• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Quasi Experimental Design Overview & Examples

By Jim Frost Leave a Comment

What is a Quasi Experimental Design?

A quasi experimental design is a method for identifying causal relationships that does not randomly assign participants to the experimental groups. Instead, researchers use a non-random process. For example, they might use an eligibility cutoff score or preexisting groups to determine who receives the treatment.

Image illustrating a quasi experimental design.

Quasi-experimental research is a design that closely resembles experimental research but is different. The term “quasi” means “resembling,” so you can think of it as a cousin to actual experiments. In these studies, researchers can manipulate an independent variable — that is, they change one factor to see what effect it has. However, unlike true experimental research, participants are not randomly assigned to different groups.

Learn more about Experimental Designs: Definition & Types .

When to Use Quasi-Experimental Design

Researchers typically use a quasi-experimental design because they can’t randomize due to practical or ethical concerns. For example:

  • Practical Constraints : A school interested in testing a new teaching method can only implement it in preexisting classes and cannot randomly assign students.
  • Ethical Concerns : A medical study might not be able to randomly assign participants to a treatment group for an experimental medication when they are already taking a proven drug.

Quasi-experimental designs also come in handy when researchers want to study the effects of naturally occurring events, like policy changes or environmental shifts, where they can’t control who is exposed to the treatment.

Quasi-experimental designs occupy a unique position in the spectrum of research methodologies, sitting between observational studies and true experiments. This middle ground offers a blend of both worlds, addressing some limitations of purely observational studies while navigating the constraints often accompanying true experiments.

A significant advantage of quasi-experimental research over purely observational studies and correlational research is that it addresses the issue of directionality, determining which variable is the cause and which is the effect. In quasi-experiments, an intervention typically occurs during the investigation, and the researchers record outcomes before and after it, increasing the confidence that it causes the observed changes.

However, it’s crucial to recognize its limitations as well. Controlling confounding variables is a larger concern for a quasi-experimental design than a true experiment because it lacks random assignment.

In sum, quasi-experimental designs offer a valuable research approach when random assignment is not feasible, providing a more structured and controlled framework than observational studies while acknowledging and attempting to address potential confounders.

Types of Quasi-Experimental Designs and Examples

Quasi-experimental studies use various methods, depending on the scenario.

Natural Experiments

This design uses naturally occurring events or changes to create the treatment and control groups. Researchers compare outcomes between those whom the event affected and those it did not affect. Analysts use statistical controls to account for confounders that the researchers must also measure.

Natural experiments are related to observational studies, but they allow for a clearer causality inference because the external event or policy change provides both a form of quasi-random group assignment and a definite start date for the intervention.

For example, in a natural experiment utilizing a quasi-experimental design, researchers study the impact of a significant economic policy change on small business growth. The policy is implemented in one state but not in neighboring states. This scenario creates an unplanned experimental setup, where the state with the new policy serves as the treatment group, and the neighboring states act as the control group.

Researchers are primarily interested in small business growth rates but need to record various confounders that can impact growth rates. Hence, they record state economic indicators, investment levels, and employment figures. By recording these metrics across the states, they can include them in the model as covariates and control them statistically. This method allows researchers to estimate differences in small business growth due to the policy itself, separate from the various confounders.

Nonequivalent Groups Design

This method involves matching existing groups that are similar but not identical. Researchers attempt to find groups that are as equivalent as possible, particularly for factors likely to affect the outcome.

For instance, researchers use a nonequivalent groups quasi-experimental design to evaluate the effectiveness of a new teaching method in improving students’ mathematics performance. A school district considering the teaching method is planning the study. Students are already divided into schools, preventing random assignment.

The researchers matched two schools with similar demographics, baseline academic performance, and resources. The school using the traditional methodology is the control, while the other uses the new approach. Researchers are evaluating differences in educational outcomes between the two methods.

They perform a pretest to identify differences between the schools that might affect the outcome and include them as covariates to control for confounding. They also record outcomes before and after the intervention to have a larger context for the changes they observe.

Regression Discontinuity

This process assigns subjects to a treatment or control group based on a predetermined cutoff point (e.g., a test score). The analysis primarily focuses on participants near the cutoff point, as they are likely similar except for the treatment received. By comparing participants just above and below the cutoff, the design controls for confounders that vary smoothly around the cutoff.

For example, in a regression discontinuity quasi-experimental design focusing on a new medical treatment for depression, researchers use depression scores as the cutoff point. Individuals with depression scores just above a certain threshold are assigned to receive the latest treatment, while those just below the threshold do not receive it. This method creates two closely matched groups: one that barely qualifies for treatment and one that barely misses out.

By comparing the mental health outcomes of these two groups over time, researchers can assess the effectiveness of the new treatment. The assumption is that the only significant difference between the groups is whether they received the treatment, thereby isolating its impact on depression outcomes.

Controlling Confounders in a Quasi-Experimental Design

Accounting for confounding variables is a challenging but essential task for a quasi-experimental design.

In a true experiment, the random assignment process equalizes confounders across the groups to nullify their overall effect. It’s the gold standard because it works on all confounders, known and unknown.

Unfortunately, the lack of random assignment can allow differences between the groups to exist before the intervention. These confounding factors might ultimately explain the results rather than the intervention.

Consequently, researchers must use other methods to equalize the groups roughly using matching and cutoff values or statistically adjust for preexisting differences they measure to reduce the impact of confounders.

A key strength of quasi-experiments is their frequent use of “pre-post testing.” This approach involves conducting initial tests before collecting data to check for preexisting differences between groups that could impact the study’s outcome. By identifying these variables early on and including them as covariates, researchers can more effectively control potential confounders in their statistical analysis.

Additionally, researchers frequently track outcomes before and after the intervention to better understand the context for changes they observe.

Statisticians consider these methods to be less effective than randomization. Hence, quasi-experiments fall somewhere in the middle when it comes to internal validity , or how well the study can identify causal relationships versus mere correlation . They’re more conclusive than correlational studies but not as solid as true experiments.

In conclusion, quasi-experimental designs offer researchers a versatile and practical approach when random assignment is not feasible. This methodology bridges the gap between controlled experiments and observational studies, providing a valuable tool for investigating cause-and-effect relationships in real-world settings. Researchers can address ethical and logistical constraints by understanding and leveraging the different types of quasi-experimental designs while still obtaining insightful and meaningful results.

Cook, T. D., & Campbell, D. T. (1979).  Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin

Share this:

what is a quasi experimental variable

Reader Interactions

Comments and questions cancel reply.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

what is a quasi experimental variable

Home Market Research Research Tools and Apps

Quasi-experimental Research: What It Is, Types & Examples

quasi-experimental research is research that appears to be experimental but is not.

Much like an actual experiment, quasi-experimental research tries to demonstrate a cause-and-effect link between a dependent and an independent variable. A quasi-experiment, on the other hand, does not depend on random assignment, unlike an actual experiment. The subjects are sorted into groups based on non-random variables.

What is Quasi-Experimental Research?

“Resemblance” is the definition of “quasi.” Individuals are not randomly allocated to conditions or orders of conditions, even though the regression analysis is changed. As a result, quasi-experimental research is research that appears to be experimental but is not.

The directionality problem is avoided in quasi-experimental research since the regression analysis is altered before the multiple regression is assessed. However, because individuals are not randomized at random, there are likely to be additional disparities across conditions in quasi-experimental research.

As a result, in terms of internal consistency, quasi-experiments fall somewhere between correlational research and actual experiments.

The key component of a true experiment is randomly allocated groups. This means that each person has an equivalent chance of being assigned to the experimental group or the control group, depending on whether they are manipulated or not.

Simply put, a quasi-experiment is not a real experiment. A quasi-experiment does not feature randomly allocated groups since the main component of a real experiment is randomly assigned groups. Why is it so crucial to have randomly allocated groups, given that they constitute the only distinction between quasi-experimental and actual  experimental research ?

Let’s use an example to illustrate our point. Let’s assume we want to discover how new psychological therapy affects depressed patients. In a genuine trial, you’d split half of the psych ward into treatment groups, With half getting the new psychotherapy therapy and the other half receiving standard  depression treatment .

And the physicians compare the outcomes of this treatment to the results of standard treatments to see if this treatment is more effective. Doctors, on the other hand, are unlikely to agree with this genuine experiment since they believe it is unethical to treat one group while leaving another untreated.

A quasi-experimental study will be useful in this case. Instead of allocating these patients at random, you uncover pre-existing psychotherapist groups in the hospitals. Clearly, there’ll be counselors who are eager to undertake these trials as well as others who prefer to stick to the old ways.

These pre-existing groups can be used to compare the symptom development of individuals who received the novel therapy with those who received the normal course of treatment, even though the groups weren’t chosen at random.

If any substantial variations between them can be well explained, you may be very assured that any differences are attributable to the treatment but not to other extraneous variables.

As we mentioned before, quasi-experimental research entails manipulating an independent variable by randomly assigning people to conditions or sequences of conditions. Non-equivalent group designs, pretest-posttest designs, and regression discontinuity designs are only a few of the essential types.

What are quasi-experimental research designs?

Quasi-experimental research designs are a type of research design that is similar to experimental designs but doesn’t give full control over the independent variable(s) like true experimental designs do.

In a quasi-experimental design, the researcher changes or watches an independent variable, but the participants are not put into groups at random. Instead, people are put into groups based on things they already have in common, like their age, gender, or how many times they have seen a certain stimulus.

Because the assignments are not random, it is harder to draw conclusions about cause and effect than in a real experiment. However, quasi-experimental designs are still useful when randomization is not possible or ethical.

The true experimental design may be impossible to accomplish or just too expensive, especially for researchers with few resources. Quasi-experimental designs enable you to investigate an issue by utilizing data that has already been paid for or gathered by others (often the government). 

Because they allow better control for confounding variables than other forms of studies, they have higher external validity than most genuine experiments and higher  internal validity  (less than true experiments) than other non-experimental research.

Is quasi-experimental research quantitative or qualitative?

Quasi-experimental research is a quantitative research method. It involves numerical data collection and statistical analysis. Quasi-experimental research compares groups with different circumstances or treatments to find cause-and-effect links. 

It draws statistical conclusions from quantitative data. Qualitative data can enhance quasi-experimental research by revealing participants’ experiences and opinions, but quantitative data is the method’s foundation.

Quasi-experimental research types

There are many different sorts of quasi-experimental designs. Three of the most popular varieties are described below: Design of non-equivalent groups, Discontinuity in regression, and Natural experiments.

Design of Non-equivalent Groups

Example: design of non-equivalent groups, discontinuity in regression, example: discontinuity in regression, natural experiments, example: natural experiments.

However, because they couldn’t afford to pay everyone who qualified for the program, they had to use a random lottery to distribute slots.

Experts were able to investigate the program’s impact by utilizing enrolled people as a treatment group and those who were qualified but did not play the jackpot as an experimental group.

How QuestionPro helps in quasi-experimental research?

QuestionPro can be a useful tool in quasi-experimental research because it includes features that can assist you in designing and analyzing your research study. Here are some ways in which QuestionPro can help in quasi-experimental research:

Design surveys

Randomize participants, collect data over time, analyze data, collaborate with your team.

With QuestionPro, you have access to the most mature market research platform and tool that helps you collect and analyze the insights that matter the most. By leveraging InsightsHub, the unified hub for data management, you can ​​leverage the consolidated platform to organize, explore, search, and discover your  research data  in one organized data repository . 

Optimize Your quasi-experimental research with QuestionPro. Get started now!

LEARN MORE         FREE TRIAL

MORE LIKE THIS

what is a quasi experimental variable

Life@QuestionPro: Thomas Maiwald-Immer’s Experience

Aug 9, 2024

Top 13 Reporting Tools to Transform Your Data Insights & More

Top 13 Reporting Tools to Transform Your Data Insights & More

Aug 8, 2024

Employee satisfaction

Employee Satisfaction: How to Boost Your  Workplace Happiness?

Aug 7, 2024

jotform vs formstack

Jotform vs Formstack: Which Form Builder Should You Choose?

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence
  • Privacy Policy

Research Method

Home » Quasi-Experimental Research Design – Types, Methods

Quasi-Experimental Research Design – Types, Methods

Table of Contents

Quasi-Experimental Design

Quasi-Experimental Design

Quasi-experimental design is a research method that seeks to evaluate the causal relationships between variables, but without the full control over the independent variable(s) that is available in a true experimental design.

In a quasi-experimental design, the researcher uses an existing group of participants that is not randomly assigned to the experimental and control groups. Instead, the groups are selected based on pre-existing characteristics or conditions, such as age, gender, or the presence of a certain medical condition.

Types of Quasi-Experimental Design

There are several types of quasi-experimental designs that researchers use to study causal relationships between variables. Here are some of the most common types:

Non-Equivalent Control Group Design

This design involves selecting two groups of participants that are similar in every way except for the independent variable(s) that the researcher is testing. One group receives the treatment or intervention being studied, while the other group does not. The two groups are then compared to see if there are any significant differences in the outcomes.

Interrupted Time-Series Design

This design involves collecting data on the dependent variable(s) over a period of time, both before and after an intervention or event. The researcher can then determine whether there was a significant change in the dependent variable(s) following the intervention or event.

Pretest-Posttest Design

This design involves measuring the dependent variable(s) before and after an intervention or event, but without a control group. This design can be useful for determining whether the intervention or event had an effect, but it does not allow for control over other factors that may have influenced the outcomes.

Regression Discontinuity Design

This design involves selecting participants based on a specific cutoff point on a continuous variable, such as a test score. Participants on either side of the cutoff point are then compared to determine whether the intervention or event had an effect.

Natural Experiments

This design involves studying the effects of an intervention or event that occurs naturally, without the researcher’s intervention. For example, a researcher might study the effects of a new law or policy that affects certain groups of people. This design is useful when true experiments are not feasible or ethical.

Data Analysis Methods

Here are some data analysis methods that are commonly used in quasi-experimental designs:

Descriptive Statistics

This method involves summarizing the data collected during a study using measures such as mean, median, mode, range, and standard deviation. Descriptive statistics can help researchers identify trends or patterns in the data, and can also be useful for identifying outliers or anomalies.

Inferential Statistics

This method involves using statistical tests to determine whether the results of a study are statistically significant. Inferential statistics can help researchers make generalizations about a population based on the sample data collected during the study. Common statistical tests used in quasi-experimental designs include t-tests, ANOVA, and regression analysis.

Propensity Score Matching

This method is used to reduce bias in quasi-experimental designs by matching participants in the intervention group with participants in the control group who have similar characteristics. This can help to reduce the impact of confounding variables that may affect the study’s results.

Difference-in-differences Analysis

This method is used to compare the difference in outcomes between two groups over time. Researchers can use this method to determine whether a particular intervention has had an impact on the target population over time.

Interrupted Time Series Analysis

This method is used to examine the impact of an intervention or treatment over time by comparing data collected before and after the intervention or treatment. This method can help researchers determine whether an intervention had a significant impact on the target population.

Regression Discontinuity Analysis

This method is used to compare the outcomes of participants who fall on either side of a predetermined cutoff point. This method can help researchers determine whether an intervention had a significant impact on the target population.

Steps in Quasi-Experimental Design

Here are the general steps involved in conducting a quasi-experimental design:

  • Identify the research question: Determine the research question and the variables that will be investigated.
  • Choose the design: Choose the appropriate quasi-experimental design to address the research question. Examples include the pretest-posttest design, non-equivalent control group design, regression discontinuity design, and interrupted time series design.
  • Select the participants: Select the participants who will be included in the study. Participants should be selected based on specific criteria relevant to the research question.
  • Measure the variables: Measure the variables that are relevant to the research question. This may involve using surveys, questionnaires, tests, or other measures.
  • Implement the intervention or treatment: Implement the intervention or treatment to the participants in the intervention group. This may involve training, education, counseling, or other interventions.
  • Collect data: Collect data on the dependent variable(s) before and after the intervention. Data collection may also include collecting data on other variables that may impact the dependent variable(s).
  • Analyze the data: Analyze the data collected to determine whether the intervention had a significant impact on the dependent variable(s).
  • Draw conclusions: Draw conclusions about the relationship between the independent and dependent variables. If the results suggest a causal relationship, then appropriate recommendations may be made based on the findings.

Quasi-Experimental Design Examples

Here are some examples of real-time quasi-experimental designs:

  • Evaluating the impact of a new teaching method: In this study, a group of students are taught using a new teaching method, while another group is taught using the traditional method. The test scores of both groups are compared before and after the intervention to determine whether the new teaching method had a significant impact on student performance.
  • Assessing the effectiveness of a public health campaign: In this study, a public health campaign is launched to promote healthy eating habits among a targeted population. The behavior of the population is compared before and after the campaign to determine whether the intervention had a significant impact on the target behavior.
  • Examining the impact of a new medication: In this study, a group of patients is given a new medication, while another group is given a placebo. The outcomes of both groups are compared to determine whether the new medication had a significant impact on the targeted health condition.
  • Evaluating the effectiveness of a job training program : In this study, a group of unemployed individuals is enrolled in a job training program, while another group is not enrolled in any program. The employment rates of both groups are compared before and after the intervention to determine whether the training program had a significant impact on the employment rates of the participants.
  • Assessing the impact of a new policy : In this study, a new policy is implemented in a particular area, while another area does not have the new policy. The outcomes of both areas are compared before and after the intervention to determine whether the new policy had a significant impact on the targeted behavior or outcome.

Applications of Quasi-Experimental Design

Here are some applications of quasi-experimental design:

  • Educational research: Quasi-experimental designs are used to evaluate the effectiveness of educational interventions, such as new teaching methods, technology-based learning, or educational policies.
  • Health research: Quasi-experimental designs are used to evaluate the effectiveness of health interventions, such as new medications, public health campaigns, or health policies.
  • Social science research: Quasi-experimental designs are used to investigate the impact of social interventions, such as job training programs, welfare policies, or criminal justice programs.
  • Business research: Quasi-experimental designs are used to evaluate the impact of business interventions, such as marketing campaigns, new products, or pricing strategies.
  • Environmental research: Quasi-experimental designs are used to evaluate the impact of environmental interventions, such as conservation programs, pollution control policies, or renewable energy initiatives.

When to use Quasi-Experimental Design

Here are some situations where quasi-experimental designs may be appropriate:

  • When the research question involves investigating the effectiveness of an intervention, policy, or program : In situations where it is not feasible or ethical to randomly assign participants to intervention and control groups, quasi-experimental designs can be used to evaluate the impact of the intervention on the targeted outcome.
  • When the sample size is small: In situations where the sample size is small, it may be difficult to randomly assign participants to intervention and control groups. Quasi-experimental designs can be used to investigate the impact of an intervention without requiring a large sample size.
  • When the research question involves investigating a naturally occurring event : In some situations, researchers may be interested in investigating the impact of a naturally occurring event, such as a natural disaster or a major policy change. Quasi-experimental designs can be used to evaluate the impact of the event on the targeted outcome.
  • When the research question involves investigating a long-term intervention: In situations where the intervention or program is long-term, it may be difficult to randomly assign participants to intervention and control groups for the entire duration of the intervention. Quasi-experimental designs can be used to evaluate the impact of the intervention over time.
  • When the research question involves investigating the impact of a variable that cannot be manipulated : In some situations, it may not be possible or ethical to manipulate a variable of interest. Quasi-experimental designs can be used to investigate the relationship between the variable and the targeted outcome.

Purpose of Quasi-Experimental Design

The purpose of quasi-experimental design is to investigate the causal relationship between two or more variables when it is not feasible or ethical to conduct a randomized controlled trial (RCT). Quasi-experimental designs attempt to emulate the randomized control trial by mimicking the control group and the intervention group as much as possible.

The key purpose of quasi-experimental design is to evaluate the impact of an intervention, policy, or program on a targeted outcome while controlling for potential confounding factors that may affect the outcome. Quasi-experimental designs aim to answer questions such as: Did the intervention cause the change in the outcome? Would the outcome have changed without the intervention? And was the intervention effective in achieving its intended goals?

Quasi-experimental designs are useful in situations where randomized controlled trials are not feasible or ethical. They provide researchers with an alternative method to evaluate the effectiveness of interventions, policies, and programs in real-life settings. Quasi-experimental designs can also help inform policy and practice by providing valuable insights into the causal relationships between variables.

Overall, the purpose of quasi-experimental design is to provide a rigorous method for evaluating the impact of interventions, policies, and programs while controlling for potential confounding factors that may affect the outcome.

Advantages of Quasi-Experimental Design

Quasi-experimental designs have several advantages over other research designs, such as:

  • Greater external validity : Quasi-experimental designs are more likely to have greater external validity than laboratory experiments because they are conducted in naturalistic settings. This means that the results are more likely to generalize to real-world situations.
  • Ethical considerations: Quasi-experimental designs often involve naturally occurring events, such as natural disasters or policy changes. This means that researchers do not need to manipulate variables, which can raise ethical concerns.
  • More practical: Quasi-experimental designs are often more practical than experimental designs because they are less expensive and easier to conduct. They can also be used to evaluate programs or policies that have already been implemented, which can save time and resources.
  • No random assignment: Quasi-experimental designs do not require random assignment, which can be difficult or impossible in some cases, such as when studying the effects of a natural disaster. This means that researchers can still make causal inferences, although they must use statistical techniques to control for potential confounding variables.
  • Greater generalizability : Quasi-experimental designs are often more generalizable than experimental designs because they include a wider range of participants and conditions. This can make the results more applicable to different populations and settings.

Limitations of Quasi-Experimental Design

There are several limitations associated with quasi-experimental designs, which include:

  • Lack of Randomization: Quasi-experimental designs do not involve randomization of participants into groups, which means that the groups being studied may differ in important ways that could affect the outcome of the study. This can lead to problems with internal validity and limit the ability to make causal inferences.
  • Selection Bias: Quasi-experimental designs may suffer from selection bias because participants are not randomly assigned to groups. Participants may self-select into groups or be assigned based on pre-existing characteristics, which may introduce bias into the study.
  • History and Maturation: Quasi-experimental designs are susceptible to history and maturation effects, where the passage of time or other events may influence the outcome of the study.
  • Lack of Control: Quasi-experimental designs may lack control over extraneous variables that could influence the outcome of the study. This can limit the ability to draw causal inferences from the study.
  • Limited Generalizability: Quasi-experimental designs may have limited generalizability because the results may only apply to the specific population and context being studied.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Triangulation

Triangulation in Research – Types, Methods and...

Transformative Design

Transformative Design – Methods, Types, Guide

Experimental Research Design

Experimental Design – Types, Methods, Guide

Textual Analysis

Textual Analysis – Types, Examples and Guide

Focus Groups in Qualitative Research

Focus Groups – Steps, Examples and Guide

Case Study Research

Case Study – Methods, Examples and Guide

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7.3 Quasi-Experimental Research

Learning objectives.

  • Explain what quasi-experimental research is and distinguish it clearly from both experimental and correlational research.
  • Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one.

The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979). Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem. But because participants are not randomly assigned—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between correlational studies and true experiments.

Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones here.

Nonequivalent Groups Design

Recall that when participants in a between-subjects experiment are randomly assigned to conditions, the resulting groups are likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be nonequivalent. A nonequivalent groups design , then, is a between-subjects design in which participants have not been randomly assigned to conditions.

Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a control group consisting of another class of third-grade students. This would be a nonequivalent groups design because the students are not randomly assigned to classes by the researcher, which means there could be important differences between them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments, might be very different and might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might have been caused by any of these confounding variables.

Of course, researchers using a nonequivalent groups design can take steps to ensure that their groups are as similar as possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of other important confounding variables that the researcher was not able to control.

Pretest-Posttest Design

In a pretest-posttest design , the dependent variable is measured once before the treatment is implemented and once after it is implemented. Imagine, for example, a researcher who is interested in the effectiveness of an antidrug education program on elementary school students’ attitudes toward illegal drugs. The researcher could measure the attitudes of students at a particular elementary school during one week, implement the antidrug program during the next week, and finally, measure their attitudes again the following week. The pretest-posttest design is much like a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. It is unlike a within-subjects experiment, however, in that the order of conditions is not counterbalanced because it typically is not possible for a participant to be tested in the treatment condition first and then in an “untreated” control condition.

If the average posttest score is better than the average pretest score, then it makes sense to conclude that the treatment might be responsible for the improvement. Unfortunately, one often cannot conclude this with a high degree of certainty because there may be other explanations for why the posttest scores are better. One category of alternative explanations goes under the name of history . Other things might have happened between the pretest and the posttest. Perhaps an antidrug program aired on television and many of the students watched it, or perhaps a celebrity died of a drug overdose and many of the students heard about it. Another category of alternative explanations goes under the name of maturation . Participants might have changed between the pretest and the posttest in ways that they were going to anyway because they are growing and learning. If it were a yearlong program, participants might become less impulsive or better reasoners and this might be responsible for the change.

Another alternative explanation for a change in the dependent variable in a pretest-posttest design is regression to the mean . This refers to the statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion. For example, a bowler with a long-term average of 150 who suddenly bowls a 220 will almost certainly score lower in the next game. Her score will “regress” toward her mean score of 150. Regression to the mean can be a problem when participants are selected for further study because of their extreme scores. Imagine, for example, that only students who scored especially low on a test of fractions are given a special training program and then retested. Regression to the mean all but guarantees that their scores will be higher even if the training program has no effect. A closely related concept—and an extremely important one in psychological research—is spontaneous remission . This is the tendency for many medical and psychological problems to improve over time without any form of treatment. The common cold is a good example. If one were to measure symptom severity in 100 common cold sufferers today, give them a bowl of chicken soup every day, and then measure their symptom severity again in a week, they would probably be much improved. This does not mean that the chicken soup was responsible for the improvement, however, because they would have been much improved without any treatment at all. The same is true of many psychological problems. A group of severely depressed people today is likely to be less depressed on average in 6 months. In reviewing the results of several studies of treatments for depression, researchers Michael Posternak and Ivan Miller found that participants in waitlist control conditions improved an average of 10 to 15% before they received any treatment at all (Posternak & Miller, 2001). Thus one must generally be very cautious about inferring causality from pretest-posttest designs.

Does Psychotherapy Work?

Early studies on the effectiveness of psychotherapy tended to use pretest-posttest designs. In a classic 1952 article, researcher Hans Eysenck summarized the results of 24 such studies showing that about two thirds of patients improved between the pretest and the posttest (Eysenck, 1952). But Eysenck also compared these results with archival data from state hospital and insurance company records showing that similar patients recovered at about the same rate without receiving psychotherapy. This suggested to Eysenck that the improvement that patients showed in the pretest-posttest studies might be no more than spontaneous remission. Note that Eysenck did not conclude that psychotherapy was ineffective. He merely concluded that there was no evidence that it was, and he wrote of “the necessity of properly planned and executed experimental studies into this important field” (p. 323). You can read the entire article here:

http://psychclassics.yorku.ca/Eysenck/psychotherapy.htm

Fortunately, many other researchers took up Eysenck’s challenge, and by 1980 hundreds of experiments had been conducted in which participants were randomly assigned to treatment and control conditions, and the results were summarized in a classic book by Mary Lee Smith, Gene Glass, and Thomas Miller (Smith, Glass, & Miller, 1980). They found that overall psychotherapy was quite effective, with about 80% of treatment participants improving more than the average control participant. Subsequent research has focused more on the conditions under which different types of psychotherapy are more or less effective.

Han Eysenck

In a classic 1952 article, researcher Hans Eysenck pointed out the shortcomings of the simple pretest-posttest design for evaluating the effectiveness of psychotherapy.

Wikimedia Commons – CC BY-SA 3.0.

Interrupted Time Series Design

A variant of the pretest-posttest design is the interrupted time-series design . A time series is a set of measurements taken at intervals over a period of time. For example, a manufacturing company might measure its workers’ productivity each week for a year. In an interrupted time series-design, a time series like this is “interrupted” by a treatment. In one classic example, the treatment was the reduction of the work shifts in a factory from 10 hours to 8 hours (Cook & Campbell, 1979). Because productivity increased rather quickly after the shortening of the work shifts, and because it remained elevated for many months afterward, the researcher concluded that the shortening of the shifts caused the increase in productivity. Notice that the interrupted time-series design is like a pretest-posttest design in that it includes measurements of the dependent variable both before and after the treatment. It is unlike the pretest-posttest design, however, in that it includes multiple pretest and posttest measurements.

Figure 7.5 “A Hypothetical Interrupted Time-Series Design” shows data from a hypothetical interrupted time-series study. The dependent variable is the number of student absences per week in a research methods course. The treatment is that the instructor begins publicly taking attendance each day so that students know that the instructor is aware of who is present and who is absent. The top panel of Figure 7.5 “A Hypothetical Interrupted Time-Series Design” shows how the data might look if this treatment worked. There is a consistently high number of absences before the treatment, and there is an immediate and sustained drop in absences after the treatment. The bottom panel of Figure 7.5 “A Hypothetical Interrupted Time-Series Design” shows how the data might look if this treatment did not work. On average, the number of absences after the treatment is about the same as the number before. This figure also illustrates an advantage of the interrupted time-series design over a simpler pretest-posttest design. If there had been only one measurement of absences before the treatment at Week 7 and one afterward at Week 8, then it would have looked as though the treatment were responsible for the reduction. The multiple measurements both before and after the treatment suggest that the reduction between Weeks 7 and 8 is nothing more than normal week-to-week variation.

Figure 7.5 A Hypothetical Interrupted Time-Series Design

A Hypothetical Interrupted Time-Series Design - The top panel shows data that suggest that the treatment caused a reduction in absences. The bottom panel shows data that suggest that it did not

The top panel shows data that suggest that the treatment caused a reduction in absences. The bottom panel shows data that suggest that it did not.

Combination Designs

A type of quasi-experimental design that is generally better than either the nonequivalent groups design or the pretest-posttest design is one that combines elements of both. There is a treatment group that is given a pretest, receives a treatment, and then is given a posttest. But at the same time there is a control group that is given a pretest, does not receive the treatment, and then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve but whether they improve more than participants who do not receive the treatment.

Imagine, for example, that students in one school are given a pretest on their attitudes toward drugs, then are exposed to an antidrug program, and finally are given a posttest. Students in a similar school are given the pretest, not exposed to an antidrug program, and finally are given a posttest. Again, if students in the treatment condition become more negative toward drugs, this could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of the treatment, then students in the treatment condition should become more negative than students in the control condition. But if it is a matter of history (e.g., news of a celebrity drug overdose) or maturation (e.g., improved reasoning), then students in the two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a student drug overdose), so students at the first school would be affected by it while students at the other school would not.

Finally, if participants in this kind of design are randomly assigned to conditions, it becomes a true experiment rather than a quasi experiment. In fact, it is the kind of experiment that Eysenck called for—and that has now been conducted many times—to demonstrate the effectiveness of psychotherapy.

Key Takeaways

  • Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.
  • Quasi-experimental research eliminates the directionality problem because it involves the manipulation of the independent variable. It does not eliminate the problem of confounding variables, however, because it does not involve random assignment to conditions. For these reasons, quasi-experimental research is generally higher in internal validity than correlational studies but lower than true experiments.
  • Practice: Imagine that two college professors decide to test the effect of giving daily quizzes on student performance in a statistics course. They decide that Professor A will give quizzes but Professor B will not. They will then compare the performance of students in their two sections on a common final exam. List five other variables that might differ between the two sections that could affect the results.

Discussion: Imagine that a group of obese children is recruited for a study in which their weight is measured, then they participate for 3 months in a program that encourages them to be more active, and finally their weight is measured again. Explain how each of the following might affect the results:

  • regression to the mean
  • spontaneous remission

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin.

Eysenck, H. J. (1952). The effects of psychotherapy: An evaluation. Journal of Consulting Psychology, 16 , 319–324.

Posternak, M. A., & Miller, I. (2001). Untreated short-term course of major depression: A meta-analysis of studies using outcomes from studies using wait-list control groups. Journal of Affective Disorders, 66 , 139–146.

Smith, M. L., Glass, G. V., & Miller, T. I. (1980). The benefits of psychotherapy . Baltimore, MD: Johns Hopkins University Press.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

A Modern Guide to Understanding and Conducting Research in Psychology

Chapter 7 quasi-experimental research, learning objectives.

  • Explain what quasi-experimental research is and distinguish it clearly from both experimental and correlational research.
  • Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one.

The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions ( Cook et al., 1979 ) . Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem. But because participants are not randomly assigned—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between correlational studies and true experiments.

Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones here, focusing first on nonequivalent groups, pretest-posttest, interrupted time series, and combination designs before turning to single subject designs (including reversal and multiple-baseline designs).

7.1 Nonequivalent Groups Design

Recall that when participants in a between-subjects experiment are randomly assigned to conditions, the resulting groups are likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be nonequivalent. A nonequivalent groups design , then, is a between-subjects design in which participants have not been randomly assigned to conditions.

Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a control group consisting of another class of third-grade students. This would be a nonequivalent groups design because the students are not randomly assigned to classes by the researcher, which means there could be important differences between them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments, might be very different and might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might have been caused by any of these confounding variables.

Of course, researchers using a nonequivalent groups design can take steps to ensure that their groups are as similar as possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of other important confounding variables that the researcher was not able to control.

7.2 Pretest-Posttest Design

In a pretest-posttest design , the dependent variable is measured once before the treatment is implemented and once after it is implemented. Imagine, for example, a researcher who is interested in the effectiveness of an STEM education program on elementary school students’ attitudes toward science, technology, engineering and math. The researcher could measure the attitudes of students at a particular elementary school during one week, implement the STEM program during the next week, and finally, measure their attitudes again the following week. The pretest-posttest design is much like a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. It is unlike a within-subjects experiment, however, in that the order of conditions is not counterbalanced because it typically is not possible for a participant to be tested in the treatment condition first and then in an “untreated” control condition.

If the average posttest score is better than the average pretest score, then it makes sense to conclude that the treatment might be responsible for the improvement. Unfortunately, one often cannot conclude this with a high degree of certainty because there may be other explanations for why the posttest scores are better. One category of alternative explanations goes under the name of history . Other things might have happened between the pretest and the posttest. Perhaps an science program aired on television and many of the students watched it, or perhaps a major scientific discover occured and many of the students heard about it. Another category of alternative explanations goes under the name of maturation . Participants might have changed between the pretest and the posttest in ways that they were going to anyway because they are growing and learning. If it were a yearlong program, participants might become more exposed to STEM subjects in class or better reasoners and this might be responsible for the change.

Another alternative explanation for a change in the dependent variable in a pretest-posttest design is regression to the mean . This refers to the statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion. For example, a bowler with a long-term average of 150 who suddenly bowls a 220 will almost certainly score lower in the next game. Her score will “regress” toward her mean score of 150. Regression to the mean can be a problem when participants are selected for further study because of their extreme scores. Imagine, for example, that only students who scored especially low on a test of fractions are given a special training program and then retested. Regression to the mean all but guarantees that their scores will be higher even if the training program has no effect. A closely related concept—and an extremely important one in psychological research—is spontaneous remission . This is the tendency for many medical and psychological problems to improve over time without any form of treatment. The common cold is a good example. If one were to measure symptom severity in 100 common cold sufferers today, give them a bowl of chicken soup every day, and then measure their symptom severity again in a week, they would probably be much improved. This does not mean that the chicken soup was responsible for the improvement, however, because they would have been much improved without any treatment at all. The same is true of many psychological problems. A group of severely depressed people today is likely to be less depressed on average in 6 months. In reviewing the results of several studies of treatments for depression, researchers Michael Posternak and Ivan Miller found that participants in waitlist control conditions improved an average of 10 to 15% before they received any treatment at all ( Posternak & Miller, 2001 ) . Thus one must generally be very cautious about inferring causality from pretest-posttest designs.

Finally, it is possible that the act of taking a pretest can sensitize participants to the measurement process or heighten their awareness of the variable under investigation. This heightened sensitivity, called a testing effect , can subsequently lead to changes in their posttest responses, even in the absence of any external intervention effect.

7.3 Interrupted Time Series Design

A variant of the pretest-posttest design is the interrupted time-series design . A time series is a set of measurements taken at intervals over a period of time. For example, a manufacturing company might measure its workers’ productivity each week for a year. In an interrupted time series-design, a time series like this is “interrupted” by a treatment. In a recent COVID-19 study, the intervention involved the implementation of state-issued mask mandates and restrictions on on-premises restaurant dining. The researchers examined the impact of these measures on COVID-19 cases and deaths ( Guy Jr et al., 2021 ) . Since there was a rapid reduction in daily case and death growth rates following the implementation of mask mandates, and this effect persisted for an extended period, the researchers concluded that the implementation of mask mandates was the cause of the decrease in COVID-19 transmission. This study employed an interrupted time series design, similar to a pretest-posttest design, as it involved measuring the outcomes before and after the intervention. However, unlike the pretest-posttest design, it incorporated multiple measurements before and after the intervention, providing a more comprehensive analysis of the policy impacts.

Figure 7.1 shows data from a hypothetical interrupted time-series study. The dependent variable is the number of student absences per week in a research methods course. The treatment is that the instructor begins publicly taking attendance each day so that students know that the instructor is aware of who is present and who is absent. The top panel of Figure 7.1 shows how the data might look if this treatment worked. There is a consistently high number of absences before the treatment, and there is an immediate and sustained drop in absences after the treatment. The bottom panel of Figure 7.1 shows how the data might look if this treatment did not work. On average, the number of absences after the treatment is about the same as the number before. This figure also illustrates an advantage of the interrupted time-series design over a simpler pretest-posttest design. If there had been only one measurement of absences before the treatment at Week 7 and one afterward at Week 8, then it would have looked as though the treatment were responsible for the reduction. The multiple measurements both before and after the treatment suggest that the reduction between Weeks 7 and 8 is nothing more than normal week-to-week variation.

Two line graphs. The x-axes on both are labeled Week and range from 0 to 14. The y-axes on both are labeled Absences and range from 0 to 8. Between weeks 7 and 8 a vertical dotted line indicates when a treatment was introduced. Both graphs show generally high levels of absences from weeks 1 through 7 (before the treatment) and only 2 absences in week 8 (the first observation after the treatment). The top graph shows the absence level staying low from weeks 9 to 14. The bottom graph shows the absence level for weeks 9 to 15 bouncing around at the same high levels as before the treatment.

Figure 7.1: Hypothetical interrupted time-series design. The top panel shows data that suggest that the treatment caused a reduction in absences. The bottom panel shows data that suggest that it did not.

7.4 Combination Designs

A type of quasi-experimental design that is generally better than either the nonequivalent groups design or the pretest-posttest design is one that combines elements of both. There is a treatment group that is given a pretest, receives a treatment, and then is given a posttest. But at the same time there is a control group that is given a pretest, does not receive the treatment, and then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve but whether they improve more than participants who do not receive the treatment.

Imagine, for example, that students in one school are given a pretest on their current level of engagement in pro-environmental behaviors (i.e., recycling, eating less red meat, abstaining for single-use plastics, etc.), then are exposed to an pro-environmental program in which they learn about the effects of human caused climate change on the planet, and finally are given a posttest. Students in a similar school are given the pretest, not exposed to an pro-environmental program, and finally are given a posttest. Again, if students in the treatment condition become more involved in pro-environmental behaviors, this could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of the treatment, then students in the treatment condition should become engage in more pro-environmental behaviors than students in the control condition. But if it is a matter of history (e.g., news of a forest fire or drought) or maturation (e.g., improved reasoning or sense of responsibility), then students in the two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a local heat wave with record high temperatures), so students at the first school would be affected by it while students at the other school would not.

Finally, if participants in this kind of design are randomly assigned to conditions, it becomes a true experiment rather than a quasi experiment. In fact, this kind of design has now been conducted many times—to demonstrate the effectiveness of psychotherapy.

KEY TAKEAWAYS

  • Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.
  • Quasi-experimental research eliminates the directionality problem because it involves the manipulation of the independent variable. It does not eliminate the problem of confounding variables, however, because it does not involve random assignment to conditions. For these reasons, quasi-experimental research is generally higher in internal validity than correlational studies but lower than true experiments.
  • Practice: Imagine that two college professors decide to test the effect of giving daily quizzes on student performance in a statistics course. They decide that Professor A will give quizzes but Professor B will not. They will then compare the performance of students in their two sections on a common final exam. List five other variables that might differ between the two sections that could affect the results.

regression to the mean

Spontaneous remission, 7.5 single-subject research.

  • Explain what single-subject research is, including how it differs from other types of psychological research and who uses single-subject research and why.
  • Design simple single-subject studies using reversal and multiple-baseline designs.
  • Explain how single-subject research designs address the issue of internal validity.
  • Interpret the results of simple single-subject studies based on the visual inspection of graphed data.
  • Explain some of the points of disagreement between advocates of single-subject research and advocates of group research.

Researcher Vance Hall and his colleagues were faced with the challenge of increasing the extent to which six disruptive elementary school students stayed focused on their schoolwork ( Hall et al., 1968 ) . For each of several days, the researchers carefully recorded whether or not each student was doing schoolwork every 10 seconds during a 30-minute period. Once they had established this baseline, they introduced a treatment. The treatment was that when the student was doing schoolwork, the teacher gave him or her positive attention in the form of a comment like “good work” or a pat on the shoulder. The result was that all of the students dramatically increased their time spent on schoolwork and decreased their disruptive behavior during this treatment phase. For example, a student named Robbie originally spent 25% of his time on schoolwork and the other 75% “snapping rubber bands, playing with toys from his pocket, and talking and laughing with peers” (p. 3). During the treatment phase, however, he spent 71% of his time on schoolwork and only 29% on other activities. Finally, when the researchers had the teacher stop giving positive attention, the students all decreased their studying and increased their disruptive behavior. This was consistent with the claim that it was, in fact, the positive attention that was responsible for the increase in studying. This was one of the first studies to show that attending to positive behavior—and ignoring negative behavior—could be a quick and effective way to deal with problem behavior in an applied setting.

Single-subject research has shown that positive attention from a teacher for studying can increase studying and decrease disruptive behavior. *Photo by Jerry Wang on Unsplash.*

Figure 7.2: Single-subject research has shown that positive attention from a teacher for studying can increase studying and decrease disruptive behavior. Photo by Jerry Wang on Unsplash.

Most of this book is about what can be called group research, which typically involves studying a large number of participants and combining their data to draw general conclusions about human behavior. The study by Hall and his colleagues, in contrast, is an example of single-subject research, which typically involves studying a small number of participants and focusing closely on each individual. In this section, we consider this alternative approach. We begin with an overview of single-subject research, including some assumptions on which it is based, who conducts it, and why they do. We then look at some basic single-subject research designs and how the data from those designs are analyzed. Finally, we consider some of the strengths and weaknesses of single-subject research as compared with group research and see how these two approaches can complement each other.

Overview of Single-Subject Research

What is single-subject research.

Single-subject research is a type of quantitative, quasi-experimental research that involves studying in detail the behavior of each of a small number of participants. Note that the term single-subject does not mean that only one participant is studied; it is more typical for there to be somewhere between two and 10 participants. (This is why single-subject research designs are sometimes called small-n designs, where n is the statistical symbol for the sample size.) Single-subject research can be contrasted with group research , which typically involves studying large numbers of participants and examining their behavior primarily in terms of group means, standard deviations, and so on. The majority of this book is devoted to understanding group research, which is the most common approach in psychology. But single-subject research is an important alternative, and it is the primary approach in some areas of psychology.

Before continuing, it is important to distinguish single-subject research from two other approaches, both of which involve studying in detail a small number of participants. One is qualitative research, which focuses on understanding people’s subjective experience by collecting relatively unstructured data (e.g., detailed interviews) and analyzing those data using narrative rather than quantitative techniques (see. Single-subject research, in contrast, focuses on understanding objective behavior through experimental manipulation and control, collecting highly structured data, and analyzing those data quantitatively.

It is also important to distinguish single-subject research from case studies. A case study is a detailed description of an individual, which can include both qualitative and quantitative analyses. (Case studies that include only qualitative analyses can be considered a type of qualitative research.) The history of psychology is filled with influential cases studies, such as Sigmund Freud’s description of “Anna O.” (see box “The Case of ‘Anna O.’”) and John Watson and Rosalie Rayner’s description of Little Albert ( Watson & Rayner, 1920 ) who learned to fear a white rat—along with other furry objects—when the researchers made a loud noise while he was playing with the rat. Case studies can be useful for suggesting new research questions and for illustrating general principles. They can also help researchers understand rare phenomena, such as the effects of damage to a specific part of the human brain. As a general rule, however, case studies cannot substitute for carefully designed group or single-subject research studies. One reason is that case studies usually do not allow researchers to determine whether specific events are causally related, or even related at all. For example, if a patient is described in a case study as having been sexually abused as a child and then as having developed an eating disorder as a teenager, there is no way to determine whether these two events had anything to do with each other. A second reason is that an individual case can always be unusual in some way and therefore be unrepresentative of people more generally. Thus case studies have serious problems with both internal and external validity.

The Case of “Anna O.”

Sigmund Freud used the case of a young woman he called “Anna O.” to illustrate many principles of his theory of psychoanalysis ( Freud, 1957 ) . (Her real name was Bertha Pappenheim, and she was an early feminist who went on to make important contributions to the field of social work.) Anna had come to Freud’s colleague Josef Breuer around 1880 with a variety of odd physical and psychological symptoms. One of them was that for several weeks she was unable to drink any fluids. According to Freud,

She would take up the glass of water that she longed for, but as soon as it touched her lips she would push it away like someone suffering from hydrophobia.…She lived only on fruit, such as melons, etc., so as to lessen her tormenting thirst (p. 9).

But according to Freud, a breakthrough came one day while Anna was under hypnosis.

[S]he grumbled about her English “lady-companion,” whom she did not care for, and went on to describe, with every sign of disgust, how she had once gone into this lady’s room and how her little dog—horrid creature!—had drunk out of a glass there. The patient had said nothing, as she had wanted to be polite. After giving further energetic expression to the anger she had held back, she asked for something to drink, drank a large quantity of water without any difficulty, and awoke from her hypnosis with the glass at her lips; and thereupon the disturbance vanished, never to return.

Freud’s interpretation was that Anna had repressed the memory of this incident along with the emotion that it triggered and that this was what had caused her inability to drink. Furthermore, her recollection of the incident, along with her expression of the emotion she had repressed, caused the symptom to go away.

As an illustration of Freud’s theory, the case study of Anna O. is quite effective. As evidence for the theory, however, it is essentially worthless. The description provides no way of knowing whether Anna had really repressed the memory of the dog drinking from the glass, whether this repression had caused her inability to drink, or whether recalling this “trauma” relieved the symptom. It is also unclear from this case study how typical or atypical Anna’s experience was.

"Anna O." was the subject of a famous case study used by Freud to illustrate the principles of psychoanalysis. Source: Wikimedia Commons

Figure 7.3: “Anna O.” was the subject of a famous case study used by Freud to illustrate the principles of psychoanalysis. Source: Wikimedia Commons

Assumptions of Single-Subject Research

Again, single-subject research involves studying a small number of participants and focusing intensively on the behavior of each one. But why take this approach instead of the group approach? There are two important assumptions underlying single-subject research, and it will help to consider them now.

First and foremost is the assumption that it is important to focus intensively on the behavior of individual participants. One reason for this is that group research can hide individual differences and generate results that do not represent the behavior of any individual. For example, a treatment that has a positive effect for half the people exposed to it but a negative effect for the other half would, on average, appear to have no effect at all. Single-subject research, however, would likely reveal these individual differences. A second reason to focus intensively on individuals is that sometimes it is the behavior of a particular individual that is primarily of interest. A school psychologist, for example, might be interested in changing the behavior of a particular disruptive student. Although previous published research (both single-subject and group research) is likely to provide some guidance on how to do this, conducting a study on this student would be more direct and probably more effective.

Another assumption of single-subject research is that it is important to study strong and consistent effects that have biological or social importance. Applied researchers, in particular, are interested in treatments that have substantial effects on important behaviors and that can be implemented reliably in the real-world contexts in which they occur. This is sometimes referred to as social validity ( Wolf, 1978 ) . The study by Hall and his colleagues, for example, had good social validity because it showed strong and consistent effects of positive teacher attention on a behavior that is of obvious importance to teachers, parents, and students. Furthermore, the teachers found the treatment easy to implement, even in their often chaotic elementary school classrooms.

Who Uses Single-Subject Research?

Single-subject research has been around as long as the field of psychology itself. In the late 1800s, one of psychology’s founders, Wilhelm Wundt, studied sensation and consciousness by focusing intensively on each of a small number of research participants. Herman Ebbinghaus’s research on memory and Ivan Pavlov’s research on classical conditioning are other early examples, both of which are still described in almost every introductory psychology textbook.

In the middle of the 20th century, B. F. Skinner clarified many of the assumptions underlying single-subject research and refined many of its techniques ( Skinner, 1938 ) . He and other researchers then used it to describe how rewards, punishments, and other external factors affect behavior over time. This work was carried out primarily using nonhuman subjects—mostly rats and pigeons. This approach, which Skinner called the experimental analysis of behavior —remains an important subfield of psychology and continues to rely almost exclusively on single-subject research. For examples of this work, look at any issue of the Journal of the Experimental Analysis of Behavior . By the 1960s, many researchers were interested in using this approach to conduct applied research primarily with humans—a subfield now called applied behavior analysis ( Baer et al., 1968 ) . Applied behavior analysis plays a significant role in contemporary research on developmental disabilities, education, organizational behavior, and health, among many other areas. Examples of this work (including the study by Hall and his colleagues) can be found in the Journal of Applied Behavior Analysis . The single-subject approach can also be used by clinicians who take any theoretical perspective—behavioral, cognitive, psychodynamic, or humanistic—to study processes of therapeutic change with individual clients and to document their clients’ improvement ( Kazdin, 2019 ) .

Single-Subject Research Designs

General features of single-subject designs.

Before looking at any specific single-subject research designs, it will be helpful to consider some features that are common to most of them. Many of these features are illustrated in Figure 7.4 , which shows the results of a generic single-subject study. First, the dependent variable (represented on the y-axis of the graph) is measured repeatedly over time (represented by the x-axis) at regular intervals. Second, the study is divided into distinct phases, and the participant is tested under one condition per phase. The conditions are often designated by capital letters: A, B, C, and so on. Thus Figure 7.4 represents a design in which the participant was tested first in one condition (A), then tested in another condition (B), and finally retested in the original condition (A). (This is called a reversal design and will be discussed in more detail shortly.)

Results of a generic single-subject study illustrating several principles of single-subject research.

Figure 7.4: Results of a generic single-subject study illustrating several principles of single-subject research.

Another important aspect of single-subject research is that the change from one condition to the next does not usually occur after a fixed amount of time or number of observations. Instead, it depends on the participant’s behavior. Specifically, the researcher waits until the participant’s behavior in one condition becomes fairly consistent from observation to observation before changing conditions. This is sometimes referred to as the steady state strategy ( Sidman, 1960 ) . The idea is that when the dependent variable has reached a steady state, then any change across conditions will be relatively easy to detect. Recall that we encountered this same principle when discussing experimental research more generally. The effect of an independent variable is easier to detect when the “noise” in the data is minimized.

Reversal Designs

The most basic single-subject research design is the reversal design , also called the ABA design . During the first phase, A, a baseline is established for the dependent variable. This is the level of responding before any treatment is introduced, and therefore the baseline phase is a kind of control condition. When steady state responding is reached, phase B begins as the researcher introduces the treatment. Again, the researcher waits until that dependent variable reaches a steady state so that it is clear whether and how much it has changed. Finally, the researcher removes the treatment and again waits until the dependent variable reaches a steady state. This basic reversal design can also be extended with the reintroduction of the treatment (ABAB), another return to baseline (ABABA), and so on. The study by Hall and his colleagues was an ABAB reversal design (Figure 7.5 ).

An approximation of the results for Hall and colleagues’ participant Robbie in their ABAB reversal design. The percentage of time he spent studying (the dependent variable) was low during the first baseline phase, increased during the first treatment phase until it leveled off, decreased during the second baseline phase, and again increased during the second treatment phase.

Figure 7.5: An approximation of the results for Hall and colleagues’ participant Robbie in their ABAB reversal design. The percentage of time he spent studying (the dependent variable) was low during the first baseline phase, increased during the first treatment phase until it leveled off, decreased during the second baseline phase, and again increased during the second treatment phase.

Why is the reversal—the removal of the treatment—considered to be necessary in this type of design? If the dependent variable changes after the treatment is introduced, it is not always clear that the treatment was responsible for the change. It is possible that something else changed at around the same time and that this extraneous variable is responsible for the change in the dependent variable. But if the dependent variable changes with the introduction of the treatment and then changes back with the removal of the treatment, it is much clearer that the treatment (and removal of the treatment) is the cause. In other words, the reversal greatly increases the internal validity of the study.

Multiple-Baseline Designs

There are two potential problems with the reversal design—both of which have to do with the removal of the treatment. One is that if a treatment is working, it may be unethical to remove it. For example, if a treatment seemed to reduce the incidence of self-injury in a developmentally disabled child, it would be unethical to remove that treatment just to show that the incidence of self-injury increases. The second problem is that the dependent variable may not return to baseline when the treatment is removed. For example, when positive attention for studying is removed, a student might continue to study at an increased rate. This could mean that the positive attention had a lasting effect on the student’s studying, which of course would be good, but it could also mean that the positive attention was not really the cause of the increased studying in the first place.

One solution to these problems is to use a multiple-baseline design , which is represented in Figure 7.6 . In one version of the design, a baseline is established for each of several participants, and the treatment is then introduced for each one. In essence, each participant is tested in an AB design. The key to this design is that the treatment is introduced at a different time for each participant. The idea is that if the dependent variable changes when the treatment is introduced for one participant, it might be a coincidence. But if the dependent variable changes when the treatment is introduced for multiple participants—especially when the treatment is introduced at different times for the different participants—then it is less likely to be a coincidence.

Results of a generic multiple-baseline study. The multiple baselines can be for different participants, dependent variables, or settings. The treatment is introduced at a different time on each baseline.

Figure 7.6: Results of a generic multiple-baseline study. The multiple baselines can be for different participants, dependent variables, or settings. The treatment is introduced at a different time on each baseline.

As an example, consider a study by Scott Ross and Robert Horner ( Ross et al., 2009 ) . They were interested in how a school-wide bullying prevention program affected the bullying behavior of particular problem students. At each of three different schools, the researchers studied two students who had regularly engaged in bullying. During the baseline phase, they observed the students for 10-minute periods each day during lunch recess and counted the number of aggressive behaviors they exhibited toward their peers. (The researchers used handheld computers to help record the data.) After 2 weeks, they implemented the program at one school. After 2 more weeks, they implemented it at the second school. And after 2 more weeks, they implemented it at the third school. They found that the number of aggressive behaviors exhibited by each student dropped shortly after the program was implemented at his or her school. Notice that if the researchers had only studied one school or if they had introduced the treatment at the same time at all three schools, then it would be unclear whether the reduction in aggressive behaviors was due to the bullying program or something else that happened at about the same time it was introduced (e.g., a holiday, a television program, a change in the weather). But with their multiple-baseline design, this kind of coincidence would have to happen three separate times—an unlikely occurrence—to explain their results.

Data Analysis in Single-Subject Research

In addition to its focus on individual participants, single-subject research differs from group research in the way the data are typically analyzed. As we have seen throughout the book, group research involves combining data across participants. Inferential statistics are used to help decide whether the result for the sample is likely to generalize to the population. Single-subject research, by contrast, relies heavily on a very different approach called visual inspection . This means plotting individual participants’ data as shown throughout this chapter, looking carefully at those data, and making judgments about whether and to what extent the independent variable had an effect on the dependent variable. Inferential statistics are typically not used.

In visually inspecting their data, single-subject researchers take several factors into account. One of them is changes in the level of the dependent variable from condition to condition. If the dependent variable is much higher or much lower in one condition than another, this suggests that the treatment had an effect. A second factor is trend , which refers to gradual increases or decreases in the dependent variable across observations. If the dependent variable begins increasing or decreasing with a change in conditions, then again this suggests that the treatment had an effect. It can be especially telling when a trend changes directions—for example, when an unwanted behavior is increasing during baseline but then begins to decrease with the introduction of the treatment. A third factor is latency , which is the time it takes for the dependent variable to begin changing after a change in conditions. In general, if a change in the dependent variable begins shortly after a change in conditions, this suggests that the treatment was responsible.

In the top panel of Figure 7.7 , there are fairly obvious changes in the level and trend of the dependent variable from condition to condition. Furthermore, the latencies of these changes are short; the change happens immediately. This pattern of results strongly suggests that the treatment was responsible for the changes in the dependent variable. In the bottom panel of Figure 7.7 , however, the changes in level are fairly small. And although there appears to be an increasing trend in the treatment condition, it looks as though it might be a continuation of a trend that had already begun during baseline. This pattern of results strongly suggests that the treatment was not responsible for any changes in the dependent variable—at least not to the extent that single-subject researchers typically hope to see.

Visual inspection of the data suggests an effective treatment in the top panel but an ineffective treatment in the bottom panel.

Figure 7.7: Visual inspection of the data suggests an effective treatment in the top panel but an ineffective treatment in the bottom panel.

The results of single-subject research can also be analyzed using statistical procedures—and this is becoming more common. There are many different approaches, and single-subject researchers continue to debate which are the most useful. One approach parallels what is typically done in group research. The mean and standard deviation of each participant’s responses under each condition are computed and compared, and inferential statistical tests such as the t test or analysis of variance are applied ( Fisch, 2001 ) . (Note that averaging across participants is less common.) Another approach is to compute the percentage of nonoverlapping data (PND) for each participant ( Scruggs & Mastropieri, 2021 ) . This is the percentage of responses in the treatment condition that are more extreme than the most extreme response in a relevant control condition. In the study of Hall and his colleagues, for example, all measures of Robbie’s study time in the first treatment condition were greater than the highest measure in the first baseline, for a PND of 100%. The greater the percentage of nonoverlapping data, the stronger the treatment effect. Still, formal statistical approaches to data analysis in single-subject research are generally considered a supplement to visual inspection, not a replacement for it.

The Single-Subject Versus Group “Debate”

Single-subject research is similar to group research—especially experimental group research—in many ways. They are both quantitative approaches that try to establish causal relationships by manipulating an independent variable, measuring a dependent variable, and controlling extraneous variables. As we will see, single-subject research and group research are probably best conceptualized as complementary approaches.

Data Analysis

One set of disagreements revolves around the issue of data analysis. Some advocates of group research worry that visual inspection is inadequate for deciding whether and to what extent a treatment has affected a dependent variable. One specific concern is that visual inspection is not sensitive enough to detect weak effects. A second is that visual inspection can be unreliable, with different researchers reaching different conclusions about the same set of data ( Danov & Symons, 2008 ) . A third is that the results of visual inspection—an overall judgment of whether or not a treatment was effective—cannot be clearly and efficiently summarized or compared across studies (unlike the measures of relationship strength typically used in group research).

In general, single-subject researchers share these concerns. However, they also argue that their use of the steady state strategy, combined with their focus on strong and consistent effects, minimizes most of them. If the effect of a treatment is difficult to detect by visual inspection because the effect is weak or the data are noisy, then single-subject researchers look for ways to increase the strength of the effect or reduce the noise in the data by controlling extraneous variables (e.g., by administering the treatment more consistently). If the effect is still difficult to detect, then they are likely to consider it neither strong enough nor consistent enough to be of further interest. Many single-subject researchers also point out that statistical analysis is becoming increasingly common and that many of them are using it as a supplement to visual inspection—especially for the purpose of comparing results across studies ( Scruggs & Mastropieri, 2021 ) .

Turning the tables, some advocates of single-subject research worry about the way that group researchers analyze their data. Specifically, they point out that focusing on group means can be highly misleading. Again, imagine that a treatment has a strong positive effect on half the people exposed to it and an equally strong negative effect on the other half. In a traditional between-subjects experiment, the positive effect on half the participants in the treatment condition would be statistically cancelled out by the negative effect on the other half. The mean for the treatment group would then be the same as the mean for the control group, making it seem as though the treatment had no effect when in fact it had a strong effect on every single participant!

But again, group researchers share this concern. Although they do focus on group statistics, they also emphasize the importance of examining distributions of individual scores. For example, if some participants were positively affected by a treatment and others negatively affected by it, this would produce a bimodal distribution of scores and could be detected by looking at a histogram of the data. The use of within-subjects designs is another strategy that allows group researchers to observe effects at the individual level and even to specify what percentage of individuals exhibit strong, medium, weak, and even negative effects.

External Validity

The second issue about which single-subject and group researchers sometimes disagree has to do with external validity—the ability to generalize the results of a study beyond the people and situation actually studied. In particular, advocates of group research point out the difficulty in knowing whether results for just a few participants are likely to generalize to others in the population. Imagine, for example, that in a single-subject study, a treatment has been shown to reduce self-injury for each of two developmentally disabled children. Even if the effect is strong for these two children, how can one know whether this treatment is likely to work for other developmentally disabled children?

Again, single-subject researchers share this concern. In response, they note that the strong and consistent effects they are typically interested in—even when observed in small samples—are likely to generalize to others in the population. Single-subject researchers also note that they place a strong emphasis on replicating their research results. When they observe an effect with a small sample of participants, they typically try to replicate it with another small sample—perhaps with a slightly different type of participant or under slightly different conditions. Each time they observe similar results, they rightfully become more confident in the generality of those results. Single-subject researchers can also point to the fact that the principles of classical and operant conditioning—most of which were discovered using the single-subject approach—have been successfully generalized across an incredibly wide range of species and situations.

And again turning the tables, single-subject researchers have concerns of their own about the external validity of group research. One extremely important point they make is that studying large groups of participants does not entirely solve the problem of generalizing to other individuals. Imagine, for example, a treatment that has been shown to have a small positive effect on average in a large group study. It is likely that although many participants exhibited a small positive effect, others exhibited a large positive effect, and still others exhibited a small negative effect. When it comes to applying this treatment to another large group , we can be fairly sure that it will have a small effect on average. But when it comes to applying this treatment to another individual , we cannot be sure whether it will have a small, a large, or even a negative effect. Another point that single-subject researchers make is that group researchers also face a similar problem when they study a single situation and then generalize their results to other situations. For example, researchers who conduct a study on the effect of cell phone use on drivers on a closed oval track probably want to apply their results to drivers in many other real-world driving situations. But notice that this requires generalizing from a single situation to a population of situations. Thus the ability to generalize is based on much more than just the sheer number of participants one has studied. It requires a careful consideration of the similarity of the participants and situations studied to the population of participants and situations that one wants to generalize to ( Shadish et al., 2002 ) .

Single-Subject and Group Research as Complementary Methods

As with quantitative and qualitative research, it is probably best to conceptualize single-subject research and group research as complementary methods that have different strengths and weaknesses and that are appropriate for answering different kinds of research questions ( Kazdin, 2019 ) . Single-subject research is particularly good for testing the effectiveness of treatments on individuals when the focus is on strong, consistent, and biologically or socially important effects. It is especially useful when the behavior of particular individuals is of interest. Clinicians who work with only one individual at a time may find that it is their only option for doing systematic quantitative research.

Group research, on the other hand, is good for testing the effectiveness of treatments at the group level. Among the advantages of this approach is that it allows researchers to detect weak effects, which can be of interest for many reasons. For example, finding a weak treatment effect might lead to refinements of the treatment that eventually produce a larger and more meaningful effect. Group research is also good for studying interactions between treatments and participant characteristics. For example, if a treatment is effective for those who are high in motivation to change and ineffective for those who are low in motivation to change, then a group design can detect this much more efficiently than a single-subject design. Group research is also necessary to answer questions that cannot be addressed using the single-subject approach, including questions about independent variables that cannot be manipulated (e.g., number of siblings, extroversion, culture).

  • Single-subject research—which involves testing a small number of participants and focusing intensively on the behavior of each individual—is an important alternative to group research in psychology.
  • Single-subject studies must be distinguished from case studies, in which an individual case is described in detail. Case studies can be useful for generating new research questions, for studying rare phenomena, and for illustrating general principles. However, they cannot substitute for carefully controlled experimental or correlational studies because they are low in internal and external validity.
  • Single-subject research designs typically involve measuring the dependent variable repeatedly over time and changing conditions (e.g., from baseline to treatment) when the dependent variable has reached a steady state. This approach allows the researcher to see whether changes in the independent variable are causing changes in the dependent variable.
  • Single-subject researchers typically analyze their data by graphing them and making judgments about whether the independent variable is affecting the dependent variable based on level, trend, and latency.
  • Differences between single-subject research and group research sometimes lead to disagreements between single-subject and group researchers. These disagreements center on the issues of data analysis and external validity (especially generalization to other people). Single-subject research and group research are probably best seen as complementary methods, with different strengths and weaknesses, that are appropriate for answering different kinds of research questions.
  • Does positive attention from a parent increase a child’s toothbrushing behavior?
  • Does self-testing while studying improve a student’s performance on weekly spelling tests?
  • Does regular exercise help relieve depression?
  • Practice: Create a graph that displays the hypothetical results for the study you designed in Exercise 1. Write a paragraph in which you describe what the results show. Be sure to comment on level, trend, and latency.
  • Discussion: Imagine you have conducted a single-subject study showing a positive effect of a treatment on the behavior of a man with social anxiety disorder. Your research has been criticized on the grounds that it cannot be generalized to others. How could you respond to this criticism?
  • Discussion: Imagine you have conducted a group study showing a positive effect of a treatment on the behavior of a group of people with social anxiety disorder, but your research has been criticized on the grounds that “average” effects cannot be generalized to individuals. How could you respond to this criticism?

7.6 Glossary

The simplest reversal design, in which there is a baseline condition (A), followed by a treatment condition (B), followed by a return to baseline (A).

applied behavior analysis

A subfield of psychology that uses single-subject research and applies the principles of behavior analysis to real-world problems in areas that include education, developmental disabilities, organizational behavior, and health behavior.

A condition in a single-subject research design in which the dependent variable is measured repeatedly in the absence of any treatment. Most designs begin with a baseline condition, and many return to the baseline condition at least once.

A detailed description of an individual case.

experimental analysis of behavior

A subfield of psychology founded by B. F. Skinner that uses single-subject research—often with nonhuman animals—to study relationships primarily between environmental conditions and objectively observable behaviors.

group research

A type of quantitative research that involves studying a large number of participants and examining their behavior in terms of means, standard deviations, and other group-level statistics.

interrupted time-series design

A research design in which a series of measurements of the dependent variable are taken both before and after a treatment.

item-order effect

The effect of responding to one survey item on responses to a later survey item.

Refers collectively to extraneous developmental changes in participants that can occur between a pretest and posttest or between the first and last measurements in a time series. It can provide an alternative explanation for an observed change in the dependent variable.

multiple-baseline design

A single-subject research design in which multiple baselines are established for different participants, different dependent variables, or different contexts and the treatment is introduced at a different time for each baseline.

naturalistic observation

An approach to data collection in which the behavior of interest is observed in the environment in which it typically occurs.

nonequivalent groups design

A between-subjects research design in which participants are not randomly assigned to conditions, usually because participants are in preexisting groups (e.g., students at different schools).

nonexperimental research

Research that lacks the manipulation of an independent variable or the random assignment of participants to conditions or orders of conditions.

open-ended item

A questionnaire item that asks a question and allows respondents to respond in whatever way they want.

percentage of nonoverlapping data

A statistic sometimes used in single-subject research. The percentage of observations in a treatment condition that are more extreme than the most extreme observation in a relevant baseline condition.

pretest-posttest design

A research design in which the dependent variable is measured (the pretest), a treatment is given, and the dependent variable is measured again (the posttest) to see if there is a change in the dependent variable from pretest to posttest.

quasi-experimental research

Research that involves the manipulation of an independent variable but lacks the random assignment of participants to conditions or orders of conditions. It is generally used in field settings to test the effectiveness of a treatment.

rating scale

An ordered set of response options to a closed-ended questionnaire item.

The statistical fact that an individual who scores extremely on one occasion will tend to score less extremely on the next occasion.

A term often used to refer to a participant in survey research.

reversal design

A single-subject research design that begins with a baseline condition with no treatment, followed by the introduction of a treatment, and after that a return to the baseline condition. It can include additional treatment conditions and returns to baseline.

single-subject research

A type of quantitative research that involves examining in detail the behavior of each of a small number of participants.

single-variable research

Research that focuses on a single variable rather than on a statistical relationship between variables.

social validity

The extent to which a single-subject study focuses on an intervention that has a substantial effect on an important behavior and can be implemented reliably in the real-world contexts (e.g., by teachers in a classroom) in which that behavior occurs.

Improvement in a psychological or medical problem over time without any treatment.

steady state strategy

In single-subject research, allowing behavior to become fairly consistent from one observation to the next before changing conditions. This makes any effect of the treatment easier to detect.

survey research

A quantitative research approach that uses self-report measures and large, carefully selected samples.

testing effect

A bias in participants’ responses in which scores on the posttest are influenced by simple exposure to the pretest

visual inspection

The primary approach to data analysis in single-subject research, which involves graphing the data and making a judgment as to whether and to what extent the independent variable affected the dependent variable.

Quasi-Experimental Design: Definition, Types, Examples

Appinio Research · 19.12.2023 · 37min read

Quasi-Experimental Design Definition Types Examples

Ever wondered how researchers uncover cause-and-effect relationships in the real world, where controlled experiments are often elusive? Quasi-experimental design holds the key. In this guide, we'll unravel the intricacies of quasi-experimental design, shedding light on its definition, purpose, and applications across various domains. Whether you're a student, a professional, or simply curious about the methods behind meaningful research, join us as we delve into the world of quasi-experimental design, making complex concepts sound simple and embarking on a journey of knowledge and discovery.

What is Quasi-Experimental Design?

Quasi-experimental design is a research methodology used to study the effects of independent variables on dependent variables when full experimental control is not possible or ethical. It falls between controlled experiments, where variables are tightly controlled, and purely observational studies, where researchers have little control over variables. Quasi-experimental design mimics some aspects of experimental research but lacks randomization.

The primary purpose of quasi-experimental design is to investigate cause-and-effect relationships between variables in real-world settings. Researchers use this approach to answer research questions, test hypotheses, and explore the impact of interventions or treatments when they cannot employ traditional experimental methods. Quasi-experimental studies aim to maximize internal validity and make meaningful inferences while acknowledging practical constraints and ethical considerations.

Quasi-Experimental vs. Experimental Design

It's essential to understand the distinctions between Quasi-Experimental and Experimental Design to appreciate the unique characteristics of each approach:

  • Randomization:  In Experimental Design, random assignment of participants to groups is a defining feature. Quasi-experimental design, on the other hand, lacks randomization due to practical constraints or ethical considerations.
  • Control Groups :  Experimental Design typically includes control groups that are subjected to no treatment or a placebo. The quasi-experimental design may have comparison groups but lacks the same level of control.
  • Manipulation of IV:  Experimental Design involves the intentional manipulation of the independent variable. Quasi-experimental design often deals with naturally occurring independent variables.
  • Causal Inference:  Experimental Design allows for stronger causal inferences due to randomization and control. Quasi-experimental design permits causal inferences but with some limitations.

When to Use Quasi-Experimental Design?

A quasi-experimental design is particularly valuable in several situations:

  • Ethical Constraints:  When manipulating the independent variable is ethically unacceptable or impractical, quasi-experimental design offers an alternative to studying naturally occurring variables.
  • Real-World Settings:  When researchers want to study phenomena in real-world contexts, quasi-experimental design allows them to do so without artificial laboratory settings.
  • Limited Resources:  In cases where resources are limited and conducting a controlled experiment is cost-prohibitive, quasi-experimental design can provide valuable insights.
  • Policy and Program Evaluation:  Quasi-experimental design is commonly used in evaluating the effectiveness of policies, interventions, or programs that cannot be randomly assigned to participants.

Importance of Quasi-Experimental Design in Research

Quasi-experimental design plays a vital role in research for several reasons:

  • Addressing Real-World Complexities:  It allows researchers to tackle complex real-world issues where controlled experiments are not feasible. This bridges the gap between controlled experiments and purely observational studies.
  • Ethical Research:  It provides an honest approach when manipulating variables or assigning treatments could harm participants or violate ethical standards.
  • Policy and Practice Implications:  Quasi-experimental studies generate findings with direct applications in policy-making and practical solutions in fields such as education, healthcare, and social sciences.
  • Enhanced External Validity:  Findings from Quasi-Experimental research often have high external validity, making them more applicable to broader populations and contexts.

By embracing the challenges and opportunities of quasi-experimental design, researchers can contribute valuable insights to their respective fields and drive positive changes in the real world.

Key Concepts in Quasi-Experimental Design

In quasi-experimental design, it's essential to grasp the fundamental concepts underpinning this research methodology. Let's explore these key concepts in detail.

Independent Variable

The independent variable (IV) is the factor you aim to study or manipulate in your research. Unlike controlled experiments, where you can directly manipulate the IV, quasi-experimental design often deals with naturally occurring variables. For example, if you're investigating the impact of a new teaching method on student performance, the teaching method is your independent variable.

Dependent Variable

The dependent variable (DV) is the outcome or response you measure to assess the effects of changes in the independent variable. Continuing with the teaching method example, the dependent variable would be the students' academic performance, typically measured using test scores, grades, or other relevant metrics.

Control Groups vs. Comparison Groups

While quasi-experimental design lacks the luxury of randomly assigning participants to control and experimental groups, you can still establish comparison groups to make meaningful inferences. Control groups consist of individuals who do not receive the treatment, while comparison groups are exposed to different levels or variations of the treatment. These groups help researchers gauge the effect of the independent variable.

Pre-Test and Post-Test Measures

In quasi-experimental design, it's common practice to collect data both before and after implementing the independent variable. The initial data (pre-test) serves as a baseline, allowing you to measure changes over time (post-test). This approach helps assess the impact of the independent variable more accurately. For instance, if you're studying the effectiveness of a new drug, you'd measure patients' health before administering the drug (pre-test) and afterward (post-test).

Threats to Internal Validity

Internal validity is crucial for establishing a cause-and-effect relationship between the independent and dependent variables. However, in a quasi-experimental design, several threats can compromise internal validity. These threats include:

  • Selection Bias :  When non-randomized groups differ systematically in ways that affect the study's outcome.
  • History Effects:  External events or changes over time that influence the results.
  • Maturation Effects:  Natural changes or developments that occur within participants during the study.
  • Regression to the Mean:  The tendency for extreme scores on a variable to move closer to the mean upon retesting.
  • Attrition and Mortality:  The loss of participants over time, potentially skewing the results.
  • Testing Effects:  The mere act of testing or assessing participants can impact their subsequent performance.

Understanding these threats is essential for designing and conducting Quasi-Experimental studies that yield valid and reliable results.

Randomization and Non-Randomization

In traditional experimental designs, randomization is a powerful tool for ensuring that groups are equivalent at the outset of a study. However, quasi-experimental design often involves non-randomization due to the nature of the research. This means that participants are not randomly assigned to treatment and control groups. Instead, researchers must employ various techniques to minimize biases and ensure that the groups are as similar as possible.

For example, if you are conducting a study on the effects of a new teaching method in a real classroom setting, you cannot randomly assign students to the treatment and control groups. Instead, you might use statistical methods to match students based on relevant characteristics such as prior academic performance or socioeconomic status. This matching process helps control for potential confounding variables, increasing the validity of your study.

Types of Quasi-Experimental Designs

In quasi-experimental design, researchers employ various approaches to investigate causal relationships and study the effects of independent variables when complete experimental control is challenging. Let's explore these types of quasi-experimental designs.

One-Group Posttest-Only Design

The One-Group Posttest-Only Design is one of the simplest forms of quasi-experimental design. In this design, a single group is exposed to the independent variable, and data is collected only after the intervention has taken place. Unlike controlled experiments, there is no comparison group. This design is useful when researchers cannot administer a pre-test or when it is logistically difficult to do so.

Example : Suppose you want to assess the effectiveness of a new time management seminar. You offer the seminar to a group of employees and measure their productivity levels immediately afterward to determine if there's an observable impact.

One-Group Pretest-Posttest Design

Similar to the One-Group Posttest-Only Design, this approach includes a pre-test measure in addition to the post-test. Researchers collect data both before and after the intervention. By comparing the pre-test and post-test results within the same group, you can gain a better understanding of the changes that occur due to the independent variable.

Example : If you're studying the impact of a stress management program on participants' stress levels, you would measure their stress levels before the program (pre-test) and after completing the program (post-test) to assess any changes.

Non-Equivalent Groups Design

The Non-Equivalent Groups Design involves multiple groups, but they are not randomly assigned. Instead, researchers must carefully match or control for relevant variables to minimize biases. This design is particularly useful when random assignment is not possible or ethical.

Example : Imagine you're examining the effectiveness of two teaching methods in two different schools. You can't randomly assign students to the schools, but you can carefully match them based on factors like age, prior academic performance, and socioeconomic status to create equivalent groups.

Time Series Design

Time Series Design is an approach where data is collected at multiple time points before and after the intervention. This design allows researchers to analyze trends and patterns over time, providing valuable insights into the sustained effects of the independent variable.

Example : If you're studying the impact of a new marketing campaign on product sales, you would collect sales data at regular intervals (e.g., monthly) before and after the campaign's launch to observe any long-term trends.

Regression Discontinuity Design

Regression Discontinuity Design is employed when participants are assigned to different groups based on a specific cutoff score or threshold. This design is often used in educational and policy research to assess the effects of interventions near a cutoff point.

Example : Suppose you're evaluating the impact of a scholarship program on students' academic performance. Students who score just above or below a certain GPA threshold are assigned differently to the program. This design helps assess the program's effectiveness at the cutoff point.

Propensity Score Matching

Propensity Score Matching is a technique used to create comparable treatment and control groups in non-randomized studies. Researchers calculate propensity scores based on participants' characteristics and match individuals in the treatment group to those in the control group with similar scores.

Example : If you're studying the effects of a new medication on patient outcomes, you would use propensity scores to match patients who received the medication with those who did not but have similar health profiles.

Interrupted Time Series Design

The Interrupted Time Series Design involves collecting data at multiple time points before and after the introduction of an intervention. However, in this design, the intervention occurs at a specific point in time, allowing researchers to assess its immediate impact.

Example : Let's say you're analyzing the effects of a new traffic management system on traffic accidents. You collect accident data before and after the system's implementation to observe any abrupt changes right after its introduction.

Each of these quasi-experimental designs offers unique advantages and is best suited to specific research questions and scenarios. Choosing the right design is crucial for conducting robust and informative studies.

Advantages and Disadvantages of Quasi-Experimental Design

Quasi-experimental design offers a valuable research approach, but like any methodology, it comes with its own set of advantages and disadvantages. Let's explore these in detail.

Quasi-Experimental Design Advantages

Quasi-experimental design presents several advantages that make it a valuable tool in research:

  • Real-World Applicability:  Quasi-experimental studies often take place in real-world settings, making the findings more applicable to practical situations. Researchers can examine the effects of interventions or variables in the context where they naturally occur.
  • Ethical Considerations:  In situations where manipulating the independent variable in a controlled experiment would be unethical, quasi-experimental design provides an ethical alternative. For example, it would be unethical to assign participants to smoke for a study on the health effects of smoking, but you can study naturally occurring groups of smokers and non-smokers.
  • Cost-Efficiency:  Conducting Quasi-Experimental research is often more cost-effective than conducting controlled experiments. The absence of controlled environments and extensive manipulations can save both time and resources.

These advantages make quasi-experimental design an attractive choice for researchers facing practical or ethical constraints in their studies.

Quasi-Experimental Design Disadvantages

However, quasi-experimental design also comes with its share of challenges and disadvantages:

  • Limited Control:  Unlike controlled experiments, where researchers have full control over variables, quasi-experimental design lacks the same level of control. This limited control can result in confounding variables that make it difficult to establish causality.
  • Threats to Internal Validity:  Various threats to internal validity, such as selection bias, history effects, and maturation effects, can compromise the accuracy of causal inferences. Researchers must carefully address these threats to ensure the validity of their findings.
  • Causality Inference Challenges:  Establishing causality can be challenging in quasi-experimental design due to the absence of randomization and control. While you can make strong arguments for causality, it may not be as conclusive as in controlled experiments.
  • Potential Confounding Variables:  In a quasi-experimental design, it's often challenging to control for all possible confounding variables that may affect the dependent variable. This can lead to uncertainty in attributing changes solely to the independent variable.

Despite these disadvantages, quasi-experimental design remains a valuable research tool when used judiciously and with a keen awareness of its limitations. Researchers should carefully consider their research questions and the practical constraints they face before choosing this approach.

How to Conduct a Quasi-Experimental Study?

Conducting a Quasi-Experimental study requires careful planning and execution to ensure the validity of your research. Let's dive into the essential steps you need to follow when conducting such a study.

1. Define Research Questions and Objectives

The first step in any research endeavor is clearly defining your research questions and objectives. This involves identifying the independent variable (IV) and the dependent variable (DV) you want to study. What is the specific relationship you want to explore, and what do you aim to achieve with your research?

  • Specify Your Research Questions :  Start by formulating precise research questions that your study aims to answer. These questions should be clear, focused, and relevant to your field of study.
  • Identify the Independent Variable:  Define the variable you intend to manipulate or study in your research. Understand its significance in your study's context.
  • Determine the Dependent Variable:  Identify the outcome or response variable that will be affected by changes in the independent variable.
  • Establish Hypotheses (If Applicable):  If you have specific hypotheses about the relationship between the IV and DV, state them clearly. Hypotheses provide a framework for testing your research questions.

2. Select the Appropriate Quasi-Experimental Design

Choosing the right quasi-experimental design is crucial for achieving your research objectives. Select a design that aligns with your research questions and the available data. Consider factors such as the feasibility of implementing the design and the ethical considerations involved.

  • Evaluate Your Research Goals:  Assess your research questions and objectives to determine which type of quasi-experimental design is most suitable. Each design has its strengths and limitations, so choose one that aligns with your goals.
  • Consider Ethical Constraints:  Take into account any ethical concerns related to your research. Depending on your study's context, some designs may be more ethically sound than others.
  • Assess Data Availability:  Ensure you have access to the necessary data for your chosen design. Some designs may require extensive historical data, while others may rely on data collected during the study.

3. Identify and Recruit Participants

Selecting the right participants is a critical aspect of Quasi-Experimental research. The participants should represent the population you want to make inferences about, and you must address ethical considerations, including informed consent.

  • Define Your Target Population:  Determine the population that your study aims to generalize to. Your sample should be representative of this population.
  • Recruitment Process:  Develop a plan for recruiting participants. Depending on your design, you may need to reach out to specific groups or institutions.
  • Informed Consent:  Ensure that you obtain informed consent from participants. Clearly explain the nature of the study, potential risks, and their rights as participants.

4. Collect Data

Data collection is a crucial step in Quasi-Experimental research. You must adhere to a consistent and systematic process to gather relevant information before and after the intervention or treatment.

  • Pre-Test Measures:  If applicable, collect data before introducing the independent variable. Ensure that the pre-test measures are standardized and reliable.
  • Post-Test Measures:  After the intervention, collect post-test data using the same measures as the pre-test. This allows you to assess changes over time.
  • Maintain Data Consistency:  Ensure that data collection procedures are consistent across all participants and time points to minimize biases.

5. Analyze Data

Once you've collected your data, it's time to analyze it using appropriate statistical techniques . The choice of analysis depends on your research questions and the type of data you've gathered.

  • Statistical Analysis :  Use statistical software to analyze your data. Common techniques include t-tests , analysis of variance (ANOVA) , regression analysis , and more, depending on the design and variables.
  • Control for Confounding Variables:  Be aware of potential confounding variables and include them in your analysis as covariates to ensure accurate results.

Chi-Square Calculator :

t-Test Calculator :

One-way ANOVA Calculator :

6. Interpret Results

With the analysis complete, you can interpret the results to draw meaningful conclusions about the relationship between the independent and dependent variables.

  • Examine Effect Sizes:  Assess the magnitude of the observed effects to determine their practical significance.
  • Consider Significance Levels:  Determine whether the observed results are statistically significant . Understand the p-values and their implications.
  • Compare Findings to Hypotheses:  Evaluate whether your findings support or reject your hypotheses and research questions.

7. Draw Conclusions

Based on your analysis and interpretation of the results, draw conclusions about the research questions and objectives you set out to address.

  • Causal Inferences:  Discuss the extent to which your study allows for causal inferences. Be transparent about the limitations and potential alternative explanations for your findings.
  • Implications and Applications:  Consider the practical implications of your research. How do your findings contribute to existing knowledge, and how can they be applied in real-world contexts?
  • Future Research:  Identify areas for future research and potential improvements in study design. Highlight any limitations or constraints that may have affected your study's outcomes.

By following these steps meticulously, you can conduct a rigorous and informative Quasi-Experimental study that advances knowledge in your field of research.

Quasi-Experimental Design Examples

Quasi-experimental design finds applications in a wide range of research domains, including business-related and market research scenarios. Below, we delve into some detailed examples of how this research methodology is employed in practice:

Example 1: Assessing the Impact of a New Marketing Strategy

Suppose a company wants to evaluate the effectiveness of a new marketing strategy aimed at boosting sales. Conducting a controlled experiment may not be feasible due to the company's existing customer base and the challenge of randomly assigning customers to different marketing approaches. In this scenario, a quasi-experimental design can be employed.

  • Independent Variable:  The new marketing strategy.
  • Dependent Variable:  Sales revenue.
  • Design:  The company could implement the new strategy for one group of customers while maintaining the existing strategy for another group. Both groups are selected based on similar demographics and purchase history , reducing selection bias. Pre-implementation data (sales records) can serve as the baseline, and post-implementation data can be collected to assess the strategy's impact.

Example 2: Evaluating the Effectiveness of Employee Training Programs

In the context of human resources and employee development, organizations often seek to evaluate the impact of training programs. A randomized controlled trial (RCT) with random assignment may not be practical or ethical, as some employees may need specific training more than others. Instead, a quasi-experimental design can be employed.

  • Independent Variable:  Employee training programs.
  • Dependent Variable:  Employee performance metrics, such as productivity or quality of work.
  • Design:  The organization can offer training programs to employees who express interest or demonstrate specific needs, creating a self-selected treatment group. A comparable control group can consist of employees with similar job roles and qualifications who did not receive the training. Pre-training performance metrics can serve as the baseline, and post-training data can be collected to assess the impact of the training programs.

Example 3: Analyzing the Effects of a Tax Policy Change

In economics and public policy, researchers often examine the effects of tax policy changes on economic behavior. Conducting a controlled experiment in such cases is practically impossible. Therefore, a quasi-experimental design is commonly employed.

  • Independent Variable:  Tax policy changes (e.g., tax rate adjustments).
  • Dependent Variable:  Economic indicators, such as consumer spending or business investments.
  • Design:  Researchers can analyze data from different regions or jurisdictions where tax policy changes have been implemented. One region could represent the treatment group (with tax policy changes), while a similar region with no tax policy changes serves as the control group. By comparing economic data before and after the policy change in both groups, researchers can assess the impact of the tax policy changes.

These examples illustrate how quasi-experimental design can be applied in various research contexts, providing valuable insights into the effects of independent variables in real-world scenarios where controlled experiments are not feasible or ethical. By carefully selecting comparison groups and controlling for potential biases, researchers can draw meaningful conclusions and inform decision-making processes.

How to Publish Quasi-Experimental Research?

Publishing your Quasi-Experimental research findings is a crucial step in contributing to the academic community's knowledge. We'll explore the essential aspects of reporting and publishing your Quasi-Experimental research effectively.

Structuring Your Research Paper

When preparing your research paper, it's essential to adhere to a well-structured format to ensure clarity and comprehensibility. Here are key elements to include:

Title and Abstract

  • Title:  Craft a concise and informative title that reflects the essence of your study. It should capture the main research question or hypothesis.
  • Abstract:  Summarize your research in a structured abstract, including the purpose, methods, results, and conclusions. Ensure it provides a clear overview of your study.

Introduction

  • Background and Rationale:  Provide context for your study by discussing the research gap or problem your study addresses. Explain why your research is relevant and essential.
  • Research Questions or Hypotheses:  Clearly state your research questions or hypotheses and their significance.

Literature Review

  • Review of Related Work:  Discuss relevant literature that supports your research. Highlight studies with similar methodologies or findings and explain how your research fits within this context.
  • Participants:  Describe your study's participants, including their characteristics and how you recruited them.
  • Quasi-Experimental Design:  Explain your chosen design in detail, including the independent and dependent variables, procedures, and any control measures taken.
  • Data Collection:  Detail the data collection methods , instruments used, and any pre-test or post-test measures.
  • Data Analysis:  Describe the statistical techniques employed, including any control for confounding variables.
  • Presentation of Findings:  Present your results clearly, using tables, graphs, and descriptive statistics where appropriate. Include p-values and effect sizes, if applicable.
  • Interpretation of Results:  Discuss the implications of your findings and how they relate to your research questions or hypotheses.
  • Interpretation and Implications:  Analyze your results in the context of existing literature and theories. Discuss the practical implications of your findings.
  • Limitations:  Address the limitations of your study, including potential biases or threats to internal validity.
  • Future Research:  Suggest areas for future research and how your study contributes to the field.

Ethical Considerations in Reporting

Ethical reporting is paramount in Quasi-Experimental research. Ensure that you adhere to ethical standards, including:

  • Informed Consent:  Clearly state that informed consent was obtained from all participants, and describe the informed consent process.
  • Protection of Participants:  Explain how you protected the rights and well-being of your participants throughout the study.
  • Confidentiality:  Detail how you maintained privacy and anonymity, especially when presenting individual data.
  • Disclosure of Conflicts of Interest:  Declare any potential conflicts of interest that could influence the interpretation of your findings.

Common Pitfalls to Avoid

When reporting your Quasi-Experimental research, watch out for common pitfalls that can diminish the quality and impact of your work:

  • Overgeneralization:  Be cautious not to overgeneralize your findings. Clearly state the limits of your study and the populations to which your results can be applied.
  • Misinterpretation of Causality:  Clearly articulate the limitations in inferring causality in Quasi-Experimental research. Avoid making strong causal claims unless supported by solid evidence.
  • Ignoring Ethical Concerns:  Ethical considerations are paramount. Failing to report on informed consent, ethical oversight, and participant protection can undermine the credibility of your study.

Guidelines for Transparent Reporting

To enhance the transparency and reproducibility of your Quasi-Experimental research, consider adhering to established reporting guidelines, such as:

  • CONSORT Statement:  If your study involves interventions or treatments, follow the CONSORT guidelines for transparent reporting of randomized controlled trials.
  • STROBE Statement:  For observational studies, the STROBE statement provides guidance on reporting essential elements.
  • PRISMA Statement:  If your research involves systematic reviews or meta-analyses, adhere to the PRISMA guidelines.
  • Transparent Reporting of Evaluations with Non-Randomized Designs (TREND):  TREND guidelines offer specific recommendations for transparently reporting non-randomized designs, including Quasi-Experimental research.

By following these reporting guidelines and maintaining the highest ethical standards, you can contribute to the advancement of knowledge in your field and ensure the credibility and impact of your Quasi-Experimental research findings.

Quasi-Experimental Design Challenges

Conducting a Quasi-Experimental study can be fraught with challenges that may impact the validity and reliability of your findings. We'll take a look at some common challenges and provide strategies on how you can address them effectively.

Selection Bias

Challenge:  Selection bias occurs when non-randomized groups differ systematically in ways that affect the study's outcome. This bias can undermine the validity of your research, as it implies that the groups are not equivalent at the outset of the study.

Addressing Selection Bias:

  • Matching:  Employ matching techniques to create comparable treatment and control groups. Match participants based on relevant characteristics, such as age, gender, or prior performance, to balance the groups.
  • Statistical Controls:  Use statistical controls to account for differences between groups. Include covariates in your analysis to adjust for potential biases.
  • Sensitivity Analysis:  Conduct sensitivity analyses to assess how vulnerable your results are to selection bias. Explore different scenarios to understand the impact of potential bias on your conclusions.

History Effects

Challenge:  History effects refer to external events or changes over time that influence the study's results. These external factors can confound your research by introducing variables you did not account for.

Addressing History Effects:

  • Collect Historical Data:  Gather extensive historical data to understand trends and patterns that might affect your study. By having a comprehensive historical context, you can better identify and account for historical effects.
  • Control Groups:  Include control groups whenever possible. By comparing the treatment group's results to those of a control group, you can account for external influences that affect both groups equally.
  • Time Series Analysis :  If applicable, use time series analysis to detect and account for temporal trends. This method helps differentiate between the effects of the independent variable and external events.

Maturation Effects

Challenge:  Maturation effects occur when participants naturally change or develop throughout the study, independent of the intervention. These changes can confound your results, making it challenging to attribute observed effects solely to the independent variable.

Addressing Maturation Effects:

  • Randomization:  If possible, use randomization to distribute maturation effects evenly across treatment and control groups. Random assignment minimizes the impact of maturation as a confounding variable.
  • Matched Pairs:  If randomization is not feasible, employ matched pairs or statistical controls to ensure that both groups experience similar maturation effects.
  • Shorter Time Frames:  Limit the duration of your study to reduce the likelihood of significant maturation effects. Shorter studies are less susceptible to long-term maturation.

Regression to the Mean

Challenge:  Regression to the mean is the tendency for extreme scores on a variable to move closer to the mean upon retesting. This can create the illusion of an intervention's effectiveness when, in reality, it's a natural statistical phenomenon.

Addressing Regression to the Mean:

  • Use Control Groups:  Include control groups in your study to provide a baseline for comparison. This helps differentiate genuine intervention effects from regression to the mean.
  • Multiple Data Points:  Collect numerous data points to identify patterns and trends. If extreme scores regress to the mean in subsequent measurements, it may be indicative of regression to the mean rather than a true intervention effect.
  • Statistical Analysis:  Employ statistical techniques that account for regression to the mean when analyzing your data. Techniques like analysis of covariance (ANCOVA) can help control for baseline differences.

Attrition and Mortality

Challenge:  Attrition refers to the loss of participants over the course of your study, while mortality is the permanent loss of participants. High attrition rates can introduce biases and affect the representativeness of your sample.

Addressing Attrition and Mortality:

  • Careful Participant Selection:  Select participants who are likely to remain engaged throughout the study. Consider factors that may lead to attrition, such as participant motivation and commitment.
  • Incentives:  Provide incentives or compensation to participants to encourage their continued participation.
  • Follow-Up Strategies:  Implement effective follow-up strategies to reduce attrition. Regular communication and reminders can help keep participants engaged.
  • Sensitivity Analysis:  Conduct sensitivity analyses to assess the impact of attrition and mortality on your results. Compare the characteristics of participants who dropped out with those who completed the study.

Testing Effects

Challenge:  Testing effects occur when the mere act of testing or assessing participants affects their subsequent performance. This phenomenon can lead to changes in the dependent variable that are unrelated to the independent variable.

Addressing Testing Effects:

  • Counterbalance Testing:  If possible, counterbalance the order of tests or assessments between treatment and control groups. This helps distribute the testing effects evenly across groups.
  • Control Groups:  Include control groups subjected to the same testing or assessment procedures as the treatment group. By comparing the two groups, you can determine whether testing effects have influenced the results.
  • Minimize Testing Frequency:  Limit the frequency of testing or assessments to reduce the likelihood of testing effects. Conducting fewer assessments can mitigate the impact of repeated testing on participants.

By proactively addressing these common challenges, you can enhance the validity and reliability of your Quasi-Experimental study, making your findings more robust and trustworthy.

Quasi-experimental design is a powerful tool that helps researchers investigate cause-and-effect relationships in real-world situations where strict control is not always possible. By understanding the key concepts, types of designs, and how to address challenges, you can conduct robust research and contribute valuable insights to your field. Remember, quasi-experimental design bridges the gap between controlled experiments and purely observational studies, making it an essential approach in various fields, from business and market research to public policy and beyond. So, whether you're a researcher, student, or decision-maker, the knowledge of quasi-experimental design empowers you to make informed choices and drive positive changes in the world.

How to Supercharge Quasi-Experimental Design with Real-Time Insights?

Introducing Appinio , the real-time market research platform that transforms the world of quasi-experimental design. Imagine having the power to conduct your own market research in minutes, obtaining actionable insights that fuel your data-driven decisions. Appinio takes care of the research and tech complexities, freeing you to focus on what truly matters for your business.

Here's why Appinio stands out:

  • Lightning-Fast Insights:  From formulating questions to uncovering insights, Appinio delivers results in minutes, ensuring you get the answers you need when you need them.
  • No Research Degree Required:  Our intuitive platform is designed for everyone, eliminating the need for a PhD in research. Anyone can dive in and start harnessing the power of real-time consumer insights.
  • Global Reach, Local Expertise:  With access to over 90 countries and the ability to define precise target groups based on 1200+ characteristics, you can conduct Quasi-Experimental research on a global scale while maintaining a local touch.

Register now EN

Get free access to the platform!

Join the loop 💌

Be the first to hear about new updates, product news, and data insights. We'll send it all straight to your inbox.

Get the latest market research news straight to your inbox! 💌

Wait, there's more

Marketing Mix The 4 Ps of Marketing and How to Use Them

06.08.2024 | 32min read

Marketing Mix: The 4 Ps of Marketing & How to Use Them?

Multistage Sampling Definition Guide Examples

01.08.2024 | 27min read

Multistage Sampling: Definition, Guide, Examples

VRIO Framework Definition Analysis Examples

30.07.2024 | 37min read

VRIO Framework: Definition, Analysis, Examples

Research Methodologies Guide

  • Action Research
  • Bibliometrics
  • Case Studies
  • Content Analysis
  • Digital Scholarship This link opens in a new window
  • Documentary
  • Ethnography
  • Focus Groups
  • Grounded Theory
  • Life Histories/Autobiographies
  • Longitudinal
  • Participant Observation
  • Qualitative Research (General)

Quasi-Experimental Design

  • Usability Studies

Quasi-Experimental Design is a unique research methodology because it is characterized by what is lacks. For example, Abraham & MacDonald (2011) state:

" Quasi-experimental research is similar to experimental research in that there is manipulation of an independent variable. It differs from experimental research because either there is no control group, no random selection, no random assignment, and/or no active manipulation. "

This type of research is often performed in cases where a control group cannot be created or random selection cannot be performed. This is often the case in certain medical and psychological studies. 

For more information on quasi-experimental design, review the resources below: 

Where to Start

Below are listed a few tools and online guides that can help you start your Quasi-experimental research. These include free online resources and resources available only through ISU Library.

  • Quasi-Experimental Research Designs by Bruce A. Thyer This pocket guide describes the logic, design, and conduct of the range of quasi-experimental designs, encompassing pre-experiments, quasi-experiments making use of a control or comparison group, and time-series designs. An introductory chapter describes the valuable role these types of studies have played in social work, from the 1930s to the present. Subsequent chapters delve into each design type's major features, the kinds of questions it is capable of answering, and its strengths and limitations.
  • Experimental and Quasi-Experimental Designs for Research by Donald T. Campbell; Julian C. Stanley. Call Number: Q175 C152e Written 1967 but still used heavily today, this book examines research designs for experimental and quasi-experimental research, with examples and judgments about each design's validity.

Online Resources

  • Quasi-Experimental Design From the Web Center for Social Research Methods, this is a very good overview of quasi-experimental design.
  • Experimental and Quasi-Experimental Research From Colorado State University.
  • Quasi-experimental design--Wikipedia, the free encyclopedia Wikipedia can be a useful place to start your research- check the citations at the bottom of the article for more information.
  • << Previous: Qualitative Research (General)
  • Next: Sampling >>
  • Last Updated: Jul 11, 2024 1:45 PM
  • URL: https://instr.iastate.libguides.com/researchmethods

Quasi-Experiment: Understand What It Is, Types & Examples

Discover the concept of quasi-experiment, its various types, real-world examples, and how QuestionPro aids in conducting these studies.

' src=

Quasi-experimental research designs have gained significant recognition in the scientific community due to their unique ability to study cause-and-effect relationships in real-world settings. Unlike true experiments, quasi-experiment lack random assignment of participants to groups, making them more practical and ethical in certain situations. In this article, we will delve into the concept, applications, and advantages of quasi-experiments, shedding light on their relevance and significance in the scientific realm.

What Is A Quasi-Experiment Research Design?

Quasi-experimental research designs are research methodologies that resemble true experiments but lack the randomized assignment of participants to groups. In a true experiment, researchers randomly assign participants to either an experimental group or a control group, allowing for a comparison of the effects of an independent variable on the dependent variable. However, in quasi-experiments, this random assignment is often not possible or ethically permissible, leading to the adoption of alternative strategies.

Types Of Quasi-Experimental Designs

There are several types of quasi-experiment designs to study causal relationships in specific contexts. Some common types include:

Non-Equivalent Groups Design

This design involves selecting pre-existing groups that differ in some key characteristics and comparing their responses to the independent variable. Although the researcher does not randomly assign the groups, they can still examine the effects of the independent variable.

Regression Discontinuity

This design utilizes a cutoff point or threshold to determine which participants receive the treatment or intervention. It assumes that participants on either side of the cutoff are similar in all other aspects, except for their exposure to the independent variable.

Interrupted Time Series Design

This design involves measuring the dependent variable multiple times before and after the introduction of an intervention or treatment. By comparing the trends in the dependent variable, researchers can infer the impact of the intervention.

Natural Experiments

Natural experiments take advantage of naturally occurring events or circumstances that mimic the random assignment found in true experiments. Participants are exposed to different conditions in situations identified by researchers without any manipulation from them.

Application of the Quasi-Experiment Design

Quasi-experimental research designs find applications in various fields, ranging from education to public health and beyond. One significant advantage of quasi-experiments is their feasibility in real-world settings where randomization is not always possible or ethical.

Ethical Reasons

Ethical concerns often arise in research when randomizing participants to different groups could potentially deny individuals access to beneficial treatments or interventions. In such cases, quasi-experimental designs provide an ethical alternative, allowing researchers to study the impact of interventions without depriving anyone of potential benefits.

Examples Of Quasi-Experimental Design

Let’s explore a few examples of quasi-experimental designs to understand their application in different contexts.

Design Of Non-Equivalent Groups

Determining the effectiveness of math apps in supplementing math classes.

Imagine a study aiming to determine the effectiveness of math apps in supplementing traditional math classes in a school. Randomly assigning students to different groups might be impractical or disrupt the existing classroom structure. Instead, researchers can select two comparable classes, one receiving the math app intervention and the other continuing with traditional teaching methods. By comparing the performance of the two groups, researchers can draw conclusions about the app’s effectiveness.

To conduct a quasi-experiment study like the one mentioned above, researchers can utilize QuestionPro , an advanced research platform that offers comprehensive survey and data analysis tools. With QuestionPro, researchers can design surveys to collect data, analyze results, and gain valuable insights for their quasi-experimental research.

How QuestionPro Helps In Quasi-Experimental Research?

QuestionPro’s powerful features, such as random assignment of participants, survey branching, and data visualization, enable researchers to efficiently conduct and analyze quasi-experimental studies. The platform provides a user-friendly interface and robust reporting capabilities, empowering researchers to gather data, explore relationships, and draw meaningful conclusions.

In some cases, researchers can leverage natural experiments to examine causal relationships. 

Determining The Effectiveness Of Teaching Modern Leadership Techniques In Start-Up Businesses

Consider a study evaluating the effectiveness of teaching modern leadership techniques in start-up businesses. Instead of artificially assigning businesses to different groups, researchers can observe those that naturally adopt modern leadership techniques and compare their outcomes to those of businesses that have not implemented such practices.

Advantages and Disadvantages Of The Quasi-Experimental Design

Quasi-experimental designs offer several advantages over true experiments, making them valuable tools in research:

  • Scope of the research : Quasi-experiments allow researchers to study cause-and-effect relationships in real-world settings, providing valuable insights into complex phenomena that may be challenging to replicate in a controlled laboratory environment.
  • Regression Discontinuity : Researchers can utilize regression discontinuity to evaluate the effects of interventions or treatments when random assignment is not feasible. This design leverages existing data and naturally occurring thresholds to draw causal inferences.

Disadvantage

Lack of random assignment : Quasi-experimental designs lack the random assignment of participants, which introduces the possibility of confounding variables affecting the results. Researchers must carefully consider potential alternative explanations for observed effects.

What Are The Different Quasi-Experimental Study Designs?

Quasi-experimental designs encompass various approaches, including nonequivalent group designs, interrupted time series designs, and natural experiments. Each design offers unique advantages and limitations, providing researchers with versatile tools to explore causal relationships in different contexts.

Example Of The Natural Experiment Approach

Researchers interested in studying the impact of a public health campaign aimed at reducing smoking rates may take advantage of a natural experiment. By comparing smoking rates in a region that has implemented the campaign to a similar region that has not, researchers can examine the effectiveness of the intervention.

Differences Between Quasi-Experiments And True Experiments

Quasi-experiments and true experiments differ primarily in their ability to randomly assign participants to groups. While true experiments provide a higher level of control, quasi-experiments offer practical and ethical alternatives in situations where randomization is not feasible or desirable.

Example Comparing A True Experiment And Quasi-Experiment

In a true experiment investigating the effects of a new medication on a specific condition, researchers would randomly assign participants to either the experimental group, which receives the medication, or the control group, which receives a placebo. In a quasi-experiment, researchers might instead compare patients who voluntarily choose to take the medication to those who do not, examining the differences in outcomes between the two groups.

Quasi-Experiment: A Quick Wrap-Up

Quasi-experimental research designs play a vital role in scientific inquiry by allowing researchers to investigate cause-and-effect relationships in real-world settings. These designs offer practical and ethical alternatives to true experiments, making them valuable tools in various fields of study. With their versatility and applicability, quasi-experimental designs continue to contribute to our understanding of complex phenomena.

Turn Your Data Into Easy-To-Understand And Dynamic Stories

When you wish to explain any complex data, it’s always advised to break it down into simpler visuals or stories. This is where Mind the Graph comes in. It is a platform that helps researchers and scientists to turn their data into easy-to-understand and dynamic stories, helping the audience understand the concepts better. Sign Up now to explore the library of scientific infographics. 

what is a quasi experimental variable

Subscribe to our newsletter

Exclusive high quality content about effective visual communication in science.

Sign Up for Free

Try the best infographic maker and promote your research with scientifically-accurate beautiful figures

no credit card required

Content tags

en_US

The use and interpretation of quasi-experimental design

Last updated

6 February 2023

Reviewed by

Miroslav Damyanov

Short on time? Get an AI generated summary of this article instead

  • What is a quasi-experimental design?

Commonly used in medical informatics (a field that uses digital information to ensure better patient care), researchers generally use this design to evaluate the effectiveness of a treatment – perhaps a type of antibiotic or psychotherapy, or an educational or policy intervention.

Even though quasi-experimental design has been used for some time, relatively little is known about it. Read on to learn the ins and outs of this research design.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • When to use a quasi-experimental design

A quasi-experimental design is used when it's not logistically feasible or ethical to conduct randomized, controlled trials. As its name suggests, a quasi-experimental design is almost a true experiment. However, researchers don't randomly select elements or participants in this type of research.

Researchers prefer to apply quasi-experimental design when there are ethical or practical concerns. Let's look at these two reasons more closely.

Ethical reasons

In some situations, the use of randomly assigned elements can be unethical. For instance, providing public healthcare to one group and withholding it to another in research is unethical. A quasi-experimental design would examine the relationship between these two groups to avoid physical danger.

Practical reasons

Randomized controlled trials may not be the best approach in research. For instance, it's impractical to trawl through large sample sizes of participants without using a particular attribute to guide your data collection .

Recruiting participants and properly designing a data-collection attribute to make the research a true experiment requires a lot of time and effort, and can be expensive if you don’t have a large funding stream.

A quasi-experimental design allows researchers to take advantage of previously collected data and use it in their study.

  • Examples of quasi-experimental designs

Quasi-experimental research design is common in medical research, but any researcher can use it for research that raises practical and ethical concerns. Here are a few examples of quasi-experimental designs used by different researchers:

Example 1: Determining the effectiveness of math apps in supplementing math classes

A school wanted to supplement its math classes with a math app. To select the best app, the school decided to conduct demo tests on two apps before selecting the one they will purchase.

Scope of the research

Since every grade had two math teachers, each teacher used one of the two apps for three months. They then gave the students the same math exams and compared the results to determine which app was most effective.

Reasons why this is a quasi-experimental study

This simple study is a quasi-experiment since the school didn't randomly assign its students to the applications. They used a pre-existing class structure to conduct the study since it was impractical to randomly assign the students to each app.

Example 2: Determining the effectiveness of teaching modern leadership techniques in start-up businesses

A hypothetical quasi-experimental study was conducted in an economically developing country in a mid-sized city.

Five start-ups in the textile industry and five in the tech industry participated in the study. The leaders attended a six-week workshop on leadership style, team management, and employee motivation.

After a year, the researchers assessed the performance of each start-up company to determine growth. The results indicated that the tech start-ups were further along in their growth than the textile companies.

The basis of quasi-experimental research is a non-randomized subject-selection process. This study didn't use specific aspects to determine which start-up companies should participate. Therefore, the results may seem straightforward, but several aspects may determine the growth of a specific company, apart from the variables used by the researchers.

Example 3: A study to determine the effects of policy reforms and of luring foreign investment on small businesses in two mid-size cities

In a study to determine the economic impact of government reforms in an economically developing country, the government decided to test whether creating reforms directed at small businesses or luring foreign investments would spur the most economic development.

The government selected two cities with similar population demographics and sizes. In one of the cities, they implemented specific policies that would directly impact small businesses, and in the other, they implemented policies to attract foreign investment.

After five years, they collected end-of-year economic growth data from both cities. They looked at elements like local GDP growth, unemployment rates, and housing sales.

The study used a non-randomized selection process to determine which city would participate in the research. Researchers left out certain variables that would play a crucial role in determining the growth of each city. They used pre-existing groups of people based on research conducted in each city, rather than random groups.

  • Advantages of a quasi-experimental design

Some advantages of quasi-experimental designs are:

Researchers can manipulate variables to help them meet their study objectives.

It offers high external validity, making it suitable for real-world applications, specifically in social science experiments.

Integrating this methodology into other research designs is easier, especially in true experimental research. This cuts down on the time needed to determine your outcomes.

  • Disadvantages of a quasi-experimental design

Despite the pros that come with a quasi-experimental design, there are several disadvantages associated with it, including the following:

It has a lower internal validity since researchers do not have full control over the comparison and intervention groups or between time periods because of differences in characteristics in people, places, or time involved. It may be challenging to determine whether all variables have been used or whether those used in the research impacted the results.

There is the risk of inaccurate data since the research design borrows information from other studies.

There is the possibility of bias since researchers select baseline elements and eligibility.

  • What are the different quasi-experimental study designs?

There are three distinct types of quasi-experimental designs:

Nonequivalent

Regression discontinuity, natural experiment.

This is a hybrid of experimental and quasi-experimental methods and is used to leverage the best qualities of the two. Like the true experiment design, nonequivalent group design uses pre-existing groups believed to be comparable. However, it doesn't use randomization, the lack of which is a crucial element for quasi-experimental design.

Researchers usually ensure that no confounding variables impact them throughout the grouping process. This makes the groupings more comparable.

Example of a nonequivalent group design

A small study was conducted to determine whether after-school programs result in better grades. Researchers randomly selected two groups of students: one to implement the new program, the other not to. They then compared the results of the two groups.

This type of quasi-experimental research design calculates the impact of a specific treatment or intervention. It uses a criterion known as "cutoff" that assigns treatment according to eligibility.

Researchers often assign participants above the cutoff to the treatment group. This puts a negligible distinction between the two groups (treatment group and control group).

Example of regression discontinuity

Students must achieve a minimum score to be enrolled in specific US high schools. Since the cutoff score used to determine eligibility for enrollment is arbitrary, researchers can assume that the disparity between students who only just fail to achieve the cutoff point and those who barely pass is a small margin and is due to the difference in the schools that these students attend.

Researchers can then examine the long-term effects of these two groups of kids to determine the effect of attending certain schools. This information can be applied to increase the chances of students being enrolled in these high schools.

This research design is common in laboratory and field experiments where researchers control target subjects by assigning them to different groups. Researchers randomly assign subjects to a treatment group using nature or an external event or situation.

However, even with random assignment, this research design cannot be called a true experiment since nature aspects are observational. Researchers can also exploit these aspects despite having no control over the independent variables.

Example of the natural experiment approach

An example of a natural experiment is the 2008 Oregon Health Study.

Oregon intended to allow more low-income people to participate in Medicaid.

Since they couldn't afford to cover every person who qualified for the program, the state used a random lottery to allocate program slots.

Researchers assessed the program's effectiveness by assigning the selected subjects to a randomly assigned treatment group, while those that didn't win the lottery were considered the control group.

  • Differences between quasi-experiments and true experiments

There are several differences between a quasi-experiment and a true experiment:

Participants in true experiments are randomly assigned to the treatment or control group, while participants in a quasi-experiment are not assigned randomly.

In a quasi-experimental design, the control and treatment groups differ in unknown or unknowable ways, apart from the experimental treatments that are carried out. Therefore, the researcher should try as much as possible to control these differences.

Quasi-experimental designs have several "competing hypotheses," which compete with experimental manipulation to explain the observed results.

Quasi-experiments tend to have lower internal validity (the degree of confidence in the research outcomes) than true experiments, but they may offer higher external validity (whether findings can be extended to other contexts) as they involve real-world interventions instead of controlled interventions in artificial laboratory settings.

Despite the distinct difference between true and quasi-experimental research designs, these two research methodologies share the following aspects:

Both study methods subject participants to some form of treatment or conditions.

Researchers have the freedom to measure some of the outcomes of interest.

Researchers can test whether the differences in the outcomes are associated with the treatment.

  • An example comparing a true experiment and quasi-experiment

Imagine you wanted to study the effects of junk food on obese people. Here's how you would do this as a true experiment and a quasi-experiment:

How to carry out a true experiment

In a true experiment, some participants would eat junk foods, while the rest would be in the control group, adhering to a regular diet. At the end of the study, you would record the health and discomfort of each group.

This kind of experiment would raise ethical concerns since the participants assigned to the treatment group are required to eat junk food against their will throughout the experiment. This calls for a quasi-experimental design.

How to carry out a quasi-experiment

In quasi-experimental research, you would start by finding out which participants want to try junk food and which prefer to stick to a regular diet. This allows you to assign these two groups based on subject choice.

In this case, you didn't assign participants to a particular group, so you can confidently use the results from the study.

When is a quasi-experimental design used?

Quasi-experimental designs are used when researchers don’t want to use randomization when evaluating their intervention.

What are the characteristics of quasi-experimental designs?

Some of the characteristics of a quasi-experimental design are:

Researchers don't randomly assign participants into groups, but study their existing characteristics and assign them accordingly.

Researchers study the participants in pre- and post-testing to determine the progress of the groups.

Quasi-experimental design is ethical since it doesn’t involve offering or withholding treatment at random.

Quasi-experimental design encompasses a broad range of non-randomized intervention studies. This design is employed when it is not ethical or logistically feasible to conduct randomized controlled trials. Researchers typically employ it when evaluating policy or educational interventions, or in medical or therapy scenarios.

How do you analyze data in a quasi-experimental design?

You can use two-group tests, time-series analysis, and regression analysis to analyze data in a quasi-experiment design. Each option has specific assumptions, strengths, limitations, and data requirements.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 6 February 2023

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

  • Link to facebook
  • Link to linkedin
  • Link to twitter
  • Link to youtube
  • Writing Tips

An Introduction to Quasi-Experimental Design

An Introduction to Quasi-Experimental Design

  • 3-minute read
  • 9th January 2022

If you’re a researcher or student in the sciences, you’ll probably come across the term “quasi-experimental design” at some point. But what exactly does it mean?

In this post, we’ll guide you through the different forms of quasi-experimental design and how it compares to true experiments.

What is Quasi-Experimental Design?

Quasi-experimental design (QED) is a research design method that’s useful when regular experimental conditions are impractical or unethical.

Both quasi-experimental designs and true experiments show a cause-and-effect relationship between a dependent and independent variable . Participants in a true experiment are randomly assigned to different treatment groups. The quasi-experimental design, on the other hand, assigns groups based on criteria instead of randomly.

Quasi-Experimental Design Vs. True Experimental Design

The main difference between a quasi-experimental and true experimental design is that in the former, groups aren’t randomly assigned. There are also some other key differences between these research methods.

True experimental design involves:

●     Having control as a researcher over the design of the treatment or program that participants receive (i.e., the independent variable)

●     Control variables as a necessary component

In contrast, a quasi-experimental design involves:

●     The researcher studying groups after they’ve received a treatment or program

●     Control variables as a common element but they aren’t necessary for the experiment to work

Examples of Experimental Design

Perhaps the easiest way to understand quasi-experimental design is to look at how it might be used in practice.

Let’s say you hypothesize that having access to free art lessons will improve the mental health of children from low-income families.

In a true experiment, you’d randomly assign participants to two groups: one that receives free art lessons and another that doesn’t.

However, it’s ethically questionable to deny one group of children access to something that might benefit them.

Find this useful?

Subscribe to our newsletter and get writing tips from our editors straight to your inbox.

Instead, you might decide to compare the data from a community that’s already offered free art classes to these children with that of a community that’s not yet done so.

This second example would be a quasi-experimental design.

Advantages and Disadvantages of Quasi-Experimental Design

Quasi-experimental design has some advantages and disadvantages you’ll need to consider when designing your research.

On the plus side, quasi-experimental design:

●     Has a higher external validity than true experimental design, as it usually involves real-world scenarios

●     Allows you to control for unexpected, confounding variables, resulting in a higher internal validity than other non-experimental methods of research

●     Enables the study of cause-and-effect relationships without the ethical issue of denying a treatment to those who may benefit from it

●     Does not require access to large-scale funding and other practical concerns, as the treatment has already been issued by others

The disadvantages of quasi-experimental design, however, include:

●     Lower internal validity than found in true experiments, as it’s more difficult to account for all confounding variables without using random assignment

●     The necessary data required for research potentially being inaccurate, outdated, or difficult to access

Expert Proofreading for Researchers

We hope our guide has helped you understand the basics of quasi-experimental design.

If you need help with your research paper , our expert proofreaders are available 24/7. Try us out by submitting a free sample document today.

Share this article:

Post A New Comment

Got content that needs a quick turnaround? Let us polish your work. Explore our editorial business services.

5-minute read

Free Email Newsletter Template (2024)

Promoting a brand means sharing valuable insights to connect more deeply with your audience, and...

6-minute read

How to Write a Nonprofit Grant Proposal

If you’re seeking funding to support your charitable endeavors as a nonprofit organization, you’ll need...

9-minute read

How to Use Infographics to Boost Your Presentation

Is your content getting noticed? Capturing and maintaining an audience’s attention is a challenge when...

8-minute read

Why Interactive PDFs Are Better for Engagement

Are you looking to enhance engagement and captivate your audience through your professional documents? Interactive...

7-minute read

Seven Key Strategies for Voice Search Optimization

Voice search optimization is rapidly shaping the digital landscape, requiring content professionals to adapt their...

4-minute read

Five Creative Ways to Showcase Your Digital Portfolio

Are you a creative freelancer looking to make a lasting impression on potential clients or...

Logo Harvard University

Make sure your writing is the best it can be with our expert English proofreading and editing.

  • Quasi-Experimental Research: Types, Examples & Application

Moradeke Owa

Let’s say you want to study the effects of a new drug on lowering blood pressure. You could randomly assign half of the participants to receive the drug and the other half to receive a placebo. However, this isn’t fair to the patients in the placebo group. 

So, instead of experimenting to find out the effect of the new drug, you use a quasi-experiment to evaluate the drug. The purpose of quasi-experimental research is to establish a causal relationship between an independent variable and a dependent variable.

This guide will discuss the different types of quasi-experimental research, their practical applications, and the best practices for conducting successful quasi-experimental research.

Understanding Quasi-Experimental Research

what is a quasi experimental variable

Quasi-experimental research is a way of finding out if there’s a cause-and-effect relationship between variables when true experiments are not possible because of practical or ethical constraints.

For example, you want to know if a new medicine is effective for migraines. Instead of giving the medication to some people and not to others, you use quasi-experimental research to compare who takes the medication and people who haven’t.

What’s The Difference Between True Experiments and Quasi-Experiments

Quasi-experimental research doesn’t always have the same level of internal validity as real experiments. Pre-selected samples can be biased and not represent the real population.

In a true experiment, the participants are assigned randomly to the experimental or control groups. This ensures that groups are as homogeneous as possible, except for the treatment they receive.

Quasi-experiments don’t randomly assign participants to groups, so the differences within the groups could affect the groups.

Read – Experimental Research Designs: Types, Examples & Methods  

  • Types of Quasi-Experimental Designs

Pretest-Posttest Design

This design captures changes by measuring participants before and after an intervention. The pretest measures the dependent variable before the intervention, while the posttest measures it after the intervention.

The difference between the two measurements is the change that occurred due to the intervention. 

However, it is important to be aware of the potential threats to the internal validity of the pretest-postest design. One threat is selection bias , which happens when the group is not homogenous. 

Another is maturation, which occurs when participants change naturally over time. You can mitigate these threats using a control group, randomization, and blinding techniques.

what is a quasi experimental variable

Posttest-Only Design with Nonequivalent Groups

The posttest-only design with nonequivalent groups is similar to the pretest-posttest design, but it does not include a pretest. You see the effect of the intervention by comparing groups to see if there is a difference in their scores.

The difference in scores determines the impact of the intervention. This design is less powerful than the pretest-posttest design because it does not account for potential differences between the groups at baseline. 

However, the posttest design is still a valuable tool for research, especially when you can’t collect pretest data. You can mitigate its limitations by using matching participants on important factors, statistical analysis, and sensitivity analysis

  • Regression Discontinuity Design

The regression discontinuity design uses naturally occurring cutoff points to assign participants to treatment and control groups. It’s widely adopted in education and social policy research. 

For example, a talent recruiter might use the cutoff score on a standardized test to move candidates to the next phase of the application.

Interrupted Time Series Design

The Interrupted Time Series design is a type of study that uses time series data to figure out how interventions or events affect the population. In this study, you measure the dependent variable multiple times over time, before and after the intervention.

The interrupted time series design is most commonly used to study the impact of policies or programs. For example, you are studying the impact of a new law on traffic accidents.

You could collect data on the number of traffic accidents each month for a year before the law was passed and a year after the law was passed. If the number of traffic accidents decreases after the law was passed, then you could conclude that the law had a positive impact on traffic safety.

Rigor in Quasi-Experimental Research

Matching techniques.

Matching techniques are a way to create balanced treatment and control groups in quasi-experimental research. This is done by matching participants on important characteristics, such as age, gender, or socioeconomic status.

Propensity score matching is one of the most popular matching methods. It works by using a statistical model to figure out how likely it is that each person in the study would have been in the treatment group if they were selected randomly. Then, people are randomly assigned according to their propensity scores, making sure that the treatment group and the control group are as close to the same as possible.

  • Creates balanced treatment and control groups, which reduces bias in the results.
  • Versatile- you can use them in various research settings, especially where randomization is not possible.
  • Relatively easy to implement.
  • Computationally complex.
  • Sensitive to the choice of the matching algorithm.
  • Does not perfectly balance the treatment and control groups on all relevant characteristics.

Instrumental Variables

what is a quasi experimental variable

An instrumental variable (IV) in quasi-experimental research is a variable that’s related to the independent variable, but not to the error term. It’s a variable that can be used to measure how the independent variable affects the dependent variable.

Let’s say you want to investigate how a new drug reduces the risk of heart attack. You can use the number of days a person has taken aspirin as the instrumental variable.

Aspirin is associated with an independent variable (new drug), however, it is not associated with a dependent variable (risk of a heart attack). This is because people who take aspirin are more likely to take other medications, such as statins, which also lower the risk of heart attack.

  • Addresses endogeneity issues.
  • Versatile-you can use it in different research settings
  • It is relatively hard to find an instrumental variable that meets all of the criteria.
  • May not be perfectly correlated with the independent variable.
  • Tends to be affected by the dependent variable.

Difference-in-Differences Analysis

what is a quasi experimental variable

Difference-in-differences analysis is a statistical technique that can be used to compare changes in treatment and control groups over time. It is typically used in quasi-experimental research to estimate the causal effect of an intervention.

You have to first define two groups when using the difference-in-differences analysis: the treatment group and the control group. A treatment group is a group that receives an intervention, while a control group doesn’t receive an intervention.

Next, collect data on the dependent variable for both groups before and after the intervention. The difference-in-differences estimate is then calculated by comparing the change in the dependent variable for the treatment group to the change in the dependent variable for the control group.

For example, in a study by David Card and Alan Krueger , they compared the effect of increasing the minimum wage in a particular region to the employment rate. They found that the minimum wage increase in New Jersey did not lead to job losses.

  • Addresses selection bias.
  • Control for time-invariant confounders.
  • Requires a rigorous research design.
  • Sensitive to measurement errors.
  • Difficult to interpret when multiple interventions or events are happening during the study period.

Challenges and Best Practices

  • Validity Threat
  • Selection bias : This occurs when the groups being compared are not equivalent. This can happen if participants are self-selected into the groups, or if the groups are not randomly assigned.
  • History effects : These are events that happen during the study period that could affect the dependent variable. For example, if there is a natural disaster during the study period, it could affect the results.
  • Maturation : This refers to the natural changes that occur over time. For example, students may naturally improve their test scores over time, regardless of whether or not they receive an intervention.
  • Testing effects : These are the effects of taking a test on subsequent test scores. For example, if students take a pretest before an intervention, they may learn from the test and do better on the posttest, even if the intervention had no effect.
  • Instrumentation : This refers to changes in the way the dependent variable is measured. For example, if the test used to measure student achievement is changed during the study period, it could affect the results.

Strategies for Minimizing Validity Threats

  • Matching participants on important characteristics such as age, education level, and more to reduce selection bias.
  • Use control groups to avoid history effects, maturation effects, and testing effects.
  • Use multiple methods to measure dependent variables to reduce instrumentation effects.
  • Conduct a pilot study to identify and address potential validity threats 

Read Also – Internal Validity in Research: Definition, Threats, Examples 

Sample Size and Power

Sample size is the number of participants in a study, while power is the probability of detecting a meaningful effect if it exists.

You have to carefully consider sample size and power when designing a quasi-experiment. This is because groups may not be 100% homogeneous at the start of the study, which can limit the strength of the design.

Using power analysis, you can figure out the sample size you need to see a significant effect. Power analysis looks at the magnitude of the effect, and the standard deviation of the dependent variable, and determines the alpha level.

Generalizability

A major downside of the quasi-experimental design is that it’s usually not generalizable or applicable to other environments. It is typically done in natural environments, so you can’t control factors that could influence the results.

Carefully consider the context of the study before you generalize a quasi-experimental. Also, try replicating the study in other settings to see if the results are consistent.

Real-World Applications

  • Healthcare Interventions:

A study by the Universiti Kebangsaan, Malaysia used a quasi-experimental design to assess the effectiveness of a new program for preventing childhood obesity. The study found that the program was effective in reducing the risk of obesity, but it was also expensive.

  • Education Policy Changes

A study by Raj Chetty and his colleagues found that students who attended charter schools in California were more likely to attend college than students who did not attend charter schools. However, this study arguably promoted academically underqualified students being admitted to colleges.

  • Social and Economic Interventions

A study by the RAND Corporation used a quasi-experimental design to assess the effects of a job training program on employment and earnings. 

The study found that job training programs were effective in increasing employment and earnings, but they also found that the impact varied depending on the characteristics of the participants and the design of the program.

Ethical Considerations

  • Informed consent : Provide full information about the purpose of the study, the procedures, the risks and benefits of participating, and their right to withdraw from the study at any time.
  • Confidentiality : Do not collect any personal information that is irrelevant to the study and keep participant information confidential.
  • Risks to participants : Quasi-experimental research may pose some risks to participants, such as the risk of harm or discomfort. Minimize these risks as much as possible and only perform the research if the benefits outweigh the risks.
  • Benefits to participants : Quasi-experimental research should offer some potential benefits to participants, such as access to new treatments or interventions. Researchers should carefully consider the potential benefits and risks of participating in the study before recruiting participants
  • Balance of research goals and participant welfare : Do not conduct research that is likely to harm participants, even if the research has the potential to benefit society.

Read: What are Ethical Practices in Market Research?

Quasi-experimental research is a valuable tool for understanding the causal effects of interventions. It is particularly useful when you can’t conduct actual experiments because of ethical or practical constraints.

However, it is important to be aware of the limitations of this type of research. Carefully design the study and consider the limitations to ensure that the findings are accurate and reliable.

Logo

Connect to Formplus, Get Started Now - It's Free!

  • Quasi-Experimental Research
  • Quasi-Experiments
  • True Experiments
  • Moradeke Owa

Formplus

You may also like:

Market Research: Types, Methods & Survey Examples

A complete guide on market research; definitions, survey examples, templates, importance and tips.

what is a quasi experimental variable

Recall Bias: Definition, Types, Examples & Mitigation

This article will discuss the impact of recall bias in studies and the best ways to avoid them during research.

Exploratory Research: What are its Method & Examples?

Overview on exploratory research, examples and methodology. Shows guides on how to conduct exploratory research with online surveys

What is Pure or Basic Research? + [Examples & Method]

Simple guide on pure or basic research, its methods, characteristics, advantages, and examples in science, medicine, education and psychology

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

Experimental vs Quasi-Experimental Design: Which to Choose?

Here’s a table that summarizes the similarities and differences between an experimental and a quasi-experimental study design:

 Experimental Study (a.k.a. Randomized Controlled Trial)Quasi-Experimental Study
ObjectiveEvaluate the effect of an intervention or a treatmentEvaluate the effect of an intervention or a treatment
How participants get assigned to groups?Random assignmentNon-random assignment (participants get assigned according to their choosing or that of the researcher)
Is there a control group?YesNot always (although, if present, a control group will provide better evidence for the study results)
Is there any room for confounding?No (although check for a detailed discussion on post-randomization confounding in randomized controlled trials)Yes (however, statistical techniques can be used to study causal relationships in quasi-experiments)
Level of evidenceA randomized trial is at the highest level in the hierarchy of evidenceA quasi-experiment is one level below the experimental study in the hierarchy of evidence [ ]
AdvantagesMinimizes bias and confounding– Can be used in situations where an experiment is not ethically or practically feasible
– Can work with smaller sample sizes than randomized trials
Limitations– High cost (as it generally requires a large sample size)
– Ethical limitations
– Generalizability issues
– Sometimes practically infeasible
Lower ranking in the hierarchy of evidence as losing the power of randomization causes the study to be more susceptible to bias and confounding

What is a quasi-experimental design?

A quasi-experimental design is a non-randomized study design used to evaluate the effect of an intervention. The intervention can be a training program, a policy change or a medical treatment.

Unlike a true experiment, in a quasi-experimental study the choice of who gets the intervention and who doesn’t is not randomized. Instead, the intervention can be assigned to participants according to their choosing or that of the researcher, or by using any method other than randomness.

Having a control group is not required, but if present, it provides a higher level of evidence for the relationship between the intervention and the outcome.

(for more information, I recommend my other article: Understand Quasi-Experimental Design Through an Example ) .

Examples of quasi-experimental designs include:

  • One-Group Posttest Only Design
  • Static-Group Comparison Design
  • One-Group Pretest-Posttest Design
  • Separate-Sample Pretest-Posttest Design

What is an experimental design?

An experimental design is a randomized study design used to evaluate the effect of an intervention. In its simplest form, the participants will be randomly divided into 2 groups:

  • A treatment group: where participants receive the new intervention which effect we want to study.
  • A control or comparison group: where participants do not receive any intervention at all (or receive some standard intervention).

Randomization ensures that each participant has the same chance of receiving the intervention. Its objective is to equalize the 2 groups, and therefore, any observed difference in the study outcome afterwards will only be attributed to the intervention – i.e. it removes confounding.

(for more information, I recommend my other article: Purpose and Limitations of Random Assignment ).

Examples of experimental designs include:

  • Posttest-Only Control Group Design
  • Pretest-Posttest Control Group Design
  • Solomon Four-Group Design
  • Matched Pairs Design
  • Randomized Block Design

When to choose an experimental design over a quasi-experimental design?

Although many statistical techniques can be used to deal with confounding in a quasi-experimental study, in practice, randomization is still the best tool we have to study causal relationships.

Another problem with quasi-experiments is the natural progression of the disease or the condition under study — When studying the effect of an intervention over time, one should consider natural changes because these can be mistaken with changes in outcome that are caused by the intervention. Having a well-chosen control group helps dealing with this issue.

So, if losing the element of randomness seems like an unwise step down in the hierarchy of evidence, why would we ever want to do it?

This is what we’re going to discuss next.

When to choose a quasi-experimental design over a true experiment?

The issue with randomness is that it cannot be always achievable.

So here are some cases where using a quasi-experimental design makes more sense than using an experimental one:

  • If being in one group is believed to be harmful for the participants , either because the intervention is harmful (ex. randomizing people to smoking), or the intervention has a questionable efficacy, or on the contrary it is believed to be so beneficial that it would be malevolent to put people in the control group (ex. randomizing people to receiving an operation).
  • In cases where interventions act on a group of people in a given location , it becomes difficult to adequately randomize subjects (ex. an intervention that reduces pollution in a given area).
  • When working with small sample sizes , as randomized controlled trials require a large sample size to account for heterogeneity among subjects (i.e. to evenly distribute confounding variables between the intervention and control groups).

Further reading

  • Statistical Software Popularity in 40,582 Research Papers
  • Checking the Popularity of 125 Statistical Tests and Models
  • Objectives of Epidemiology (With Examples)
  • 12 Famous Epidemiologists and Why

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 7: Nonexperimental Research

Quasi-Experimental Research

Learning Objectives

  • Explain what quasi-experimental research is and distinguish it clearly from both experimental and correlational research.
  • Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one.

The prefix  quasi  means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979). [1] Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem. But because participants are not randomly assigned—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between correlational studies and true experiments.

Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones here.

Nonequivalent Groups Design

Recall that when participants in a between-subjects experiment are randomly assigned to conditions, the resulting groups are likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be nonequivalent. A  nonequivalent groups design , then, is a between-subjects design in which participants have not been randomly assigned to conditions.

Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a control group consisting of another class of third-grade students. This design would be a nonequivalent groups design because the students are not randomly assigned to classes by the researcher, which means there could be important differences between them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments, might be very different and might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might have been caused by any of these confounding variables.

Of course, researchers using a nonequivalent groups design can take steps to ensure that their groups are as similar as possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of other important confounding variables that the researcher was not able to control.

Pretest-Posttest Design

In a  pretest-posttest design , the dependent variable is measured once before the treatment is implemented and once after it is implemented. Imagine, for example, a researcher who is interested in the effectiveness of an antidrug education program on elementary school students’ attitudes toward illegal drugs. The researcher could measure the attitudes of students at a particular elementary school during one week, implement the antidrug program during the next week, and finally, measure their attitudes again the following week. The pretest-posttest design is much like a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. It is unlike a within-subjects experiment, however, in that the order of conditions is not counterbalanced because it typically is not possible for a participant to be tested in the treatment condition first and then in an “untreated” control condition.

If the average posttest score is better than the average pretest score, then it makes sense to conclude that the treatment might be responsible for the improvement. Unfortunately, one often cannot conclude this with a high degree of certainty because there may be other explanations for why the posttest scores are better. One category of alternative explanations goes under the name of  history . Other things might have happened between the pretest and the posttest. Perhaps an antidrug program aired on television and many of the students watched it, or perhaps a celebrity died of a drug overdose and many of the students heard about it. Another category of alternative explanations goes under the name of  maturation . Participants might have changed between the pretest and the posttest in ways that they were going to anyway because they are growing and learning. If it were a yearlong program, participants might become less impulsive or better reasoners and this might be responsible for the change.

Another alternative explanation for a change in the dependent variable in a pretest-posttest design is  regression to the mean . This refers to the statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion. For example, a bowler with a long-term average of 150 who suddenly bowls a 220 will almost certainly score lower in the next game. Her score will “regress” toward her mean score of 150. Regression to the mean can be a problem when participants are selected for further study  because  of their extreme scores. Imagine, for example, that only students who scored especially low on a test of fractions are given a special training program and then retested. Regression to the mean all but guarantees that their scores will be higher even if the training program has no effect. A closely related concept—and an extremely important one in psychological research—is  spontaneous remission . This is the tendency for many medical and psychological problems to improve over time without any form of treatment. The common cold is a good example. If one were to measure symptom severity in 100 common cold sufferers today, give them a bowl of chicken soup every day, and then measure their symptom severity again in a week, they would probably be much improved. This does not mean that the chicken soup was responsible for the improvement, however, because they would have been much improved without any treatment at all. The same is true of many psychological problems. A group of severely depressed people today is likely to be less depressed on average in 6 months. In reviewing the results of several studies of treatments for depression, researchers Michael Posternak and Ivan Miller found that participants in waitlist control conditions improved an average of 10 to 15% before they received any treatment at all (Posternak & Miller, 2001) [2] . Thus one must generally be very cautious about inferring causality from pretest-posttest designs.

Does Psychotherapy Work?

Early studies on the effectiveness of psychotherapy tended to use pretest-posttest designs. In a classic 1952 article, researcher Hans Eysenck summarized the results of 24 such studies showing that about two thirds of patients improved between the pretest and the posttest (Eysenck, 1952) [3] . But Eysenck also compared these results with archival data from state hospital and insurance company records showing that similar patients recovered at about the same rate  without  receiving psychotherapy. This parallel suggested to Eysenck that the improvement that patients showed in the pretest-posttest studies might be no more than spontaneous remission. Note that Eysenck did not conclude that psychotherapy was ineffective. He merely concluded that there was no evidence that it was, and he wrote of “the necessity of properly planned and executed experimental studies into this important field” (p. 323). You can read the entire article here: Classics in the History of Psychology .

Fortunately, many other researchers took up Eysenck’s challenge, and by 1980 hundreds of experiments had been conducted in which participants were randomly assigned to treatment and control conditions, and the results were summarized in a classic book by Mary Lee Smith, Gene Glass, and Thomas Miller (Smith, Glass, & Miller, 1980) [4] . They found that overall psychotherapy was quite effective, with about 80% of treatment participants improving more than the average control participant. Subsequent research has focused more on the conditions under which different types of psychotherapy are more or less effective.

Interrupted Time Series Design

A variant of the pretest-posttest design is the  interrupted time-series design . A time series is a set of measurements taken at intervals over a period of time. For example, a manufacturing company might measure its workers’ productivity each week for a year. In an interrupted time series-design, a time series like this one is “interrupted” by a treatment. In one classic example, the treatment was the reduction of the work shifts in a factory from 10 hours to 8 hours (Cook & Campbell, 1979) [5] . Because productivity increased rather quickly after the shortening of the work shifts, and because it remained elevated for many months afterward, the researcher concluded that the shortening of the shifts caused the increase in productivity. Notice that the interrupted time-series design is like a pretest-posttest design in that it includes measurements of the dependent variable both before and after the treatment. It is unlike the pretest-posttest design, however, in that it includes multiple pretest and posttest measurements.

Figure 7.3 shows data from a hypothetical interrupted time-series study. The dependent variable is the number of student absences per week in a research methods course. The treatment is that the instructor begins publicly taking attendance each day so that students know that the instructor is aware of who is present and who is absent. The top panel of  Figure 7.3 shows how the data might look if this treatment worked. There is a consistently high number of absences before the treatment, and there is an immediate and sustained drop in absences after the treatment. The bottom panel of  Figure 7.3 shows how the data might look if this treatment did not work. On average, the number of absences after the treatment is about the same as the number before. This figure also illustrates an advantage of the interrupted time-series design over a simpler pretest-posttest design. If there had been only one measurement of absences before the treatment at Week 7 and one afterward at Week 8, then it would have looked as though the treatment were responsible for the reduction. The multiple measurements both before and after the treatment suggest that the reduction between Weeks 7 and 8 is nothing more than normal week-to-week variation.

Image description available

Combination Designs

A type of quasi-experimental design that is generally better than either the nonequivalent groups design or the pretest-posttest design is one that combines elements of both. There is a treatment group that is given a pretest, receives a treatment, and then is given a posttest. But at the same time there is a control group that is given a pretest, does  not  receive the treatment, and then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve but whether they improve  more  than participants who do not receive the treatment.

Imagine, for example, that students in one school are given a pretest on their attitudes toward drugs, then are exposed to an antidrug program, and finally are given a posttest. Students in a similar school are given the pretest, not exposed to an antidrug program, and finally are given a posttest. Again, if students in the treatment condition become more negative toward drugs, this change in attitude could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of the treatment, then students in the treatment condition should become more negative than students in the control condition. But if it is a matter of history (e.g., news of a celebrity drug overdose) or maturation (e.g., improved reasoning), then students in the two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a student drug overdose), so students at the first school would be affected by it while students at the other school would not.

Finally, if participants in this kind of design are randomly assigned to conditions, it becomes a true experiment rather than a quasi experiment. In fact, it is the kind of experiment that Eysenck called for—and that has now been conducted many times—to demonstrate the effectiveness of psychotherapy.

Key Takeaways

  • Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.
  • Quasi-experimental research eliminates the directionality problem because it involves the manipulation of the independent variable. It does not eliminate the problem of confounding variables, however, because it does not involve random assignment to conditions. For these reasons, quasi-experimental research is generally higher in internal validity than correlational studies but lower than true experiments.
  • Practice: Imagine that two professors decide to test the effect of giving daily quizzes on student performance in a statistics course. They decide that Professor A will give quizzes but Professor B will not. They will then compare the performance of students in their two sections on a common final exam. List five other variables that might differ between the two sections that could affect the results.
  • regression to the mean
  • spontaneous remission

Image Descriptions

Figure 7.3 image description: Two line graphs charting the number of absences per week over 14 weeks. The first 7 weeks are without treatment and the last 7 weeks are with treatment. In the first line graph, there are between 4 to 8 absences each week. After the treatment, the absences drop to 0 to 3 each week, which suggests the treatment worked. In the second line graph, there is no noticeable change in the number of absences per week after the treatment, which suggests the treatment did not work. [Return to Figure 7.3]

  • Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin. ↵
  • Posternak, M. A., & Miller, I. (2001). Untreated short-term course of major depression: A meta-analysis of studies using outcomes from studies using wait-list control groups. Journal of Affective Disorders, 66 , 139–146. ↵
  • Eysenck, H. J. (1952). The effects of psychotherapy: An evaluation. Journal of Consulting Psychology, 16 , 319–324. ↵
  • Smith, M. L., Glass, G. V., & Miller, T. I. (1980). The benefits of psychotherapy . Baltimore, MD: Johns Hopkins University Press. ↵

A between-subjects design in which participants have not been randomly assigned to conditions.

The dependent variable is measured once before the treatment is implemented and once after it is implemented.

A category of alternative explanations for differences between scores such as events that happened between the pretest and posttest, unrelated to the study.

An alternative explanation that refers to how the participants might have changed between the pretest and posttest in ways that they were going to anyway because they are growing and learning.

The statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion.

The tendency for many medical and psychological problems to improve over time without any form of treatment.

A set of measurements taken at intervals over a period of time that are interrupted by a treatment.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

what is a quasi experimental variable

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Am Med Inform Assoc
  • v.13(1); Jan-Feb 2006

The Use and Interpretation of Quasi-Experimental Studies in Medical Informatics

Associated data.

Quasi-experimental study designs, often described as nonrandomized, pre-post intervention studies, are common in the medical informatics literature. Yet little has been written about the benefits and limitations of the quasi-experimental approach as applied to informatics studies. This paper outlines a relative hierarchy and nomenclature of quasi-experimental study designs that is applicable to medical informatics intervention studies. In addition, the authors performed a systematic review of two medical informatics journals, the Journal of the American Medical Informatics Association (JAMIA) and the International Journal of Medical Informatics (IJMI), to determine the number of quasi-experimental studies published and how the studies are classified on the above-mentioned relative hierarchy. They hope that future medical informatics studies will implement higher level quasi-experimental study designs that yield more convincing evidence for causal links between medical informatics interventions and outcomes.

Quasi-experimental studies encompass a broad range of nonrandomized intervention studies. These designs are frequently used when it is not logistically feasible or ethical to conduct a randomized controlled trial. Examples of quasi-experimental studies follow. As one example of a quasi-experimental study, a hospital introduces a new order-entry system and wishes to study the impact of this intervention on the number of medication-related adverse events before and after the intervention. As another example, an informatics technology group is introducing a pharmacy order-entry system aimed at decreasing pharmacy costs. The intervention is implemented and pharmacy costs before and after the intervention are measured.

In medical informatics, the quasi-experimental, sometimes called the pre-post intervention, design often is used to evaluate the benefits of specific interventions. The increasing capacity of health care institutions to collect routine clinical data has led to the growing use of quasi-experimental study designs in the field of medical informatics as well as in other medical disciplines. However, little is written about these study designs in the medical literature or in traditional epidemiology textbooks. 1 , 2 , 3 In contrast, the social sciences literature is replete with examples of ways to implement and improve quasi-experimental studies. 4 , 5 , 6

In this paper, we review the different pretest-posttest quasi-experimental study designs, their nomenclature, and the relative hierarchy of these designs with respect to their ability to establish causal associations between an intervention and an outcome. The example of a pharmacy order-entry system aimed at decreasing pharmacy costs will be used throughout this article to illustrate the different quasi-experimental designs. We discuss limitations of quasi-experimental designs and offer methods to improve them. We also perform a systematic review of four years of publications from two informatics journals to determine the number of quasi-experimental studies, classify these studies into their application domains, determine whether the potential limitations of quasi-experimental studies were acknowledged by the authors, and place these studies into the above-mentioned relative hierarchy.

The authors reviewed articles and book chapters on the design of quasi-experimental studies. 4 , 5 , 6 , 7 , 8 , 9 , 10 Most of the reviewed articles referenced two textbooks that were then reviewed in depth. 4 , 6

Key advantages and disadvantages of quasi-experimental studies, as they pertain to the study of medical informatics, were identified. The potential methodological flaws of quasi-experimental medical informatics studies, which have the potential to introduce bias, were also identified. In addition, a summary table outlining a relative hierarchy and nomenclature of quasi-experimental study designs is described. In general, the higher the design is in the hierarchy, the greater the internal validity that the study traditionally possesses because the evidence of the potential causation between the intervention and the outcome is strengthened. 4

We then performed a systematic review of four years of publications from two informatics journals. First, we determined the number of quasi-experimental studies. We then classified these studies on the above-mentioned hierarchy. We also classified the quasi-experimental studies according to their application domain. The categories of application domains employed were based on categorization used by Yearbooks of Medical Informatics 1992–2005 and were similar to the categories of application domains employed by Annual Symposiums of the American Medical Informatics Association. 11 The categories were (1) health and clinical management; (2) patient records; (3) health information systems; (4) medical signal processing and biomedical imaging; (5) decision support, knowledge representation, and management; (6) education and consumer informatics; and (7) bioinformatics. Because the quasi-experimental study design has recognized limitations, we sought to determine whether authors acknowledged the potential limitations of this design. Examples of acknowledgment included mention of lack of randomization, the potential for regression to the mean, the presence of temporal confounders and the mention of another design that would have more internal validity.

All original scientific manuscripts published between January 2000 and December 2003 in the Journal of the American Medical Informatics Association (JAMIA) and the International Journal of Medical Informatics (IJMI) were reviewed. One author (ADH) reviewed all the papers to identify the number of quasi-experimental studies. Other authors (ADH, JCM, JF) then independently reviewed all the studies identified as quasi-experimental. The three authors then convened as a group to resolve any disagreements in study classification, application domain, and acknowledgment of limitations.

Results and Discussion

What is a quasi-experiment.

Quasi-experiments are studies that aim to evaluate interventions but that do not use randomization. Similar to randomized trials, quasi-experiments aim to demonstrate causality between an intervention and an outcome. Quasi-experimental studies can use both preintervention and postintervention measurements as well as nonrandomly selected control groups.

Using this basic definition, it is evident that many published studies in medical informatics utilize the quasi-experimental design. Although the randomized controlled trial is generally considered to have the highest level of credibility with regard to assessing causality, in medical informatics, researchers often choose not to randomize the intervention for one or more reasons: (1) ethical considerations, (2) difficulty of randomizing subjects, (3) difficulty to randomize by locations (e.g., by wards), (4) small available sample size. Each of these reasons is discussed below.

Ethical considerations typically will not allow random withholding of an intervention with known efficacy. Thus, if the efficacy of an intervention has not been established, a randomized controlled trial is the design of choice to determine efficacy. But if the intervention under study incorporates an accepted, well-established therapeutic intervention, or if the intervention has either questionable efficacy or safety based on previously conducted studies, then the ethical issues of randomizing patients are sometimes raised. In the area of medical informatics, it is often believed prior to an implementation that an informatics intervention will likely be beneficial and thus medical informaticians and hospital administrators are often reluctant to randomize medical informatics interventions. In addition, there is often pressure to implement the intervention quickly because of its believed efficacy, thus not allowing researchers sufficient time to plan a randomized trial.

For medical informatics interventions, it is often difficult to randomize the intervention to individual patients or to individual informatics users. So while this randomization is technically possible, it is underused and thus compromises the eventual strength of concluding that an informatics intervention resulted in an outcome. For example, randomly allowing only half of medical residents to use pharmacy order-entry software at a tertiary care hospital is a scenario that hospital administrators and informatics users may not agree to for numerous reasons.

Similarly, informatics interventions often cannot be randomized to individual locations. Using the pharmacy order-entry system example, it may be difficult to randomize use of the system to only certain locations in a hospital or portions of certain locations. For example, if the pharmacy order-entry system involves an educational component, then people may apply the knowledge learned to nonintervention wards, thereby potentially masking the true effect of the intervention. When a design using randomized locations is employed successfully, the locations may be different in other respects (confounding variables), and this further complicates the analysis and interpretation.

In situations where it is known that only a small sample size will be available to test the efficacy of an intervention, randomization may not be a viable option. Randomization is beneficial because on average it tends to evenly distribute both known and unknown confounding variables between the intervention and control group. However, when the sample size is small, randomization may not adequately accomplish this balance. Thus, alternative design and analytical methods are often used in place of randomization when only small sample sizes are available.

What Are the Threats to Establishing Causality When Using Quasi-experimental Designs in Medical Informatics?

The lack of random assignment is the major weakness of the quasi-experimental study design. Associations identified in quasi-experiments meet one important requirement of causality since the intervention precedes the measurement of the outcome. Another requirement is that the outcome can be demonstrated to vary statistically with the intervention. Unfortunately, statistical association does not imply causality, especially if the study is poorly designed. Thus, in many quasi-experiments, one is most often left with the question: “Are there alternative explanations for the apparent causal association?” If these alternative explanations are credible, then the evidence of causation is less convincing. These rival hypotheses, or alternative explanations, arise from principles of epidemiologic study design.

Shadish et al. 4 outline nine threats to internal validity that are outlined in ▶ . Internal validity is defined as the degree to which observed changes in outcomes can be correctly inferred to be caused by an exposure or an intervention. In quasi-experimental studies of medical informatics, we believe that the methodological principles that most often result in alternative explanations for the apparent causal effect include (a) difficulty in measuring or controlling for important confounding variables, particularly unmeasured confounding variables, which can be viewed as a subset of the selection threat in ▶ ; (b) results being explained by the statistical principle of regression to the mean . Each of these latter two principles is discussed in turn.

Threats to Internal Validity

1. Ambiguous temporal precedence: Lack of clarity about whether intervention occurred before outcome
2. Selection: Systematic differences over conditions in respondent characteristics that could also cause the observed effect
3. History: Events occurring concurrently with intervention could cause the observed effect
4. Maturation: Naturally occurring changes over time could be confused with a treatment effect
5. Regression: When units are selected for their extreme scores, they will often have less extreme subsequent scores, an occurrence that can be confused with an intervention effect
6. Attrition: Loss of respondents can produce artifactual effects if that loss is correlated with intervention
7. Testing: Exposure to a test can affect scores on subsequent exposures to that test
8. Instrumentation: The nature of a measurement may change over time or conditions
9. Interactive effects: The impact of an intervention may depend on the level of another intervention

Adapted from Shadish et al. 4

An inability to sufficiently control for important confounding variables arises from the lack of randomization. A variable is a confounding variable if it is associated with the exposure of interest and is also associated with the outcome of interest; the confounding variable leads to a situation where a causal association between a given exposure and an outcome is observed as a result of the influence of the confounding variable. For example, in a study aiming to demonstrate that the introduction of a pharmacy order-entry system led to lower pharmacy costs, there are a number of important potential confounding variables (e.g., severity of illness of the patients, knowledge and experience of the software users, other changes in hospital policy) that may have differed in the preintervention and postintervention time periods ( ▶ ). In a multivariable regression, the first confounding variable could be addressed with severity of illness measures, but the second confounding variable would be difficult if not nearly impossible to measure and control. In addition, potential confounding variables that are unmeasured or immeasurable cannot be controlled for in nonrandomized quasi-experimental study designs and can only be properly controlled by the randomization process in randomized controlled trials.

An external file that holds a picture, illustration, etc.
Object name is 16f01.jpg

Example of confounding. To get the true effect of the intervention of interest, we need to control for the confounding variable.

Another important threat to establishing causality is regression to the mean. 12 , 13 , 14 This widespread statistical phenomenon can result in wrongly concluding that an effect is due to the intervention when in reality it is due to chance. The phenomenon was first described in 1886 by Francis Galton who measured the adult height of children and their parents. He noted that when the average height of the parents was greater than the mean of the population, the children tended to be shorter than their parents, and conversely, when the average height of the parents was shorter than the population mean, the children tended to be taller than their parents.

In medical informatics, what often triggers the development and implementation of an intervention is a rise in the rate above the mean or norm. For example, increasing pharmacy costs and adverse events may prompt hospital informatics personnel to design and implement pharmacy order-entry systems. If this rise in costs or adverse events is really just an extreme observation that is still within the normal range of the hospital's pharmaceutical costs (i.e., the mean pharmaceutical cost for the hospital has not shifted), then the statistical principle of regression to the mean predicts that these elevated rates will tend to decline even without intervention. However, often informatics personnel and hospital administrators cannot wait passively for this decline to occur. Therefore, hospital personnel often implement one or more interventions, and if a decline in the rate occurs, they may mistakenly conclude that the decline is causally related to the intervention. In fact, an alternative explanation for the finding could be regression to the mean.

What Are the Different Quasi-experimental Study Designs?

In the social sciences literature, quasi-experimental studies are divided into four study design groups 4 , 6 :

  • Quasi-experimental designs without control groups
  • Quasi-experimental designs that use control groups but no pretest
  • Quasi-experimental designs that use control groups and pretests
  • Interrupted time-series designs

There is a relative hierarchy within these categories of study designs, with category D studies being sounder than categories C, B, or A in terms of establishing causality. Thus, if feasible from a design and implementation point of view, investigators should aim to design studies that fall in to the higher rated categories. Shadish et al. 4 discuss 17 possible designs, with seven designs falling into category A, three designs in category B, and six designs in category C, and one major design in category D. In our review, we determined that most medical informatics quasi-experiments could be characterized by 11 of 17 designs, with six study designs in category A, one in category B, three designs in category C, and one design in category D because the other study designs were not used or feasible in the medical informatics literature. Thus, for simplicity, we have summarized the 11 study designs most relevant to medical informatics research in ▶ .

Relative Hierarchy of Quasi-experimental Designs

Quasi-experimental Study DesignsDesign Notation
A. Quasi-experimental designs without control groups
    1. The one-group posttest-only designX O1
    2. The one-group pretest-posttest designO1 X O2
    3. The one-group pretest-posttest design using a double pretestO1 O2 X O3
    4. The one-group pretest-posttest design using a nonequivalent dependent variable(O1a, O1b) X (O2a, O2b)
    5. The removed-treatment designO1 X O2 O3 removeX O4
    6. The repeated-treatment designO1 X O2 removeX O3 X O4
B. Quasi-experimental designs that use a control group but no pretest
    1. Posttest-only design with nonequivalent groupsIntervention group: X O1
Control group: O2
C. Quasi-experimental designs that use control groups and pretests
    1. Untreated control group with dependent pretest and posttest samplesIntervention group: O1a X O2a
Control group: O1b O2b
    2. Untreated control group design with dependent pretest and posttest samples using a double pretestIntervention group: O1a O2a X O3a
Control group: O1b O2b O3b
    3. Untreated control group design with dependent pretest and posttest samples using switching replicationsIntervention group: O1a X O2a O3a
Control group: O1b O2b X O3b
D. Interrupted time-series design
    1. Multiple pretest and posttest observations spaced at equal intervals of timeO1 O2 O3 O4 O5 X O6 O7 O8 O9 O10

O = Observational Measurement; X = Intervention Under Study. Time moves from left to right.

The nomenclature and relative hierarchy were used in the systematic review of four years of JAMIA and the IJMI. Similar to the relative hierarchy that exists in the evidence-based literature that assigns a hierarchy to randomized controlled trials, cohort studies, case-control studies, and case series, the hierarchy in ▶ is not absolute in that in some cases, it may be infeasible to perform a higher level study. For example, there may be instances where an A6 design established stronger causality than a B1 design. 15 , 16 , 17

Quasi-experimental Designs without Control Groups

equation M1

Here, X is the intervention and O is the outcome variable (this notation is continued throughout the article). In this study design, an intervention (X) is implemented and a posttest observation (O1) is taken. For example, X could be the introduction of a pharmacy order-entry intervention and O1 could be the pharmacy costs following the intervention. This design is the weakest of the quasi-experimental designs that are discussed in this article. Without any pretest observations or a control group, there are multiple threats to internal validity. Unfortunately, this study design is often used in medical informatics when new software is introduced since it may be difficult to have pretest measurements due to time, technical, or cost constraints.

equation M2

This is a commonly used study design. A single pretest measurement is taken (O1), an intervention (X) is implemented, and a posttest measurement is taken (O2). In this instance, period O1 frequently serves as the “control” period. For example, O1 could be pharmacy costs prior to the intervention, X could be the introduction of a pharmacy order-entry system, and O2 could be the pharmacy costs following the intervention. Including a pretest provides some information about what the pharmacy costs would have been had the intervention not occurred.

equation M3

The advantage of this study design over A2 is that adding a second pretest prior to the intervention helps provide evidence that can be used to refute the phenomenon of regression to the mean and confounding as alternative explanations for any observed association between the intervention and the posttest outcome. For example, in a study where a pharmacy order-entry system led to lower pharmacy costs (O3 < O2 and O1), if one had two preintervention measurements of pharmacy costs (O1 and O2) and they were both elevated, this would suggest that there was a decreased likelihood that O3 is lower due to confounding and regression to the mean. Similarly, extending this study design by increasing the number of measurements postintervention could also help to provide evidence against confounding and regression to the mean as alternate explanations for observed associations.

equation M4

This design involves the inclusion of a nonequivalent dependent variable ( b ) in addition to the primary dependent variable ( a ). Variables a and b should assess similar constructs; that is, the two measures should be affected by similar factors and confounding variables except for the effect of the intervention. Variable a is expected to change because of the intervention X, whereas variable b is not. Taking our example, variable a could be pharmacy costs and variable b could be the length of stay of patients. If our informatics intervention is aimed at decreasing pharmacy costs, we would expect to observe a decrease in pharmacy costs but not in the average length of stay of patients. However, a number of important confounding variables, such as severity of illness and knowledge of software users, might affect both outcome measures. Thus, if the average length of stay did not change following the intervention but pharmacy costs did, then the data are more convincing than if just pharmacy costs were measured.

The Removed-Treatment Design

equation M5

This design adds a third posttest measurement (O3) to the one-group pretest-posttest design and then removes the intervention before a final measure (O4) is made. The advantage of this design is that it allows one to test hypotheses about the outcome in the presence of the intervention and in the absence of the intervention. Thus, if one predicts a decrease in the outcome between O1 and O2 (after implementation of the intervention), then one would predict an increase in the outcome between O3 and O4 (after removal of the intervention). One caveat is that if the intervention is thought to have persistent effects, then O4 needs to be measured after these effects are likely to have disappeared. For example, a study would be more convincing if it demonstrated that pharmacy costs decreased after pharmacy order-entry system introduction (O2 and O3 less than O1) and that when the order-entry system was removed or disabled, the costs increased (O4 greater than O2 and O3 and closer to O1). In addition, there are often ethical issues in this design in terms of removing an intervention that may be providing benefit.

The Repeated-Treatment Design

equation M6

The advantage of this design is that it demonstrates reproducibility of the association between the intervention and the outcome. For example, the association is more likely to be causal if one demonstrates that a pharmacy order-entry system results in decreased pharmacy costs when it is first introduced and again when it is reintroduced following an interruption of the intervention. As for design A5, the assumption must be made that the effect of the intervention is transient, which is most often applicable to medical informatics interventions. Because in this design, subjects may serve as their own controls, this may yield greater statistical efficiency with fewer numbers of subjects.

Quasi-experimental Designs That Use a Control Group but No Pretest

equation M7

An intervention X is implemented for one group and compared to a second group. The use of a comparison group helps prevent certain threats to validity including the ability to statistically adjust for confounding variables. Because in this study design, the two groups may not be equivalent (assignment to the groups is not by randomization), confounding may exist. For example, suppose that a pharmacy order-entry intervention was instituted in the medical intensive care unit (MICU) and not the surgical intensive care unit (SICU). O1 would be pharmacy costs in the MICU after the intervention and O2 would be pharmacy costs in the SICU after the intervention. The absence of a pretest makes it difficult to know whether a change has occurred in the MICU. Also, the absence of pretest measurements comparing the SICU to the MICU makes it difficult to know whether differences in O1 and O2 are due to the intervention or due to other differences in the two units (confounding variables).

Quasi-experimental Designs That Use Control Groups and Pretests

The reader should note that with all the studies in this category, the intervention is not randomized. The control groups chosen are comparison groups. Obtaining pretest measurements on both the intervention and control groups allows one to assess the initial comparability of the groups. The assumption is that if the intervention and the control groups are similar at the pretest, the smaller the likelihood there is of important confounding variables differing between the two groups.

equation M8

The use of both a pretest and a comparison group makes it easier to avoid certain threats to validity. However, because the two groups are nonequivalent (assignment to the groups is not by randomization), selection bias may exist. Selection bias exists when selection results in differences in unit characteristics between conditions that may be related to outcome differences. For example, suppose that a pharmacy order-entry intervention was instituted in the MICU and not the SICU. If preintervention pharmacy costs in the MICU (O1a) and SICU (O1b) are similar, it suggests that it is less likely that there are differences in the important confounding variables between the two units. If MICU postintervention costs (O2a) are less than preintervention MICU costs (O1a), but SICU costs (O1b) and (O2b) are similar, this suggests that the observed outcome may be causally related to the intervention.

equation M9

In this design, the pretests are administered at two different times. The main advantage of this design is that it controls for potentially different time-varying confounding effects in the intervention group and the comparison group. In our example, measuring points O1 and O2 would allow for the assessment of time-dependent changes in pharmacy costs, e.g., due to differences in experience of residents, preintervention between the intervention and control group, and whether these changes were similar or different.

equation M10

With this study design, the researcher administers an intervention at a later time to a group that initially served as a nonintervention control. The advantage of this design over design C2 is that it demonstrates reproducibility in two different settings. This study design is not limited to two groups; in fact, the study results have greater validity if the intervention effect is replicated in different groups at multiple times. In the example of a pharmacy order-entry system, one could implement or intervene in the MICU and then at a later time, intervene in the SICU. This latter design is often very applicable to medical informatics where new technology and new software is often introduced or made available gradually.

Interrupted Time-Series Designs

equation M11

An interrupted time-series design is one in which a string of consecutive observations equally spaced in time is interrupted by the imposition of a treatment or intervention. The advantage of this design is that with multiple measurements both pre- and postintervention, it is easier to address and control for confounding and regression to the mean. In addition, statistically, there is a more robust analytic capability, and there is the ability to detect changes in the slope or intercept as a result of the intervention in addition to a change in the mean values. 18 A change in intercept could represent an immediate effect while a change in slope could represent a gradual effect of the intervention on the outcome. In the example of a pharmacy order-entry system, O1 through O5 could represent monthly pharmacy costs preintervention and O6 through O10 monthly pharmacy costs post the introduction of the pharmacy order-entry system. Interrupted time-series designs also can be further strengthened by incorporating many of the design features previously mentioned in other categories (such as removal of the treatment, inclusion of a nondependent outcome variable, or the addition of a control group).

Systematic Review Results

The results of the systematic review are in ▶ . In the four-year period of JAMIA publications that the authors reviewed, 25 quasi-experimental studies among 22 articles were published. Of these 25, 15 studies were of category A, five studies were of category B, two studies were of category C, and no studies were of category D. Although there were no studies of category D (interrupted time-series analyses), three of the studies classified as category A had data collected that could have been analyzed as an interrupted time-series analysis. Nine of the 25 studies (36%) mentioned at least one of the potential limitations of the quasi-experimental study design. In the four-year period of IJMI publications reviewed by the authors, nine quasi-experimental studies among eight manuscripts were published. Of these nine, five studies were of category A, one of category B, one of category C, and two of category D. Two of the nine studies (22%) mentioned at least one of the potential limitations of the quasi-experimental study design.

Systematic Review of Four Years of Quasi-designs in JAMIA

StudyJournalInformatics Topic CategoryQuasi-experimental DesignLimitation of Quasi-design Mentioned in Article
Staggers and Kobus JAMIA1Counterbalanced study designYes
Schriger et al. JAMIA1A5Yes
Patel et al. JAMIA2A5 (study 1, phase 1)No
Patel et al. JAMIA2A2 (study 1, phase 2)No
Borowitz JAMIA1A2No
Patterson and Harasym JAMIA6C1Yes
Rocha et al. JAMIA5A2Yes
Lovis et al. JAMIA1Counterbalanced study designNo
Hersh et al. JAMIA6B1No
Makoul et al. JAMIA2B1Yes
Ruland JAMIA3B1No
DeLusignan et al. JAMIA1A1No
Mekhjian et al. JAMIA1A2 (study design 1)Yes
Mekhjian et al. JAMIA1B1 (study design 2)Yes
Ammenwerth et al. JAMIA1A2No
Oniki et al. JAMIA5C1Yes
Liederman and Morefield JAMIA1A1 (study 1)No
Liederman and Morefield JAMIA1A2 (study 2)No
Rotich et al. JAMIA2A2 No
Payne et al. JAMIA1A1No
Hoch et al. JAMIA3A2 No
Laerum et al. JAMIA1B1Yes
Devine et al. JAMIA1Counterbalanced study design
Dunbar et al. JAMIA6A1
Lenert et al. JAMIA6A2
Koide et al. IJMI5D4No
Gonzalez-Hendrich et al. IJMI2A1No
Anantharaman and Swee Han IJMI3B1No
Chae et al. IJMI6A2No
Lin et al. IJMI3A1No
Mikulich et al. IJMI1A2Yes
Hwang et al. IJMI1A2Yes
Park et al. IJMI1C2No
Park et al. IJMI1D4No

JAMIA = Journal of the American Medical Informatics Association; IJMI = International Journal of Medical Informatics.

In addition, three studies from JAMIA were based on a counterbalanced design. A counterbalanced design is a higher order study design than other studies in category A. The counterbalanced design is sometimes referred to as a Latin-square arrangement. In this design, all subjects receive all the different interventions but the order of intervention assignment is not random. 19 This design can only be used when the intervention is compared against some existing standard, for example, if a new PDA-based order entry system is to be compared to a computer terminal–based order entry system. In this design, all subjects receive the new PDA-based order entry system and the old computer terminal-based order entry system. The counterbalanced design is a within-participants design, where the order of the intervention is varied (e.g., one group is given software A followed by software B and another group is given software B followed by software A). The counterbalanced design is typically used when the available sample size is small, thus preventing the use of randomization. This design also allows investigators to study the potential effect of ordering of the informatics intervention.

Although quasi-experimental study designs are ubiquitous in the medical informatics literature, as evidenced by 34 studies in the past four years of the two informatics journals, little has been written about the benefits and limitations of the quasi-experimental approach. As we have outlined in this paper, a relative hierarchy and nomenclature of quasi-experimental study designs exist, with some designs being more likely than others to permit causal interpretations of observed associations. Strengths and limitations of a particular study design should be discussed when presenting data collected in the setting of a quasi-experimental study. Future medical informatics investigators should choose the strongest design that is feasible given the particular circumstances.

Supplementary Material

Dr. Harris was supported by NIH grants K23 AI01752-01A1 and R01 AI60859-01A1. Dr. Perencevich was supported by a VA Health Services Research and Development Service (HSR&D) Research Career Development Award (RCD-02026-1). Dr. Finkelstein was supported by NIH grant RO1 HL71690.

what is a quasi experimental variable

  • Voxco Online
  • Voxco Panel Management
  • Voxco Panel Portal
  • Voxco Audience
  • Voxco Mobile Offline
  • Voxco Dialer Cloud
  • Voxco Dialer On-premise
  • Voxco TCPA Connect
  • Voxco Analytics
  • Voxco Text & Sentiment Analysis

what is a quasi experimental variable

  • 40+ question types
  • Drag-and-drop interface
  • Skip logic and branching
  • Multi-lingual survey
  • Text piping
  • Question library
  • CSS customization
  • White-label surveys
  • Customizable ‘Thank You’ page
  • Customizable survey theme
  • Reminder send-outs
  • Survey rewards
  • Social media
  • Website surveys
  • Correlation analysis
  • Cross-tabulation analysis
  • Trend analysis
  • Real-time dashboard
  • Customizable report
  • Email address validation
  • Recaptcha validation
  • SSL security

Take a peek at our powerful survey features to design surveys that scale discoveries.

Download feature sheet.

  • Hospitality
  • Academic Research
  • Customer Experience
  • Employee Experience
  • Product Experience
  • Market Research
  • Social Research
  • Data Analysis

Explore Voxco 

Need to map Voxco’s features & offerings? We can help!

Watch a Demo 

Download Brochures 

Get a Quote

  • NPS Calculator
  • CES Calculator
  • A/B Testing Calculator
  • Margin of Error Calculator
  • Sample Size Calculator
  • CX Strategy & Management Hub
  • Market Research Hub
  • Patient Experience Hub
  • Employee Experience Hub
  • NPS Knowledge Hub
  • Market Research Guide
  • Customer Experience Guide
  • Survey Research Guides
  • Survey Template Library
  • Webinars and Events
  • Feature Sheets
  • Try a sample survey
  • Professional Services

what is a quasi experimental variable

Get exclusive insights into research trends and best practices from top experts! Access Voxco’s ‘State of Research Report 2024 edition’ .

We’ve been avid users of the Voxco platform now for over 20 years. It gives us the flexibility to routinely enhance our survey toolkit and provides our clients with a more robust dataset and story to tell their clients.

VP Innovation & Strategic Partnerships, The Logit Group

  • Client Stories
  • Voxco Reviews
  • Why Voxco Research?
  • Careers at Voxco
  • Vulnerabilities and Ethical Hacking

Explore Regional Offices

  • Survey Software The world’s leading omnichannel survey software
  • Online Survey Tools Create sophisticated surveys with ease.
  • Mobile Offline Conduct efficient field surveys.
  • Text Analysis
  • Close The Loop
  • Automated Translations
  • NPS Dashboard
  • CATI Manage high volume phone surveys efficiently
  • Cloud/On-premise Dialer TCPA compliant Cloud on-premise dialer
  • IVR Survey Software Boost productivity with automated call workflows.
  • Analytics Analyze survey data with visual dashboards
  • Panel Manager Nurture a loyal community of respondents.
  • Survey Portal Best-in-class user friendly survey portal.
  • Voxco Audience Conduct targeted sample research in hours.

Predictive Analytics

  • Customer 360
  • Customer Loyalty
  • Fraud & Risk Management
  • AI/ML Enablement Services
  • Credit Underwriting

what is a quasi experimental variable

Find the best survey software for you! (Along with a checklist to compare platforms)

Get Buyer’s Guide

  • 100+ question types
  • SMS surveys
  • Financial Services
  • Banking & Financial Services
  • Retail Solution
  • Risk Management
  • Customer Lifecycle Solutions
  • Net Promoter Score
  • Customer Behaviour Analytics
  • Customer Segmentation
  • Data Unification

Explore Voxco 

Watch a Demo 

Download Brochures 

  • CX Strategy & Management Hub
  • The Voxco Guide to Customer Experience
  • Professional services
  • Blogs & White papers
  • Case Studies

Find the best customer experience platform

Uncover customer pain points, analyze feedback and run successful CX programs with the best CX platform for your team.

Get the Guide Now

what is a quasi experimental variable

VP Innovation & Strategic Partnerships, The Logit Group

  • Why Voxco Intelligence?
  • Our clients
  • Client stories
  • Featuresheets

Explaining Quasi-Experimental Design And Its Various Methods

  • September 27, 2021

SHARE THE ARTICLE ON

photo 1593642532871 8b12e02d091c L

 As you strive to uncover causal (cause-and-effect) relationships between variables, you may often encounter ethical or practical constraints while conducting controlled experiments. 

Quasi-experimental design steps in as a powerful alternative that helps you overcome these challenges and offer valuable insights. 

In this blog, we’ll look into its characteristics, examples, types, and how it differs from true-experimental research design. The purpose of this blog is to understand how this research methodology bridges the gap between a fully controlled experiment and a purely observational study.

What Is Quasi-Experimental Design?

A quasi-experimental design is pretty much different from an experimental design, except for the fact that they both manifest the cause-effect relationship between the independent and dependent variables . 

So, how is quasi-experimental design different? 

Well, unlike experimental design, quasi-experiments do not include random assignments of participants meaning, the participants are placed in the experimental groups based on some of the other criteria. Let us take a deeper look at how quasi-experimental design works.

Read how Voxco helped Modus Research increase research efficiency with Voxco Online, CATI, IVR, and panel systems.

Experimental design has three characteristics:, 1. manipulation.

Manipulation simply means evaluating the effect of the independent variable on the dependent variable. 

Example: A chocolate and a crying child.

  • Independent variable:  Type of chocolate. 
  • Dependent variable: The child is crying for chocolate.

So manipulation means the effect of an independent variable, that is, chocolate, on the dependent variable, that is, the crying child. In short, you are using an outside source on the dependent variable. This proves that after getting the chocolate (independent variable), the child stops crying (dependent variable).

2. Randomization

Randomization means sudden selection without any plan. Example: A lottery system. The lottery numbers are announced at random so everyone who buys a lottery has an equal chance. Hence, it means you select a sample without any plan and everyone has an equal chance of getting into any one of the experimental groups.

This means using a control group in the experiment. In this group, researchers keep the independent variable constant. This control group is then compared to a treatment group, where the researchers have changed the independent variable. Well, for obvious reasons, researchers are more interested in the treatment group as it has a scope of change in the dependent variable. 

Example: You want to find out whether the workers work more efficiently if there is a pay raise. 

Here, you will put certain workers in the treatment group and some in the control group.

  • Treatment group: You pay more to the workers
  • Control group: You don’t pay any extra to the workers, and things remain the same. 

By comparing these two groups, you understand that the workers who got paid more worked more efficiently than the workers who didn’t. 

As for the quasi-experimental design, the manipulation characteristic of the true experiment remains the same. However randomization or control characteristics are present in contrast to each other or none at all. 

Hence, these experiments are conducted where random selection is difficult or even impossible. The quasi-experiment does not include random assignment, as the independent variable is manipulated before the measurement of the dependent variable.

See how easily you can create, test, distribute, and design the surveys.

  • 50+ question types
  • Advanced logic 
  • White-label
  • Auto-translations in 100+ languages

What are the types of quasi-experimental design?

Amongst all the various types of quasi-experimental design, let us first get to know two main types of quasi-experimental design:

  • Non-equivalent group design (NEGD)
  • Regression discontinuity design

1. Non-Equivalent Group Design (NEGD)

You can picture non-equivalent group designs as a mixture of both true experimental design as well as quasi-experimental design. The reason is, that it uses both their qualities. Like a true experiment, NEGD uses the pre-existing groups that we feel are similar, namely treatment and control groups. However it lacks the randomization characteristic of a quasi-experiment. 

While grouping, researchers see to it that they are not influenced by any third variables or confounding variables. Hence, the groups are as similar as possible. For example, when talking about political study, we might select groups that are more similar to each other. 

Let us understand it with an example:

Take the previous example where you studied whether the workers work more efficiently if there is a pay rise. 

You give a pre-test to the workers in one company while their pay is normal. Then you put them under the treatment group where they work and their pay is being increased. After the experiment, you take their post-test about their experience and attitude towards their work. 

Later, you give the same pre-test to the workers from a similar company and put them in a control group where their pay is not raised, and then conduct a post-test. 

Hence, the Non-equivalent design has a name to remind us that the groups are not equivalent and are not assigned on a random practice. 

2. Regression discontinuity design or RDD

Regression discontinuity design, or RDD, is a quasi-experimental design technique that computes the influence of a treatment or intervention. It does so by using a mechanism that assigns the treatment based on eligibility, known as a “cut-off”.

So the participants above the cut-off get to be in a treatment group and those below the cut-off doesn’t. Although the difference between these two groups is negligible. 

Let’s take a look at an example:

A school wants to grant a $50 scholarship to students, depending on an independent test taken to measure their intellect and household. 

Those who pass the test will get a scholarship. However, the students who are just below the cut-off and those just above it can be considered similar. We can say the differences in their scores occurred randomly. Hence you can keep on studying both groups to get a long-term outcome.

One-stop-shop to gather, measure, uncover, and act on insightful data.

Curious About The Price? Click Below To Get A Personalized Quote.

What are the advantages of a quasi-experimental design?

The quasi-experiment design, also known as external validity, can be perfect for determining what is best for the population. Let’s look at some advantages of this research methodology type. 

  • It gives the researchers power over the variables by being able to control them.
  • The quasi-experiment method can be combined with other experimental methods too.
  • It provides transferability to a greater extent.
  • It is an intuitive process that is well-shaped by the researchers. 
  • Involves real-world problems and solutions and not any artificial ones. 
  • Offers better control over the third variable, known as the confounding variable, which influences the cause and effect. 

What are the disadvantages of a quasi-experimental design?

As a research design, it is bound to have some limitations, let’s look at some of the disadvantages you should consider when selecting the design for your research. 

  • It serves less internal validity than true experiments.
  • Due to no randomization, you cannot tell for sure that the confounding or third variable is eradicated. 
  • It has scope for human errors.
  • It can allow the researcher’s personal bias to get involved. 
  • Human responses are difficult to measure; hence, there is a chance that the results will be produced artificially.
  • Using old or backdated data can be incorrect and inadequate for the study.

New call-to-action

Other Quasi-Experimental Designs

Apart from the above-mentioned types, there are other equally important quasi-experimental designs that have different applications depending on their characteristics and their respective design notations . 

Let’s take a look at all of them in detail:

1. The proxy Pre-Test Design

The proxy pre-test design works the same as a typical pre-test and post-test design. Except, the pre-test here is conducted AFTER the treatment is given. Got confused? How is it pre-test if it is conducted after? Well, the keyword here is “proxy”. These proxy variables tell where the groups would have been in the pre-test. 

You ask the group after their program about how they’d have answered the same questions before their treatment. Although, this technique is not very reliable as we cannot expect the participants to remember how they felt a long time ago, and we surely cannot tell if they are faking their answers. 

As this design is highly not recommended, you can use this under some unavoidable circumstances like the treatment has already begun and you couldn’t take the pre-test. 

In such cases, this approach will help rather than depending totally on the post-test.

Quasi-experimental design: explanation, methods and FAQs Multi-lingual Survey

You want to study the workers’ performance after the pay rise. But you were called to do the pre-test after the program had started. In that case, you will have to take the post-test and study a proxy variable, such as productivity from the time before the program and after the program

2. The Separate Pre-Post Samples Design

This technique also works on the pre-test and post-test designs. The difference is that the participants you used for the pre-test won’t be the same for the post-test. 

Quasi-experimental design: explanation, methods and FAQs Multi-lingual Survey

You want to study the client satisfaction of two similar companies. You take one for the treatment and the other for the control. Let’s say you conducted a pre-test in both companies at the same time and then begin your experiment. 

After a while, when the program is complete, you go to take a post-test. Now, the set of clients you take in for the test is going to be different than the pre-test ones, the reason being clients change after the course of the period. 

In this case, you cannot derive one-to-one results, but you can tell the average client satisfaction in both companies. 

3. The Double Pre-Test Design

The double pre-test design is a very robust quasi-experimental design designed to rule out the internal validity problem we had with the non-equivalent design. It has two pre-tests before the program. It is when the two groups are progressing at a different pace that you should change from pre-test 1 to pre-test 2. 

Due to the benefit of two pre-tests, you can determine the null case scenario. It assumes the difference between the scores in the pre-test and post-test is due to random chance, as it doesn’t allow one person to take the pre-test twice.

4. The Switching Replications Design

In the switching replications design, as the name suggests, the role of the group is switched. It follows the same treatment-control group pattern, except it has two phases.

Phase 1: Both the groups are pre-tested, then they undergo their respective program. Later they are post-tested.

Phase 2: In this phase, an original treatment group is now a control group and an original control group is now a treatment group.

Quasi-experimental design: explanation, methods and FAQs Multi-lingual Survey

The main benefit of inculcating this design is that it proves strong against internal validation as well as external validation. The reason is that two parallel implementations of the program allow all the participants to experience the program, making it ethically strong as well.

5.The Non-equivalent Dependent Variables (NEDV) Design

NEDV design, in its simplest form, is not the most reliable one and does not work wonders against internal validity either. But then, what is the use of NEDV? 

Well, sometimes the treatment group may be affected by some external factors. Hence, there are two pre and post-tests applied to the participants, one regarding the treatment itself and the other regarding that external variable. 

Quasi-experimental design: explanation, methods and FAQs Multi-lingual Survey

Wait, how about we take an example to understand this?

Let us say you started a program to test history teaching techniques. You design standards tests for history (treatment group) and show historical movies (external variable). Later in the post-tests, you find out that along with the history scores, students’ interest in historical movies has also increased, suggesting that showing historical movies has influenced students to study the subject.

6. The regression Point Displacement (RPD) Design

RPD design is used when measures for already existing groups are available and can be compared with those for treatment groups. The treatment group is the only group present, and both pre-test and post-tests are conducted. 

This method is widely beneficial for larger groups, communities, and companies. RPD works by comparing a single program unit with a larger comparison unit.

Quasi-experimental design: explanation, methods and FAQs Multi-lingual Survey

Consider a community-based COVID awareness program. It has been decided to start the initiative in a particular town or a vast district. The representatives forecast the active cases in that town and use the remaining towns as a comparison. Now rather than giving the average for the rest of the towns’ COVID cases, they show their count.

Looking for World’s best Survey Platform?

Voxco is the leading survey software trusted by 450+ brands across 40+ countries., when to use a quasi-experimental design.

All that studying but shouldn’t you know when to perfectly use quasi-experiments? Well, now as we are to the end of the matter, let us discuss when to use quasi-experiments and for what reasons. 

1. For ethical reasons

Remember when we discussed the “willingness” of obese people to participate in the experiment? That is when ethics start to matter. You cannot go on putting random participants under treatments as you do with true experiments. 

Especially when it directly affects the participants’ lives. One of the best examples is Oregon Health Study where health insurance is given to certain people while others were restricted from it. 

2. For practical reasons

True experiments, despite having higher internal validity, can be expensive. Also, it requires enough participants so that the true experiment can be justified. Unlike that, in a quasi-experiment, you can use the already gathered data. 

The data is collected and paid by some strong entity, say the government, and you use that to study your questions. 

Well, that concludes our guide. If you’re looking for extensive research tools, Voxco offers a complete market research tool kit that includes market research trends, a guide to online surveys, an agile market research guide, and five market research templates.  

Also read: Experimental Research .

Market Research toolkit to start your market research surveys and studies.

Differences between quasi-experiments and true experiments

The above description is overwhelming? Don’t worry. Here is the straight difference between the quasi-experiments and true experiments so that you can understand how both vary from each other.

TRUE EXPERIMENT

QUASI EXPERIMENT

Participants are assigned randomly to the experimental groups.

Participants are not randomly assigned to the experimental groups.

Participants have an equal chance of getting into any of the experimental groups.

Participants are categorized and then put into a respective experimental group.

Researchers design the treatment participants will go through.

Researchers do not design a treatment.

There are no various groups of treatments.

Researchers study the existing groups of treatments received.

Includes control groups and treatment groups.

Does not necessarily require control groups, apart from the fact they are generally used.

It does not include a pre-test.

It includes a pre-test.

Example of true-experimental design:

While starting the true experiment, you assign some participants in the treatment group where they are fed only junk food. While the other half of the participants go to the control group , where they have their regular ongoing diet (standard course).

You decide to take obese people’s reports every day after their meals to note down their health and discomfort, if any.

However, participants who are assigned to the treatment group would not like to change their diet to complete junk food for personal reasons. In this case, you cannot conduct a true experiment against their will. This is when quasi-experiment comes in.

Example of quasi-experimental design:

While talking to the participants, you find out that some of the participants want to try the junk food effect while the others don’t want to experiment with their diet and choose to stick with a regular diet.

You can now assign already existing groups to the participants according to their choices. Study how the regular consumption of junk food affects the obese from that group. 

Here, you did not assign groups to the random participants and can be confident about the difference occurring due to the conducted experiment. 

High Performer in G2’s Winter Reports

Quasi-experimental design: explanation, methods and FAQs Multi-lingual Survey

Quasi-experimental design has a unique approach that allows you to uncover causal relationship between variables when controlled experiments are not feasible or ethical. While it may not posses the level of control and randomization that you have when performing true-experiment; quasi-experimental research design enables you to make meaningful contribution by providing valuable insights to various fields.

Explore Voxco Survey Software

+ Omnichannel Survey Software 

+ Online Survey Software 

+ CATI Survey Software 

+ IVR Survey Software 

+ Market Research Tool

+ Customer Experience Tool 

+ Product Experience Software 

+ Enterprise Survey Software 

Quasi-experimental design: explanation, methods and FAQs Multi-lingual Survey

Benefits of Multi-lingual Surveys

Benefits Of Multi-lingual Survey – Create Surveys for Non-English Speaking Customers SHARE THE ARTICLE ON Table of Contents You conduct surveys with the aim to

Call Center Coaching1

Predictive Analytics See what question types are possible with a sample survey! Try a Sample Survey Table of Contents 01 What is Predictive Analytics? Predictive

Understanding what Customers Value

Understanding what Customers Value SHARE THE ARTICLE ON Share on facebook Share on twitter Share on linkedin Table of Contents What is Customer Value? Customer

Tips to avoid Non response bias1

Tips to avoid Non-response Bias

Tips to avoid Non-response Bias BOOK A DEMO Voxco is trusted by 450+ Global Brands in 40+ countries See what question types are possible with

insurance care feature 400x250 1

CX marks the spot – Advancements in the Insurance Sector

Free Download: Generate customer journey insights using our customer experience templates.  Download Now CX Strategy & Management Hub TALK TO A CX EXPERT It can

ecommerce 2140603 1920 400x250 1

Retaining customers in the contactless era – why survey tools may be the answer

Digital purchases and online orders for home deliveries were already on the up and up long before the CoronaVirus made its presence felt. Social distancing

We use cookies in our website to give you the best browsing experience and to tailor advertising. By continuing to use our website, you give us consent to the use of cookies. Read More

Name Domain Purpose Expiry Type
hubspotutk www.voxco.com HubSpot functional cookie. 1 year HTTP
lhc_dir_locale amplifyreach.com --- 52 years ---
lhc_dirclass amplifyreach.com --- 52 years ---
Name Domain Purpose Expiry Type
_fbp www.voxco.com Facebook Pixel advertising first-party cookie 3 months HTTP
__hstc www.voxco.com Hubspot marketing platform cookie. 1 year HTTP
__hssrc www.voxco.com Hubspot marketing platform cookie. 52 years HTTP
__hssc www.voxco.com Hubspot marketing platform cookie. Session HTTP
Name Domain Purpose Expiry Type
_gid www.voxco.com Google Universal Analytics short-time unique user tracking identifier. 1 days HTTP
MUID bing.com Microsoft User Identifier tracking cookie used by Bing Ads. 1 year HTTP
MR bat.bing.com Microsoft User Identifier tracking cookie used by Bing Ads. 7 days HTTP
IDE doubleclick.net Google advertising cookie used for user tracking and ad targeting purposes. 2 years HTTP
_vwo_uuid_v2 www.voxco.com Generic Visual Website Optimizer (VWO) user tracking cookie. 1 year HTTP
_vis_opt_s www.voxco.com Generic Visual Website Optimizer (VWO) user tracking cookie that detects if the user is new or returning to a particular campaign. 3 months HTTP
_vis_opt_test_cookie www.voxco.com A session (temporary) cookie used by Generic Visual Website Optimizer (VWO) to detect if the cookies are enabled on the browser of the user or not. 52 years HTTP
_ga www.voxco.com Google Universal Analytics long-time unique user tracking identifier. 2 years HTTP
_uetsid www.voxco.com Microsoft Bing Ads Universal Event Tracking (UET) tracking cookie. 1 days HTTP
vuid vimeo.com Vimeo tracking cookie 2 years HTTP
Name Domain Purpose Expiry Type
__cf_bm hubspot.com Generic CloudFlare functional cookie. Session HTTP
Name Domain Purpose Expiry Type
_gcl_au www.voxco.com --- 3 months ---
_gat_gtag_UA_3262734_1 www.voxco.com --- Session ---
_clck www.voxco.com --- 1 year ---
_ga_HNFQQ528PZ www.voxco.com --- 2 years ---
_clsk www.voxco.com --- 1 days ---
visitor_id18452 pardot.com --- 10 years ---
visitor_id18452-hash pardot.com --- 10 years ---
lpv18452 pi.pardot.com --- Session ---
lhc_per www.voxco.com --- 6 months ---
_uetvid www.voxco.com --- 1 year ---

what is a quasi experimental variable

Summer is here, and so is the sale. Get a yearly plan with up to 65% off today! 🌴🌞

  • Form Builder
  • Survey Maker
  • AI Form Generator
  • AI Survey Tool
  • AI Quiz Maker
  • Store Builder
  • WordPress Plugin

what is a quasi experimental variable

HubSpot CRM

what is a quasi experimental variable

Google Sheets

what is a quasi experimental variable

Google Analytics

what is a quasi experimental variable

Microsoft Excel

what is a quasi experimental variable

  • Popular Forms
  • Job Application Form Template
  • Rental Application Form Template
  • Hotel Accommodation Form Template
  • Online Registration Form Template
  • Employment Application Form Template
  • Application Forms
  • Booking Forms
  • Consent Forms
  • Contact Forms
  • Donation Forms
  • Customer Satisfaction Surveys
  • Employee Satisfaction Surveys
  • Evaluation Surveys
  • Feedback Surveys
  • Market Research Surveys
  • Personality Quiz Template
  • Geography Quiz Template
  • Math Quiz Template
  • Science Quiz Template
  • Vocabulary Quiz Template

Try without registration Quick Start

Read engaging stories, how-to guides, learn about forms.app features.

Inspirational ready-to-use templates for getting started fast and powerful.

Spot-on guides on how to use forms.app and make the most out of it.

what is a quasi experimental variable

See the technical measures we take and learn how we keep your data safe and secure.

  • Integrations
  • Help Center
  • Sign In Sign Up Free
  • What is quasi-experimental research: Types & examples

What is quasi-experimental research: Types & examples

Defne Çobanoğlu

According to the Cambridge Dictionary, the word quasi is “used to show that something is almost, but not completely, the thing described.” And as the name suggests, quasi-experiments are almost experiments because of the way they are conducted. What actually differentiates this type of experiment from true experimental research is the way the subjects are divided.

In a true experiment, sample groups are assigned to an experimental group and to a treatment group randomly. However, there are some studies in which the use of random assignment would not be possible because that would be unethical or impractical. These studies follow a quasi-experimental research design. Let us see exactly what is a quasi-experimental design and give some examples.

  • The definition of quasi-experimental research

Quasi-experimental research is a type of experiment where the researcher does not randomly assigns subjects. Rather, unlike a true experiment, subjects are assigned to groups based on non-random criteria. The researchers may manipulate an independent variable and observe the effect on a dependent variable. However, they cannot randomly assign participants to the groups being studied. 

The reason for this could be a practicality issue or ethical rules, as you can not deliberately deprive someone of treatment or give them intentional harm. As a consequence, quasi-experimental research can suggest cause-and-effect relationships, but it can not do so with the confidence that true experimental research can.

What is quasi-experimental research?

What is quasi-experimental research?

  • Types of quasi-experimental research

Even though it is now quite clear that in quasi-experimental research, researchers do not randomly assign people to control or study groups. There are different aspects that let the experts divide people. These different types are called nonequivalent group design, regression discontinuity, and natural experiments. Here is an explanation of these types and some examples:

Types of quasi-experimental research

Nonequivalent groups design:

In true experimental research, the only variable that divides the two groups is the variable you want. However, in a quasi-experimental approach, the groups may have more than one difference as you can not study them and divide them equally and randomly. Therefore, this is the part where it makes this type nonequivalent. This is the most popular type as it is the one most fits the criteria.

Example of nonequivalent groups:

Let us say there is a new teaching method a school has implemented for its students. And, as a researcher, you want to know if this teaching method has a positive effect. As you can not divide the school in half as you would do in a true experimental design, you can go with pre-existing groups, such as choosing another school that does not implement this method.

Afterward, you can do the research and see if there is a major difference in the outcome of the success of students. However, as there are different confounding variables between the two groups, they could affect the outcomes. To minimize the differences, researchers would need to control for factors such as prior academic performance, student demographics, or teaching experience in their analysis.

Regression discontinuity:

Regression discontinuity means that the researcher does not randomly assign participants to a treatment and control group. Instead, this type of experiment relies on the presence of a natural threshold or dividing point . And only people above or below the threshold get treatment, while the other group does not. As the divide between the two groups is minimal, the differences between them would be minimal as well. Therefore, it provides a good starting point.

Example of regression discontinuity:

A good example of regression discontinuity would be researching the impact of giving financial aid to students who have more than a 3.0 GPA. Only the students whose scores are higher would receive financial aid, and students whose scores are just below 3.0 or similar would be included in the study as a second group. 

Afterward, the next step would be to compare the two group’s outcomes ( e.g., graduation rates, job placements, or incomes ) to estimate the effect of the financial aid program. This is a good example of quasi-experimental research design and how to conduct them without interfering much.

Natural experiments:

Normally, in a true experiment, researchers assign people to either a control group or a treatment group. Instead, a random or irregular assignment of patients to the treatment group takes place in a natural experiment as an external scenario (“nature”). Natural experiments are not qualified as actual experiments because they are observational.

Example of natural experiments:

A birth control shot will be made available to low-income villages in third-world countries. And a number of villages want to receive the treatment for free. However, there are not enough stocks to get to everyone. In that scenario, the experts can do a random lottery to distribute the medicine. 

Experts could investigate the program’s impact by utilizing enrolled villages as a treatment group and those who were qualified but did not get picked as an experimental group.

Applications of quasi-experimental research: When to use & how?

Although true experiments have a higher internal validity, sometimes it would be useful to conduct a quasi-experimental design for different reasons. As you can not deliberately withhold or provide some people with treatment, sometimes conducting an experimental study would be unethical . If there is a cure for an illness, you can not randomly assign people to receive the treatment or not. But, if there is a different reason why not everyone can get the same medicine, that gives you a place to start.

Secondly, conducting a true experiment could be unfeasible, too expensive, or too much work for it to be practical. If the researchers do not have enough funding or experimental subjects, a quasi-experiment could be helpful to do the research. And there are different approaches the researcher can take in an experiment like this.

Secondary Data Collection:

When doing any kind of research, it is a good way to start going through existing data, as someone may have done a similar study already. This can give you a pre-knowledge of what to expect. And it is quite an affordable option.

Online surveys:

Researchers can build online surveys to collect data from study participants in a short amount of time. They can also send periodic surveys to keep collecting data as time passes. It is a very effortless and affordable option, and the participants can answer questions anytime, anywhere.

  • Advantages and disadvantages of quasi-experimental research

Quasi-experimental designs have various pros and cons compared to other types of studies. It is up to the researchers and experts to decide whether to go with a true or quasi-experimental design. And it is important to remember that even though you want to have a true experiment, you can only do one for a variety of reasons. Now, let us go through some of the advantages and disadvantages.

✅Quasi-experimental designs often involve real-world situations instead of artificial laboratory settings, therefore, have higher external validity.

✅Higher internal validity than other non-experimental research types as this allows you to control for confounding variables better than other studies.

✅Because the control or comparison group participants are not randomized, the nonequivalent dependent variables in the research can be more controlled, targeted, and efficient.

✅Allows to make studies in areas where experimenting would be unethical or impractical.

✅When working on a tight budget, a quasi-experiment helps conclude without needing to pay as much for studies.

❌Lack of randomization makes it more challenging, or even impossible, to rule out confounding variables and their effect on the relationship that the research is about. 

❌The use of secondary data already collected for other purposes can be inaccurate, incomplete, or difficult to access.

❌Quasi-experimental studies aren’t as effective in establishing causality. 

❌Because a quasi-experimental design often borrows information from other experimental methods, there’s a chance that the data is not complete or accurate.

In conclusion, quasi-experimental is a type of experiment with its own advantages and disadvantages. It works as an option when doing a true experiment does not work because of different reasons. And online surveys and secondary data collection are good methods to go within this type of experiment. The best tool that can help with any research is forms.app!

forms.app is a great survey maker and is the helper everyone needs. It has more than 1000 ready-to-go templates and is very easy to use. You can check it out today and start doing your own research without any trouble!

Defne is a content writer at forms.app. She is also a translator specializing in literary translation. Defne loves reading, writing, and translating professionally and as a hobby. Her expertise lies in survey research, research methodologies, content writing, and translation.

  • Form Features
  • Data Collection

Table of Contents

  • Applications of quasi-experimental research: When to use & how?

Related Posts

20+ GDPR statistics you need to know in 2024

20+ GDPR statistics you need to know in 2024

Fatih Özkan

20+ Essential word of mouth (WOM) marketing statistics for 2024

20+ Essential word of mouth (WOM) marketing statistics for 2024

The best features to use for creating more customized online forms

The best features to use for creating more customized online forms

forms.app Team

Frequently asked questions

What is a quasi-experiment.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

Frequently asked questions: Methodology

Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Action research is conducted in order to solve a particular issue immediately, while case studies are often conducted over a longer period of time and focus more on observing and analyzing a particular ongoing phenomenon.

Action research is focused on solving a problem or informing individual and community-based knowledge in a way that impacts teaching, learning, and other related processes. It is less focused on contributing theoretical input, instead producing actionable input.

Action research is particularly popular with educators as a form of systematic inquiry because it prioritizes reflection and bridges the gap between theory and practice. Educators are able to simultaneously investigate an issue as they solve it, and the method is very iterative and flexible.

A cycle of inquiry is another name for action research . It is usually visualized in a spiral shape following a series of steps, such as “planning → acting → observing → reflecting.”

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analyzing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalizations —often the goal of quantitative research . As such, a snowball sample is not representative of the target population and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones.

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extramarital affairs)

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • Reproducing research entails reanalyzing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 
  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Purposive and convenience sampling are both sampling methods that are typically used in qualitative data collection.

A convenience sample is drawn from a source that is conveniently accessible to the researcher. Convenience sampling does not distinguish characteristics among the participants. On the other hand, purposive sampling focuses on selecting participants possessing characteristics associated with the research study.

The findings of studies based on either convenience or purposive sampling can only be generalized to the (sub)population from which the sample is drawn, and not to the entire population.

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection, using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

An observational study is a great choice for you if your research question is based purely on observations. If there are ethical, logistical, or practical concerns that prevent you from conducting a traditional experiment , an observational study may be a good choice. In an observational study, there is no interference or manipulation of the research subjects, as well as no control or treatment groups .

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity , and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity : The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviors of your research subjects in real world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as “people watching” with a purpose.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups. Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with “yes” or “no” (questions that start with “why” or “how” are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when: 

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyze your data quickly and efficiently.
  • Your research question depends on strong parity between participants, with environmental conditions held constant.

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias is the tendency for interview participants to give responses that will be viewed favorably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias can also occur in observations if the participants know they’re being observed. They might alter their behavior accordingly.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions.
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualize your initial thoughts and hypotheses.
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts.

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order. 
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalization : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalization: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Triangulation can help:

  • Reduce research bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labor-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analyzing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure. 

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field. It acts as a first defense, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

In general, the peer review process follows the following steps: 

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or 
  • Send it onward to the selected peer reviewer(s) 
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made. 
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research aims to explore the main aspects of an under-researched problem, while explanatory research aims to explain the causes and consequences of a well-defined problem.

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardization and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Every dataset requires different techniques to clean dirty data , but you need to address these issues in a systematic way. You focus on finding and resolving data points that don’t agree or fit with the rest of your dataset.

These data might be missing values, outliers, duplicate values, incorrectly formatted, or irrelevant. You’ll start with screening and diagnosing your data. Then, you’ll often standardize and accept or remove data to make your dataset consistent and valid.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimize or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyze, detect, modify, or remove “dirty” data to make your dataset “clean.” Data cleaning is also called data cleansing or data scrubbing.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

In multistage sampling , you can use probability or non-probability sampling methods .

For a probability sample, you have to conduct probability sampling at every stage.

You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analyzed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analyzed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualize your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analyzed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

No, the steepness or slope of the line isn’t related to the correlation coefficient value. The correlation coefficient only tells you how closely your data fit on a line, so two datasets with the same correlation coefficient can have very different slopes.

To find the slope of the line, you’ll need to perform a regression analysis .

Correlation coefficients always range between -1 and 1.

The sign of the coefficient tells you the direction of the relationship: a positive value means the variables change together in the same direction, while a negative value means they change together in opposite directions.

The absolute value of a number is equal to the number without its sign. The absolute value of a correlation coefficient tells you the magnitude of the correlation: the greater the absolute value, the stronger the correlation.

These are the assumptions your data must meet if you want to use Pearson’s r :

  • Both variables are on an interval or ratio level of measurement
  • Data from both variables follow normal distributions
  • Your data have no outliers
  • Your data is from a random or representative sample
  • You expect a linear relationship between the two variables

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or through mail. All questions are standardized so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

You can organize the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomization can minimize the bias from order effects.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

Correlation describes an association between variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables.

Causation means that changes in one variable brings about changes in the other (i.e., there is a cause-and-effect relationship between variables). The two variables are correlated with each other, and there’s also a causal link between them.

While causation and correlation can exist simultaneously, correlation does not imply causation. In other words, correlation is simply a relationship where A relates to B—but A doesn’t necessarily cause B to happen (or vice versa). Mistaking correlation for causation is a common error and can lead to false cause fallacy .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

Random error  is almost always present in scientific studies, even in highly controlled settings. While you can’t eradicate it completely, you can reduce random error by taking repeated measurements, using a large sample, and controlling extraneous variables .

You can avoid systematic error through careful design of your sampling , data collection , and analysis procedures. For example, use triangulation to measure your variables using multiple methods; regularly calibrate instruments or procedures; use random sampling and random assignment ; and apply masking (blinding) where possible.

Systematic error is generally a bigger problem in research.

With random error, multiple measurements will tend to cluster around the true value. When you’re collecting data from a large sample , the errors in different directions will cancel each other out.

Systematic errors are much more problematic because they can skew your data away from the true value. This can lead you to false conclusions ( Type I and II errors ) about the relationship between the variables you’re studying.

Random and systematic error are two types of measurement error.

Random error is a chance difference between the observed and true values of something (e.g., a researcher misreading a weighing scale records an incorrect measurement).

Systematic error is a consistent or proportional difference between the observed and true values of something (e.g., a miscalibrated scale consistently records weights as higher than they actually are).

On graphs, the explanatory variable is conventionally placed on the x-axis, while the response variable is placed on the y-axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

The term “ explanatory variable ” is sometimes preferred over “ independent variable ” because, in real world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so “explanatory variables” is a more appropriate term.

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

There are 4 main types of extraneous variables :

  • Demand characteristics : environmental cues that encourage participants to conform to researchers’ expectations.
  • Experimenter effects : unintentional actions by researchers that influence study outcomes.
  • Situational variables : environmental variables that alter participants’ behaviors.
  • Participant variables : any characteristic or aspect of a participant’s background that could affect study results.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

Advantages:

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes

Disadvantages:

  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.
  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a dice to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalizability of your results, while random assignment improves the internal validity of your study.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

“Controlling for a variable” means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

If something is a mediating variable :

  • It’s caused by the independent variable .
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 x 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

Blinding is important to reduce research bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behavior in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analyzing the data.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyze your data.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalization .

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control and randomization.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomization , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Using careful research design and sampling procedures can help you avoid sampling bias . Oversampling can be used to correct undercoverage bias .

Some common types of sampling bias include self-selection bias , nonresponse bias , undercoverage bias , survivorship bias , pre-screening or advertising bias, and healthy user bias.

Sampling bias is a threat to external validity – it limits the generalizability of your findings to a broader group of people.

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment and situation effect.

The two types of external validity are population validity (whether you can generalize to other groups of people) and ecological validity (whether you can generalize to other situations and settings).

The external validity of a study is the extent to which you can generalize your findings to different groups of people, situations, and measures.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyze behavior over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data is available for analysis; other times your research question may only require a cross-sectional study to answer it.

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a “cross-section”) in the population
Follows in participants over time Provides of society at a given point

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction and attrition .

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

I nternal validity is the degree of confidence that the causal relationship you are testing is not influenced by other factors or variables .

External validity is the extent to which your results can be generalized to other contexts.

The validity of your experiment depends on your experimental design .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

  • Data Science
  • Digital Marketing
  • DBA Courses
  • Machine Learning & AI
  • Product Management

Logo

Table of Contents

Quantitative research aims to quantify data and apply statistical analysis to explain a phenomenon, test hypotheses, or predict outcomes. It plays a significant role across disciplines in modeling human behavior and natural systems and using measurable, objective data. Based on analysis goals, there are four fundamental quantitative research types: descriptive, correlational, quasi-experimental, and experimental. Let’s demystify them in detail.

Descriptive Quantitative Research

As the name suggests, descriptive research describes specific characteristics of individuals, groups, systems, or environments using numerical data from sources like surveys, interviews, or observation techniques. Quantitative data and statistics help summarize large volumes of information to calculate frequencies, determine mean/median values, and find variability around them. Public opinion polls and census surveys are typical examples that provide valuable descriptive insights.

Correlational Quantitative Research

This research uses correlation analysis without deliberate intervention to explore statistical relationships between two or more variables. It studies naturally occurring data to discover patterns and correlations that may exist in areas like psychology, healthcare, and social sciences. For instance, correlational studies may determine connections between income level and health outcomes. Correlation does not necessarily indicate causation but offers clues on variables needing deeper investigation.

Quasi-Experimental Research

Unlike pure lab experiments, quasi-experimental research occurs in natural settings, but the researcher actively introduces an intervention to study participants. Comparison groups, before-after analysis, matched samples, and time series designs provide substantial control over variables. Market research frequently employs these techniques, like assessing a new app’s usage over time across similar customer segments. While not as rigorous as pure experiments, quasi-experiments have more real-world applicability.

Experimental Quantitative Research

Considered the gold standard, experiments exercise maximum control over all outcome variables. Researchers manipulate one or more independent variables to study the effect on a carefully selected dependent variable while eliminating external influences through randomization, controlled settings, and strict procedures. Experiments establish causal relationships and are common in medicine, psychology, and physics. Clinical trials for testing drug effects demonstrate the critical role of experimental research.

Quantitative Research Methodology

Quantitative research methodology systematically collects and analyzes numerical data to explain or validate theories and hypotheses. It relies on variables that can be measured and quantified to derive statistics like frequency, mean, and standard deviation that give insights into the phenomenon. Data collection methods are designed to maximize objectivity, reliability, and generalizability through surveys, controlled experiments, structured observation, etc. The quantitative data then undergoes statistical analysis to conclude, test claims, and generalize findings confidently with measurable evidence across larger populations. Adherence to rigorous quantitative methods lends credibility and validates the research.

Familiarity with these fundamental quantitative research approaches , their purposes, usage scenarios, and methodology is essential for research success across academic and professional domains.

What are the four main types of quantitative research designs?

The four fundamental quantitative research types are – descriptive, correlational, quasi-experimental, and experimental. They differ in critical aspects, such as the amount of researcher intervention, data collection settings, and analysis goals.

What kind of statistics are used in descriptive quantitative research?

Descriptive research relies on statistical analysis, such as determining frequencies, mean, median, mode values, variability, and percentage distributions, to summarize large volumes of data on individuals, groups, or environments.

How are quasi-experiments different from pure lab experiments?

While they study cause-effect relationships, quasi-experiments occur in natural settings instead of controlled lab environments. However, unlike correlational studies, which observe variables in their natural occurrence, quasi-experiments actively introduce an intervention. This provides more realism while exercising substantial control.

When is correlational research helpful?

Correlational research helps study trends, patterns, and relationships between variables in real-world contexts across disciplines like public health, psychology, business, etc. It serves as a preliminary research method to identify variables needing further analysis through experiments.

Anupriya Mukherjee

Dissertation vs Thesis: Which is Right for Graduate Studies

Why choose an integrated dual degree benefits and opportunities, networking strategies for dba professionals, title image box.

Add an Introductory Description to make your audience curious by simply setting an Excerpt on this section

Get Free Consultation

Most popular, quantitative market research methods: essential skills, editor picks, popular posts, popular category.

  • Doctorate of Business Administration 23
  • Coding & Blockchain 23
  • Machine Learning & AI 22
  • Data Science & Analytics 19
  • Management 15
  • Product and Project Management 12
  • Digital Marketing 5

Get Free career counselling from upGrad experts!

Book a session with an industry professional today!

© 2015-2021 upGrad Education Private Limited. All rights reserved

  • Data Science & Analytics
  • Doctorate of Business Administration
  • Product and Project Management

Grab your spot at the free arXiv Accessibility Forum

Help | Advanced Search

General Relativity and Quantum Cosmology

Title: a model independent approach to the study of structure growth in $f(r)$ gravity.

Abstract: Over the last decade, much attention has been given to the study of modified gravity theories to find a more natural explanation for the late-time acceleration of the Universe. Particular attention has focused on the so-called $f(R)$ dark energy models. Instead of focusing on a particular f(R) model, we present a completely model-independent approach to study the background dynamics and the growth of matter density perturbations for those f(R) models that mimic the $\Lambda$CDM evolution at the background level. We do this by characterising the dynamics of the gravitational field using a set of dimensionless variables and using cosmography to determine the expansion history. We then illustrate the integrity of this method by fixing the cosmography to be the same as an exact $\Lambda$CDM model, allowing us to test the solution. We compare the exact evolution of the density contrast and growth index with what one obtains from various levels of the quasi-static approximation, without choosing the form of $f(R)$ dark energy.
Comments: 25 pages, 14 figures
Subjects: General Relativity and Quantum Cosmology (gr-qc); Cosmology and Nongalactic Astrophysics (astro-ph.CO)
Cite as: [gr-qc]
  (or [gr-qc] for this version)
  Focus to learn more arXiv-issued DOI via DataCite (pending registration)

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • INSPIRE HEP
  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

IMAGES

  1. PPT

    what is a quasi experimental variable

  2. PPT

    what is a quasi experimental variable

  3. PPT

    what is a quasi experimental variable

  4. PPT

    what is a quasi experimental variable

  5. PPT

    what is a quasi experimental variable

  6. PPT

    what is a quasi experimental variable

COMMENTS

  1. Quasi-Experimental Design

    Revised on January 22, 2024. Like a true experiment, a quasi-experimental design aims to establish a cause-and-effect relationship between an independent and dependent variable. However, unlike a true experiment, a quasi-experiment does not rely on random assignment. Instead, subjects are assigned to groups based on non-random criteria.

  2. Quasi Experimental Design Overview & Examples

    A significant advantage of quasi-experimental research over purely observational studies and correlational research is that it addresses the issue of directionality, determining which variable is the cause and which is the effect. In quasi-experiments, an intervention typically occurs during the investigation, and the researchers record outcomes before and after it, increasing the confidence ...

  3. Quasi-experimental Research: What It Is, Types & Examples

    Quasi-experimental research designs are a type of research design that is similar to experimental designs but doesn't give full control over the independent variable (s) like true experimental designs do. In a quasi-experimental design, the researcher changes or watches an independent variable, but the participants are not put into groups at ...

  4. Quasi-experiment

    The first part of creating a quasi-experimental design is to identify the variables. The quasi-independent variable is the variable that is manipulated in order to affect a dependent variable. It is generally a grouping variable with different levels. Grouping means two or more groups, such as two groups receiving alternative treatments, or a treatment group and a no-treatment group (which may ...

  5. Quasi-Experimental Research Design

    Quasi-experimental design is a research method that seeks to evaluate the causal relationships between variables, but without the full control over the independent variable (s) that is available in a true experimental design. In a quasi-experimental design, the researcher uses an existing group of participants that is not randomly assigned to ...

  6. 7.3 Quasi-Experimental Research

    The prefix quasi means "resembling." Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979).

  7. Quasi-Experimental Design: Types, Examples, Pros, and Cons

    A quasi-experimental design can be a great option when ethical or practical concerns make true experiments impossible, but the research methodology does have its drawbacks. Learn all the ins and outs of a quasi-experimental design.

  8. Chapter 7 Quasi-Experimental Research

    The prefix quasi means "resembling." Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook et al., 1979).Because the independent variable is manipulated before the dependent variable is ...

  9. Quasi-Experimental Design: Definition, Types, Examples

    Quasi-experimental design is a research methodology used to study the effects of independent variables on dependent variables when full experimental control is not possible or ethical. It falls between controlled experiments, where variables are tightly controlled, and purely observational studies, where researchers have little control over ...

  10. Quasi-Experimental Design

    Quasi-Experimental Design. Quasi-Experimental Design is a unique research methodology because it is characterized by what is lacks. For example, Abraham & MacDonald (2011) state: " Quasi-experimental research is similar to experimental research in that there is manipulation of an independent variable. It differs from experimental research ...

  11. Quasi-Experiment: Understand What It Is, Types & Examples

    Quasi-experimental research designs play a vital role in scientific inquiry by allowing researchers to investigate cause-and-effect relationships in real-world settings. These designs offer practical and ethical alternatives to true experiments, making them valuable tools in various fields of study. With their versatility and applicability ...

  12. Quasi-Experimental Designs for Causal Inference

    The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This article introduces for each design the basic rationale, discusses the assumptions required for identifying a causal effect ...

  13. How to Use and Interpret Quasi-Experimental Design

    A quasi-experimental study (also known as a non-randomized pre-post intervention) is a research design in which the independent variable is manipulated, but participants are not randomly assigned to conditions. Commonly used in medical informatics (a field that uses digital information to ensure better patient care), researchers generally use ...

  14. An Introduction to Quasi-Experimental Design

    Quasi-experimental design (QED) is a research design method that's useful when regular experimental conditions are impractical or unethical. Both quasi-experimental designs and true experiments show a cause-and-effect relationship between a dependent and independent variable. Participants in a true experiment are randomly assigned to ...

  15. Quasi-Experimental Research: Types, Examples & Application

    Quasi-experimental research is a way of finding out if there's a cause-and-effect relationship between variables when true experiments are not possible because of practical or ethical constraints. For example, you want to know if a new medicine is effective for migraines. Instead of giving the medication to some people and not to others, you ...

  16. Experimental vs Quasi-Experimental Design: Which to Choose?

    A quasi-experimental design is a non-randomized study design used to evaluate the effect of an intervention. The intervention can be a training program, a policy change or a medical treatment. Unlike a true experiment, in a quasi-experimental study the choice of who gets the intervention and who doesn't is not randomized.

  17. Quasi-Experimental Research

    The prefix quasi means "resembling." Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979). [1] Because the independent variable is manipulated before the dependent variable ...

  18. The Use and Interpretation of Quasi-Experimental Studies in Medical

    In quasi-experimental studies of medical informatics, we believe that the methodological principles that most often result in alternative explanations for the apparent causal effect include (a) difficulty in measuring or controlling for important confounding variables, particularly unmeasured confounding variables, which can be viewed as a ...

  19. Quasi-experimental design: explanation, methods and FAQs

    Quasi-experimental design has a unique approach that allows you to uncover causal relationship between variables when controlled experiments are not feasible or ethical. While it may not posses the level of control and randomization that you have when performing true-experiment; quasi-experimental research design enables you to make meaningful ...

  20. What is quasi-experimental research: Types & examples

    Quasi-experimental research is a type of experiment where the researcher does not randomly assigns subjects. Rather, unlike a true experiment, subjects are assigned to groups based on non-random criteria. The researchers may manipulate an independent variable and observe the effect on a dependent variable.

  21. What is a quasi-experiment?

    The independent variable is the amount of nutrients added to the crop field. The dependent variable is the biomass of the crops at harvest time. Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design.

  22. PDF Quasi-Experimental Designs

    An experimental design is one in which participants are randomly assigned to levels of the independent variable. As we saw in our discussion of random assignment, experimental designs are preferred when the goal is to make cause-and-effect conclusions because they reduce the risk that the results could be due to a confounding variable.

  23. Quasi-Experiment in Psychology

    Quasi-experimental designs are used when the independent variable is such that random assignment cannot be used because it is related to some innate quality, such as race or gender.

  24. Exploring Key Types of Quantitative Research in Dept

    Quasi-Experimental Research. Unlike pure lab experiments, quasi-experimental research occurs in natural settings, but the researcher actively introduces an intervention to study participants. Comparison groups, before-after analysis, matched samples, and time series designs provide substantial control over variables.

  25. [2408.03998] A model independent approach to the study of structure

    We do this by characterising the dynamics of the gravitational field using a set of dimensionless variables and using cosmography to determine the expansion history. ... compare the exact evolution of the density contrast and growth index with what one obtains from various levels of the quasi-static approximation, without choosing the form of ...