all sources appropriately to avoid plagiarism.  
  • Make sure that you follow guidelines, if provided. This includes rules as simple as using a specific font or a hyphen or en dash between numerical ranges.  
  • Ensure that you’ve answered all questions requested by the evaluating authority.  

Key Takeaways   

Here’s a summary of the main points about research proposals discussed in the previous sections:  

  • A research proposal is a document that outlines the details of a proposed study and is created by researchers to submit to evaluators who could be research institutions, universities, faculty, etc.  
  • Research proposals are usually about 2,000-4,000 words long, but this depends on the evaluating authority’s guidelines.  
  • A good research proposal ensures that you’ve done your background research and assessed the feasibility of the research.  
  • Research proposals have the following main sections—introduction, literature review, objectives, methodology, ethical considerations, and budget.  

what to include in research methodology

Frequently Asked Questions  

Q1. How is a research proposal evaluated?  

A1. In general, most evaluators, including universities, broadly use the following criteria to evaluate research proposals . 6  

  • Significance —Does the research address any important subject or issue, which may or may not be specific to the evaluator or university?  
  • Content and design —Is the proposed methodology appropriate to answer the research question? Are the objectives clear and well aligned with the proposed methodology?  
  • Sample size and selection —Is the target population or cohort size clearly mentioned? Is the sampling process used to select participants randomized, appropriate, and free of bias?  
  • Timing —Are the proposed data collection dates mentioned clearly? Is the project feasible given the specified resources and timeline?  
  • Data management and dissemination —Who will have access to the data? What is the plan for data analysis?  

Q2. What is the difference between the Introduction and Literature Review sections in a research proposal ?  

A2. The Introduction or Background section in a research proposal sets the context of the study by describing the current scenario of the subject and identifying the gaps and need for the research. A Literature Review, on the other hand, provides references to all prior relevant literature to help corroborate the gaps identified and the research need.  

Q3. How long should a research proposal be?  

A3. Research proposal lengths vary with the evaluating authority like universities or committees and also the subject. Here’s a table that lists the typical research proposal lengths for a few universities.  

     
  Arts programs  1,000-1,500 
University of Birmingham  Law School programs  2,500 
  PhD  2,500 
    2,000 
  Research degrees  2,000-3,500 

Q4. What are the common mistakes to avoid in a research proposal ?  

A4. Here are a few common mistakes that you must avoid while writing a research proposal . 7  

  • No clear objectives: Objectives should be clear, specific, and measurable for the easy understanding among readers.  
  • Incomplete or unconvincing background research: Background research usually includes a review of the current scenario of the particular industry and also a review of the previous literature on the subject. This helps readers understand your reasons for undertaking this research because you identified gaps in the existing research.  
  • Overlooking project feasibility: The project scope and estimates should be realistic considering the resources and time available.   
  • Neglecting the impact and significance of the study: In a research proposal , readers and evaluators look for the implications or significance of your research and how it contributes to the existing research. This information should always be included.  
  • Unstructured format of a research proposal : A well-structured document gives confidence to evaluators that you have read the guidelines carefully and are well organized in your approach, consequently affirming that you will be able to undertake the research as mentioned in your proposal.  
  • Ineffective writing style: The language used should be formal and grammatically correct. If required, editors could be consulted, including AI-based tools such as Paperpal , to refine the research proposal structure and language.  

Thus, a research proposal is an essential document that can help you promote your research and secure funds and grants for conducting your research. Consequently, it should be well written in clear language and include all essential details to convince the evaluators of your ability to conduct the research as proposed.  

This article has described all the important components of a research proposal and has also provided tips to improve your writing style. We hope all these tips will help you write a well-structured research proposal to ensure receipt of grants or any other purpose.  

References  

  • Sudheesh K, Duggappa DR, Nethra SS. How to write a research proposal? Indian J Anaesth. 2016;60(9):631-634. Accessed July 15, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037942/  
  • Writing research proposals. Harvard College Office of Undergraduate Research and Fellowships. Harvard University. Accessed July 14, 2024. https://uraf.harvard.edu/apply-opportunities/app-components/essays/research-proposals  
  • What is a research proposal? Plus how to write one. Indeed website. Accessed July 17, 2024. https://www.indeed.com/career-advice/career-development/research-proposal  
  • Research proposal template. University of Rochester Medical Center. Accessed July 16, 2024. https://www.urmc.rochester.edu/MediaLibraries/URMCMedia/pediatrics/research/documents/Research-proposal-Template.pdf  
  • Tips for successful proposal writing. Johns Hopkins University. Accessed July 17, 2024. https://research.jhu.edu/wp-content/uploads/2018/09/Tips-for-Successful-Proposal-Writing.pdf  
  • Formal review of research proposals. Cornell University. Accessed July 18, 2024. https://irp.dpb.cornell.edu/surveys/survey-assessment-review-group/research-proposals  
  • 7 Mistakes you must avoid in your research proposal. Aveksana (via LinkedIn). Accessed July 17, 2024. https://www.linkedin.com/pulse/7-mistakes-you-must-avoid-your-research-proposal-aveksana-cmtwf/  

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

How to write a phd research proposal.

  • What are the Benefits of Generative AI for Academic Writing?
  • How to Avoid Plagiarism When Using Generative AI Tools
  • What is Hedging in Academic Writing?  

How to Write Your Research Paper in APA Format

The future of academia: how ai tools are changing the way we do research, you may also like, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write your research paper in apa..., how to choose a dissertation topic, how to write an academic paragraph (step-by-step guide), maintaining academic integrity with paperpal’s generative ai writing..., research funding basics: what should a grant proposal..., how to write an abstract in research papers..., how to write dissertation acknowledgements.

9 Best Marketing Research Methods to Know Your Buyer Better [+ Examples]

Ramona Sukhraj

Published: August 08, 2024

One of the most underrated skills you can have as a marketer is marketing research — which is great news for this unapologetic cyber sleuth.

marketer using marketer research methods to better understand her buyer personas

From brand design and product development to buyer personas and competitive analysis, I’ve researched a number of initiatives in my decade-long marketing career.

And let me tell you: having the right marketing research methods in your toolbox is a must.

Market research is the secret to crafting a strategy that will truly help you accomplish your goals. The good news is there is no shortage of options.

How to Choose a Marketing Research Method

Thanks to the Internet, we have more marketing research (or market research) methods at our fingertips than ever, but they’re not all created equal. Let’s quickly go over how to choose the right one.

what to include in research methodology

Free Market Research Kit

5 Research and Planning Templates + a Free Guide on How to Use Them in Your Market Research

  • SWOT Analysis Template
  • Survey Template
  • Focus Group Template

Download Free

All fields are required.

You're all set!

Click this link to access this resource at any time.

1. Identify your objective.

What are you researching? Do you need to understand your audience better? How about your competition? Or maybe you want to know more about your customer’s feelings about a specific product.

Before starting your research, take some time to identify precisely what you’re looking for. This could be a goal you want to reach, a problem you need to solve, or a question you need to answer.

For example, an objective may be as foundational as understanding your ideal customer better to create new buyer personas for your marketing agency (pause for flashbacks to my former life).

Or if you’re an organic sode company, it could be trying to learn what flavors people are craving.

2. Determine what type of data and research you need.

Next, determine what data type will best answer the problems or questions you identified. There are primarily two types: qualitative and quantitative. (Sound familiar, right?)

  • Qualitative Data is non-numerical information, like subjective characteristics, opinions, and feelings. It’s pretty open to interpretation and descriptive, but it’s also harder to measure. This type of data can be collected through interviews, observations, and open-ended questions.
  • Quantitative Data , on the other hand, is numerical information, such as quantities, sizes, amounts, or percentages. It’s measurable and usually pretty hard to argue with, coming from a reputable source. It can be derived through surveys, experiments, or statistical analysis.

Understanding the differences between qualitative and quantitative data will help you pinpoint which research methods will yield the desired results.

For instance, thinking of our earlier examples, qualitative data would usually be best suited for buyer personas, while quantitative data is more useful for the soda flavors.

However, truth be told, the two really work together.

Qualitative conclusions are usually drawn from quantitative, numerical data. So, you’ll likely need both to get the complete picture of your subject.

For example, if your quantitative data says 70% of people are Team Black and only 30% are Team Green — Shout out to my fellow House of the Dragon fans — your qualitative data will say people support Black more than Green.

(As they should.)

Primary Research vs Secondary Research

You’ll also want to understand the difference between primary and secondary research.

Primary research involves collecting new, original data directly from the source (say, your target market). In other words, it’s information gathered first-hand that wasn’t found elsewhere.

Some examples include conducting experiments, surveys, interviews, observations, or focus groups.

Meanwhile, secondary research is the analysis and interpretation of existing data collected from others. Think of this like what we used to do for school projects: We would read a book, scour the internet, or pull insights from others to work from.

So, which is better?

Personally, I say any research is good research, but if you have the time and resources, primary research is hard to top. With it, you don’t have to worry about your source's credibility or how relevant it is to your specific objective.

You are in full control and best equipped to get the reliable information you need.

3. Put it all together.

Once you know your objective and what kind of data you want, you’re ready to select your marketing research method.

For instance, let’s say you’re a restaurant trying to see how attendees felt about the Speed Dating event you hosted last week.

You shouldn’t run a field experiment or download a third-party report on speed dating events; those would be useless to you. You need to conduct a survey that allows you to ask pointed questions about the event.

This would yield both qualitative and quantitative data you can use to improve and bring together more love birds next time around.

Best Market Research Methods for 2024

Now that you know what you’re looking for in a marketing research method, let’s dive into the best options.

Note: According to HubSpot’s 2024 State of Marketing report, understanding customers and their needs is one of the biggest challenges facing marketers today. The options we discuss are great consumer research methodologies , but they can also be used for other areas.

Primary Research

1. interviews.

Interviews are a form of primary research where you ask people specific questions about a topic or theme. They typically deliver qualitative information.

I’ve conducted many interviews for marketing purposes, but I’ve also done many for journalistic purposes, like this profile on comedian Zarna Garg . There’s no better way to gather candid, open-ended insights in my book, but that doesn’t mean they’re a cure-all.

What I like: Real-time conversations allow you to ask different questions if you’re not getting the information you need. They also push interviewees to respond quickly, which can result in more authentic answers.

What I dislike: They can be time-consuming and harder to measure (read: get quantitative data) unless you ask pointed yes or no questions.

Best for: Creating buyer personas or getting feedback on customer experience, a product, or content.

2. Focus Groups

Focus groups are similar to conducting interviews but on a larger scale.

In marketing and business, this typically means getting a small group together in a room (or Zoom), asking them questions about various topics you are researching. You record and/or observe their responses to then take action.

They are ideal for collecting long-form, open-ended feedback, and subjective opinions.

One well-known focus group you may remember was run by Domino’s Pizza in 2009 .

After poor ratings and dropping over $100 million in revenue, the brand conducted focus groups with real customers to learn where they could have done better.

It was met with comments like “worst excuse for pizza I’ve ever had” and “the crust tastes like cardboard.” But rather than running from the tough love, it took the hit and completely overhauled its recipes.

The team admitted their missteps and returned to the market with better food and a campaign detailing their “Pizza Turn Around.”

The result? The brand won a ton of praise for its willingness to take feedback, efforts to do right by its consumers, and clever campaign. But, most importantly, revenue for Domino’s rose by 14.3% over the previous year.

The brand continues to conduct focus groups and share real footage from them in its promotion:

What I like: Similar to interviewing, you can dig deeper and pivot as needed due to the real-time nature. They’re personal and detailed.

What I dislike: Once again, they can be time-consuming and make it difficult to get quantitative data. There is also a chance some participants may overshadow others.

Best for: Product research or development

Pro tip: Need help planning your focus group? Our free Market Research Kit includes a handy template to start organizing your thoughts in addition to a SWOT Analysis Template, Survey Template, Focus Group Template, Presentation Template, Five Forces Industry Analysis Template, and an instructional guide for all of them. Download yours here now.

3. Surveys or Polls

Surveys are a form of primary research where individuals are asked a collection of questions. It can take many different forms.

They could be in person, over the phone or video call, by email, via an online form, or even on social media. Questions can be also open-ended or closed to deliver qualitative or quantitative information.

A great example of a close-ended survey is HubSpot’s annual State of Marketing .

In the State of Marketing, HubSpot asks marketing professionals from around the world a series of multiple-choice questions to gather data on the state of the marketing industry and to identify trends.

The survey covers various topics related to marketing strategies, tactics, tools, and challenges that marketers face. It aims to provide benchmarks to help you make informed decisions about your marketing.

It also helps us understand where our customers’ heads are so we can better evolve our products to meet their needs.

Apple is no stranger to surveys, either.

In 2011, the tech giant launched Apple Customer Pulse , which it described as “an online community of Apple product users who provide input on a variety of subjects and issues concerning Apple.”

Screenshot of Apple’s Consumer Pulse Website from 2011.

"For example, we did a large voluntary survey of email subscribers and top readers a few years back."

While these readers gave us a long list of topics, formats, or content types they wanted to see, they sometimes engaged more with content types they didn’t select or favor as much on the surveys when we ran follow-up ‘in the wild’ tests, like A/B testing.”  

Pepsi saw similar results when it ran its iconic field experiment, “The Pepsi Challenge” for the first time in 1975.

The beverage brand set up tables at malls, beaches, and other public locations and ran a blindfolded taste test. Shoppers were given two cups of soda, one containing Pepsi, the other Coca-Cola (Pepsi’s biggest competitor). They were then asked to taste both and report which they preferred.

People overwhelmingly preferred Pepsi, and the brand has repeated the experiment multiple times over the years to the same results.

What I like: It yields qualitative and quantitative data and can make for engaging marketing content, especially in the digital age.

What I dislike: It can be very time-consuming. And, if you’re not careful, there is a high risk for scientific error.

Best for: Product testing and competitive analysis

Pro tip:  " Don’t make critical business decisions off of just one data set," advises Pamela Bump. "Use the survey, competitive intelligence, external data, or even a focus group to give you one layer of ideas or a short-list for improvements or solutions to test. Then gather your own fresh data to test in an experiment or trial and better refine your data-backed strategy."

Secondary Research

8. public domain or third-party research.

While original data is always a plus, there are plenty of external resources you can access online and even at a library when you’re limited on time or resources.

Some reputable resources you can use include:

  • Pew Research Center
  • McKinley Global Institute
  • Relevant Global or Government Organizations (i.e United Nations or NASA)

It’s also smart to turn to reputable organizations that are specific to your industry or field. For instance, if you’re a gardening or landscaping company, you may want to pull statistics from the Environmental Protection Agency (EPA).

If you’re a digital marketing agency, you could look to Google Research or HubSpot Research . (Hey, I know them!)

What I like: You can save time on gathering data and spend more time on analyzing. You can also rest assured the data is from a source you trust.

What I dislike: You may not find data specific to your needs.

Best for: Companies under a time or resource crunch, adding factual support to content

Pro tip: Fellow HubSpotter Iskiev suggests using third-party data to inspire your original research. “Sometimes, I use public third-party data for ideas and inspiration. Once I have written my survey and gotten all my ideas out, I read similar reports from other sources and usually end up with useful additions for my own research.”

9. Buy Research

If the data you need isn’t available publicly and you can’t do your own market research, you can also buy some. There are many reputable analytics companies that offer subscriptions to access their data. Statista is one of my favorites, but there’s also Euromonitor , Mintel , and BCC Research .

What I like: Same as public domain research

What I dislike: You may not find data specific to your needs. It also adds to your expenses.

Best for: Companies under a time or resource crunch or adding factual support to content

Which marketing research method should you use?

You’re not going to like my answer, but “it depends.” The best marketing research method for you will depend on your objective and data needs, but also your budget and timeline.

My advice? Aim for a mix of quantitative and qualitative data. If you can do your own original research, awesome. But if not, don’t beat yourself up. Lean into free or low-cost tools . You could do primary research for qualitative data, then tap public sources for quantitative data. Or perhaps the reverse is best for you.

Whatever your marketing research method mix, take the time to think it through and ensure you’re left with information that will truly help you achieve your goals.

Don't forget to share this post!

Related articles.

SWOT Analysis: How To Do One [With Template & Examples]

SWOT Analysis: How To Do One [With Template & Examples]

28 Tools & Resources for Conducting Market Research

28 Tools & Resources for Conducting Market Research

What is a Competitive Analysis — and How Do You Conduct One?

What is a Competitive Analysis — and How Do You Conduct One?

Market Research: A How-To Guide and Template

Market Research: A How-To Guide and Template

TAM, SAM & SOM: What Do They Mean & How Do You Calculate Them?

TAM, SAM & SOM: What Do They Mean & How Do You Calculate Them?

How to Run a Competitor Analysis [Free Guide]

How to Run a Competitor Analysis [Free Guide]

5 Challenges Marketers Face in Understanding Audiences [New Data + Market Researcher Tips]

5 Challenges Marketers Face in Understanding Audiences [New Data + Market Researcher Tips]

Causal Research: The Complete Guide

Causal Research: The Complete Guide

Total Addressable Market (TAM): What It Is & How You Can Calculate It

Total Addressable Market (TAM): What It Is & How You Can Calculate It

What Is Market Share & How Do You Calculate It?

What Is Market Share & How Do You Calculate It?

Free Guide & Templates to Help Your Market Research

Marketing software that helps you drive revenue, save time and resources, and measure and optimize your investments — all on one easy-to-use platform

what to include in research methodology

Writing The Methodology Chapter

5 Time-Saving Tips & Tools

By: David Phair (PhD) and Amy Murdock (PhD) | July 2022

The methodology chapter is a crucial part of your dissertation or thesis – it’s where you provide context and justification for your study’s design. This in turn demonstrates your understanding of research theory, which is what earns you marks .

Over the years, we’ve helped thousands of students navigate this tricky section of the research process. In this post, we’ll share 5 time-saving tips to help you effectively write up your research methodology chapter .

Overview: Writing The Methodology Chapter

  • Develop a (rough) outline before you start writing
  • Draw inspiration from similar studies in your topic area
  • Justify every research design choice that you make
  • Err on the side of too much detail , rather than too little
  • Back up every design choice by referencing literature

Free Webinar: Research Methodology 101

1. Develop an outline before you start writing 

The first thing to keep in mind when writing your methodology chapter (and the rest of your dissertation) is that it’s always a good idea to sketch out a rough outline of what you are going to write about before you start writing . This will ensure that you stay focused and have a clear structural logic – thereby making the writing process simpler and faster.

An easy method of finding a structure for this chapter is to use frameworks that already exist, such as Saunder’s “ research onion ” as an example. Alternatively, there are many free methodology chapter templates for you to use as a starting point, so don’t feel like you have to create a new one from scratch.

Next, you’ll want to consider what your research approach is , and how you can break it down from a top-down angle, i.e., from the philosophical down to the concrete/tactical level. For example, you’ll need to articulate the following:  

  • Are you using a positivist , interpretivist , or pragmatist approach ?
  • Are you using inductive or deductive reasoning?
  • Are you using a qualitative , quantitative, or mixed methods study?

Keep these questions front of mind to ensure that you have a clear, well-aligned line of argument that will maintain your chapter’s internal and external consistency.

Remember, it’s okay if you feel overwhelmed when you first start the methodology chapter. Nobody is born with an innate knowledge of how to do this, so be prepared for the learning curve associated with new research projects. It’s no small task to write up a dissertation or thesis, so be kind to yourself!

Starting the process with a chapter outline will help keep your writing focused and ensure that the chapter has a clear structural logic.

2. Take inspiration from other studies 

Generally, there are plenty of existing journal articles that will share similar methodological approaches to your study. With any luck, there will also be existing dissertations and theses that adopt a similar methodological approach and topic. So, consider taking inspiration from these studies to help curate the contents of your methodology chapter.

Students often find it difficult to choose what content to include in the methodology chapter and what to leave for the appendix. By reviewing other studies with similar approaches, you will get a clearer sense of your discipline’s norms and characteristics . This will help you, especially in terms of deciding on the structure and depth of discussion.  

While you can draw inspiration from other studies, remember that it’s vital to pay close attention to your university’s specific guidelines, so you can anticipate departmental expectations of this section’s layout and content (and make it easier to work with your supervisor). Doing this is also a great way to figure out how in-depth your discussion should be. For example, word-count guidelines can help you decide whether to include or omit certain information.

Need a helping hand?

what to include in research methodology

3. Justify every design choice you make

The golden rule of the methodology chapter is that you need to justify each and every design choice that you make, no matter how small or inconsequential it may seem. We often see that students merely state what they did instead of why they did what they did – and this costs them marks.

Keep in mind that you need to illustrate the strength of your study’s methodological foundation. By discussing the “what”, “why” and “how” of your choices, you demonstrate your understanding of research design and simultaneously justify the relevancy and efficacy of your methodology – both of which will earn you marks.

It’s never an easy task to conduct research. So, it’s seldom the case that you’ll be able to use the very best possible methodology for your research (e.g. due to time or budgetary constraints ). That’s okay – but make sure that you explain and justify your use of an alternate methodology to help justify your approach.

Ultimately, if you don’t justify and explain the logic behind each of your choices, your marker will have to assume that you simply didn’t know any better . So, make sure that you justify every choice, especially when it is a subpar choice (due to a practical constraint, for example). You can see an example of how this is done here.

The golden rule of the methodology chapter is that you need to justify each and every design choice that you make, no matter how small.

4. Err on the side of too much detail

We often see a tendency in students to mistakenly give more of an overview of their methodology instead of a step-by-step breakdown . Since the methodology chapter needs to be detailed enough for another researcher to replicate your study, your chapter should be particularly granular in terms of detail. 

Whether you’re doing a qualitative or quantitative study, it’s crucial to convey rigor in your research. You can do this by being especially detailed when you discuss your data, so be absolutely clear about your:  

  • Sampling strategy
  • Data collection method(s)
  • Data preparation
  • Analysis technique(s)

As you will likely face an extensive period of editing at your supervisor/reviewer’s direction, you’ll make it much easier for yourself if you have more information than you’d need. Some supervisors expect extensive detail around a certain aspect of your dissertation (like your research philosophy), while others may not expect it at all.

Remember, it’s quicker and easier to remove/ trim down information than it is to add information after the fact, so take the time to show your supervisor that you know what you’re talking about (methodologically) and you’re doing your best to be rigorous in your research.

The methodology chapter needs to be detailed enough information for another researcher to replicate your study, so don't be shy on detail.

5. Provide citations to support each design choice

Related to the issue of poor justification (tip #3), it’s important include high-quality academic citations to support the justification of your design choices. In other words, it’s not enough to simply explain why you chose a specific approach – you need to support each justification with reference to academic material.  

Simply put, you should avoid thinking of your methodology chapter as a citation-less section in your dissertation. As with your literature review, your methods section must include citations for every decision you make, since you are building on prior research.  You must show that you are making decisions based on methods that are proven to be effective, and not just because you “feel” that they are effective.

When considering the source of your citations, you should stick to peer-reviewed academic papers and journals and avoid using websites or blog posts (like us, hehe). Doing this will demonstrate that you are familiar with the literature and that you are factoring in what credible academics have to say about your methodology.

As a final tip, it’s always a good idea to cite as you go . If you leave this for the end, then you’ll end up spending a lot of precious time retracing your steps to find your citations and risk losing track of them entirely. So, be proactive and drop in those citations as you write up . You’ll thank yourself later!

Let’s Recap…

In this post, we covered 5 time-saving tips for writing up the methodology chapter:

  • Look at similar studies in your topic area
  • Justify every design choice that you make
  • Back up every design choice by referencing methodology literature

If you’ve got any questions relating to the methodology chapter, feel free to drop a comment below. Alternatively, if you’re interested in getting 1-on-1 help with your thesis or dissertation, be sure to check out our private coaching service .

what to include in research methodology

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

Bafana Mkhwebane

What data analysis method can work best for my study. I am using a mixed method in the study. I am developing a framework to address the challenges faced by the taxi operators as entrepreneurs. I will need to analyse both using qualitative and quantitative.

Rubab

How to find standard deviation for non numerical data

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

American Psychological Association

Title Page Setup

A title page is required for all APA Style papers. There are both student and professional versions of the title page. Students should use the student version of the title page unless their instructor or institution has requested they use the professional version. APA provides a student title page guide (PDF, 199KB) to assist students in creating their title pages.

Student title page

The student title page includes the paper title, author names (the byline), author affiliation, course number and name for which the paper is being submitted, instructor name, assignment due date, and page number, as shown in this example.

diagram of a student page

Title page setup is covered in the seventh edition APA Style manuals in the Publication Manual Section 2.3 and the Concise Guide Section 1.6

what to include in research methodology

Related handouts

  • Student Title Page Guide (PDF, 263KB)
  • Student Paper Setup Guide (PDF, 3MB)

Student papers do not include a running head unless requested by the instructor or institution.

Follow the guidelines described next to format each element of the student title page.

Paper title

Place the title three to four lines down from the top of the title page. Center it and type it in bold font. Capitalize of the title. Place the main title and any subtitle on separate double-spaced lines if desired. There is no maximum length for titles; however, keep titles focused and include key terms.

Author names

Place one double-spaced blank line between the paper title and the author names. Center author names on their own line. If there are two authors, use the word “and” between authors; if there are three or more authors, place a comma between author names and use the word “and” before the final author name.

Cecily J. Sinclair and Adam Gonzaga

Author affiliation

For a student paper, the affiliation is the institution where the student attends school. Include both the name of any department and the name of the college, university, or other institution, separated by a comma. Center the affiliation on the next double-spaced line after the author name(s).

Department of Psychology, University of Georgia

Course number and name

Provide the course number as shown on instructional materials, followed by a colon and the course name. Center the course number and name on the next double-spaced line after the author affiliation.

PSY 201: Introduction to Psychology

Instructor name

Provide the name of the instructor for the course using the format shown on instructional materials. Center the instructor name on the next double-spaced line after the course number and name.

Dr. Rowan J. Estes

Assignment due date

Provide the due date for the assignment. Center the due date on the next double-spaced line after the instructor name. Use the date format commonly used in your country.

October 18, 2020
18 October 2020

Use the page number 1 on the title page. Use the automatic page-numbering function of your word processing program to insert page numbers in the top right corner of the page header.

1

Professional title page

The professional title page includes the paper title, author names (the byline), author affiliation(s), author note, running head, and page number, as shown in the following example.

diagram of a professional title page

Follow the guidelines described next to format each element of the professional title page.

Paper title

Place the title three to four lines down from the top of the title page. Center it and type it in bold font. Capitalize of the title. Place the main title and any subtitle on separate double-spaced lines if desired. There is no maximum length for titles; however, keep titles focused and include key terms.

Author names

 

Place one double-spaced blank line between the paper title and the author names. Center author names on their own line. If there are two authors, use the word “and” between authors; if there are three or more authors, place a comma between author names and use the word “and” before the final author name.

Francesca Humboldt

When different authors have different affiliations, use superscript numerals after author names to connect the names to the appropriate affiliation(s). If all authors have the same affiliation, superscript numerals are not used (see Section 2.3 of the for more on how to set up bylines and affiliations).

Tracy Reuter , Arielle Borovsky , and Casey Lew-Williams

Author affiliation

 

For a professional paper, the affiliation is the institution at which the research was conducted. Include both the name of any department and the name of the college, university, or other institution, separated by a comma. Center the affiliation on the next double-spaced line after the author names; when there are multiple affiliations, center each affiliation on its own line.

 

Department of Nursing, Morrigan University

When different authors have different affiliations, use superscript numerals before affiliations to connect the affiliations to the appropriate author(s). Do not use superscript numerals if all authors share the same affiliations (see Section 2.3 of the for more).

Department of Psychology, Princeton University
Department of Speech, Language, and Hearing Sciences, Purdue University

Author note

Place the author note in the bottom half of the title page. Center and bold the label “Author Note.” Align the paragraphs of the author note to the left. For further information on the contents of the author note, see Section 2.7 of the .

n/a

The running head appears in all-capital letters in the page header of all pages, including the title page. Align the running head to the left margin. Do not use the label “Running head:” before the running head.

Prediction errors support children’s word learning

Use the page number 1 on the title page. Use the automatic page-numbering function of your word processing program to insert page numbers in the top right corner of the page header.

1

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 17 August 2024

A systematic exploration of unexploited genes for oxidative stress in Parkinson’s disease

  • Takayuki Suzuki 1 &
  • Hidemasa Bono   ORCID: orcid.org/0000-0003-4413-0651 1 , 2 , 3  

npj Parkinson's Disease volume  10 , Article number:  160 ( 2024 ) Cite this article

55 Accesses

3 Altmetric

Metrics details

  • Genetic databases
  • Systems biology

Human disease-associated gene data are accessible through databases, including the Open Targets Platform, DisGeNET, miRTex, RNADisease, and PubChem. However, missing data entries in such databases are anticipated because of curational errors, biases, and text-mining failures. Additionally, the extensive research on human diseases has led to challenges in registering comprehensive data. The lack of essential data in databases hinders knowledge sharing and should be addressed. Therefore, we propose an analysis pipeline to explore missing entries of unexploited genes in the human disease-associated gene databases. Using this pipeline for genes in Parkinson’s disease with oxidative stress revealed two unexploited genes: nuclear protein 1 ( NUPR1) and ubiquitin-like with PHD and ring finger domains 2 ( UHRF2) . This methodology enhances the identification of underrepresented disease-associated genes, facilitating easier access to potential human disease-related functional genes. This study aims to identify unexploited genes for further research and does not include independent experimental validation.

Similar content being viewed by others

what to include in research methodology

Identifying the potential genes in alpha synuclein driving ferroptosis of Parkinson’s disease

what to include in research methodology

ER-mitochondria contact sites in neurodegeneration: genetic screening approaches to investigate novel disease mechanisms

what to include in research methodology

Integrated network analysis identifying potential novel drug candidates and targets for Parkinson's disease

Introduction.

Human disease research is a significant area in biology. For example, querying “parkinson disease” [All Fields] in the PubMed literature database yields 94,062 literatures (11 February 2024). Subsequently, research findings are curated by experts or extracted through text-mining methodologies to register in databases that facilitate collective intelligence. For instance, the Clinical Genome Resource (ClinGen) 1 , developed by the National Institutes of Health (NIH), curates, assesses, and disseminates aggregated genetic and disease associations as public data. The GWAS Catalog 2 compiles genome-wide association data, including single-nucleotide polymorphisms (SNPs) with associated disease risks. Open Targets Platform 3 integrates data from ClinGen and GWAS Catalog, and other public human disease-related databases, including CRISPRBrain 4 , Open Targets Genetics 5 , Gene Burden 6 , 7 , and Europe PMC 8 , 9 . Additional databases, including DisGeNET (expert-curated integrated gene-disease associations until March 2021) 10 , miRTex (specialized in text-mining approach-extracted microRNA) 11 , RNADisease (specialized in collecting non-coding RNAs with integrated approaches of curating and text-mining) 12 , and PubChem (specialized in extracted data from PubMed) 13 offer complementary insights. They use various combinations of integration of data and specific text-mining methods and focus on RNA-disease links, capturing disease-gene associations that may not be included in the Open Targets Platform. These five databases offer comprehensive access to the latest human genes that have been implicated as functionally related to the disease.

As previously mentioned, PubMed database contained 94,062 studies related to PD. With these publications and accompanying data, missing data entries for disease-related functional genes are anticipated in databases 14 . Factors that contribute to missing disease-related genes may include challenges in computationally accessing biomedical statement contexts and supplementary data in the literature, oversights or biases by curators, and text-mining failures. These unexploited genes, which can be referred to as false-negative genes in current gene-disease association databases, represent incomplete dissemination of prior knowledge, potentially hindering research advancement and the development of disease prevention and treatment strategies. The manual identification of missing data entries across the literature databases requires substantial human resources and time expenditures. Therefore, we propose an approach to identify unexploited genes, which are missing data entries in five relevant databases. Based on our previous research on oxidative stress (OS) 15 , 16 , we selected PD, which exhibits pathological associations with OS, to demonstrate the efficacy of our methodology for identifying unexploited genes.

PD is a neurodegenerative disorder affecting over 6 million patients worldwide 17 . The primary symptoms observed in patients with PD include unilateral rigidity, bradykinesia, tremors, and non-motor symptoms, such as cognitive dysfunction 18 , 19 , 20 . The defining characteristics of PD include disordered α-synuclein aggregation, Lewy body formation, and significant loss of dopaminergic (DA) neurons in the substantia nigra, resulting in depleted dopamine levels, causing motor and cognitive deficits 18 , 20 , 21 , 22 , 23 . PD has been considered to be closely associated with the biological phenomenon, OS, wherein reactive oxygen species (ROS) and nucleophiles both contribute to and are generated by aggregating α-synuclein, Lewy bodies, and DA neuron loss 24 . Because OS is characterized by an imbalance between ROS levels and antioxidant defenses, substantial evidence has implicated it in PD pathogenesis 24 . As current therapies focus on symptomatic treatment, such as dopamine replacement, rather than root-cause therapy, understanding the molecular mechanisms of PD symptoms associated with OS is crucial for developing more effective therapies or biomarkers 25 . Querying “parkinson disease” [All Fields] AND “oxidative stress” [All Fields] in PubMed database yields 4061 publications (as of 15 February 2024), and manually reviewing all 4061 articles to sequentially identify unexploited genes would be labor-intensive. Therefore, the discovery of unexploited genes as candidates for the field of PD and OS research is necessary to further understand their underlying mechanisms.

To identify unexploited genes, we developed an analytical pipeline consisting of four significant stages. First, we curated a candidate gene set based on disease-relevant gene expression data. Second, we classified candidate genes based on the presence or absence of disease associations in the five applicable databases. Third, we refined the genes likely to be functional, leveraging data from transcriptome meta-analysis and transcriptome-wide association studies (TWAS). Finally, we manually searched the refined gene list to identify the unexploited genes with documented disease associations in the literature, but no links in the five databases. To identify genes related to OS in PD, we discovered two unexploited PD genes: nuclear protein 1 ( NUPR1) , and ubiquitin-like with PHD and ring finger domains 2 ( UHRF2) . The proposed approach and its findings will facilitate the identification of unexploited genes missing from databases, thereby advancing future research on human diseases.

Overview of the pipeline [Fig. 1 ]

Our stepwise methodology entailed the following: (1) Transcriptomic meta-analysis and literature mining were independently conducted to identify differentially expressed genes (DEGs) associated with OS and Parkinson’s disease (PD) in the human brain [Fig. 1a ]. These outputs were compared to extract the dysregulated genes in both OS and PD (OS-PD-DEGs, n  = 168) [Fig. 1a ]. (2) The 168 candidate genes in OS-PD-DEGs were categorized into two subsets based on their associations with PD according to relevant databases (Open Targets Platform 3 , DisGeNET 10 , miRTex 11 , RNADisease 12 , and PubChem 13 ). Each database collects information on the relationship between gene and disease in its unique way. Genes were categorized as “PD-linked-genes” if any database showed a connection to PD, and as “PD-unlinked-genes” if no databases showed such a connection. As a result, 116 genes were classified as PD-unlinked-genes [Fig. 1b ], whereas the remaining 52 genes exhibited PD associations and classified as PD-linked-genes. (3) To identify genes with functions, we filtered PD-unlinked-genes using data from the PD transcriptome meta-analysis and TWAS, with 12 genes (unexploited candidate genes) remaining for the last step. 4) Finally, two unexploited genes (NUPR1 and UHRF2 ) were discovered by manually searching PubMed Central for data on unexploited candidate genes [Fig. 1c ]. The source data for identifying DEGs and the thresholds for the meta-analysis are potential confounders in this pipeline. However, to enhance the robustness and ensure the quality of identifying unexploited genes, we implemented two strategies: manual search and verification of unexploited genes at the end of the pipeline, and manual data curation for identifying candidate genes at the beginning of the pipeline.

figure 1

a Transcriptome meta-analysis to retrieve differentially expressed genes (DEGs) in both oxidative stress (OS) and Parkinson’s disease (PD) ( n  = 168). b Gene-disease-linker (see Methods) filters the 168 candidate genes into PD-unlinked-genes based on gene-PD association with evidence studies. c PD-unlinked genes are further filtered using transcriptome-wide association studies (TWAS) and PD meta-analysis results to obtain unexploited candidate genes. A manual search of unexploited candidate genes revealed two unexploited genes.

Collection of DEGs through OS

A transcriptomic meta-analysis was conducted on 122 paired RNA-sequencing (RNA-seq) datasets 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 from cultured human cells related to the brain to identify DEGs associated with OS. Each pair comprised an OS sample and a matched normal condition sample from the same original study. Specifically, the transcriptomes of neurons, astrocytes, and neural progenitor cells [Supplementary Table 1 ] 34 under OS or normal conditions were compiled from the Gene Expression Omnibus (GEO) database 35 . Oxidative stressors included radiation, hydrogen peroxide, rotenone, 1-methyl-4-phenylpyridinium (MPP + ), paraquat, 6-hydroxydopamine (oxidopamine), methyl mercury chloride, and zinc [Table 1 ] [Supplementary Table 1 ] 34 . A total of 3114 genes (5% of all genes whose expression was quantified, termed OS-DEGs), were collected as DEGs, consisting of 1557 most upregulated and downregulated genes [Fig. 1a ] with an ON_score of 1.5. Of the 357 genes in “GO:0006979: response to oxidative stress”, 37 possessed Ensembl IDs annotated to were included in OS-DEGs ( p value: 2.671*e −5 ).

Collection of DEGs through PD

Because existing meta-analyses have delineated DEGs associated with PD, we curated and compiled PD-DEG sets from three relevant studies 36 , 37 , 38 [Table 2 ]. These studies performed meta-analyses of PD transcriptomic data to derive robust gene expression signatures for the disease. Additionally, PD-associated genes identified through TWAS in the brain tissue were obtained from the TWAS-Atlas database 39 and incorporated. In total, the PD-DEG comprised 2895 unique genes (1378 from PMID:27611585 36 , 585 from PMID: 33390883 37 , 989 from PMID: 37347276 38 , and 196 from the TWAS-Atlas) [Fig. 2 ]. Gene set enrichment analysis (GSEA) confirmed the signature of the PD-DEG compilation, with the most enriched term as “has05012: Parkinson disease” [Fig. 3a ]. Collating PD-DEG lists from multiple large-scale omics studies and databases generated an extensive catalog of genes dysregulated in PD for subsequent analyses.

figure 2

Venn diagram visualizing overlaps of PD-DEGs ( n  = 2895) among the studies. PMID represents PubMed ID. Transcriptome-wide association studies (TWAS) represents gene sets acquired from the TWAS-Atlas.

figure 3

a Results of GSEA of the PD-DEGs ( n  = 2763, unrecognized genes by Metascape, which are unstudied genes lacking NCBI gene IDs). b Results of GSEA of the differentially expressed genes (DEGs) commonly dysregulated in both oxidative stress (OS) and Parkinson’s disease (PD) ( n  = 168).

Collection of DEGs in both PD and OS

Comparative analysis of the 3114 OS-DEGs and 2895 Parkinson’s disease (PD-DEGs) revealed 168 genes dysregulated in both conditions (termed as OS-PD-DEGs) [Fig. 1a ]. Of these, 132 were protein-coding, and 36 were non-coding RNA/pseudogene/small nucleolar RNA or unknown. GSEA of the 168-DEGs overlapping genes exhibited significant enrichment for “GO:0009636: response to toxic substance” and “GO:0000302: response to reactive oxygen species” [Fig. 3b ], confirming their relevance to these biological processes. Mining of PD associations using the gene-disease-linker 40 tool identified 52 OS-PD-DEGs with previously reported PD associations (PD-linked genes). The remaining 116 genes lacking known PD connections were termed PD-unlinked-genes [Fig. 1c ]. The results of the gene-disease-linker using OS-PD-DEGs are listed in Supplementary Table 2 34 . The columns in Supplementary Table 2 are described as follows: ENSG: Ensemble gene ID, PD_log2(fold change)_PMID: Log 2 fold change based on the original papers with PMID specified in the column name, TWAS: whether a gene was indicated in the TWAS, availability of associations: indicates if the gene exhibits association with PD (yes) or not (no), Evidence: databases providing evidence for an association between the given gene and the PD, NU_PMIDs_PD: Number of studies indicating an association between the given gene and PD, NU_PMIDs_NCBI: Number of studies associated with the given gene based on gene2pubmed 41 , PMIDs_PD: PubMed IDs for studies indicating an association between the given gene and PD, and PMIDs_NCBI: PubMed IDs for studies associated with the given gene based on gene2pubmed.

Analysis of PD-unlinked-genes

Among the 116 PD-unlinked genes, six were identified with TWAS Z scores in the supplementary data of two studies with TWAS [Table 3 , column: original TWAS]. Five of these genes were part of a set of 711 genes suggested to confer PD risk in the supplementary data of PMID: 33523105 42 . However, the main texts of the study (PMID: 33523105) lacked mention of these five genes. MEI1 was one of the 44 genes implicated in dorsolateral prefrontal cortex PD associations in the TWAS from PMID: 30824768 43 , again lacking textual descriptions of MEI1 within the study (PMID: 30824768). As these six genes were indicated to contribute to PD based on the TWAS results, we presumed them as suitable candidates for assessing the evidence or implications of their involvement in PD molecular mechanisms in the subsequent study mining step of our pipeline.

Among the three PD gene expression meta-analyses examined, seven genes were suggested as PD-DEGs in more than two studies [Table 3 , column: PD_log2(fold change)]. Notably, NUPR1 , in addition to appearing in the supplementary data of the TWAS-based study, was also selected as a PD-DEG in two PD gene expression meta-analyses, indicating dysregulated expression of NUPR1 in PD across three studies. Additionally, these seven genes were unexploited candidate genes in the subsequent step. A total of 12 genes [Table 3 ] have not been previously mentioned in their molecular association with PD as textual description in the main texts of studies; however, the sequence data indicated an association. These 12 genes were selected as unexploited candidate genes for the subsequent step, searching the full-text literature for molecular mechanistic evidence or hypotheses associated with them.

Identification of unexploited genes

We searched the biomedical full-text literature database PubMed Central with the query “GENE_NAME[All Fields] AND parkinson[All Fields]” to look for unexploited genes (See Methods). Among the 12 genes examined, NUPR1 , and UHRF2 were identified as unexploited based on statements in the literature indicating their involvement in PD molecular mechanisms [Table 4 ]. For NUPR1 , the PMCID: PMC10734959 44 was used to determine the gene as unexploited. NUPR1 was identified as one of the top five ferroptosis-related hub genes in PD by the methodology using random forest and support vector machine models. Additionally, the association between NUPR1 and alterations of the immune microenvironment of PD patients was indicated by a correlation analysis of NUPR1 and immune characteristics. It was mentioned that “The present study also suggests that NUPR1 is involved in PD, is positively correlated with PD, and is most likely involved in PD pathogenic mechanisms through ferroptosis and OS”. For UHRF2 , the PMCID: PMC9775085 45 was used to determine the gene as unexploited. This review article integrates prior knowledge and proposes that UHRF2 dysregulation contributes to PD progression. It was specifically mentioned as follows; “Altogether, it could be assumed that the dysregulation of CPNE8 , CADPS2 , or UHRF2 contributes to PD progression via ERK activation induced by the LRRK2 G2019S mutation”. Table 4 provides the PubMed Central query dates by the author, query results, evidentiary publications (PubMed Central IDs), and quoted text supporting the unexploited status of each gene (evidence statements in the research paper).

In this study, we developed a pipeline to identify unexploited genes, that correspond to false-negative genes for a given disease against five databases that provide gene-disease associations. Additionally, it was used to treat PD associated with OS. Through integrated analysis of curated datasets, including transcriptomics and transcriptome-wide association results, we filtered the 62,266 genes down to 168 genes (OS-PD-DEGs) that exhibited dysregulation of gene expression in both PD and OS contexts. We subsequently classified OS-PD-DEGs into PD-unlinked and PD-linked genes based on existing evidence of their involvement in PD. We have further narrowed down the PD-unlinked genes to 12 unexploited candidate genes. Following a manual search of these 12 genes, NUPR1 , and UHRF2 were identified as unexploited genes that were absent from the current gene-disease associations databases. These unexploited genes are described as functionally associated with PMC9775085 and PMC10734949, yet they are not captured in public gene-disease association databases. Although not the focus of this study due to not meeting the criteria to judge PD unexploited genes, several studies 46 , 47 have reported dysregulated expression due to PD, which enhances the reliability of the association to PD. Thus, this pipeline effectively discovers such overlooked unexploited genes, aiding in the identification of experimental candidate genes.

Although it is challenging to conclusively determine the reasons for missing these entries from databases, three potential explanatory factors have been hypothesized as outlined in the Introduction. First, the databases may not have been recently updated. Two evidentiary publications on unexploited genes were recent (published in 2022 and 2023). Therefore, the absence of registrations may be possible without updates. Although the Open Targets Platform notes bi-monthly updates, the source database update frequencies vary, potentially explaining the omissions. Second, text-mining extraction failures are possible. For example, text-mining from the Europe PMC relies on co-occurrences at the sentence level with several filtering rules to reduce noise 9 . Their extraction methodology excludes articles other than research articles and filters out associations that appear only once in the body of an article but not in the article’s title or abstract. Therefore, the UHRF2 -PD association was excluded from the Open Targets Platform because the review article PMC9775085 was filtered out by the extraction system. Third, certain databases rely on expert manual curation for new data entry, which may be pending or induce human errors or biases. Using our analytical pipeline to identify unexploited genes helps mitigate these database limitations.

Additionally, the two unexploited genes identified were associated with OS. NUPR1 acts as a key inhibitor of ferroptosis by regulating lipocalin-2 (LCN2) expression to reduce iron accumulation and subsequent oxidative damage 48 . For UHRF2 , a gene set involved in ROS, UV response, and oxidative phosphorylation was induced in the retinal tissue of Uhrf2-deficient mice 49 . Among the 52 PD-linked genes, the majority have established associations with PD and OS (for instance, SLC18A2 50 , 51 , TXNIP 52 , NEFL 53 , 54 , MPO 55 , 56 , 57 , 58 , LINC00938 59 , 60 ). Therefore, the 168 OS-PD-DEGs are suggested to include not only well-known OS in PD research candidates, but also novel candidates.

Moreover, PD-linked genes with limited evidentiary publications may harbor false positives (genes that are flagged as disease-associated in a database containing evidence with inappropriate evidence). For example, we identified superoxide dismutase 3 ( SOD3) as a false-positive result. SOD3 was linked to PD through the Open Targets Platform with a single literature annotation, which, on closer inspection turns out that the contents in the literature claim the opposite, that no significant SNP-PD risk association are found for SOD 3 61 . This example demonstrates that our pipeline has the potential to reveal false positive entries in the database.

Finally, we outline four limitations of the analysis pipeline used in this study. First, several pipeline steps require time-consuming manual efforts. The curation of RNA-seq data is required for gene expression analysis in the first step. Following the refinement of the unexploited candidate genes, PMC was manually searched to assess the status of each gene. These manual steps render the methodology unsuitable for the comprehensive identification of numerous unexploited genes. The second limitation is the potential error of extracting false-positive genes, which may appear disease-associated but have weak actual relevance. This is particularly possible in RNAdisease and DisGeNET, where genes are searched based on threshold scores indicating association strength. However, such false-positive genes can be manually verified by reviewing the associated supporting literature as outlined in the Discussion. Furthermore, since the aim of this study is to identify false negatives, false-positive genes are not expected to hinder this objective and, therefore, are not considered a significant issue. The third limitation is the potential for confounders to prevent the identification of unexploited genes. In this study, we selected the candidate gene sets, OS-PD-DEGs, from various meta-analysis results. Changing potential confounders, such as the type and quantity of RNA-seq data selected or the thresholds used in the meta-analysis, could alter the OS-PD-DEGs and, subsequently, the unexploited genes. Therefore, when using this pipeline, it is necessary to curate as many suitable samples as possible and test various thresholds. Lastly, the referenced gene-disease databases are not static but will evolve with database research progress. We selected five databases to maximize the disease-gene coverage presently. However, novel databases are likely to emerge and be integrated over time. Therefore, appropriate database selection based on contemporary availability is necessary.

Curation of public data for OS

To collect OS RNA-sequencing data, relevant datasets were manually curated from the GEO 35 repository based on five criteria: (1) total RNA or polyA-enriched sequencing, (2) samples under conditions related to the definition of OS, (3) samples under conditions related to increased ROS levels, (4) availability of paired normal-state samples as a control, and (5) cell cultures with brain relevance (neurons, astrocytes, and progenitors). This resulted in 122 matched OS-normal sample pairs from 10 research groups for analysis as a result of curating started from August 2023 to 31 October 2023. Comprehensive details of the public datasets used in this study are listed in Supplementary Table 1 34 .

Curation of public data for PD

To compile DEGs in PD, we conducted a manual survey searching the PubMed database. Meta-analyses of three published studies were found, and we extracted all reported DEGs. Additionally, genes queried for PD in the TWAS-Atlas database 39 were incorporated into the PD-DEG list for downstream analysis. This curation was conducted from August 2023 to 31 October 2023. Comprehensive details regarding all the public datasets used in this study are listed in Table 2 .

OS meta-analysis

For RNA-seq data retrieval, processing, and quantification, we used Ikra 62 , an automated pipeline program for RNA-seq data of Homo sapiens and Mus musculus . The following pipeline comprised fasterq-dump (version.3.0.1) 63 , trim-galore (version.0.6.7) 64 , and salmon (version.1.4.0) 65 processes, with reference transcript sets in GENCODE Release 44 (GRCh38.p14). The transcript IDs were converted into the gene IDs using tximport ( http://bioconductor.org/packages/tximport/ ) [Supplementary Table 2 ] 34 . To retrieve DEGs across 122 paired RNA-seq, we devised an oxidative stress-normal-state score (ON-score) based on these datasets. Initially, the ON-ratio was calculated for each gene, representing the expression ratio between OS and normal states across all sample pairs (Eq. 1 ). Subsequently, genes were then categorized as upregulated, downregulated, or unchanged based on the ON-ratio exceeding a ±1.5-fold threshold. Furthermore, the ON-score for each gene was calculated using Eq. 2 , which involved subtracting the number of downregulated samples from the number of upregulated samples. This scoring methodology was detailed extensively in a previous study 15 . The ON score measured how many of the 122 pairs of samples dysregulate the expression of each gene.

Comparison of OS meta-analysis method with DESeq2

To assess the statistical validity of the meta-analysis method, we compared its results with those obtained using DESeq2 (package version:1.44.0), a widely used tool in bioinformatics research. Setting the threshold at log2FoldChange ≧ |1| and a p value adjusted by the false discovery rate <0.05, 352 genes were identified. The overlap between the 3114 genes identified by meta-analysis and the 352 genes identified by DESeq2 was 89. We conducted Fisher’s exact test to determine whether there is a statistically significant correlation between the gene sets obtained by meta-analysis and DESeq2. The sample size of genes was 62,266, with 3114 genes from the meta-analysis, 352 genes from DESeq2, and an overlap of 89 genes. The calculation yielded a p value of 1.52e-37 at a significant level of 0.05. This indicates that the probability of such an overlap occurring by chance is extremely low, demonstrating a statistically significant correlation between the gene sets obtained by the meta-analysis and DESeq2 methods. The DESeq2 output [Supplementary Table 4 ], the list of 352 genes [Supplementary Table 4 ], the list of overlapped 89 genes [Supplementary Table 4 ], and the script for calculating the fisher’s exact test [Supplementary Data 5 ] are available in the Figshare repository 34 .

Classifying genes by the availability of associations with PD

To classify genes based on prior evidence linking them to a disease, we originally developed the tool called gene-disease-linker 40 [Fig. 4 ]. The basic functionality of gene-disease-linker is to efficiently search five public gene-disease association databases, perform ID conversions, and organize search results. Using this tool, genes can be efficiently categorized as “linked” or “unlinked” for a specific disease by searching five public databases (accessed on 8 February 2024)—Open Targets Platform 3 , RNAdisease 12 , miRTex 11 , DisGeNET 10 , and PubChem 13 - for gene-disease relationships. As this categorization relies on these five databases, it is crucial that they comprehensively cover disease-gene associations as much as possible. We investigated as many public databases as possible from August 2023 to February 2024, requiring each gene-disease association to include supporting references. As a result, we selected these five public databases.

figure 4

Overview of gene-disease-linker collecting information about gene-disease associations based on the relevant five databases.

The detailed description of gene-disease-linker is as follows: By inputting a text file of genes list and configuration file into gene-disease-linker, it outputs the search results from these five databases, thereby enabling the determination of whether there is a gene-disease association for each gene in the list regarding a specific disease. In cases a gene exhibiting an association with the disease, it also concurrently outputs the supporting literature with PubMed ID. In contrast, no gene-disease association is indicated if there is no supporting literature annotated to a gene. In this study, a gene-disease-linker was used to classify genes as either PD-linked (existing literature linking the gene to PD) or PD-unlinked (no evidence found) (executed on 8 February 2024). The source codes and usage of gene-disease-linker are available in the GitHub repository. The text file of the genes list and configuration file we used in this study are available in the GitHub repository (168genes.txt and config.yml, respectively). Also, all intermediate and output files from running the gene-disease-linker in this study are available in the results folder on GitHub.

Criteria to judge PD unexploited genes

We searched gene names in PubMed Central, a full-text literature database, with the following query: “GENE_NAME[All Fields] AND Parkinson[All Fields]”. Within the retrieved articles, we analyzed the surrounding textual context of gene mentions to identify descriptions indicating or suggesting molecular functional relationships with PD. Only genes with mechanistic evidence or relationships reported in the literature were judged unexploited. Genes only listed among the DEGs without any statements related to functional implications were excluded from the unexploited.

Other analysis

GSEA was performed using the web-based tool Metascape 66 . Shared genes among the various gene sets were visualized using a publicly available web-based Venn diagram generator ( https://bioinformatics.psb.ugent.be/webtools/Venn/ ).

Data availability

The datasets curated, generated, and analyzed during this study are available in the figshare repository 34 .

Code availability

The underlying code for the current study is available at gene-disease-linker 40 .

Rehm, H. L. et al. ClinGen — the clinical genome resource. N. Engl. J. Med. 372 , 2235–2242 (2015).

Article   PubMed   PubMed Central   CAS   Google Scholar  

Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51 , D977–D985 (2023).

Article   PubMed   CAS   Google Scholar  

Ochoa, D. et al. The next-generation open targets platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51 , D1353–D1359 (2023).

Article   PubMed   Google Scholar  

Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24 , 1020–1034 (2021).

Ghoussaini, M. et al. Open targets genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 49 , D1311–D1320 (2021).

Dhindsa, R. S. et al. Rare variant associations with plasma protein levels in the UK Biobank. Nature 622 , 339–347 (2023).

Karczewski, K. J. et al. Systematic single-variant and gene-based association testing of thousands of phenotypes in 394,841 UK Biobank exomes. Cell Genomics 2 , 100168 (2022).

The Europe PMC Consortium. Europe PMC: a full-text literature database for the life sciences and platform for innovation. Nucleic Acids Res. 43 , D1042–D1048 (2015).

Article   Google Scholar  

Kafkas, Ş., Dunham, I. & McEntyre, J. Literature evidence in open targets - a target validation platform. J. Biomed. Semant. 8 , 20 (2017).

Piñero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45 , D833–D839 (2017).

Li, G. et al. miRTex: a text mining system for miRNA-gene relation extraction. PLOS Comput. Biol. 11 , e1004391 (2015).

Article   PubMed   PubMed Central   Google Scholar  

Chen, J. et al. RNADisease v4.0: an updated resource of RNA-associated diseases, providing RNA-disease analysis, enrichment and prediction. Nucleic Acids Res. 51 , D1397–D1404 (2023).

Li, Q., Kim, S., Zaslavsky, L., Cheng, T. & Yu, B. Resource description framework (RDF) modeling of named entity co-occurrences derived from biomedical literature in the PubChemRDF https://ceur-ws.org/Vol-3415/paper-4.pdf (2023).

Esaki, T. & Ikeda, K. Difficulties and prospects of data curation for ADME in silico modeling. CBIJ 23 , 1–6 (2023).

Suzuki, T., Ono, Y. & Bono, H. Comparison of oxidative and hypoxic stress responsive genes from meta-analysis of public transcriptomes. Biomedicines 9 , 1830 (2021).

Bono, H. Meta-analysis of oxidative transcriptomes in insects. Antioxidants 10 , 345 (2021).

Dorsey, E. R. et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 17 , 939–953 (2018).

Davie, C. A. A review of Parkinson’s disease. Br. Med. Bull. 86 , 109–127 (2008).

Obeso, J. A. et al. Missing pieces in the Parkinson’s disease puzzle. Nat. Med 16 , 653–661 (2010).

Wiecki, T. V. & Frank, M. J. Chapter 14 - Neurocomputational models of motor and cognitive deficits in Parkinson’s disease. In : Progress in Brain Research (eds. Björklund, A. & Cenci, M. A.) vol. 183, 275–297 (Elsevier, 2010).

Sahoo, S., Padhy, A. A., Kumari, V. & Mishra, P. Role of ubiquitin–proteasome and autophagy-lysosome pathways in α-synuclein aggregate clearance. Mol. Neurobiol. 59 , 5379–5407 (2022).

Zhou, Z. D., Yi, L. X., Wang, D. Q., Lim, T. M. & Tan, E. K. Role of dopamine in the pathophysiology of Parkinson’s disease. Transl. Neurodegener. 12 , 44 (2023).

Ramesh, S., Arachchige, A. S. P. M., Ramesh, S. & Arachchige, A. S. P. M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: a review of the literature. AIMSN 10 , 200–231 (2023).

Dias, V., Junn, E. & Mouradian, M. M. The role of oxidative stress in Parkinson’s disease. J. Parkinson’s Dis. 3 , 461–491 (2013).

Article   CAS   Google Scholar  

Klinkovskij, A., Shepelev, M., Isaakyan, Y., Aniskin, D. & Ulasov, I. Advances of genome editing with CRISPR/Cas9 in neurodegeneration: the right path towards therapy. Biomedicines 11 , 3333 (2023).

Simmnacher, K. et al. Unique signatures of stress-induced senescent human astrocytes. Exp. Neurol. 334 , 113466 (2020).

Krauskopf, J. et al. Transcriptomics analysis of human iPSC-derived dopaminergic neurons reveals a novel model for sporadic Parkinson’s disease. Mol. Psychiatry 27 , 4355–4367 (2022).

Tong, Z.-B., Braisted, J., Chu, P.-H. & Gerhold, D. The MT1G Gene in LUHMES neurons is a sensitive biomarker of neurotoxicity. Neurotox. Res. 38 , 967–978 (2020).

The irradiated brain microenvironment supports glioma stemness and survival via astrocyte-derived transglutaminase 2 | Cancer Research | American Association for Cancer Research. https://aacrjournals.org/cancerres/article/81/8/2101/670586/The-Irradiated-Brain-Microenvironment-Supports (2021).

Shimada, M., Tsukada, K., Kagawa, N. & Matsumoto, Y. Reprogramming and differentiation-dependent transcriptional alteration of DNA damage response and apoptosis genes in human induced pluripotent stem cells. J. Radiat. Res. 60 , 719–728 (2019).

Loeliger, B. W. et al. Effect of ionizing radiation on transcriptome during neural differentiation of human embryonic stem cells. Rare 193 , 460–470 (2020).

Murotomi, K. et al. Cyclo-glycylproline attenuates hydrogen peroxide-induced cellular damage mediated by the MDM2-p53 pathway in human neural stem cells. J. Cell. Physiol. 238 , 434–446 (2023).

Crowe, E. P. et al. Changes in the transcriptome of human astrocytes accompanying oxidative stress-induced senescence. Front. Aging Neurosci. 8 , 208 (2016).

Suzuki, T. A systematic exploration of unexploited disease-related genes. https://doi.org/10.6084/m9.figshare.c.7114075.v2 (2024).

Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 41 , D991–D995 (2013).

Mariani, E. et al. Meta-analysis of Parkinson’s disease transcriptome data using TRAM software: whole substantia nigra tissue and single dopamine neuron differential gene expression. PLoS One 11 , e0161567 (2016).

Phung, D. M. et al. Meta-analysis of differentially expressed genes in the substantia nigra in Parkinson’s disease supports phenotype-specific transcriptome changes. Front. Neurosci. 14 , (2020).

Cappelletti, C. et al. Transcriptomic profiling of Parkinson’s disease brains reveals disease stage specific gene expression changes. Acta Neuropathol. 146 , 227–244 (2023).

Lu, M. et al. TWAS Atlas: a curated knowledgebase of transcriptome-wide association studies. Nucleic Acids Res. 51 , D1179–D1187 (2023).

szktkyk. szktkyk/gene-disease-linker (2024).

Index of /gene/DATA. https://ftp.ncbi.nlm.nih.gov/gene/DATA/ .

Kia, D. A. et al. Identification of candidate Parkinson disease genes by integrating genome-wide association study, expression, and epigenetic data sets. JAMA Neurol. 78 , 464–472 (2021).

Li, Y. I., Wong, G., Humphrey, J. & Raj, T. Prioritizing Parkinson’s disease genes using population-scale transcriptomic data. Nat. Commun. 10 , 994 (2019).

Chen, L. et al. Study of molecular patterns associated with ferroptosis in Parkinson’s disease and its immune signature. PLoS One 18 , e0295699 (2023).

Chung, S.-K. & Lee, S.-Y. Advances in gene therapy techniques to treat LRRK2 gene mutation. Biomolecules 12 , 1814 (2022).

Lei, J., Aimaier, G., Aisha, Z., Zhang, Y. & Ma, J. eEF1A1 regulates the expression and alternative splicing of genes associated with Parkinson’s disease in U251 cells. Genes Genom. 46 , 817–829 (2024).

Zhang, X., Hu, D., Shang, Y. & Qi, X. Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochim. Biophys. Acta Mol. Basis Dis. 1866 , 165431 (2020).

Liu, J. et al. NUPR1 is a critical repressor of ferroptosis. Nat. Commun. 12 , 647 (2021).

Wang, X. et al. UHRF2 regulates cell cycle, epigenetics and gene expression to control the timing of retinal progenitor and ganglion cell differentiation. Development 149 , dev195644 (2022).

Bucher, M. L. et al. Acquired dysregulation of dopamine homeostasis reproduces features of Parkinson’s disease. npj Parkinsons Dis. 6 , 1–13 (2020).

Choi, W.-S., Kim, H.-W. & Xia, Z. JNK inhibition of VMAT2 contributes to rotenone-induced oxidative stress and dopamine neuron death. Toxicology 328 , 75–81 (2015).

Su, C.-J. et al. Thioredoxin-interacting protein induced α-synuclein accumulation via inhibition of autophagic flux: Implications for Parkinson’s disease. CNS Neurosci. Ther. 23 , 717–723 (2017).

Yang, D. et al. Neurofilament light chain as a mediator between LRRK2 mutation and dementia in Parkinson’s disease. npj Parkinsons Dis. 9 , 1–6 (2023).

Gong, L. et al. Neurofilament light chain (NF-L) stimulates lipid peroxidation to neuronal membrane through microglia-derived ferritin heavy chain (FTH) secretion. Oxid. Med. Cell. Longev. 2022 , e3938940 (2022).

Gellhaar, S., Sunnemark, D., Eriksson, H., Olson, L. & Galter, D. Myeloperoxidase-immunoreactive cells are significantly increased in brain areas affected by neurodegeneration in Parkinson’s and Alzheimer’s disease. Cell Tissue Res. 369 , 445–454 (2017).

Maki, R. A. et al. Human myeloperoxidase (hMPO) is expressed in neurons in the substantia nigra in Parkinson’s disease and in the hMPO-α-synuclein-A53T mouse model, correlating with increased nitration and aggregation of α-synuclein and exacerbation of motor impairment. Free Radic. Biol. Med. 141 , 115–140 (2019).

Verdiperstat | ALZFORUM https://www.alzforum.org/therapeutics/verdiperstat .

Chang, C. Y., Choi, D.-K., Lee, D. K., Hong, Y. J. & Park, E. J. Resveratrol confers protection against rotenone-induced neurotoxicity by modulating myeloperoxidase levels in glial cells. PLoS One 8 , e60654 (2013).

Zhao, J. et al. LINC00938 alleviates hypoxia ischemia encephalopathy induced neonatal brain injury by regulating oxidative stress and inhibiting JNK/p38 MAPK signaling pathway. Exp. Neurol. 367 , 114449 (2023).

Yousefi, M., Peymani, M., Ghaedi, K., Irani, S. & Etemadifar, M. Significant modulations of linc001128 and linc0938 with miR-24-3p and miR-30c-5p in Parkinson disease. Sci. Rep. 12 , 2569 (2022).

Liu, C., Fang, J. & Liu, W. Superoxide dismutase coding of gene polymorphisms associated with susceptibility to Parkinson’s disease. J. Integr. Neurosci. 18 , 299–303 (2019).

Yu, H. et al. yyoshiaki/ikra: ikra v2.0.1. Zenodo https://doi.org/10.5281/zenodo.5541399 (2021).

The NCBI SRA (Sequence Read Archive); NCBI—National Center for Biotechnology Information/NLM/NIH: Bethesda, MD, USA, 2021.

Babraham Bioinformatics - Trim Galore! https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ .

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14 , 417–419 (2017).

Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10 , 1523 (2019).

Download references

Acknowledgements

This research was supported by the Center of Innovation for Bio-Digital Transformation (BioDX), the open innovation platform for industry-academia co-creation (COI-NEXT), the Japan Science and Technology Agency (JST, COI-NEXT, JPMJPF2010), and the ROIS-DS-JOINT (007RP2023). This work was also supported by the JST, which established university fellowships for the creation of science and technology innovation (Grant Number JPMJFS2129). Computations were performed on the computers at Hiroshima University Genome Editing Innovation Center. We also would like to thank all laboratory members at Hiroshima University and the Database Center of Life Science (DBCLS) for their valuable comments.

Author information

Authors and affiliations.

Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan

Takayuki Suzuki & Hidemasa Bono

Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan

Hidemasa Bono

Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan

You can also search for this author in PubMed   Google Scholar

Contributions

T.S. was responsible for data curation, software development, pipeline analysis, draft of the original manuscript. T.S. and H.B were responsible for the study design, conceptualization, methodology manuscript review and editing. H.B. was responsible for the project administration, funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hidemasa Bono .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental tables & data, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Suzuki, T., Bono, H. A systematic exploration of unexploited genes for oxidative stress in Parkinson’s disease. npj Parkinsons Dis. 10 , 160 (2024). https://doi.org/10.1038/s41531-024-00776-1

Download citation

Received : 12 March 2024

Accepted : 05 August 2024

Published : 17 August 2024

DOI : https://doi.org/10.1038/s41531-024-00776-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

what to include in research methodology

IMAGES

  1. 15 Research Methodology Examples (2024)

    what to include in research methodology

  2. what to include in methodology

    what to include in research methodology

  3. How to Write a Research Methodology

    what to include in research methodology

  4. Types of Research Methodology: Uses, Types & Benefits

    what to include in research methodology

  5. (PDF) Research Methodology

    what to include in research methodology

  6. Navigating the Best Research Methodology steps? The Professor's Advice

    what to include in research methodology

COMMENTS

  1. What Is a Research Methodology?

    Step 1: Explain your methodological approach. Step 2: Describe your data collection methods. Step 3: Describe your analysis method. Step 4: Evaluate and justify the methodological choices you made. Tips for writing a strong methodology chapter. Other interesting articles.

  2. What Is a Research Methodology?

    Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research. It should include:

  3. Research Methodology Guide: Writing Tips, Types, & Examples

    Research methodology is the set of procedures and techniques used to collect, analyze, and interpret data to understand and solve a research problem. ... It could include surveys to quantitatively assess the frequency of social media usage and its correlation with grades, alongside focus groups or interviews to qualitatively explore students ...

  4. Research Methodology

    The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

  5. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  6. What Is Research Methodology? Definition + Examples

    As we mentioned, research methodology refers to the collection of practical decisions regarding what data you'll collect, from who, how you'll collect it and how you'll analyse it. Research design, on the other hand, is more about the overall strategy you'll adopt in your study. For example, whether you'll use an experimental design ...

  7. What is research methodology? [Update 2024]

    A research methodology encompasses the way in which you intend to carry out your research. This includes how you plan to tackle things like collection methods, statistical analysis, participant observations, and more. You can think of your research methodology as being a formula. One part will be how you plan on putting your research into ...

  8. The Ultimate Guide To Research Methodology

    Research methodology can be defined as the systematic framework that guides researchers in designing, conducting, and analyzing their investigations. It encompasses a structured set of processes, techniques, and tools employed to gather and interpret data, ensuring the reliability and validity of the research findings.

  9. 6. The Methodology

    As Schneider notes, a method refers to the technical steps taken to do research. Descriptions of methods usually include defining and stating why you have chosen specific techniques to investigate a research problem, followed by an outline of the procedures you used to systematically select, gather, and process the data [remember to always save ...

  10. How to Write Research Methodology: 13 Steps (with Pictures)

    Restate your research problem. Begin your research methodology section by listing the problems or questions you intend to study. Include your hypotheses, if applicable, or what you are setting out to prove through your research. In your restatement, include any underlying assumptions that you're making or conditions that you're taking for granted.

  11. How to Write Research Methodology in 2024: Overview, Tips, and

    Methodology in research is defined as the systematic method to resolve a research problem through data gathering using various techniques, providing an interpretation of data gathered and drawing conclusions about the research data. Essentially, a research methodology is the blueprint of a research or study (Murthy & Bhojanna, 2009, p. 32).

  12. How To Write The Methodology Chapter

    Do yourself a favour and start with the end in mind. Section 1 - Introduction. As with all chapters in your dissertation or thesis, the methodology chapter should have a brief introduction. In this section, you should remind your readers what the focus of your study is, especially the research aims. As we've discussed many times on the blog ...

  13. How to Write a Research Methodology in 4 Steps

    Learn how to write a strong methodology chapter that allows readers to evaluate the reliability and validity of the research. A good methodology chapter incl...

  14. How To Choose The Right Research Methodology

    1. Understanding the options. Before we jump into the question of how to choose a research methodology, it's useful to take a step back to understand the three overarching types of research - qualitative, quantitative and mixed methods -based research. Each of these options takes a different methodological approach.

  15. What is Research Methodology? Definition, Types, and Examples

    A research methodology should include the following components: 3,9. Research design—should be selected based on the research question and the data required. Common research designs include experimental, quasi-experimental, correlational, descriptive, and exploratory.

  16. How to Write Your Methods

    Your Methods Section contextualizes the results of your study, giving editors, reviewers and readers alike the information they need to understand and interpret your work. Your methods are key to establishing the credibility of your study, along with your data and the results themselves. A complete methods section should provide enough detail ...

  17. What Is Research Methodology? Types, Process, Examples In Research

    Research methodology is a crucial framework that guides the entire research process. It involves choosing between various qualitative and quantitative approaches, each tailored to specific research questions and objectives. Your chosen methodology shapes how data is gathered, analysed, and interpreted, ultimately influencing the reliability and ...

  18. Choosing the Right Research Methodology: A Guide

    Qualitative research methodology: Qualitative research is often used to examine issues that are not well understood, and to gather additional insights on these topics. Qualitative research methods include open-ended survey questions, observations of behaviours described through words, and reviews of literature that has explored similar theories ...

  19. How To Write a Methodology (With Tips and FAQs)

    Here are the steps to follow when writing a methodology: 1. Restate your thesis or research problem. The first part of your methodology is a restatement of the problem your research investigates. This allows your reader to follow your methodology step by step, from beginning to end. Restating your thesis also provides you an opportunity to ...

  20. What Is Research Methodology? (Why It's Important and Types)

    A research methodology gives research legitimacy and provides scientifically sound findings. It also provides a detailed plan that helps to keep researchers on track, making the process smooth, effective and manageable. A researcher's methodology allows the reader to understand the approach and methods used to reach conclusions.

  21. What are research methodologies?

    A research methodology is different from a research method because research methods are the tools you use to gather your data (Dawson, 2019). You must consider several issues when it comes to selecting the most appropriate methodology for your topic. Issues might include research limitations and ethical dilemmas that might impact the quality of ...

  22. How to Write a Research Methodology for Your Academic Article

    The Methodology section portrays the reasoning for the application of certain techniques and methods in the context of the study. For your academic article, when you describe and explain your chosen methods it is very important to correlate them to your research questions and/or hypotheses. The description of the methods used should include ...

  23. How to Write a Research Proposal: (with Examples & Templates)

    Before conducting a study, a research proposal should be created that outlines researchers' plans and methodology and is submitted to the concerned evaluating organization or person. Creating a research proposal is an important step to ensure that researchers are on track and are moving forward as intended. A research proposal can be defined as a detailed plan or blueprint for the proposed ...

  24. 9 Best Marketing Research Methods to Know Your Buyer Better [+ Examples]

    From brand design and product development to buyer personas and competitive analysis, I've researched a number of initiatives in my decade-long marketing career.. And let me tell you: having the right marketing research methods in your toolbox is a must. Market research is the secret to crafting a strategy that will truly help you accomplish your goals.

  25. Research Methodology Chapter: 5 Tips & Tricks

    Simply put, you should avoid thinking of your methodology chapter as a citation-less section in your dissertation. As with your literature review, your methods section must include citations for every decision you make, since you are building on prior research. You must show that you are making decisions based on methods that are proven to be ...

  26. Title page setup

    For a professional paper, the affiliation is the institution at which the research was conducted. Include both the name of any department and the name of the college, university, or other institution, separated by a comma. Center the affiliation on the next double-spaced line after the author names; when there are multiple affiliations, center ...

  27. A systematic exploration of unexploited genes for oxidative ...

    To assess the statistical validity of the meta-analysis method, we compared its results with those obtained using DESeq2 (package version:1.44.0), a widely used tool in bioinformatics research.

  28. MDWFP uses multiple methods to study state's black bears

    According to MDWFP officials, the most successful methods of studying black bears include trapping and collaring. (Courtesy: MDWFP) According to MDWFP officials, the most successful methods of ...

  29. Obese Americans Face Extra Emotional and Cultural Challenges

    The interpersonal consequences of cultural stigma attached to obesity include unfair treatment and judgment based on one's body weight. Americans who are categorized as obese more often report experiencing behaviors toward them that may arise out of people's implicit or explicit biases against extra weight, a bias known as "weightism."

  30. Employee Wellbeing Hinges on Management, Not Work Mode

    According to Gallup research, 76% of full-time hybrid workers in the U.S. most often cite improved work-life balance as a top advantage of hybrid work. This sentiment is even clearer among ...