artificial intelligence research paper

The Journal of Artificial Intelligence Research (JAIR) is dedicated to the rapid dissemination of important research results to the global artificial intelligence (AI) community. The journal’s scope encompasses all areas of AI, including agents and multi-agent systems, automated reasoning, constraint processing and search, knowledge representation, machine learning, natural language, planning and scheduling, robotics and vision, and uncertainty in AI.

Current Issue

Vol. 80 (2024)

Published: 2024-05-10

Individual Fairness, Base Rate Tracking and the Lipschitz Condition

Simulating counterfactuals, counting complexity for reasoning in abstract argumentation, robust average-reward reinforcement learning, using constraint propagation to bound linear programs, the toad system for totally ordered htn planning, methods for recovering conditional independence graphs: a survey, best of both worlds: agents with entitlements, computing unsatisfiable cores for ltlf specifications, general policies, subgoal structure, and planning width, mitigating value hallucination in dyna-style planning via multistep predecessor models, exploiting contextual target attributes for target sentiment classification, similarity-based adaptation for task-aware and task-free continual learning, scalable primal heuristics using graph neural networks for combinatorial optimization, on the trade-off between redundancy and cohesiveness in extractive summarization, understanding sample generation strategies for learning heuristic functions in classical planning, block domain knowledge-driven learning of chain graphs structure, expressing and exploiting subgoal structure in classical planning using sketches, effectiveness of tree-based ensembles for anomaly discovery: insights, batch and streaming active learning, experimental design of extractive question-answering systems: influence of error scores and answer length, estimating agent skill in continuous action domains, computing pareto-optimal and almost envy-free allocations of indivisible goods.

Help | Advanced Search

Computer Science > Computation and Language

Title: sparks of artificial general intelligence: early experiments with gpt-4.

Abstract: Artificial intelligence (AI) researchers have been developing and refining large language models (LLMs) that exhibit remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. The latest model developed by OpenAI, GPT-4, was trained using an unprecedented scale of compute and data. In this paper, we report on our investigation of an early version of GPT-4, when it was still in active development by OpenAI. We contend that (this early version of) GPT-4 is part of a new cohort of LLMs (along with ChatGPT and Google's PaLM for example) that exhibit more general intelligence than previous AI models. We discuss the rising capabilities and implications of these models. We demonstrate that, beyond its mastery of language, GPT-4 can solve novel and difficult tasks that span mathematics, coding, vision, medicine, law, psychology and more, without needing any special prompting. Moreover, in all of these tasks, GPT-4's performance is strikingly close to human-level performance, and often vastly surpasses prior models such as ChatGPT. Given the breadth and depth of GPT-4's capabilities, we believe that it could reasonably be viewed as an early (yet still incomplete) version of an artificial general intelligence (AGI) system. In our exploration of GPT-4, we put special emphasis on discovering its limitations, and we discuss the challenges ahead for advancing towards deeper and more comprehensive versions of AGI, including the possible need for pursuing a new paradigm that moves beyond next-word prediction. We conclude with reflections on societal influences of the recent technological leap and future research directions.
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)
Cite as: [cs.CL]
  (or [cs.CL] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

10 blog links

Bibtex formatted citation.

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

The present and future of AI

Finale doshi-velez on how ai is shaping our lives and how we can shape ai.

image of Finale Doshi-Velez, the John L. Loeb Professor of Engineering and Applied Sciences

Finale Doshi-Velez, the John L. Loeb Professor of Engineering and Applied Sciences. (Photo courtesy of Eliza Grinnell/Harvard SEAS)

How has artificial intelligence changed and shaped our world over the last five years? How will AI continue to impact our lives in the coming years? Those were the questions addressed in the most recent report from the One Hundred Year Study on Artificial Intelligence (AI100), an ongoing project hosted at Stanford University, that will study the status of AI technology and its impacts on the world over the next 100 years.

The 2021 report is the second in a series that will be released every five years until 2116. Titled “Gathering Strength, Gathering Storms,” the report explores the various ways AI is  increasingly touching people’s lives in settings that range from  movie recommendations  and  voice assistants  to  autonomous driving  and  automated medical diagnoses .

Barbara Grosz , the Higgins Research Professor of Natural Sciences at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) is a member of the standing committee overseeing the AI100 project and Finale Doshi-Velez , Gordon McKay Professor of Computer Science, is part of the panel of interdisciplinary researchers who wrote this year’s report. 

We spoke with Doshi-Velez about the report, what it says about the role AI is currently playing in our lives, and how it will change in the future.  

Q: Let's start with a snapshot: What is the current state of AI and its potential?

Doshi-Velez: Some of the biggest changes in the last five years have been how well AIs now perform in large data regimes on specific types of tasks.  We've seen [DeepMind’s] AlphaZero become the best Go player entirely through self-play, and everyday uses of AI such as grammar checks and autocomplete, automatic personal photo organization and search, and speech recognition become commonplace for large numbers of people.  

In terms of potential, I'm most excited about AIs that might augment and assist people.  They can be used to drive insights in drug discovery, help with decision making such as identifying a menu of likely treatment options for patients, and provide basic assistance, such as lane keeping while driving or text-to-speech based on images from a phone for the visually impaired.  In many situations, people and AIs have complementary strengths. I think we're getting closer to unlocking the potential of people and AI teams.

There's a much greater recognition that we should not be waiting for AI tools to become mainstream before making sure they are ethical.

Q: Over the course of 100 years, these reports will tell the story of AI and its evolving role in society. Even though there have only been two reports, what's the story so far?

There's actually a lot of change even in five years.  The first report is fairly rosy.  For example, it mentions how algorithmic risk assessments may mitigate the human biases of judges.  The second has a much more mixed view.  I think this comes from the fact that as AI tools have come into the mainstream — both in higher stakes and everyday settings — we are appropriately much less willing to tolerate flaws, especially discriminatory ones. There's also been questions of information and disinformation control as people get their news, social media, and entertainment via searches and rankings personalized to them. So, there's a much greater recognition that we should not be waiting for AI tools to become mainstream before making sure they are ethical.

Q: What is the responsibility of institutes of higher education in preparing students and the next generation of computer scientists for the future of AI and its impact on society?

First, I'll say that the need to understand the basics of AI and data science starts much earlier than higher education!  Children are being exposed to AIs as soon as they click on videos on YouTube or browse photo albums. They need to understand aspects of AI such as how their actions affect future recommendations.

But for computer science students in college, I think a key thing that future engineers need to realize is when to demand input and how to talk across disciplinary boundaries to get at often difficult-to-quantify notions of safety, equity, fairness, etc.  I'm really excited that Harvard has the Embedded EthiCS program to provide some of this education.  Of course, this is an addition to standard good engineering practices like building robust models, validating them, and so forth, which is all a bit harder with AI.

I think a key thing that future engineers need to realize is when to demand input and how to talk across disciplinary boundaries to get at often difficult-to-quantify notions of safety, equity, fairness, etc. 

Q: Your work focuses on machine learning with applications to healthcare, which is also an area of focus of this report. What is the state of AI in healthcare? 

A lot of AI in healthcare has been on the business end, used for optimizing billing, scheduling surgeries, that sort of thing.  When it comes to AI for better patient care, which is what we usually think about, there are few legal, regulatory, and financial incentives to do so, and many disincentives. Still, there's been slow but steady integration of AI-based tools, often in the form of risk scoring and alert systems.

In the near future, two applications that I'm really excited about are triage in low-resource settings — having AIs do initial reads of pathology slides, for example, if there are not enough pathologists, or get an initial check of whether a mole looks suspicious — and ways in which AIs can help identify promising treatment options for discussion with a clinician team and patient.

Q: Any predictions for the next report?

I'll be keen to see where currently nascent AI regulation initiatives have gotten to. Accountability is such a difficult question in AI,  it's tricky to nurture both innovation and basic protections.  Perhaps the most important innovation will be in approaches for AI accountability.

Topics: AI / Machine Learning , Computer Science

Cutting-edge science delivered direct to your inbox.

Join the Harvard SEAS mailing list.

Scientist Profiles

Finale Doshi-Velez

Finale Doshi-Velez

Herchel Smith Professor of Computer Science

Press Contact

Leah Burrows | 617-496-1351 | [email protected]

Related News

Power lines and electrical pylons stretch across a grassy field under a blue sky with scattered clouds.

Bringing GPT to the grid

The promise and limitations of large-language models in the energy sector

AI / Machine Learning , Computer Science

Harvard SEAS students Sudhan Chitgopkar, Noah Dohrmann, Stephanie Monson and Jimmy Mendez with a poster for their master's capstone projects

Master's student capstone spotlight: AI-Enabled Information Extraction for Investment Management

Extracting complicated data from long documents

Academics , AI / Machine Learning , Applied Computation , Computer Science , Industry

Harvard SEAS student Susannah Su with a poster for her master's student capstone project

Master's student capstone spotlight: AI-Assisted Frontline Negotiation

Speeding up document analysis ahead of negotiations

Academics , AI / Machine Learning , Applied Computation , Computer Science

American Psychological Association Logo

AI’s profound impact on the world

Psychological science can help minimize algorithmic biases and bring a human-centered perspective to safe and effective design

Arthur C. Evans, Jr., PhD BOD

Vol. 55 No. 5 Print version: page 12

  • Artificial Intelligence
  • Technology and Design

graphic of arms coming through laptop screens to shake hands

These days, artificial intelligence (AI) is a common topic of conversation with strong—but not always recognized—connections to psychology. These connections to psychology often fall into two broad categories, both of which require our field to be proactive and strategic.

First, AI will have a profound impact on every aspect of our field. Whether you provide mental health services, conduct research, teach, consult, or facilitate the application of psychological science in different settings, industries, or systems, AI will affect what we do and how we do it. We already see evidence of this disruption taking place around issues like scholarly publishing, complex statistical analyses, and the precision and efficiency of psychological assessment. The advancement of AI offers extraordinary opportunities for innovation, and we do not have the luxury of shying away. Instead, we must position ourselves to shape and evolve along with these technologies. We must demonstrate that, as a field, we serve in a wide range of important roles that can be supplemented—but not supplanted—by AI.

Additionally, psychological science can inform the development and use of AI. Every area of psychology can and should contribute—human factors, cognitive, social, developmental, and more. We can use our scientific understanding to help AI minimize algorithmic biases and bring a human-centered perspective to its safe and effective design. We have expertise on issues like ethics and the psychology of privacy to ensure that AI is promoting positive outcomes, not generating harm or fueling manipulation. This provides a tremendous opportunity to demonstrate the breadth of our field by fully engaging in this evolving topic, intentionally seeking out opportunities to apply our science and knowledge to AI, and elevating the invaluable role psychology plays.

As an association, APA is taking a multipronged approach to AI—both supporting the adaptation of our profession and discipline and infusing psychology into the global conversation. I hope you will help us embrace the unprecedented possibilities before us.

Arthur C. Evans Jr., PhD, is the chief executive officer of APA. You can follow him on LinkedIn.

Six Things Psychologists are Talking About

The APA Monitor on Psychology ® sister e-newsletter offers fresh articles on psychology trends, new research, and more.

Welcome! Thank you for subscribing.

Contact APA

Related and recent.

Advertisement

Advertisement

Machine Learning: Algorithms, Real-World Applications and Research Directions

  • Review Article
  • Published: 22 March 2021
  • Volume 2 , article number  160 , ( 2021 )

Cite this article

artificial intelligence research paper

  • Iqbal H. Sarker   ORCID: orcid.org/0000-0003-1740-5517 1 , 2  

537k Accesses

1565 Citations

31 Altmetric

Explore all metrics

In the current age of the Fourth Industrial Revolution (4 IR or Industry 4.0), the digital world has a wealth of data, such as Internet of Things (IoT) data, cybersecurity data, mobile data, business data, social media data, health data, etc. To intelligently analyze these data and develop the corresponding smart and automated  applications, the knowledge of artificial intelligence (AI), particularly, machine learning (ML) is the key. Various types of machine learning algorithms such as supervised, unsupervised, semi-supervised, and reinforcement learning exist in the area. Besides, the deep learning , which is part of a broader family of machine learning methods, can intelligently analyze the data on a large scale. In this paper, we present a comprehensive view on these machine learning algorithms that can be applied to enhance the intelligence and the capabilities of an application. Thus, this study’s key contribution is explaining the principles of different machine learning techniques and their applicability in various real-world application domains, such as cybersecurity systems, smart cities, healthcare, e-commerce, agriculture, and many more. We also highlight the challenges and potential research directions based on our study. Overall, this paper aims to serve as a reference point for both academia and industry professionals as well as for decision-makers in various real-world situations and application areas, particularly from the technical point of view.

Similar content being viewed by others

artificial intelligence research paper

Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions

artificial intelligence research paper

Machine learning and deep learning

artificial intelligence research paper

Artificial intelligence for waste management in smart cities: a review

Avoid common mistakes on your manuscript.

Introduction

We live in the age of data, where everything around us is connected to a data source, and everything in our lives is digitally recorded [ 21 , 103 ]. For instance, the current electronic world has a wealth of various kinds of data, such as the Internet of Things (IoT) data, cybersecurity data, smart city data, business data, smartphone data, social media data, health data, COVID-19 data, and many more. The data can be structured, semi-structured, or unstructured, discussed briefly in Sect. “ Types of Real-World Data and Machine Learning Techniques ”, which is increasing day-by-day. Extracting insights from these data can be used to build various intelligent applications in the relevant domains. For instance, to build a data-driven automated and intelligent cybersecurity system, the relevant cybersecurity data can be used [ 105 ]; to build personalized context-aware smart mobile applications, the relevant mobile data can be used [ 103 ], and so on. Thus, the data management tools and techniques having the capability of extracting insights or useful knowledge from the data in a timely and intelligent way is urgently needed, on which the real-world applications are based.

figure 1

The worldwide popularity score of various types of ML algorithms (supervised, unsupervised, semi-supervised, and reinforcement) in a range of 0 (min) to 100 (max) over time where x-axis represents the timestamp information and y-axis represents the corresponding score

Artificial intelligence (AI), particularly, machine learning (ML) have grown rapidly in recent years in the context of data analysis and computing that typically allows the applications to function in an intelligent manner [ 95 ]. ML usually provides systems with the ability to learn and enhance from experience automatically without being specifically programmed and is generally referred to as the most popular latest technologies in the fourth industrial revolution (4 IR or Industry 4.0) [ 103 , 105 ]. “Industry 4.0” [ 114 ] is typically the ongoing automation of conventional manufacturing and industrial practices, including exploratory data processing, using new smart technologies such as machine learning automation. Thus, to intelligently analyze these data and to develop the corresponding real-world applications, machine learning algorithms is the key. The learning algorithms can be categorized into four major types, such as supervised, unsupervised, semi-supervised, and reinforcement learning in the area [ 75 ], discussed briefly in Sect. “ Types of Real-World Data and Machine Learning Techniques ”. The popularity of these approaches to learning is increasing day-by-day, which is shown in Fig. 1 , based on data collected from Google Trends [ 4 ] over the last five years. The x - axis of the figure indicates the specific dates and the corresponding popularity score within the range of \(0 \; (minimum)\) to \(100 \; (maximum)\) has been shown in y - axis . According to Fig. 1 , the popularity indication values for these learning types are low in 2015 and are increasing day by day. These statistics motivate us to study on machine learning in this paper, which can play an important role in the real-world through Industry 4.0 automation.

In general, the effectiveness and the efficiency of a machine learning solution depend on the nature and characteristics of data and the performance of the learning algorithms . In the area of machine learning algorithms, classification analysis, regression, data clustering, feature engineering and dimensionality reduction, association rule learning, or reinforcement learning techniques exist to effectively build data-driven systems [ 41 , 125 ]. Besides, deep learning originated from the artificial neural network that can be used to intelligently analyze data, which is known as part of a wider family of machine learning approaches [ 96 ]. Thus, selecting a proper learning algorithm that is suitable for the target application in a particular domain is challenging. The reason is that the purpose of different learning algorithms is different, even the outcome of different learning algorithms in a similar category may vary depending on the data characteristics [ 106 ]. Thus, it is important to understand the principles of various machine learning algorithms and their applicability to apply in various real-world application areas, such as IoT systems, cybersecurity services, business and recommendation systems, smart cities, healthcare and COVID-19, context-aware systems, sustainable agriculture, and many more that are explained briefly in Sect. “ Applications of Machine Learning ”.

Based on the importance and potentiality of “Machine Learning” to analyze the data mentioned above, in this paper, we provide a comprehensive view on various types of machine learning algorithms that can be applied to enhance the intelligence and the capabilities of an application. Thus, the key contribution of this study is explaining the principles and potentiality of different machine learning techniques, and their applicability in various real-world application areas mentioned earlier. The purpose of this paper is, therefore, to provide a basic guide for those academia and industry people who want to study, research, and develop data-driven automated and intelligent systems in the relevant areas based on machine learning techniques.

The key contributions of this paper are listed as follows:

To define the scope of our study by taking into account the nature and characteristics of various types of real-world data and the capabilities of various learning techniques.

To provide a comprehensive view on machine learning algorithms that can be applied to enhance the intelligence and capabilities of a data-driven application.

To discuss the applicability of machine learning-based solutions in various real-world application domains.

To highlight and summarize the potential research directions within the scope of our study for intelligent data analysis and services.

The rest of the paper is organized as follows. The next section presents the types of data and machine learning algorithms in a broader sense and defines the scope of our study. We briefly discuss and explain different machine learning algorithms in the subsequent section followed by which various real-world application areas based on machine learning algorithms are discussed and summarized. In the penultimate section, we highlight several research issues and potential future directions, and the final section concludes this paper.

Types of Real-World Data and Machine Learning Techniques

Machine learning algorithms typically consume and process data to learn the related patterns about individuals, business processes, transactions, events, and so on. In the following, we discuss various types of real-world data as well as categories of machine learning algorithms.

Types of Real-World Data

Usually, the availability of data is considered as the key to construct a machine learning model or data-driven real-world systems [ 103 , 105 ]. Data can be of various forms, such as structured, semi-structured, or unstructured [ 41 , 72 ]. Besides, the “metadata” is another type that typically represents data about the data. In the following, we briefly discuss these types of data.

Structured: It has a well-defined structure, conforms to a data model following a standard order, which is highly organized and easily accessed, and used by an entity or a computer program. In well-defined schemes, such as relational databases, structured data are typically stored, i.e., in a tabular format. For instance, names, dates, addresses, credit card numbers, stock information, geolocation, etc. are examples of structured data.

Unstructured: On the other hand, there is no pre-defined format or organization for unstructured data, making it much more difficult to capture, process, and analyze, mostly containing text and multimedia material. For example, sensor data, emails, blog entries, wikis, and word processing documents, PDF files, audio files, videos, images, presentations, web pages, and many other types of business documents can be considered as unstructured data.

Semi-structured: Semi-structured data are not stored in a relational database like the structured data mentioned above, but it does have certain organizational properties that make it easier to analyze. HTML, XML, JSON documents, NoSQL databases, etc., are some examples of semi-structured data.

Metadata: It is not the normal form of data, but “data about data”. The primary difference between “data” and “metadata” is that data are simply the material that can classify, measure, or even document something relative to an organization’s data properties. On the other hand, metadata describes the relevant data information, giving it more significance for data users. A basic example of a document’s metadata might be the author, file size, date generated by the document, keywords to define the document, etc.

In the area of machine learning and data science, researchers use various widely used datasets for different purposes. These are, for example, cybersecurity datasets such as NSL-KDD [ 119 ], UNSW-NB15 [ 76 ], ISCX’12 [ 1 ], CIC-DDoS2019 [ 2 ], Bot-IoT [ 59 ], etc., smartphone datasets such as phone call logs [ 84 , 101 ], SMS Log [ 29 ], mobile application usages logs [ 137 ] [ 117 ], mobile phone notification logs [ 73 ] etc., IoT data [ 16 , 57 , 62 ], agriculture and e-commerce data [ 120 , 138 ], health data such as heart disease [ 92 ], diabetes mellitus [ 83 , 134 ], COVID-19 [ 43 , 74 ], etc., and many more in various application domains. The data can be in different types discussed above, which may vary from application to application in the real world. To analyze such data in a particular problem domain, and to extract the insights or useful knowledge from the data for building the real-world intelligent applications, different types of machine learning techniques can be used according to their learning capabilities, which is discussed in the following.

Types of Machine Learning Techniques

Machine Learning algorithms are mainly divided into four categories: Supervised learning, Unsupervised learning, Semi-supervised learning, and Reinforcement learning [ 75 ], as shown in Fig. 2 . In the following, we briefly discuss each type of learning technique with the scope of their applicability to solve real-world problems.

figure 2

Various types of machine learning techniques

Supervised: Supervised learning is typically the task of machine learning to learn a function that maps an input to an output based on sample input-output pairs [ 41 ]. It uses labeled training data and a collection of training examples to infer a function. Supervised learning is carried out when certain goals are identified to be accomplished from a certain set of inputs [ 105 ], i.e., a task-driven approach . The most common supervised tasks are “classification” that separates the data, and “regression” that fits the data. For instance, predicting the class label or sentiment of a piece of text, like a tweet or a product review, i.e., text classification, is an example of supervised learning.

Unsupervised: Unsupervised learning analyzes unlabeled datasets without the need for human interference, i.e., a data-driven process [ 41 ]. This is widely used for extracting generative features, identifying meaningful trends and structures, groupings in results, and exploratory purposes. The most common unsupervised learning tasks are clustering, density estimation, feature learning, dimensionality reduction, finding association rules, anomaly detection, etc.

Semi-supervised: Semi-supervised learning can be defined as a hybridization of the above-mentioned supervised and unsupervised methods, as it operates on both labeled and unlabeled data [ 41 , 105 ]. Thus, it falls between learning “without supervision” and learning “with supervision”. In the real world, labeled data could be rare in several contexts, and unlabeled data are numerous, where semi-supervised learning is useful [ 75 ]. The ultimate goal of a semi-supervised learning model is to provide a better outcome for prediction than that produced using the labeled data alone from the model. Some application areas where semi-supervised learning is used include machine translation, fraud detection, labeling data and text classification.

Reinforcement: Reinforcement learning is a type of machine learning algorithm that enables software agents and machines to automatically evaluate the optimal behavior in a particular context or environment to improve its efficiency [ 52 ], i.e., an environment-driven approach . This type of learning is based on reward or penalty, and its ultimate goal is to use insights obtained from environmental activists to take action to increase the reward or minimize the risk [ 75 ]. It is a powerful tool for training AI models that can help increase automation or optimize the operational efficiency of sophisticated systems such as robotics, autonomous driving tasks, manufacturing and supply chain logistics, however, not preferable to use it for solving the basic or straightforward problems.

Thus, to build effective models in various application areas different types of machine learning techniques can play a significant role according to their learning capabilities, depending on the nature of the data discussed earlier, and the target outcome. In Table 1 , we summarize various types of machine learning techniques with examples. In the following, we provide a comprehensive view of machine learning algorithms that can be applied to enhance the intelligence and capabilities of a data-driven application.

Machine Learning Tasks and Algorithms

In this section, we discuss various machine learning algorithms that include classification analysis, regression analysis, data clustering, association rule learning, feature engineering for dimensionality reduction, as well as deep learning methods. A general structure of a machine learning-based predictive model has been shown in Fig. 3 , where the model is trained from historical data in phase 1 and the outcome is generated in phase 2 for the new test data.

figure 3

A general structure of a machine learning based predictive model considering both the training and testing phase

Classification Analysis

Classification is regarded as a supervised learning method in machine learning, referring to a problem of predictive modeling as well, where a class label is predicted for a given example [ 41 ]. Mathematically, it maps a function ( f ) from input variables ( X ) to output variables ( Y ) as target, label or categories. To predict the class of given data points, it can be carried out on structured or unstructured data. For example, spam detection such as “spam” and “not spam” in email service providers can be a classification problem. In the following, we summarize the common classification problems.

Binary classification: It refers to the classification tasks having two class labels such as “true and false” or “yes and no” [ 41 ]. In such binary classification tasks, one class could be the normal state, while the abnormal state could be another class. For instance, “cancer not detected” is the normal state of a task that involves a medical test, and “cancer detected” could be considered as the abnormal state. Similarly, “spam” and “not spam” in the above example of email service providers are considered as binary classification.

Multiclass classification: Traditionally, this refers to those classification tasks having more than two class labels [ 41 ]. The multiclass classification does not have the principle of normal and abnormal outcomes, unlike binary classification tasks. Instead, within a range of specified classes, examples are classified as belonging to one. For example, it can be a multiclass classification task to classify various types of network attacks in the NSL-KDD [ 119 ] dataset, where the attack categories are classified into four class labels, such as DoS (Denial of Service Attack), U2R (User to Root Attack), R2L (Root to Local Attack), and Probing Attack.

Multi-label classification: In machine learning, multi-label classification is an important consideration where an example is associated with several classes or labels. Thus, it is a generalization of multiclass classification, where the classes involved in the problem are hierarchically structured, and each example may simultaneously belong to more than one class in each hierarchical level, e.g., multi-level text classification. For instance, Google news can be presented under the categories of a “city name”, “technology”, or “latest news”, etc. Multi-label classification includes advanced machine learning algorithms that support predicting various mutually non-exclusive classes or labels, unlike traditional classification tasks where class labels are mutually exclusive [ 82 ].

Many classification algorithms have been proposed in the machine learning and data science literature [ 41 , 125 ]. In the following, we summarize the most common and popular methods that are used widely in various application areas.

Naive Bayes (NB): The naive Bayes algorithm is based on the Bayes’ theorem with the assumption of independence between each pair of features [ 51 ]. It works well and can be used for both binary and multi-class categories in many real-world situations, such as document or text classification, spam filtering, etc. To effectively classify the noisy instances in the data and to construct a robust prediction model, the NB classifier can be used [ 94 ]. The key benefit is that, compared to more sophisticated approaches, it needs a small amount of training data to estimate the necessary parameters and quickly [ 82 ]. However, its performance may affect due to its strong assumptions on features independence. Gaussian, Multinomial, Complement, Bernoulli, and Categorical are the common variants of NB classifier [ 82 ].

Linear Discriminant Analysis (LDA): Linear Discriminant Analysis (LDA) is a linear decision boundary classifier created by fitting class conditional densities to data and applying Bayes’ rule [ 51 , 82 ]. This method is also known as a generalization of Fisher’s linear discriminant, which projects a given dataset into a lower-dimensional space, i.e., a reduction of dimensionality that minimizes the complexity of the model or reduces the resulting model’s computational costs. The standard LDA model usually suits each class with a Gaussian density, assuming that all classes share the same covariance matrix [ 82 ]. LDA is closely related to ANOVA (analysis of variance) and regression analysis, which seek to express one dependent variable as a linear combination of other features or measurements.

Logistic regression (LR): Another common probabilistic based statistical model used to solve classification issues in machine learning is Logistic Regression (LR) [ 64 ]. Logistic regression typically uses a logistic function to estimate the probabilities, which is also referred to as the mathematically defined sigmoid function in Eq. 1 . It can overfit high-dimensional datasets and works well when the dataset can be separated linearly. The regularization (L1 and L2) techniques [ 82 ] can be used to avoid over-fitting in such scenarios. The assumption of linearity between the dependent and independent variables is considered as a major drawback of Logistic Regression. It can be used for both classification and regression problems, but it is more commonly used for classification.

K-nearest neighbors (KNN): K-Nearest Neighbors (KNN) [ 9 ] is an “instance-based learning” or non-generalizing learning, also known as a “lazy learning” algorithm. It does not focus on constructing a general internal model; instead, it stores all instances corresponding to training data in n -dimensional space. KNN uses data and classifies new data points based on similarity measures (e.g., Euclidean distance function) [ 82 ]. Classification is computed from a simple majority vote of the k nearest neighbors of each point. It is quite robust to noisy training data, and accuracy depends on the data quality. The biggest issue with KNN is to choose the optimal number of neighbors to be considered. KNN can be used both for classification as well as regression.

Support vector machine (SVM): In machine learning, another common technique that can be used for classification, regression, or other tasks is a support vector machine (SVM) [ 56 ]. In high- or infinite-dimensional space, a support vector machine constructs a hyper-plane or set of hyper-planes. Intuitively, the hyper-plane, which has the greatest distance from the nearest training data points in any class, achieves a strong separation since, in general, the greater the margin, the lower the classifier’s generalization error. It is effective in high-dimensional spaces and can behave differently based on different mathematical functions known as the kernel. Linear, polynomial, radial basis function (RBF), sigmoid, etc., are the popular kernel functions used in SVM classifier [ 82 ]. However, when the data set contains more noise, such as overlapping target classes, SVM does not perform well.

Decision tree (DT): Decision tree (DT) [ 88 ] is a well-known non-parametric supervised learning method. DT learning methods are used for both the classification and regression tasks [ 82 ]. ID3 [ 87 ], C4.5 [ 88 ], and CART [ 20 ] are well known for DT algorithms. Moreover, recently proposed BehavDT [ 100 ], and IntrudTree [ 97 ] by Sarker et al. are effective in the relevant application domains, such as user behavior analytics and cybersecurity analytics, respectively. By sorting down the tree from the root to some leaf nodes, as shown in Fig. 4 , DT classifies the instances. Instances are classified by checking the attribute defined by that node, starting at the root node of the tree, and then moving down the tree branch corresponding to the attribute value. For splitting, the most popular criteria are “gini” for the Gini impurity and “entropy” for the information gain that can be expressed mathematically as [ 82 ].

figure 4

An example of a decision tree structure

figure 5

An example of a random forest structure considering multiple decision trees

Random forest (RF): A random forest classifier [ 19 ] is well known as an ensemble classification technique that is used in the field of machine learning and data science in various application areas. This method uses “parallel ensembling” which fits several decision tree classifiers in parallel, as shown in Fig. 5 , on different data set sub-samples and uses majority voting or averages for the outcome or final result. It thus minimizes the over-fitting problem and increases the prediction accuracy and control [ 82 ]. Therefore, the RF learning model with multiple decision trees is typically more accurate than a single decision tree based model [ 106 ]. To build a series of decision trees with controlled variation, it combines bootstrap aggregation (bagging) [ 18 ] and random feature selection [ 11 ]. It is adaptable to both classification and regression problems and fits well for both categorical and continuous values.

Adaptive Boosting (AdaBoost): Adaptive Boosting (AdaBoost) is an ensemble learning process that employs an iterative approach to improve poor classifiers by learning from their errors. This is developed by Yoav Freund et al. [ 35 ] and also known as “meta-learning”. Unlike the random forest that uses parallel ensembling, Adaboost uses “sequential ensembling”. It creates a powerful classifier by combining many poorly performing classifiers to obtain a good classifier of high accuracy. In that sense, AdaBoost is called an adaptive classifier by significantly improving the efficiency of the classifier, but in some instances, it can trigger overfits. AdaBoost is best used to boost the performance of decision trees, base estimator [ 82 ], on binary classification problems, however, is sensitive to noisy data and outliers.

Extreme gradient boosting (XGBoost): Gradient Boosting, like Random Forests [ 19 ] above, is an ensemble learning algorithm that generates a final model based on a series of individual models, typically decision trees. The gradient is used to minimize the loss function, similar to how neural networks [ 41 ] use gradient descent to optimize weights. Extreme Gradient Boosting (XGBoost) is a form of gradient boosting that takes more detailed approximations into account when determining the best model [ 82 ]. It computes second-order gradients of the loss function to minimize loss and advanced regularization (L1 and L2) [ 82 ], which reduces over-fitting, and improves model generalization and performance. XGBoost is fast to interpret and can handle large-sized datasets well.

Stochastic gradient descent (SGD): Stochastic gradient descent (SGD) [ 41 ] is an iterative method for optimizing an objective function with appropriate smoothness properties, where the word ‘stochastic’ refers to random probability. This reduces the computational burden, particularly in high-dimensional optimization problems, allowing for faster iterations in exchange for a lower convergence rate. A gradient is the slope of a function that calculates a variable’s degree of change in response to another variable’s changes. Mathematically, the Gradient Descent is a convex function whose output is a partial derivative of a set of its input parameters. Let, \(\alpha\) is the learning rate, and \(J_i\) is the training example cost of \(i \mathrm{th}\) , then Eq. ( 4 ) represents the stochastic gradient descent weight update method at the \(j^\mathrm{th}\) iteration. In large-scale and sparse machine learning, SGD has been successfully applied to problems often encountered in text classification and natural language processing [ 82 ]. However, SGD is sensitive to feature scaling and needs a range of hyperparameters, such as the regularization parameter and the number of iterations.

Rule-based classification : The term rule-based classification can be used to refer to any classification scheme that makes use of IF-THEN rules for class prediction. Several classification algorithms such as Zero-R [ 125 ], One-R [ 47 ], decision trees [ 87 , 88 ], DTNB [ 110 ], Ripple Down Rule learner (RIDOR) [ 125 ], Repeated Incremental Pruning to Produce Error Reduction (RIPPER) [ 126 ] exist with the ability of rule generation. The decision tree is one of the most common rule-based classification algorithms among these techniques because it has several advantages, such as being easier to interpret; the ability to handle high-dimensional data; simplicity and speed; good accuracy; and the capability to produce rules for human clear and understandable classification [ 127 ] [ 128 ]. The decision tree-based rules also provide significant accuracy in a prediction model for unseen test cases [ 106 ]. Since the rules are easily interpretable, these rule-based classifiers are often used to produce descriptive models that can describe a system including the entities and their relationships.

figure 6

Classification vs. regression. In classification the dotted line represents a linear boundary that separates the two classes; in regression, the dotted line models the linear relationship between the two variables

Regression Analysis

Regression analysis includes several methods of machine learning that allow to predict a continuous ( y ) result variable based on the value of one or more ( x ) predictor variables [ 41 ]. The most significant distinction between classification and regression is that classification predicts distinct class labels, while regression facilitates the prediction of a continuous quantity. Figure 6 shows an example of how classification is different with regression models. Some overlaps are often found between the two types of machine learning algorithms. Regression models are now widely used in a variety of fields, including financial forecasting or prediction, cost estimation, trend analysis, marketing, time series estimation, drug response modeling, and many more. Some of the familiar types of regression algorithms are linear, polynomial, lasso and ridge regression, etc., which are explained briefly in the following.

Simple and multiple linear regression: This is one of the most popular ML modeling techniques as well as a well-known regression technique. In this technique, the dependent variable is continuous, the independent variable(s) can be continuous or discrete, and the form of the regression line is linear. Linear regression creates a relationship between the dependent variable ( Y ) and one or more independent variables ( X ) (also known as regression line) using the best fit straight line [ 41 ]. It is defined by the following equations:

where a is the intercept, b is the slope of the line, and e is the error term. This equation can be used to predict the value of the target variable based on the given predictor variable(s). Multiple linear regression is an extension of simple linear regression that allows two or more predictor variables to model a response variable, y, as a linear function [ 41 ] defined in Eq. 6 , whereas simple linear regression has only 1 independent variable, defined in Eq. 5 .

Polynomial regression: Polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is not linear, but is the polynomial degree of \(n^\mathrm{th}\) in x [ 82 ]. The equation for polynomial regression is also derived from linear regression (polynomial regression of degree 1) equation, which is defined as below:

Here, y is the predicted/target output, \(b_0, b_1,... b_n\) are the regression coefficients, x is an independent/ input variable. In simple words, we can say that if data are not distributed linearly, instead it is \(n^\mathrm{th}\) degree of polynomial then we use polynomial regression to get desired output.

LASSO and ridge regression: LASSO and Ridge regression are well known as powerful techniques which are typically used for building learning models in presence of a large number of features, due to their capability to preventing over-fitting and reducing the complexity of the model. The LASSO (least absolute shrinkage and selection operator) regression model uses L 1 regularization technique [ 82 ] that uses shrinkage, which penalizes “absolute value of magnitude of coefficients” ( L 1 penalty). As a result, LASSO appears to render coefficients to absolute zero. Thus, LASSO regression aims to find the subset of predictors that minimizes the prediction error for a quantitative response variable. On the other hand, ridge regression uses L 2 regularization [ 82 ], which is the “squared magnitude of coefficients” ( L 2 penalty). Thus, ridge regression forces the weights to be small but never sets the coefficient value to zero, and does a non-sparse solution. Overall, LASSO regression is useful to obtain a subset of predictors by eliminating less important features, and ridge regression is useful when a data set has “multicollinearity” which refers to the predictors that are correlated with other predictors.

Cluster Analysis

Cluster analysis, also known as clustering, is an unsupervised machine learning technique for identifying and grouping related data points in large datasets without concern for the specific outcome. It does grouping a collection of objects in such a way that objects in the same category, called a cluster, are in some sense more similar to each other than objects in other groups [ 41 ]. It is often used as a data analysis technique to discover interesting trends or patterns in data, e.g., groups of consumers based on their behavior. In a broad range of application areas, such as cybersecurity, e-commerce, mobile data processing, health analytics, user modeling and behavioral analytics, clustering can be used. In the following, we briefly discuss and summarize various types of clustering methods.

Partitioning methods: Based on the features and similarities in the data, this clustering approach categorizes the data into multiple groups or clusters. The data scientists or analysts typically determine the number of clusters either dynamically or statically depending on the nature of the target applications, to produce for the methods of clustering. The most common clustering algorithms based on partitioning methods are K-means [ 69 ], K-Mediods [ 80 ], CLARA [ 55 ] etc.

Density-based methods: To identify distinct groups or clusters, it uses the concept that a cluster in the data space is a contiguous region of high point density isolated from other such clusters by contiguous regions of low point density. Points that are not part of a cluster are considered as noise. The typical clustering algorithms based on density are DBSCAN [ 32 ], OPTICS [ 12 ] etc. The density-based methods typically struggle with clusters of similar density and high dimensionality data.

Hierarchical-based methods: Hierarchical clustering typically seeks to construct a hierarchy of clusters, i.e., the tree structure. Strategies for hierarchical clustering generally fall into two types: (i) Agglomerative—a “bottom-up” approach in which each observation begins in its cluster and pairs of clusters are combined as one, moves up the hierarchy, and (ii) Divisive—a “top-down” approach in which all observations begin in one cluster and splits are performed recursively, moves down the hierarchy, as shown in Fig 7 . Our earlier proposed BOTS technique, Sarker et al. [ 102 ] is an example of a hierarchical, particularly, bottom-up clustering algorithm.

Grid-based methods: To deal with massive datasets, grid-based clustering is especially suitable. To obtain clusters, the principle is first to summarize the dataset with a grid representation and then to combine grid cells. STING [ 122 ], CLIQUE [ 6 ], etc. are the standard algorithms of grid-based clustering.

Model-based methods: There are mainly two types of model-based clustering algorithms: one that uses statistical learning, and the other based on a method of neural network learning [ 130 ]. For instance, GMM [ 89 ] is an example of a statistical learning method, and SOM [ 22 ] [ 96 ] is an example of a neural network learning method.

Constraint-based methods: Constrained-based clustering is a semi-supervised approach to data clustering that uses constraints to incorporate domain knowledge. Application or user-oriented constraints are incorporated to perform the clustering. The typical algorithms of this kind of clustering are COP K-means [ 121 ], CMWK-Means [ 27 ], etc.

figure 7

A graphical interpretation of the widely-used hierarchical clustering (Bottom-up and top-down) technique

Many clustering algorithms have been proposed with the ability to grouping data in machine learning and data science literature [ 41 , 125 ]. In the following, we summarize the popular methods that are used widely in various application areas.

K-means clustering: K-means clustering [ 69 ] is a fast, robust, and simple algorithm that provides reliable results when data sets are well-separated from each other. The data points are allocated to a cluster in this algorithm in such a way that the amount of the squared distance between the data points and the centroid is as small as possible. In other words, the K-means algorithm identifies the k number of centroids and then assigns each data point to the nearest cluster while keeping the centroids as small as possible. Since it begins with a random selection of cluster centers, the results can be inconsistent. Since extreme values can easily affect a mean, the K-means clustering algorithm is sensitive to outliers. K-medoids clustering [ 91 ] is a variant of K-means that is more robust to noises and outliers.

Mean-shift clustering: Mean-shift clustering [ 37 ] is a nonparametric clustering technique that does not require prior knowledge of the number of clusters or constraints on cluster shape. Mean-shift clustering aims to discover “blobs” in a smooth distribution or density of samples [ 82 ]. It is a centroid-based algorithm that works by updating centroid candidates to be the mean of the points in a given region. To form the final set of centroids, these candidates are filtered in a post-processing stage to remove near-duplicates. Cluster analysis in computer vision and image processing are examples of application domains. Mean Shift has the disadvantage of being computationally expensive. Moreover, in cases of high dimension, where the number of clusters shifts abruptly, the mean-shift algorithm does not work well.

DBSCAN: Density-based spatial clustering of applications with noise (DBSCAN) [ 32 ] is a base algorithm for density-based clustering which is widely used in data mining and machine learning. This is known as a non-parametric density-based clustering technique for separating high-density clusters from low-density clusters that are used in model building. DBSCAN’s main idea is that a point belongs to a cluster if it is close to many points from that cluster. It can find clusters of various shapes and sizes in a vast volume of data that is noisy and contains outliers. DBSCAN, unlike k-means, does not require a priori specification of the number of clusters in the data and can find arbitrarily shaped clusters. Although k-means is much faster than DBSCAN, it is efficient at finding high-density regions and outliers, i.e., is robust to outliers.

GMM clustering: Gaussian mixture models (GMMs) are often used for data clustering, which is a distribution-based clustering algorithm. A Gaussian mixture model is a probabilistic model in which all the data points are produced by a mixture of a finite number of Gaussian distributions with unknown parameters [ 82 ]. To find the Gaussian parameters for each cluster, an optimization algorithm called expectation-maximization (EM) [ 82 ] can be used. EM is an iterative method that uses a statistical model to estimate the parameters. In contrast to k-means, Gaussian mixture models account for uncertainty and return the likelihood that a data point belongs to one of the k clusters. GMM clustering is more robust than k-means and works well even with non-linear data distributions.

Agglomerative hierarchical clustering: The most common method of hierarchical clustering used to group objects in clusters based on their similarity is agglomerative clustering. This technique uses a bottom-up approach, where each object is first treated as a singleton cluster by the algorithm. Following that, pairs of clusters are merged one by one until all clusters have been merged into a single large cluster containing all objects. The result is a dendrogram, which is a tree-based representation of the elements. Single linkage [ 115 ], Complete linkage [ 116 ], BOTS [ 102 ] etc. are some examples of such techniques. The main advantage of agglomerative hierarchical clustering over k-means is that the tree-structure hierarchy generated by agglomerative clustering is more informative than the unstructured collection of flat clusters returned by k-means, which can help to make better decisions in the relevant application areas.

Dimensionality Reduction and Feature Learning

In machine learning and data science, high-dimensional data processing is a challenging task for both researchers and application developers. Thus, dimensionality reduction which is an unsupervised learning technique, is important because it leads to better human interpretations, lower computational costs, and avoids overfitting and redundancy by simplifying models. Both the process of feature selection and feature extraction can be used for dimensionality reduction. The primary distinction between the selection and extraction of features is that the “feature selection” keeps a subset of the original features [ 97 ], while “feature extraction” creates brand new ones [ 98 ]. In the following, we briefly discuss these techniques.

Feature selection: The selection of features, also known as the selection of variables or attributes in the data, is the process of choosing a subset of unique features (variables, predictors) to use in building machine learning and data science model. It decreases a model’s complexity by eliminating the irrelevant or less important features and allows for faster training of machine learning algorithms. A right and optimal subset of the selected features in a problem domain is capable to minimize the overfitting problem through simplifying and generalizing the model as well as increases the model’s accuracy [ 97 ]. Thus, “feature selection” [ 66 , 99 ] is considered as one of the primary concepts in machine learning that greatly affects the effectiveness and efficiency of the target machine learning model. Chi-squared test, Analysis of variance (ANOVA) test, Pearson’s correlation coefficient, recursive feature elimination, are some popular techniques that can be used for feature selection.

Feature extraction: In a machine learning-based model or system, feature extraction techniques usually provide a better understanding of the data, a way to improve prediction accuracy, and to reduce computational cost or training time. The aim of “feature extraction” [ 66 , 99 ] is to reduce the number of features in a dataset by generating new ones from the existing ones and then discarding the original features. The majority of the information found in the original set of features can then be summarized using this new reduced set of features. For instance, principal components analysis (PCA) is often used as a dimensionality-reduction technique to extract a lower-dimensional space creating new brand components from the existing features in a dataset [ 98 ].

Many algorithms have been proposed to reduce data dimensions in the machine learning and data science literature [ 41 , 125 ]. In the following, we summarize the popular methods that are used widely in various application areas.

Variance threshold: A simple basic approach to feature selection is the variance threshold [ 82 ]. This excludes all features of low variance, i.e., all features whose variance does not exceed the threshold. It eliminates all zero-variance characteristics by default, i.e., characteristics that have the same value in all samples. This feature selection algorithm looks only at the ( X ) features, not the ( y ) outputs needed, and can, therefore, be used for unsupervised learning.

Pearson correlation: Pearson’s correlation is another method to understand a feature’s relation to the response variable and can be used for feature selection [ 99 ]. This method is also used for finding the association between the features in a dataset. The resulting value is \([-1, 1]\) , where \(-1\) means perfect negative correlation, \(+1\) means perfect positive correlation, and 0 means that the two variables do not have a linear correlation. If two random variables represent X and Y , then the correlation coefficient between X and Y is defined as [ 41 ]

ANOVA: Analysis of variance (ANOVA) is a statistical tool used to verify the mean values of two or more groups that differ significantly from each other. ANOVA assumes a linear relationship between the variables and the target and the variables’ normal distribution. To statistically test the equality of means, the ANOVA method utilizes F tests. For feature selection, the results ‘ANOVA F value’ [ 82 ] of this test can be used where certain features independent of the goal variable can be omitted.

Chi square: The chi-square \({\chi }^2\) [ 82 ] statistic is an estimate of the difference between the effects of a series of events or variables observed and expected frequencies. The magnitude of the difference between the real and observed values, the degrees of freedom, and the sample size depends on \({\chi }^2\) . The chi-square \({\chi }^2\) is commonly used for testing relationships between categorical variables. If \(O_i\) represents observed value and \(E_i\) represents expected value, then

Recursive feature elimination (RFE): Recursive Feature Elimination (RFE) is a brute force approach to feature selection. RFE [ 82 ] fits the model and removes the weakest feature before it meets the specified number of features. Features are ranked by the coefficients or feature significance of the model. RFE aims to remove dependencies and collinearity in the model by recursively removing a small number of features per iteration.

Model-based selection: To reduce the dimensionality of the data, linear models penalized with the L 1 regularization can be used. Least absolute shrinkage and selection operator (Lasso) regression is a type of linear regression that has the property of shrinking some of the coefficients to zero [ 82 ]. Therefore, that feature can be removed from the model. Thus, the penalized lasso regression method, often used in machine learning to select the subset of variables. Extra Trees Classifier [ 82 ] is an example of a tree-based estimator that can be used to compute impurity-based function importance, which can then be used to discard irrelevant features.

Principal component analysis (PCA): Principal component analysis (PCA) is a well-known unsupervised learning approach in the field of machine learning and data science. PCA is a mathematical technique that transforms a set of correlated variables into a set of uncorrelated variables known as principal components [ 48 , 81 ]. Figure 8 shows an example of the effect of PCA on various dimensions space, where Fig. 8 a shows the original features in 3D space, and Fig. 8 b shows the created principal components PC1 and PC2 onto a 2D plane, and 1D line with the principal component PC1 respectively. Thus, PCA can be used as a feature extraction technique that reduces the dimensionality of the datasets, and to build an effective machine learning model [ 98 ]. Technically, PCA identifies the completely transformed with the highest eigenvalues of a covariance matrix and then uses those to project the data into a new subspace of equal or fewer dimensions [ 82 ].

figure 8

An example of a principal component analysis (PCA) and created principal components PC1 and PC2 in different dimension space

Association Rule Learning

Association rule learning is a rule-based machine learning approach to discover interesting relationships, “IF-THEN” statements, in large datasets between variables [ 7 ]. One example is that “if a customer buys a computer or laptop (an item), s/he is likely to also buy anti-virus software (another item) at the same time”. Association rules are employed today in many application areas, including IoT services, medical diagnosis, usage behavior analytics, web usage mining, smartphone applications, cybersecurity applications, and bioinformatics. In comparison to sequence mining, association rule learning does not usually take into account the order of things within or across transactions. A common way of measuring the usefulness of association rules is to use its parameter, the ‘support’ and ‘confidence’, which is introduced in [ 7 ].

In the data mining literature, many association rule learning methods have been proposed, such as logic dependent [ 34 ], frequent pattern based [ 8 , 49 , 68 ], and tree-based [ 42 ]. The most popular association rule learning algorithms are summarized below.

AIS and SETM: AIS is the first algorithm proposed by Agrawal et al. [ 7 ] for association rule mining. The AIS algorithm’s main downside is that too many candidate itemsets are generated, requiring more space and wasting a lot of effort. This algorithm calls for too many passes over the entire dataset to produce the rules. Another approach SETM [ 49 ] exhibits good performance and stable behavior with execution time; however, it suffers from the same flaw as the AIS algorithm.

Apriori: For generating association rules for a given dataset, Agrawal et al. [ 8 ] proposed the Apriori, Apriori-TID, and Apriori-Hybrid algorithms. These later algorithms outperform the AIS and SETM mentioned above due to the Apriori property of frequent itemset [ 8 ]. The term ‘Apriori’ usually refers to having prior knowledge of frequent itemset properties. Apriori uses a “bottom-up” approach, where it generates the candidate itemsets. To reduce the search space, Apriori uses the property “all subsets of a frequent itemset must be frequent; and if an itemset is infrequent, then all its supersets must also be infrequent”. Another approach predictive Apriori [ 108 ] can also generate rules; however, it receives unexpected results as it combines both the support and confidence. The Apriori [ 8 ] is the widely applicable techniques in mining association rules.

ECLAT: This technique was proposed by Zaki et al. [ 131 ] and stands for Equivalence Class Clustering and bottom-up Lattice Traversal. ECLAT uses a depth-first search to find frequent itemsets. In contrast to the Apriori [ 8 ] algorithm, which represents data in a horizontal pattern, it represents data vertically. Hence, the ECLAT algorithm is more efficient and scalable in the area of association rule learning. This algorithm is better suited for small and medium datasets whereas the Apriori algorithm is used for large datasets.

FP-Growth: Another common association rule learning technique based on the frequent-pattern tree (FP-tree) proposed by Han et al. [ 42 ] is Frequent Pattern Growth, known as FP-Growth. The key difference with Apriori is that while generating rules, the Apriori algorithm [ 8 ] generates frequent candidate itemsets; on the other hand, the FP-growth algorithm [ 42 ] prevents candidate generation and thus produces a tree by the successful strategy of ‘divide and conquer’ approach. Due to its sophistication, however, FP-Tree is challenging to use in an interactive mining environment [ 133 ]. Thus, the FP-Tree would not fit into memory for massive data sets, making it challenging to process big data as well. Another solution is RARM (Rapid Association Rule Mining) proposed by Das et al. [ 26 ] but faces a related FP-tree issue [ 133 ].

ABC-RuleMiner: A rule-based machine learning method, recently proposed in our earlier paper, by Sarker et al. [ 104 ], to discover the interesting non-redundant rules to provide real-world intelligent services. This algorithm effectively identifies the redundancy in associations by taking into account the impact or precedence of the related contextual features and discovers a set of non-redundant association rules. This algorithm first constructs an association generation tree (AGT), a top-down approach, and then extracts the association rules through traversing the tree. Thus, ABC-RuleMiner is more potent than traditional rule-based methods in terms of both non-redundant rule generation and intelligent decision-making, particularly in a context-aware smart computing environment, where human or user preferences are involved.

Among the association rule learning techniques discussed above, Apriori [ 8 ] is the most widely used algorithm for discovering association rules from a given dataset [ 133 ]. The main strength of the association learning technique is its comprehensiveness, as it generates all associations that satisfy the user-specified constraints, such as minimum support and confidence value. The ABC-RuleMiner approach [ 104 ] discussed earlier could give significant results in terms of non-redundant rule generation and intelligent decision-making for the relevant application areas in the real world.

Reinforcement Learning

Reinforcement learning (RL) is a machine learning technique that allows an agent to learn by trial and error in an interactive environment using input from its actions and experiences. Unlike supervised learning, which is based on given sample data or examples, the RL method is based on interacting with the environment. The problem to be solved in reinforcement learning (RL) is defined as a Markov Decision Process (MDP) [ 86 ], i.e., all about sequentially making decisions. An RL problem typically includes four elements such as Agent, Environment, Rewards, and Policy.

RL can be split roughly into Model-based and Model-free techniques. Model-based RL is the process of inferring optimal behavior from a model of the environment by performing actions and observing the results, which include the next state and the immediate reward [ 85 ]. AlphaZero, AlphaGo [ 113 ] are examples of the model-based approaches. On the other hand, a model-free approach does not use the distribution of the transition probability and the reward function associated with MDP. Q-learning, Deep Q Network, Monte Carlo Control, SARSA (State–Action–Reward–State–Action), etc. are some examples of model-free algorithms [ 52 ]. The policy network, which is required for model-based RL but not for model-free, is the key difference between model-free and model-based learning. In the following, we discuss the popular RL algorithms.

Monte Carlo methods: Monte Carlo techniques, or Monte Carlo experiments, are a wide category of computational algorithms that rely on repeated random sampling to obtain numerical results [ 52 ]. The underlying concept is to use randomness to solve problems that are deterministic in principle. Optimization, numerical integration, and making drawings from the probability distribution are the three problem classes where Monte Carlo techniques are most commonly used.

Q-learning: Q-learning is a model-free reinforcement learning algorithm for learning the quality of behaviors that tell an agent what action to take under what conditions [ 52 ]. It does not need a model of the environment (hence the term “model-free”), and it can deal with stochastic transitions and rewards without the need for adaptations. The ‘Q’ in Q-learning usually stands for quality, as the algorithm calculates the maximum expected rewards for a given behavior in a given state.

Deep Q-learning: The basic working step in Deep Q-Learning [ 52 ] is that the initial state is fed into the neural network, which returns the Q-value of all possible actions as an output. Still, when we have a reasonably simple setting to overcome, Q-learning works well. However, when the number of states and actions becomes more complicated, deep learning can be used as a function approximator.

Reinforcement learning, along with supervised and unsupervised learning, is one of the basic machine learning paradigms. RL can be used to solve numerous real-world problems in various fields, such as game theory, control theory, operations analysis, information theory, simulation-based optimization, manufacturing, supply chain logistics, multi-agent systems, swarm intelligence, aircraft control, robot motion control, and many more.

Artificial Neural Network and Deep Learning

Deep learning is part of a wider family of artificial neural networks (ANN)-based machine learning approaches with representation learning. Deep learning provides a computational architecture by combining several processing layers, such as input, hidden, and output layers, to learn from data [ 41 ]. The main advantage of deep learning over traditional machine learning methods is its better performance in several cases, particularly learning from large datasets [ 105 , 129 ]. Figure 9 shows a general performance of deep learning over machine learning considering the increasing amount of data. However, it may vary depending on the data characteristics and experimental set up.

figure 9

Machine learning and deep learning performance in general with the amount of data

The most common deep learning algorithms are: Multi-layer Perceptron (MLP), Convolutional Neural Network (CNN, or ConvNet), Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) [ 96 ]. In the following, we discuss various types of deep learning methods that can be used to build effective data-driven models for various purposes.

figure 10

A structure of an artificial neural network modeling with multiple processing layers

MLP: The base architecture of deep learning, which is also known as the feed-forward artificial neural network, is called a multilayer perceptron (MLP) [ 82 ]. A typical MLP is a fully connected network consisting of an input layer, one or more hidden layers, and an output layer, as shown in Fig. 10 . Each node in one layer connects to each node in the following layer at a certain weight. MLP utilizes the “Backpropagation” technique [ 41 ], the most “fundamental building block” in a neural network, to adjust the weight values internally while building the model. MLP is sensitive to scaling features and allows a variety of hyperparameters to be tuned, such as the number of hidden layers, neurons, and iterations, which can result in a computationally costly model.

CNN or ConvNet: The convolution neural network (CNN) [ 65 ] enhances the design of the standard ANN, consisting of convolutional layers, pooling layers, as well as fully connected layers, as shown in Fig. 11 . As it takes the advantage of the two-dimensional (2D) structure of the input data, it is typically broadly used in several areas such as image and video recognition, image processing and classification, medical image analysis, natural language processing, etc. While CNN has a greater computational burden, without any manual intervention, it has the advantage of automatically detecting the important features, and hence CNN is considered to be more powerful than conventional ANN. A number of advanced deep learning models based on CNN can be used in the field, such as AlexNet [ 60 ], Xception [ 24 ], Inception [ 118 ], Visual Geometry Group (VGG) [ 44 ], ResNet [ 45 ], etc.

LSTM-RNN: Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used in the area of deep learning [ 38 ]. LSTM has feedback links, unlike normal feed-forward neural networks. LSTM networks are well-suited for analyzing and learning sequential data, such as classifying, processing, and predicting data based on time series data, which differentiates it from other conventional networks. Thus, LSTM can be used when the data are in a sequential format, such as time, sentence, etc., and commonly applied in the area of time-series analysis, natural language processing, speech recognition, etc.

figure 11

An example of a convolutional neural network (CNN or ConvNet) including multiple convolution and pooling layers

In addition to these most common deep learning methods discussed above, several other deep learning approaches [ 96 ] exist in the area for various purposes. For instance, the self-organizing map (SOM) [ 58 ] uses unsupervised learning to represent the high-dimensional data by a 2D grid map, thus achieving dimensionality reduction. The autoencoder (AE) [ 15 ] is another learning technique that is widely used for dimensionality reduction as well and feature extraction in unsupervised learning tasks. Restricted Boltzmann machines (RBM) [ 46 ] can be used for dimensionality reduction, classification, regression, collaborative filtering, feature learning, and topic modeling. A deep belief network (DBN) is typically composed of simple, unsupervised networks such as restricted Boltzmann machines (RBMs) or autoencoders, and a backpropagation neural network (BPNN) [ 123 ]. A generative adversarial network (GAN) [ 39 ] is a form of the network for deep learning that can generate data with characteristics close to the actual data input. Transfer learning is currently very common because it can train deep neural networks with comparatively low data, which is typically the re-use of a new problem with a pre-trained model [ 124 ]. A brief discussion of these artificial neural networks (ANN) and deep learning (DL) models are summarized in our earlier paper Sarker et al. [ 96 ].

Overall, based on the learning techniques discussed above, we can conclude that various types of machine learning techniques, such as classification analysis, regression, data clustering, feature selection and extraction, and dimensionality reduction, association rule learning, reinforcement learning, or deep learning techniques, can play a significant role for various purposes according to their capabilities. In the following section, we discuss several application areas based on machine learning algorithms.

Applications of Machine Learning

In the current age of the Fourth Industrial Revolution (4IR), machine learning becomes popular in various application areas, because of its learning capabilities from the past and making intelligent decisions. In the following, we summarize and discuss ten popular application areas of machine learning technology.

Predictive analytics and intelligent decision-making: A major application field of machine learning is intelligent decision-making by data-driven predictive analytics [ 21 , 70 ]. The basis of predictive analytics is capturing and exploiting relationships between explanatory variables and predicted variables from previous events to predict the unknown outcome [ 41 ]. For instance, identifying suspects or criminals after a crime has been committed, or detecting credit card fraud as it happens. Another application, where machine learning algorithms can assist retailers in better understanding consumer preferences and behavior, better manage inventory, avoiding out-of-stock situations, and optimizing logistics and warehousing in e-commerce. Various machine learning algorithms such as decision trees, support vector machines, artificial neural networks, etc. [ 106 , 125 ] are commonly used in the area. Since accurate predictions provide insight into the unknown, they can improve the decisions of industries, businesses, and almost any organization, including government agencies, e-commerce, telecommunications, banking and financial services, healthcare, sales and marketing, transportation, social networking, and many others.

Cybersecurity and threat intelligence: Cybersecurity is one of the most essential areas of Industry 4.0. [ 114 ], which is typically the practice of protecting networks, systems, hardware, and data from digital attacks [ 114 ]. Machine learning has become a crucial cybersecurity technology that constantly learns by analyzing data to identify patterns, better detect malware in encrypted traffic, find insider threats, predict where bad neighborhoods are online, keep people safe while browsing, or secure data in the cloud by uncovering suspicious activity. For instance, clustering techniques can be used to identify cyber-anomalies, policy violations, etc. To detect various types of cyber-attacks or intrusions machine learning classification models by taking into account the impact of security features are useful [ 97 ]. Various deep learning-based security models can also be used on the large scale of security datasets [ 96 , 129 ]. Moreover, security policy rules generated by association rule learning techniques can play a significant role to build a rule-based security system [ 105 ]. Thus, we can say that various learning techniques discussed in Sect. Machine Learning Tasks and Algorithms , can enable cybersecurity professionals to be more proactive inefficiently preventing threats and cyber-attacks.

Internet of things (IoT) and smart cities: Internet of Things (IoT) is another essential area of Industry 4.0. [ 114 ], which turns everyday objects into smart objects by allowing them to transmit data and automate tasks without the need for human interaction. IoT is, therefore, considered to be the big frontier that can enhance almost all activities in our lives, such as smart governance, smart home, education, communication, transportation, retail, agriculture, health care, business, and many more [ 70 ]. Smart city is one of IoT’s core fields of application, using technologies to enhance city services and residents’ living experiences [ 132 , 135 ]. As machine learning utilizes experience to recognize trends and create models that help predict future behavior and events, it has become a crucial technology for IoT applications [ 103 ]. For example, to predict traffic in smart cities, parking availability prediction, estimate the total usage of energy of the citizens for a particular period, make context-aware and timely decisions for the people, etc. are some tasks that can be solved using machine learning techniques according to the current needs of the people.

Traffic prediction and transportation: Transportation systems have become a crucial component of every country’s economic development. Nonetheless, several cities around the world are experiencing an excessive rise in traffic volume, resulting in serious issues such as delays, traffic congestion, higher fuel prices, increased CO \(_2\) pollution, accidents, emergencies, and a decline in modern society’s quality of life [ 40 ]. Thus, an intelligent transportation system through predicting future traffic is important, which is an indispensable part of a smart city. Accurate traffic prediction based on machine and deep learning modeling can help to minimize the issues [ 17 , 30 , 31 ]. For example, based on the travel history and trend of traveling through various routes, machine learning can assist transportation companies in predicting possible issues that may occur on specific routes and recommending their customers to take a different path. Ultimately, these learning-based data-driven models help improve traffic flow, increase the usage and efficiency of sustainable modes of transportation, and limit real-world disruption by modeling and visualizing future changes.

Healthcare and COVID-19 pandemic: Machine learning can help to solve diagnostic and prognostic problems in a variety of medical domains, such as disease prediction, medical knowledge extraction, detecting regularities in data, patient management, etc. [ 33 , 77 , 112 ]. Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus, according to the World Health Organization (WHO) [ 3 ]. Recently, the learning techniques have become popular in the battle against COVID-19 [ 61 , 63 ]. For the COVID-19 pandemic, the learning techniques are used to classify patients at high risk, their mortality rate, and other anomalies [ 61 ]. It can also be used to better understand the virus’s origin, COVID-19 outbreak prediction, as well as for disease diagnosis and treatment [ 14 , 50 ]. With the help of machine learning, researchers can forecast where and when, the COVID-19 is likely to spread, and notify those regions to match the required arrangements. Deep learning also provides exciting solutions to the problems of medical image processing and is seen as a crucial technique for potential applications, particularly for COVID-19 pandemic [ 10 , 78 , 111 ]. Overall, machine and deep learning techniques can help to fight the COVID-19 virus and the pandemic as well as intelligent clinical decisions making in the domain of healthcare.

E-commerce and product recommendations: Product recommendation is one of the most well known and widely used applications of machine learning, and it is one of the most prominent features of almost any e-commerce website today. Machine learning technology can assist businesses in analyzing their consumers’ purchasing histories and making customized product suggestions for their next purchase based on their behavior and preferences. E-commerce companies, for example, can easily position product suggestions and offers by analyzing browsing trends and click-through rates of specific items. Using predictive modeling based on machine learning techniques, many online retailers, such as Amazon [ 71 ], can better manage inventory, prevent out-of-stock situations, and optimize logistics and warehousing. The future of sales and marketing is the ability to capture, evaluate, and use consumer data to provide a customized shopping experience. Furthermore, machine learning techniques enable companies to create packages and content that are tailored to the needs of their customers, allowing them to maintain existing customers while attracting new ones.

NLP and sentiment analysis: Natural language processing (NLP) involves the reading and understanding of spoken or written language through the medium of a computer [ 79 , 103 ]. Thus, NLP helps computers, for instance, to read a text, hear speech, interpret it, analyze sentiment, and decide which aspects are significant, where machine learning techniques can be used. Virtual personal assistant, chatbot, speech recognition, document description, language or machine translation, etc. are some examples of NLP-related tasks. Sentiment Analysis [ 90 ] (also referred to as opinion mining or emotion AI) is an NLP sub-field that seeks to identify and extract public mood and views within a given text through blogs, reviews, social media, forums, news, etc. For instance, businesses and brands use sentiment analysis to understand the social sentiment of their brand, product, or service through social media platforms or the web as a whole. Overall, sentiment analysis is considered as a machine learning task that analyzes texts for polarity, such as “positive”, “negative”, or “neutral” along with more intense emotions like very happy, happy, sad, very sad, angry, have interest, or not interested etc.

Image, speech and pattern recognition: Image recognition [ 36 ] is a well-known and widespread example of machine learning in the real world, which can identify an object as a digital image. For instance, to label an x-ray as cancerous or not, character recognition, or face detection in an image, tagging suggestions on social media, e.g., Facebook, are common examples of image recognition. Speech recognition [ 23 ] is also very popular that typically uses sound and linguistic models, e.g., Google Assistant, Cortana, Siri, Alexa, etc. [ 67 ], where machine learning methods are used. Pattern recognition [ 13 ] is defined as the automated recognition of patterns and regularities in data, e.g., image analysis. Several machine learning techniques such as classification, feature selection, clustering, or sequence labeling methods are used in the area.

Sustainable agriculture: Agriculture is essential to the survival of all human activities [ 109 ]. Sustainable agriculture practices help to improve agricultural productivity while also reducing negative impacts on the environment [ 5 , 25 , 109 ]. The sustainable agriculture supply chains are knowledge-intensive and based on information, skills, technologies, etc., where knowledge transfer encourages farmers to enhance their decisions to adopt sustainable agriculture practices utilizing the increasing amount of data captured by emerging technologies, e.g., the Internet of Things (IoT), mobile technologies and devices, etc. [ 5 , 53 , 54 ]. Machine learning can be applied in various phases of sustainable agriculture, such as in the pre-production phase - for the prediction of crop yield, soil properties, irrigation requirements, etc.; in the production phase—for weather prediction, disease detection, weed detection, soil nutrient management, livestock management, etc.; in processing phase—for demand estimation, production planning, etc. and in the distribution phase - the inventory management, consumer analysis, etc.

User behavior analytics and context-aware smartphone applications: Context-awareness is a system’s ability to capture knowledge about its surroundings at any moment and modify behaviors accordingly [ 28 , 93 ]. Context-aware computing uses software and hardware to automatically collect and interpret data for direct responses. The mobile app development environment has been changed greatly with the power of AI, particularly, machine learning techniques through their learning capabilities from contextual data [ 103 , 136 ]. Thus, the developers of mobile apps can rely on machine learning to create smart apps that can understand human behavior, support, and entertain users [ 107 , 137 , 140 ]. To build various personalized data-driven context-aware systems, such as smart interruption management, smart mobile recommendation, context-aware smart searching, decision-making that intelligently assist end mobile phone users in a pervasive computing environment, machine learning techniques are applicable. For example, context-aware association rules can be used to build an intelligent phone call application [ 104 ]. Clustering approaches are useful in capturing users’ diverse behavioral activities by taking into account data in time series [ 102 ]. To predict the future events in various contexts, the classification methods can be used [ 106 , 139 ]. Thus, various learning techniques discussed in Sect. “ Machine Learning Tasks and Algorithms ” can help to build context-aware adaptive and smart applications according to the preferences of the mobile phone users.

In addition to these application areas, machine learning-based models can also apply to several other domains such as bioinformatics, cheminformatics, computer networks, DNA sequence classification, economics and banking, robotics, advanced engineering, and many more.

Challenges and Research Directions

Our study on machine learning algorithms for intelligent data analysis and applications opens several research issues in the area. Thus, in this section, we summarize and discuss the challenges faced and the potential research opportunities and future directions.

In general, the effectiveness and the efficiency of a machine learning-based solution depend on the nature and characteristics of the data, and the performance of the learning algorithms. To collect the data in the relevant domain, such as cybersecurity, IoT, healthcare and agriculture discussed in Sect. “ Applications of Machine Learning ” is not straightforward, although the current cyberspace enables the production of a huge amount of data with very high frequency. Thus, collecting useful data for the target machine learning-based applications, e.g., smart city applications, and their management is important to further analysis. Therefore, a more in-depth investigation of data collection methods is needed while working on the real-world data. Moreover, the historical data may contain many ambiguous values, missing values, outliers, and meaningless data. The machine learning algorithms, discussed in Sect “ Machine Learning Tasks and Algorithms ” highly impact on data quality, and availability for training, and consequently on the resultant model. Thus, to accurately clean and pre-process the diverse data collected from diverse sources is a challenging task. Therefore, effectively modifying or enhance existing pre-processing methods, or proposing new data preparation techniques are required to effectively use the learning algorithms in the associated application domain.

To analyze the data and extract insights, there exist many machine learning algorithms, summarized in Sect. “ Machine Learning Tasks and Algorithms ”. Thus, selecting a proper learning algorithm that is suitable for the target application is challenging. The reason is that the outcome of different learning algorithms may vary depending on the data characteristics [ 106 ]. Selecting a wrong learning algorithm would result in producing unexpected outcomes that may lead to loss of effort, as well as the model’s effectiveness and accuracy. In terms of model building, the techniques discussed in Sect. “ Machine Learning Tasks and Algorithms ” can directly be used to solve many real-world issues in diverse domains, such as cybersecurity, smart cities and healthcare summarized in Sect. “ Applications of Machine Learning ”. However, the hybrid learning model, e.g., the ensemble of methods, modifying or enhancement of the existing learning techniques, or designing new learning methods, could be a potential future work in the area.

Thus, the ultimate success of a machine learning-based solution and corresponding applications mainly depends on both the data and the learning algorithms. If the data are bad to learn, such as non-representative, poor-quality, irrelevant features, or insufficient quantity for training, then the machine learning models may become useless or will produce lower accuracy. Therefore, effectively processing the data and handling the diverse learning algorithms are important, for a machine learning-based solution and eventually building intelligent applications.

In this paper, we have conducted a comprehensive overview of machine learning algorithms for intelligent data analysis and applications. According to our goal, we have briefly discussed how various types of machine learning methods can be used for making solutions to various real-world issues. A successful machine learning model depends on both the data and the performance of the learning algorithms. The sophisticated learning algorithms then need to be trained through the collected real-world data and knowledge related to the target application before the system can assist with intelligent decision-making. We also discussed several popular application areas based on machine learning techniques to highlight their applicability in various real-world issues. Finally, we have summarized and discussed the challenges faced and the potential research opportunities and future directions in the area. Therefore, the challenges that are identified create promising research opportunities in the field which must be addressed with effective solutions in various application areas. Overall, we believe that our study on machine learning-based solutions opens up a promising direction and can be used as a reference guide for potential research and applications for both academia and industry professionals as well as for decision-makers, from a technical point of view.

Canadian institute of cybersecurity, university of new brunswick, iscx dataset, http://www.unb.ca/cic/datasets/index.html/ (Accessed on 20 October 2019).

Cic-ddos2019 [online]. available: https://www.unb.ca/cic/datasets/ddos-2019.html/ (Accessed on 28 March 2020).

World health organization: WHO. http://www.who.int/ .

Google trends. In https://trends.google.com/trends/ , 2019.

Adnan N, Nordin Shahrina Md, Rahman I, Noor A. The effects of knowledge transfer on farmers decision making toward sustainable agriculture practices. World J Sci Technol Sustain Dev. 2018.

Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD international conference on Management of data. 1998; 94–105

Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases. In: ACM SIGMOD Record. ACM. 1993;22: 207–216

Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Fast algorithms for mining association rules. In: Proceedings of the International Joint Conference on Very Large Data Bases, Santiago Chile. 1994; 1215: 487–499.

Aha DW, Kibler D, Albert M. Instance-based learning algorithms. Mach Learn. 1991;6(1):37–66.

Article   Google Scholar  

Alakus TB, Turkoglu I. Comparison of deep learning approaches to predict covid-19 infection. Chaos Solit Fract. 2020;140:

Amit Y, Geman D. Shape quantization and recognition with randomized trees. Neural Comput. 1997;9(7):1545–88.

Ankerst M, Breunig MM, Kriegel H-P, Sander J. Optics: ordering points to identify the clustering structure. ACM Sigmod Record. 1999;28(2):49–60.

Anzai Y. Pattern recognition and machine learning. Elsevier; 2012.

MATH   Google Scholar  

Ardabili SF, Mosavi A, Ghamisi P, Ferdinand F, Varkonyi-Koczy AR, Reuter U, Rabczuk T, Atkinson PM. Covid-19 outbreak prediction with machine learning. Algorithms. 2020;13(10):249.

Article   MathSciNet   Google Scholar  

Baldi P. Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML workshop on unsupervised and transfer learning, 2012; 37–49 .

Balducci F, Impedovo D, Pirlo G. Machine learning applications on agricultural datasets for smart farm enhancement. Machines. 2018;6(3):38.

Boukerche A, Wang J. Machine learning-based traffic prediction models for intelligent transportation systems. Comput Netw. 2020;181

Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.

Article   MATH   Google Scholar  

Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. CRC Press; 1984.

Cao L. Data science: a comprehensive overview. ACM Comput Surv (CSUR). 2017;50(3):43.

Google Scholar  

Carpenter GA, Grossberg S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput Vis Graph Image Process. 1987;37(1):54–115.

Chiu C-C, Sainath TN, Wu Y, Prabhavalkar R, Nguyen P, Chen Z, Kannan A, Weiss RJ, Rao K, Gonina E, et al. State-of-the-art speech recognition with sequence-to-sequence models. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018 pages 4774–4778. IEEE .

Chollet F. Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1251–1258, 2017.

Cobuloglu H, Büyüktahtakın IE. A stochastic multi-criteria decision analysis for sustainable biomass crop selection. Expert Syst Appl. 2015;42(15–16):6065–74.

Das A, Ng W-K, Woon Y-K. Rapid association rule mining. In: Proceedings of the tenth international conference on Information and knowledge management, pages 474–481. ACM, 2001.

de Amorim RC. Constrained clustering with minkowski weighted k-means. In: 2012 IEEE 13th International Symposium on Computational Intelligence and Informatics (CINTI), pages 13–17. IEEE, 2012.

Dey AK. Understanding and using context. Person Ubiquit Comput. 2001;5(1):4–7.

Eagle N, Pentland AS. Reality mining: sensing complex social systems. Person Ubiquit Comput. 2006;10(4):255–68.

Essien A, Petrounias I, Sampaio P, Sampaio S. Improving urban traffic speed prediction using data source fusion and deep learning. In: 2019 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE. 2019: 1–8. .

Essien A, Petrounias I, Sampaio P, Sampaio S. A deep-learning model for urban traffic flow prediction with traffic events mined from twitter. In: World Wide Web, 2020: 1–24 .

Ester M, Kriegel H-P, Sander J, Xiaowei X, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd. 1996;96:226–31.

Fatima M, Pasha M, et al. Survey of machine learning algorithms for disease diagnostic. J Intell Learn Syst Appl. 2017;9(01):1.

Flach PA, Lachiche N. Confirmation-guided discovery of first-order rules with tertius. Mach Learn. 2001;42(1–2):61–95.

Freund Y, Schapire RE, et al. Experiments with a new boosting algorithm. In: Icml, Citeseer. 1996; 96: 148–156

Fujiyoshi H, Hirakawa T, Yamashita T. Deep learning-based image recognition for autonomous driving. IATSS Res. 2019;43(4):244–52.

Fukunaga K, Hostetler L. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans Inform Theory. 1975;21(1):32–40.

Article   MathSciNet   MATH   Google Scholar  

Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. Cambridge: MIT Press; 2016.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Advances in neural information processing systems. 2014: 2672–2680.

Guerrero-Ibáñez J, Zeadally S, Contreras-Castillo J. Sensor technologies for intelligent transportation systems. Sensors. 2018;18(4):1212.

Han J, Pei J, Kamber M. Data mining: concepts and techniques. Amsterdam: Elsevier; 2011.

Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: ACM Sigmod Record, ACM. 2000;29: 1–12.

Harmon SA, Sanford TH, Sheng X, Turkbey EB, Roth H, Ziyue X, Yang D, Myronenko A, Anderson V, Amalou A, et al. Artificial intelligence for the detection of covid-19 pneumonia on chest ct using multinational datasets. Nat Commun. 2020;11(1):1–7.

He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell. 2015;37(9):1904–16.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 770–778.

Hinton GE. A practical guide to training restricted boltzmann machines. In: Neural networks: Tricks of the trade. Springer. 2012; 599-619

Holte RC. Very simple classification rules perform well on most commonly used datasets. Mach Learn. 1993;11(1):63–90.

Hotelling H. Analysis of a complex of statistical variables into principal components. J Edu Psychol. 1933;24(6):417.

Houtsma M, Swami A. Set-oriented mining for association rules in relational databases. In: Data Engineering, 1995. Proceedings of the Eleventh International Conference on, IEEE.1995:25–33.

Jamshidi M, Lalbakhsh A, Talla J, Peroutka Z, Hadjilooei F, Lalbakhsh P, Jamshidi M, La Spada L, Mirmozafari M, Dehghani M, et al. Artificial intelligence and covid-19: deep learning approaches for diagnosis and treatment. IEEE Access. 2020;8:109581–95.

John GH, Langley P. Estimating continuous distributions in bayesian classifiers. In: Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc. 1995; 338–345

Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: a survey. J Artif Intell Res. 1996;4:237–85.

Kamble SS, Gunasekaran A, Gawankar SA. Sustainable industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives. Process Saf Environ Protect. 2018;117:408–25.

Kamble SS, Gunasekaran A, Gawankar SA. Achieving sustainable performance in a data-driven agriculture supply chain: a review for research and applications. Int J Prod Econ. 2020;219:179–94.

Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster analysis, vol. 344. John Wiley & Sons; 2009.

Keerthi SS, Shevade SK, Bhattacharyya C, Radha Krishna MK. Improvements to platt’s smo algorithm for svm classifier design. Neural Comput. 2001;13(3):637–49.

Khadse V, Mahalle PN, Biraris SV. An empirical comparison of supervised machine learning algorithms for internet of things data. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), IEEE. 2018; 1–6

Kohonen T. The self-organizing map. Proc IEEE. 1990;78(9):1464–80.

Koroniotis N, Moustafa N, Sitnikova E, Turnbull B. Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: bot-iot dataset. Fut Gen Comput Syst. 2019;100:779–96.

Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, 2012: 1097–1105

Kushwaha S, Bahl S, Bagha AK, Parmar KS, Javaid M, Haleem A, Singh RP. Significant applications of machine learning for covid-19 pandemic. J Ind Integr Manag. 2020;5(4).

Lade P, Ghosh R, Srinivasan S. Manufacturing analytics and industrial internet of things. IEEE Intell Syst. 2017;32(3):74–9.

Lalmuanawma S, Hussain J, Chhakchhuak L. Applications of machine learning and artificial intelligence for covid-19 (sars-cov-2) pandemic: a review. Chaos Sol Fract. 2020:110059 .

LeCessie S, Van Houwelingen JC. Ridge estimators in logistic regression. J R Stat Soc Ser C (Appl Stat). 1992;41(1):191–201.

LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324.

Liu H, Motoda H. Feature extraction, construction and selection: A data mining perspective, vol. 453. Springer Science & Business Media; 1998.

López G, Quesada L, Guerrero LA. Alexa vs. siri vs. cortana vs. google assistant: a comparison of speech-based natural user interfaces. In: International Conference on Applied Human Factors and Ergonomics, Springer. 2017; 241–250.

Liu B, HsuW, Ma Y. Integrating classification and association rule mining. In: Proceedings of the fourth international conference on knowledge discovery and data mining, 1998.

MacQueen J, et al. Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1967;volume 1, pages 281–297. Oakland, CA, USA.

Mahdavinejad MS, Rezvan M, Barekatain M, Adibi P, Barnaghi P, Sheth AP. Machine learning for internet of things data analysis: a survey. Digit Commun Netw. 2018;4(3):161–75.

Marchand A, Marx P. Automated product recommendations with preference-based explanations. J Retail. 2020;96(3):328–43.

McCallum A. Information extraction: distilling structured data from unstructured text. Queue. 2005;3(9):48–57.

Mehrotra A, Hendley R, Musolesi M. Prefminer: mining user’s preferences for intelligent mobile notification management. In: Proceedings of the International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September, 2016; pp. 1223–1234. ACM, New York, USA. .

Mohamadou Y, Halidou A, Kapen PT. A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of covid-19. Appl Intell. 2020;50(11):3913–25.

Mohammed M, Khan MB, Bashier Mohammed BE. Machine learning: algorithms and applications. CRC Press; 2016.

Book   Google Scholar  

Moustafa N, Slay J. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 military communications and information systems conference (MilCIS), 2015;pages 1–6. IEEE .

Nilashi M, Ibrahim OB, Ahmadi H, Shahmoradi L. An analytical method for diseases prediction using machine learning techniques. Comput Chem Eng. 2017;106:212–23.

Yujin O, Park S, Ye JC. Deep learning covid-19 features on cxr using limited training data sets. IEEE Trans Med Imaging. 2020;39(8):2688–700.

Otter DW, Medina JR , Kalita JK. A survey of the usages of deep learning for natural language processing. IEEE Trans Neural Netw Learn Syst. 2020.

Park H-S, Jun C-H. A simple and fast algorithm for k-medoids clustering. Expert Syst Appl. 2009;36(2):3336–41.

Liii Pearson K. on lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci. 1901;2(11):559–72.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.

MathSciNet   MATH   Google Scholar  

Perveen S, Shahbaz M, Keshavjee K, Guergachi A. Metabolic syndrome and development of diabetes mellitus: predictive modeling based on machine learning techniques. IEEE Access. 2018;7:1365–75.

Santi P, Ram D, Rob C, Nathan E. Behavior-based adaptive call predictor. ACM Trans Auton Adapt Syst. 2011;6(3):21:1–21:28.

Polydoros AS, Nalpantidis L. Survey of model-based reinforcement learning: applications on robotics. J Intell Robot Syst. 2017;86(2):153–73.

Puterman ML. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons; 2014.

Quinlan JR. Induction of decision trees. Mach Learn. 1986;1:81–106.

Quinlan JR. C4.5: programs for machine learning. Mach Learn. 1993.

Rasmussen C. The infinite gaussian mixture model. Adv Neural Inform Process Syst. 1999;12:554–60.

Ravi K, Ravi V. A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl Syst. 2015;89:14–46.

Rokach L. A survey of clustering algorithms. In: Data mining and knowledge discovery handbook, pages 269–298. Springer, 2010.

Safdar S, Zafar S, Zafar N, Khan NF. Machine learning based decision support systems (dss) for heart disease diagnosis: a review. Artif Intell Rev. 2018;50(4):597–623.

Sarker IH. Context-aware rule learning from smartphone data: survey, challenges and future directions. J Big Data. 2019;6(1):1–25.

Sarker IH. A machine learning based robust prediction model for real-life mobile phone data. Internet Things. 2019;5:180–93.

Sarker IH. Ai-driven cybersecurity: an overview, security intelligence modeling and research directions. SN Comput Sci. 2021.

Sarker IH. Deep cybersecurity: a comprehensive overview from neural network and deep learning perspective. SN Comput Sci. 2021.

Sarker IH, Abushark YB, Alsolami F, Khan A. Intrudtree: a machine learning based cyber security intrusion detection model. Symmetry. 2020;12(5):754.

Sarker IH, Abushark YB, Khan A. Contextpca: predicting context-aware smartphone apps usage based on machine learning techniques. Symmetry. 2020;12(4):499.

Sarker IH, Alqahtani H, Alsolami F, Khan A, Abushark YB, Siddiqui MK. Context pre-modeling: an empirical analysis for classification based user-centric context-aware predictive modeling. J Big Data. 2020;7(1):1–23.

Sarker IH, Alan C, Jun H, Khan AI, Abushark YB, Khaled S. Behavdt: a behavioral decision tree learning to build user-centric context-aware predictive model. Mob Netw Appl. 2019; 1–11.

Sarker IH, Colman A, Kabir MA, Han J. Phone call log as a context source to modeling individual user behavior. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (Ubicomp): Adjunct, Germany, pages 630–634. ACM, 2016.

Sarker IH, Colman A, Kabir MA, Han J. Individualized time-series segmentation for mining mobile phone user behavior. Comput J Oxf Univ UK. 2018;61(3):349–68.

Sarker IH, Hoque MM, MdK Uddin, Tawfeeq A. Mobile data science and intelligent apps: concepts, ai-based modeling and research directions. Mob Netw Appl, pages 1–19, 2020.

Sarker IH, Kayes ASM. Abc-ruleminer: user behavioral rule-based machine learning method for context-aware intelligent services. J Netw Comput Appl. 2020; page 102762

Sarker IH, Kayes ASM, Badsha S, Alqahtani H, Watters P, Ng A. Cybersecurity data science: an overview from machine learning perspective. J Big Data. 2020;7(1):1–29.

Sarker IH, Watters P, Kayes ASM. Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. J Big Data. 2019;6(1):1–28.

Sarker IH, Salah K. Appspred: predicting context-aware smartphone apps using random forest learning. Internet Things. 2019;8:

Scheffer T. Finding association rules that trade support optimally against confidence. Intell Data Anal. 2005;9(4):381–95.

Sharma R, Kamble SS, Gunasekaran A, Kumar V, Kumar A. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput Oper Res. 2020;119:

Shengli S, Ling CX. Hybrid cost-sensitive decision tree, knowledge discovery in databases. In: PKDD 2005, Proceedings of 9th European Conference on Principles and Practice of Knowledge Discovery in Databases. Lecture Notes in Computer Science, volume 3721, 2005.

Shorten C, Khoshgoftaar TM, Furht B. Deep learning applications for covid-19. J Big Data. 2021;8(1):1–54.

Gökhan S, Nevin Y. Data analysis in health and big data: a machine learning medical diagnosis model based on patients’ complaints. Commun Stat Theory Methods. 2019;1–10

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, et al. Mastering the game of go with deep neural networks and tree search. nature. 2016;529(7587):484–9.

Ślusarczyk B. Industry 4.0: Are we ready? Polish J Manag Stud. 17, 2018.

Sneath Peter HA. The application of computers to taxonomy. J Gen Microbiol. 1957;17(1).

Sorensen T. Method of establishing groups of equal amplitude in plant sociology based on similarity of species. Biol Skr. 1948; 5.

Srinivasan V, Moghaddam S, Mukherji A. Mobileminer: mining your frequent patterns on your phone. In: Proceedings of the International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, WA, USA, 13-17 September, pp. 389–400. ACM, New York, USA. 2014.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015; pages 1–9.

Tavallaee M, Bagheri E, Lu W, Ghorbani AA. A detailed analysis of the kdd cup 99 data set. In. IEEE symposium on computational intelligence for security and defense applications. IEEE. 2009;2009:1–6.

Tsagkias M. Tracy HK, Surya K, Vanessa M, de Rijke M. Challenges and research opportunities in ecommerce search and recommendations. In: ACM SIGIR Forum. volume 54. NY, USA: ACM New York; 2021. p. 1–23.

Wagstaff K, Cardie C, Rogers S, Schrödl S, et al. Constrained k-means clustering with background knowledge. Icml. 2001;1:577–84.

Wang W, Yang J, Muntz R, et al. Sting: a statistical information grid approach to spatial data mining. VLDB. 1997;97:186–95.

Wei P, Li Y, Zhang Z, Tao H, Li Z, Liu D. An optimization method for intrusion detection classification model based on deep belief network. IEEE Access. 2019;7:87593–605.

Weiss K, Khoshgoftaar TM, Wang DD. A survey of transfer learning. J Big data. 2016;3(1):9.

Witten IH, Frank E. Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann; 2005.

Witten IH, Frank E, Trigg LE, Hall MA, Holmes G, Cunningham SJ. Weka: practical machine learning tools and techniques with java implementations. 1999.

Wu C-C, Yen-Liang C, Yi-Hung L, Xiang-Yu Y. Decision tree induction with a constrained number of leaf nodes. Appl Intell. 2016;45(3):673–85.

Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Philip SY, et al. Top 10 algorithms in data mining. Knowl Inform Syst. 2008;14(1):1–37.

Xin Y, Kong L, Liu Z, Chen Y, Li Y, Zhu H, Gao M, Hou H, Wang C. Machine learning and deep learning methods for cybersecurity. IEEE Access. 2018;6:35365–81.

Xu D, Yingjie T. A comprehensive survey of clustering algorithms. Ann Data Sci. 2015;2(2):165–93.

Zaki MJ. Scalable algorithms for association mining. IEEE Trans Knowl Data Eng. 2000;12(3):372–90.

Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M. Internet of things for smart cities. IEEE Internet Things J. 2014;1(1):22–32.

Zhao Q, Bhowmick SS. Association rule mining: a survey. Singapore: Nanyang Technological University; 2003.

Zheng T, Xie W, Xu L, He X, Zhang Y, You M, Yang G, Chen Y. A machine learning-based framework to identify type 2 diabetes through electronic health records. Int J Med Inform. 2017;97:120–7.

Zheng Y, Rajasegarar S, Leckie C. Parking availability prediction for sensor-enabled car parks in smart cities. In: Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2015 IEEE Tenth International Conference on. IEEE, 2015; pages 1–6.

Zhu H, Cao H, Chen E, Xiong H, Tian J. Exploiting enriched contextual information for mobile app classification. In: Proceedings of the 21st ACM international conference on Information and knowledge management. ACM, 2012; pages 1617–1621

Zhu H, Chen E, Xiong H, Kuifei Y, Cao H, Tian J. Mining mobile user preferences for personalized context-aware recommendation. ACM Trans Intell Syst Technol (TIST). 2014;5(4):58.

Zikang H, Yong Y, Guofeng Y, Xinyu Z. Sentiment analysis of agricultural product ecommerce review data based on deep learning. In: 2020 International Conference on Internet of Things and Intelligent Applications (ITIA), IEEE, 2020; pages 1–7

Zulkernain S, Madiraju P, Ahamed SI. A context aware interruption management system for mobile devices. In: Mobile Wireless Middleware, Operating Systems, and Applications. Springer. 2010; pages 221–234

Zulkernain S, Madiraju P, Ahamed S, Stamm K. A mobile intelligent interruption management system. J UCS. 2010;16(15):2060–80.

Download references

Author information

Authors and affiliations.

Swinburne University of Technology, Melbourne, VIC, 3122, Australia

Iqbal H. Sarker

Department of Computer Science and Engineering, Chittagong University of Engineering & Technology, 4349, Chattogram, Bangladesh

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Iqbal H. Sarker .

Ethics declarations

Conflict of interest.

The author declares no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Advances in Computational Approaches for Artificial Intelligence, Image Processing, IoT and Cloud Applications” guest edited by Bhanu Prakash K N and M. Shivakumar.

Rights and permissions

Reprints and permissions

About this article

Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN COMPUT. SCI. 2 , 160 (2021). https://doi.org/10.1007/s42979-021-00592-x

Download citation

Received : 27 January 2021

Accepted : 12 March 2021

Published : 22 March 2021

DOI : https://doi.org/10.1007/s42979-021-00592-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Machine learning
  • Deep learning
  • Artificial intelligence
  • Data science
  • Data-driven decision-making
  • Predictive analytics
  • Intelligent applications
  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Innovation (Camb)
  • v.2(4); 2021 Nov 28

Artificial intelligence: A powerful paradigm for scientific research

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

35 University of Chinese Academy of Sciences, Beijing 100049, China

5 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

10 Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai 200032, China

Changping Huang

18 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

11 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

37 Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

26 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Xingchen Liu

28 Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

2 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

Fengliang Dong

3 National Center for Nanoscience and Technology, Beijing 100190, China

Cheng-Wei Qiu

4 Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore

6 Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, Shanghai 200011, China

36 Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China

7 School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China

41 Second Affiliated Hospital School of Medicine, and School of Public Health, Zhejiang University, Hangzhou 310058, China

8 Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China

9 Zhejiang Provincial People’s Hospital, Hangzhou 310014, China

Chenguang Fu

12 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Zhigang Yin

13 Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

Ronald Roepman

14 Medical Center, Radboud University, 6500 Nijmegen, the Netherlands

Sabine Dietmann

15 Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA

Marko Virta

16 Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland

Fredrick Kengara

17 School of Pure and Applied Sciences, Bomet University College, Bomet 20400, Kenya

19 Agriculture College of Shihezi University, Xinjiang 832000, China

Taolan Zhao

20 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

21 The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

38 Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China

Jialiang Yang

22 Geneis (Beijing) Co., Ltd, Beijing 100102, China

23 Department of Communication Studies, Hong Kong Baptist University, Hong Kong, China

24 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

39 Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China

Zhaofeng Liu

27 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

29 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

Xiaohong Liu

30 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

James P. Lewis

James m. tiedje.

34 Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA

40 Zhejiang Lab, Hangzhou 311121, China

25 Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China

31 Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion SY23 3FL, UK

Zhipeng Cai

32 Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA

33 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

Jiabao Zhang

Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.

Graphical abstract

An external file that holds a picture, illustration, etc.
Object name is fx1.jpg

Public summary

  • • “Can machines think?” The goal of artificial intelligence (AI) is to enable machines to mimic human thoughts and behaviors, including learning, reasoning, predicting, and so on.
  • • “Can AI do fundamental research?” AI coupled with machine learning techniques is impacting a wide range of fundamental sciences, including mathematics, medical science, physics, etc.
  • • “How does AI accelerate fundamental research?” New research and applications are emerging rapidly with the support by AI infrastructure, including data storage, computing power, AI algorithms, and frameworks.

Introduction

“Can machines think?” Alan Turing posed this question in his famous paper “Computing Machinery and Intelligence.” 1 He believes that to answer this question, we need to define what thinking is. However, it is difficult to define thinking clearly, because thinking is a subjective behavior. Turing then introduced an indirect method to verify whether a machine can think, the Turing test, which examines a machine's ability to show intelligence indistinguishable from that of human beings. A machine that succeeds in the test is qualified to be labeled as artificial intelligence (AI).

AI refers to the simulation of human intelligence by a system or a machine. The goal of AI is to develop a machine that can think like humans and mimic human behaviors, including perceiving, reasoning, learning, planning, predicting, and so on. Intelligence is one of the main characteristics that distinguishes human beings from animals. With the interminable occurrence of industrial revolutions, an increasing number of types of machine types continuously replace human labor from all walks of life, and the imminent replacement of human resources by machine intelligence is the next big challenge to be overcome. Numerous scientists are focusing on the field of AI, and this makes the research in the field of AI rich and diverse. AI research fields include search algorithms, knowledge graphs, natural languages processing, expert systems, evolution algorithms, machine learning (ML), deep learning (DL), and so on.

The general framework of AI is illustrated in Figure 1 . The development process of AI includes perceptual intelligence, cognitive intelligence, and decision-making intelligence. Perceptual intelligence means that a machine has the basic abilities of vision, hearing, touch, etc., which are familiar to humans. Cognitive intelligence is a higher-level ability of induction, reasoning and acquisition of knowledge. It is inspired by cognitive science, brain science, and brain-like intelligence to endow machines with thinking logic and cognitive ability similar to human beings. Once a machine has the abilities of perception and cognition, it is often expected to make optimal decisions as human beings, to improve the lives of people, industrial manufacturing, etc. Decision intelligence requires the use of applied data science, social science, decision theory, and managerial science to expand data science, so as to make optimal decisions. To achieve the goal of perceptual intelligence, cognitive intelligence, and decision-making intelligence, the infrastructure layer of AI, supported by data, storage and computing power, ML algorithms, and AI frameworks is required. Then by training models, it is able to learn the internal laws of data for supporting and realizing AI applications. The application layer of AI is becoming more and more extensive, and deeply integrated with fundamental sciences, industrial manufacturing, human life, social governance, and cyberspace, which has a profound impact on our work and lifestyle.

An external file that holds a picture, illustration, etc.
Object name is gr1.jpg

The general framework of AI

History of AI

The beginning of modern AI research can be traced back to John McCarthy, who coined the term “artificial intelligence (AI),” during at a conference at Dartmouth College in 1956. This symbolized the birth of the AI scientific field. Progress in the following years was astonishing. Many scientists and researchers focused on automated reasoning and applied AI for proving of mathematical theorems and solving of algebraic problems. One of the famous examples is Logic Theorist, a computer program written by Allen Newell, Herbert A. Simon, and Cliff Shaw, which proves 38 of the first 52 theorems in “Principia Mathematica” and provides more elegant proofs for some. 2 These successes made many AI pioneers wildly optimistic, and underpinned the belief that fully intelligent machines would be built in the near future. However, they soon realized that there was still a long way to go before the end goals of human-equivalent intelligence in machines could come true. Many nontrivial problems could not be handled by the logic-based programs. Another challenge was the lack of computational resources to compute more and more complicated problems. As a result, organizations and funders stopped supporting these under-delivering AI projects.

AI came back to popularity in the 1980s, as several research institutions and universities invented a type of AI systems that summarizes a series of basic rules from expert knowledge to help non-experts make specific decisions. These systems are “expert systems.” Examples are the XCON designed by Carnegie Mellon University and the MYCIN designed by Stanford University. The expert system derived logic rules from expert knowledge to solve problems in the real world for the first time. The core of AI research during this period is the knowledge that made machines “smarter.” However, the expert system gradually revealed several disadvantages, such as privacy technologies, lack of flexibility, poor versatility, expensive maintenance cost, and so on. At the same time, the Fifth Generation Computer Project, heavily funded by the Japanese government, failed to meet most of its original goals. Once again, the funding for AI research ceased, and AI was at the second lowest point of its life.

In 2006, Geoffrey Hinton and coworkers 3 , 4 made a breakthrough in AI by proposing an approach of building deeper neural networks, as well as a way to avoid gradient vanishing during training. This reignited AI research, and DL algorithms have become one of the most active fields of AI research. DL is a subset of ML based on multiple layers of neural networks with representation learning, 5 while ML is a part of AI that a computer or a program can use to learn and acquire intelligence without human intervention. Thus, “learn” is the keyword of this era of AI research. Big data technologies, and the improvement of computing power have made deriving features and information from massive data samples more efficient. An increasing number of new neural network structures and training methods have been proposed to improve the representative learning ability of DL, and to further expand it into general applications. Current DL algorithms match and exceed human capabilities on specific datasets in the areas of computer vision (CV) and natural language processing (NLP). AI technologies have achieved remarkable successes in all walks of life, and continued to show their value as backbones in scientific research and real-world applications.

Within AI, ML is having a substantial broad effect across many aspects of technology and science: from computer science to geoscience to materials science, from life science to medical science to chemistry to mathematics and to physics, from management science to economics to psychology, and other data-intensive empirical sciences, as ML methods have been developed to analyze high-throughput data to obtain useful insights, categorize, predict, and make evidence-based decisions in novel ways. To train a system by presenting it with examples of desired input-output behavior, could be far easier than to program it manually by predicting the desired response for all potential inputs. The following sections survey eight fundamental sciences, including information science (informatics), mathematics, medical science, materials science, geoscience, life science, physics, and chemistry, which develop or exploit AI techniques to promote the development of sciences and accelerate their applications to benefit human beings, society, and the world.

AI in information science

AI aims to provide the abilities of perception, cognition, and decision-making for machines. At present, new research and applications in information science are emerging at an unprecedented rate, which is inseparable from the support by the AI infrastructure. As shown in Figure 2 , the AI infrastructure layer includes data, storage and computing power, ML algorithms, and the AI framework. The perception layer enables machines have the basic ability of vision, hearing, etc. For instance, CV enables machines to “see” and identify objects, while speech recognition and synthesis helps machines to “hear” and recognize speech elements. The cognitive layer provides higher ability levels of induction, reasoning, and acquiring knowledge with the help of NLP, 6 knowledge graphs, 7 and continual learning. 8 In the decision-making layer, AI is capable of making optimal decisions, such as automatic planning, expert systems, and decision-supporting systems. Numerous applications of AI have had a profound impact on fundamental sciences, industrial manufacturing, human life, social governance, and cyberspace. The following subsections provide an overview of the AI framework, automatic machine learning (AutoML) technology, and several state-of-the-art AI/ML applications in the information field.

An external file that holds a picture, illustration, etc.
Object name is gr2.jpg

The knowledge graph of the AI framework

The AI framework provides basic tools for AI algorithm implementation

In the past 10 years, applications based on AI algorithms have played a significant role in various fields and subjects, on the basis of which the prosperity of the DL framework and platform has been founded. AI frameworks and platforms reduce the requirement of accessing AI technology by integrating the overall process of algorithm development, which enables researchers from different areas to use it across other fields, allowing them to focus on designing the structure of neural networks, thus providing better solutions to problems in their fields. At the beginning of the 21st century, only a few tools, such as MATLAB, OpenNN, and Torch, were capable of describing and developing neural networks. However, these tools were not originally designed for AI models, and thus faced problems, such as complicated user API and lacking GPU support. During this period, using these frameworks demanded professional computer science knowledge and tedious work on model construction. As a solution, early frameworks of DL, such as Caffe, Chainer, and Theano, emerged, allowing users to conveniently construct complex deep neural networks (DNNs), such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and LSTM conveniently, and this significantly reduced the cost of applying AI models. Tech giants then joined the march in researching AI frameworks. 9 Google developed the famous open-source framework, TensorFlow, while Facebook's AI research team released another popular platform, PyTorch, which is based on Torch; Microsoft Research published CNTK, and Amazon announced MXNet. Among them, TensorFlow, also the most representative framework, referred to Theano's declarative programming style, offering a larger space for graph-based optimization, while PyTorch inherited the imperative programming style of Torch, which is intuitive, user friendly, more flexible, and easier to be traced. As modern AI frameworks and platforms are being widely applied, practitioners can now assemble models swiftly and conveniently by adopting various building block sets and languages specifically suitable for given fields. Polished over time, these platforms gradually developed a clearly defined user API, the ability for multi-GPU training and distributed training, as well as a variety of model zoos and tool kits for specific tasks. 10 Looking forward, there are a few trends that may become the mainstream of next-generation framework development. (1) Capability of super-scale model training. With the emergence of models derived from Transformer, such as BERT and GPT-3, the ability of training large models has become an ideal feature of the DL framework. It requires AI frameworks to train effectively under the scale of hundreds or even thousands of devices. (2) Unified API standard. The APIs of many frameworks are generally similar but slightly different at certain points. This leads to some difficulties and unnecessary learning efforts, when the user attempts to shift from one framework to another. The API of some frameworks, such as JAX, has already become compatible with Numpy standard, which is familiar to most practitioners. Therefore, a unified API standard for AI frameworks may gradually come into being in the future. (3) Universal operator optimization. At present, kernels of DL operator are implemented either manually or based on third-party libraries. Most third-party libraries are developed to suit certain hardware platforms, causing large unnecessary spending when models are trained or deployed on different hardware platforms. The development speed of new DL algorithms is usually much faster than the update rate of libraries, which often makes new algorithms to be beyond the range of libraries' support. 11

To improve the implementation speed of AI algorithms, much research focuses on how to use hardware for acceleration. The DianNao family is one of the earliest research innovations on AI hardware accelerators. 12 It includes DianNao, DaDianNao, ShiDianNao, and PuDianNao, which can be used to accelerate the inference speed of neural networks and other ML algorithms. Of these, the best performance of a 64-chip DaDianNao system can achieve a speed up of 450.65× over a GPU, and reduce the energy by 150.31×. Prof. Chen and his team in the Institute of Computing Technology also designed an Instruction Set Architecture for a broad range of neural network accelerators, called Cambricon, which developed into a serial DL accelerator. After Cambricon, many AI-related companies, such as Apple, Google, HUAWEI, etc., developed their own DL accelerators, and AI accelerators became an important research field of AI.

AI for AI—AutoML

AutoML aims to study how to use evolutionary computing, reinforcement learning (RL), and other AI algorithms, to automatically generate specified AI algorithms. Research on the automatic generation of neural networks has existed before the emergence of DL, e.g., neural evolution. 13 The main purpose of neural evolution is to allow neural networks to evolve according to the principle of survival of the fittest in the biological world. Through selection, crossover, mutation, and other evolutionary operators, the individual quality in a population is continuously improved and, finally, the individual with the greatest fitness represents the best neural network. The biological inspiration in this field lies in the evolutionary process of human brain neurons. The human brain has such developed learning and memory functions that it cannot do without the complex neural network system in the brain. The whole neural network system of the human brain benefits from a long evolutionary process rather than gradient descent and back propagation. In the era of DL, the application of AI algorithms to automatically generate DNN has attracted more attention and, gradually, developed into an important direction of AutoML research: neural architecture search. The implementation methods of neural architecture search are usually divided into the RL-based method and the evolutionary algorithm-based method. In the RL-based method, an RNN is used as a controller to generate a neural network structure layer by layer, and then the network is trained, and the accuracy of the verification set is used as the reward signal of the RNN to calculate the strategy gradient. During the iteration, the controller will give the neural network, with higher accuracy, a higher probability value, so as to ensure that the strategy function can output the optimal network structure. 14 The method of neural architecture search through evolution is similar to the neural evolution method, which is based on a population and iterates continuously according to the principle of survival of the fittest, so as to obtain a high-quality neural network. 15 Through the application of neural architecture search technology, the design of neural networks is more efficient and automated, and the accuracy of the network gradually outperforms that of the networks designed by AI experts. For example, Google's SOTA network EfficientNet was realized through the baseline network based on neural architecture search. 16

AI enabling networking design adaptive to complex network conditions

The application of DL in the networking field has received strong interest. Network design often relies on initial network conditions and/or theoretical assumptions to characterize real network environments. However, traditional network modeling and design, regulated by mathematical models, are unlikely to deal with complex scenarios with many imperfect and high dynamic network environments. Integrating DL into network research allows for a better representation of complex network environments. Furthermore, DL could be combined with the Markov decision process and evolve into the deep reinforcement learning (DRL) model, which finds an optimal policy based on the reward function and the states of the system. Taken together, these techniques could be used to make better decisions to guide proper network design, thereby improving the network quality of service and quality of experience. With regard to the aspect of different layers of the network protocol stack, DL/DRL can be adopted for network feature extraction, decision-making, etc. In the physical layer, DL can be used for interference alignment. It can also be used to classify the modulation modes, design efficient network coding 17 and error correction codes, etc. In the data link layer, DL can be used for resource (such as channels) allocation, medium access control, traffic prediction, 18 link quality evaluation, and so on. In the network (routing) layer, routing establishment and routing optimization 19 can help to obtain an optimal routing path. In higher layers (such as the application layer), enhanced data compression and task allocation is used. Besides the above protocol stack, one critical area of using DL is network security. DL can be used to classify the packets into benign/malicious types, and how it can be integrated with other ML schemes, such as unsupervised clustering, to achieve a better anomaly detection effect.

AI enabling more powerful and intelligent nanophotonics

Nanophotonic components have recently revolutionized the field of optics via metamaterials/metasurfaces by enabling the arbitrary manipulation of light-matter interactions with subwavelength meta-atoms or meta-molecules. 20 , 21 , 22 The conventional design of such components involves generally forward modeling, i.e., solving Maxwell's equations based on empirical and intuitive nanostructures to find corresponding optical properties, as well as the inverse design of nanophotonic devices given an on-demand optical response. The trans-dimensional feature of macro-optical components consisting of complex nano-antennas makes the design process very time consuming, computationally expensive, and even numerically prohibitive, such as device size and complexity increase. DL is an efficient and automatic platform, enabling novel efficient approaches to designing nanophotonic devices with high-performance and versatile functions. Here, we present briefly the recent progress of DL-based nanophotonics and its wide-ranging applications. DL was exploited for forward modeling at first using a DNN. 23 The transmission or reflection coefficients can be well predicted after training on huge datasets. To improve the prediction accuracy of DNN in case of small datasets, transfer learning was introduced to migrate knowledge between different physical scenarios, which greatly reduced the relative error. Furthermore, a CNN and an RNN were developed for the prediction of optical properties from arbitrary structures using images. 24 The CNN-RNN combination successfully predicted the absorption spectra from the given input structural images. In inverse design of nanophotonic devices, there are three different paradigms of DL methods, i.e., supervised, unsupervised, and RL. 25 Supervised learning has been utilized to design structural parameters for the pre-defined geometries, such as tandem DNN and bidirectional DNNs. Unsupervised learning methods learn by themselves without a specific target, and thus are more accessible to discovering new and arbitrary patterns 26 in completely new data than supervised learning. A generative adversarial network (GAN)-based approach, combining conditional GANs and Wasserstein GANs, was proposed to design freeform all-dielectric multifunctional metasurfaces. RL, especially double-deep Q-learning, powers up the inverse design of high-performance nanophotonic devices. 27 DL has endowed nanophotonic devices with better performance and more emerging applications. 28 , 29 For instance, an intelligent microwave cloak driven by DL exhibits millisecond and self-adaptive response to an ever-changing incident wave and background. 28 Another example is that a DL-augmented infrared nanoplasmonic metasurface is developed for monitoring dynamics between four major classes of bio-molecules, which could impact the fields of biology, bioanalytics, and pharmacology from fundamental research, to disease diagnostics, to drug development. 29 The potential of DL in the wide arena of nanophotonics has been unfolding. Even end-users without optics and photonics background could exploit the DL as a black box toolkit to design powerful optical devices. Nevertheless, how to interpret/mediate the intermediate DL process and determine the most dominant factors in the search for optimal solutions, are worthy of being investigated in depth. We optimistically envisage that the advancements in DL algorithms and computation/optimization infrastructures would enable us to realize more efficient and reliable training approaches, more complex nanostructures with unprecedented shapes and sizes, and more intelligent and reconfigurable optic/optoelectronic systems.

AI in other fields of information science

We believe that AI has great potential in the following directions:

  • • AI-based risk control and management in utilities can prevent costly or hazardous equipment failures by using sensors that detect and send information regarding the machine's health to the manufacturer, predicting possible issues that could occur so as to ensure timely maintenance or automated shutdown.
  • • AI could be used to produce simulations of real-world objects, called digital twins. When applied to the field of engineering, digital twins allow engineers and technicians to analyze the performance of an equipment virtually, thus avoiding safety and budget issues associated with traditional testing methods.
  • • Combined with AI, intelligent robots are playing an important role in industry and human life. Different from traditional robots working according to the procedures specified by humans, intelligent robots have the ability of perception, recognition, and even automatic planning and decision-making, based on changes in environmental conditions.
  • • AI of things (AIoT) or AI-empowered IoT applications. 30 have become a promising development trend. AI can empower the connected IoT devices, embedded in various physical infrastructures, to perceive, recognize, learn, and act. For instance, smart cities constantly collect data regarding quality-of-life factors, such as the status of power supply, public transportation, air pollution, and water use, to manage and optimize systems in cities. Due to these data, especially personal data being collected from informed or uninformed participants, data security, and privacy 31 require protection.

AI in mathematics

Mathematics always plays a crucial and indispensable role in AI. Decades ago, quite a few classical AI-related approaches, such as k-nearest neighbor, 32 support vector machine, 33 and AdaBoost, 34 were proposed and developed after their rigorous mathematical formulations had been established. In recent years, with the rapid development of DL, 35 AI has been gaining more and more attention in the mathematical community. Equipped with the Markov process, minimax optimization, and Bayesian statistics, RL, 36 GANs, 37 and Bayesian learning 38 became the most favorable tools in many AI applications. Nevertheless, there still exist plenty of open problems in mathematics for ML, including the interpretability of neural networks, the optimization problems of parameter estimation, and the generalization ability of learning models. In the rest of this section, we discuss these three questions in turn.

The interpretability of neural networks

From a mathematical perspective, ML usually constructs nonlinear models, with neural networks as a typical case, to approximate certain functions. The well-known Universal Approximation Theorem suggests that, under very mild conditions, any continuous function can be uniformly approximated on compact domains by neural networks, 39 which serves a vital function in the interpretability of neural networks. However, in real applications, ML models seem to admit accurate approximations of many extremely complicated functions, sometimes even black boxes, which are far beyond the scope of continuous functions. To understand the effectiveness of ML models, many researchers have investigated the function spaces that can be well approximated by them, and the corresponding quantitative measures. This issue is closely related to the classical approximation theory, but the approximation scheme is distinct. For example, Bach 40 finds that the random feature model is naturally associated with the corresponding reproducing kernel Hilbert space. In the same way, the Barron space is identified as the natural function space associated with two-layer neural networks, and the approximation error is measured using the Barron norm. 41 The corresponding quantities of residual networks (ResNets) are defined for the flow-induced spaces. For multi-layer networks, the natural function spaces for the purposes of approximation theory are the tree-like function spaces introduced in Wojtowytsch. 42 There are several works revealing the relationship between neural networks and numerical algorithms for solving partial differential equations. For example, He and Xu 43 discovered that CNNs for image classification have a strong connection with multi-grid (MG) methods. In fact, the pooling operation and feature extraction in CNNs correspond directly to restriction operation and iterative smoothers in MG, respectively. Hence, various convolution and pooling operations used in CNNs can be better understood.

The optimization problems of parameter estimation

In general, the optimization problem of estimating parameters of certain DNNs is in practice highly nonconvex and often nonsmooth. Can the global minimizers be expected? What is the landscape of local minimizers? How does one handle the nonsmoothness? All these questions are nontrivial from an optimization perspective. Indeed, numerous works and experiments demonstrate that the optimization for parameter estimation in DL is itself a much nicer problem than once thought; see, e.g., Goodfellow et al. 44 As a consequence, the study on the solution landscape ( Figure 3 ), also known as loss surface of neural networks, is no longer supposed to be inaccessible and can even in turn provide guidance for global optimization. Interested readers can refer to the survey paper (Sun et al. 45 ) for recent progress in this aspect.

An external file that holds a picture, illustration, etc.
Object name is gr3.jpg

Recent studies indicate that nonsmooth activation functions, e.g., rectified linear units, are better than smooth ones in finding sparse solutions. However, the chain rule does not work in the case that the activation functions are nonsmooth, which then makes the widely used stochastic gradient (SG)-based approaches not feasible in theory. Taking approximated gradients at nonsmooth iterates as a remedy ensures that SG-type methods are still in extensive use, but that the numerical evidence has also exposed their limitations. Also, the penalty-based approaches proposed by Cui et al. 46 and Liu et al. 47 provide a new direction to solve the nonsmooth optimization problems efficiently.

The generalization ability of learning models

A small training error does not always lead to a small test error. This gap is caused by the generalization ability of learning models. A key finding in statistical learning theory states that the generalization error is bounded by a quantity that grows with the increase of the model capacity, but shrinks as the number of training examples increases. 48 A common conjecture relating generalization to solution landscape is that flat and wide minima generalize better than sharp ones. Thus, regularization techniques, including the dropout approach, 49 have emerged to force the algorithms to bypass the sharp minima. However, the mechanism behind this has not been fully explored. Recently, some researchers have focused on the ResNet-type architecture, with dropout being inserted after the last convolutional layer of each modular building. They thus managed to explain the stochastic dropout training process and the ensuing dropout regularization effect from the perspective of optimal control. 50

AI in medical science

There is a great trend for AI technology to grow more and more significant in daily operations, including medical fields. With the growing needs of healthcare for patients, hospital needs are evolving from informationization networking to the Internet Hospital and eventually to the Smart Hospital. At the same time, AI tools and hardware performance are also growing rapidly with each passing day. Eventually, common AI algorithms, such as CV, NLP, and data mining, will begin to be embedded in the medical equipment market ( Figure 4 ).

An external file that holds a picture, illustration, etc.
Object name is gr4.jpg

AI doctor based on electronic medical records

For medical history data, it is inevitable to mention Doctor Watson, developed by the Watson platform of IBM, and Modernizing Medicine, which aims to solve oncology, and is now adopted by CVS & Walgreens in the US and various medical organizations in China as well. Doctor Watson takes advantage of the NLP performance of the IBM Watson platform, which already collected vast data of medical history, as well as prior knowledge in the literature for reference. After inputting the patients' case, Doctor Watson searches the medical history reserve and forms an elementary treatment proposal, which will be further ranked by prior knowledge reserves. With the multiple models stored, Doctor Watson gives the final proposal as well as the confidence of the proposal. However, there are still problems for such AI doctors because, 51 as they rely on prior experience from US hospitals, the proposal may not be suitable for other regions with different medical insurance policies. Besides, the knowledge updating of the Watson platform also relies highly on the updating of the knowledge reserve, which still needs manual work.

AI for public health: Outbreak detection and health QR code for COVID-19

AI can be used for public health purposes in many ways. One classical usage is to detect disease outbreaks using search engine query data or social media data, as Google did for prediction of influenza epidemics 52 and the Chinese Academy of Sciences did for modeling the COVID-19 outbreak through multi-source information fusion. 53 After the COVID-19 outbreak, a digital health Quick Response (QR) code system has been developed by China, first to detect potential contact with confirmed COVID-19 cases and, secondly, to indicate the person's health status using mobile big data. 54 Different colors indicate different health status: green means healthy and is OK for daily life, orange means risky and requires quarantine, and red means confirmed COVID-19 patient. It is easy to use for the general public, and has been adopted by many other countries. The health QR code has made great contributions to the worldwide prevention and control of the COVID-19 pandemic.

Biomarker discovery with AI

High-dimensional data, including multi-omics data, patient characteristics, medical laboratory test data, etc., are often used for generating various predictive or prognostic models through DL or statistical modeling methods. For instance, the COVID-19 severity evaluation model was built through ML using proteomic and metabolomic profiling data of sera 55 ; using integrated genetic, clinical, and demographic data, Taliaz et al. built an ML model to predict patient response to antidepressant medications 56 ; prognostic models for multiple cancer types (such as liver cancer, lung cancer, breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, prostate cancer, ovarian cancer, lymphoma, leukemia, sarcoma, melanoma, bladder cancer, renal cancer, thyroid cancer, head and neck cancer, etc.) were constructed through DL or statistical methods, such as least absolute shrinkage and selection operator (LASSO), combined with Cox proportional hazards regression model using genomic data. 57

Image-based medical AI

Medical image AI is one of the most developed mature areas as there are numerous models for classification, detection, and segmentation tasks in CV. For the clinical area, CV algorithms can also be used for computer-aided diagnosis and treatment with ECG, CT, eye fundus imaging, etc. As human doctors may be tired and prone to make mistakes after viewing hundreds and hundreds of images for diagnosis, AI doctors can outperform a human medical image viewer due to their specialty at repeated work without fatigue. The first medical AI product approved by FDA is IDx-DR, which uses an AI model to make predictions of diabetic retinopathy. The smartphone app SkinVision can accurately detect melanomas. 58 It uses “fractal analysis” to identify moles and their surrounding skin, based on size, diameter, and many other parameters, and to detect abnormal growth trends. AI-ECG of LEPU Medical can automatically detect heart disease with ECG images. Lianying Medical takes advantage of their hardware equipment to produce real-time high-definition image-guided all-round radiotherapy technology, which successfully achieves precise treatment.

Wearable devices for surveillance and early warning

For wearable devices, AliveCor has developed an algorithm to automatically predict the presence of atrial fibrillation, which is an early warning sign of stroke and heart failure. The 23andMe company can also test saliva samples at a small cost, and a customer can be provided with information based on their genes, including who their ancestors were or potential diseases they may be prone to later in life. It provides accurate health management solutions based on individual and family genetic data. In the 20–30 years of the near feature, we believe there are several directions for further research: (1) causal inference for real-time in-hospital risk prediction. Clinical doctors usually acquire reasonable explanations for certain medical decisions, but the current AI models nowadays are usually black box models. The casual inference will help doctors to explain certain AI decisions and even discover novel ground truths. (2) Devices, including wearable instruments for multi-dimensional health monitoring. The multi-modality model is now a trend for AI research. With various devices to collect multi-modality data and a central processor to fuse all these data, the model can monitor the user's overall real-time health condition and give precautions more precisely. (3) Automatic discovery of clinical markers for diseases that are difficult to diagnose. Diseases, such as ALS, are still difficult for clinical doctors to diagnose because they lack any effective general marker. It may be possible for AI to discover common phenomena for these patients and find an effective marker for early diagnosis.

AI-aided drug discovery

Today we have come into the precision medicine era, and the new targeted drugs are the cornerstones for precision therapy. However, over the past decades, it takes an average of over one billion dollars and 10 years to bring a new drug into the market. How to accelerate the drug discovery process, and avoid late-stage failure, are key concerns for all the big and fiercely competitive pharmaceutical companies. The highlighted emerging role of AI, including ML, DL, expert systems, and artificial neural networks (ANNs), has brought new insights and high efficiency into the new drug discovery processes. AI has been adopted in many aspects of drug discovery, including de novo molecule design, structure-based modeling for proteins and ligands, quantitative structure-activity relationship research, and druggable property judgments. DL-based AI appliances demonstrate superior merits in addressing some challenging problems in drug discovery. Of course, prediction of chemical synthesis routes and chemical process optimization are also valuable in accelerating new drug discovery, as well as lowering production costs.

There has been notable progress in the AI-aided new drug discovery in recent years, for both new chemical entity discovery and the relating business area. Based on DNNs, DeepMind built the AlphaFold platform to predict 3D protein structures that outperformed other algorithms. As an illustration of great achievement, AlphaFold successfully and accurately predicted 25 scratch protein structures from a 43 protein panel without using previously built proteins models. Accordingly, AlphaFold won the CASP13 protein-folding competition in December 2018. 59 Based on the GANs and other ML methods, Insilico constructed a modular drug design platform GENTRL system. In September 2019, they reported the discovery of the first de novo active DDR1 kinase inhibitor developed by the GENTRL system. It took the team only 46 days from target selection to get an active drug candidate using in vivo data. 60 Exscientia and Sumitomo Dainippon Pharma developed a new drug candidate, DSP-1181, for the treatment of obsessive-compulsive disorder on the Centaur Chemist AI platform. In January 2020, DSP-1181 started its phase I clinical trials, which means that, from program initiation to phase I study, the comprehensive exploration took less than 12 months. In contrast, comparable drug discovery using traditional methods usually needs 4–5 years with traditional methods.

How AI transforms medical practice: A case study of cervical cancer

As the most common malignant tumor in women, cervical cancer is a disease that has a clear cause and can be prevented, and even treated, if detected early. Conventionally, the screening strategy for cervical cancer mainly adopts the “three-step” model of “cervical cytology-colposcopy-histopathology.” 61 However, limited by the level of testing methods, the efficiency of cervical cancer screening is not high. In addition, owing to the lack of knowledge by doctors in some primary hospitals, patients cannot be provided with the best diagnosis and treatment decisions. In recent years, with the advent of the era of computer science and big data, AI has gradually begun to extend and blend into various fields. In particular, AI has been widely used in a variety of cancers as a new tool for data mining. For cervical cancer, a clinical database with millions of medical records and pathological data has been built, and an AI medical tool set has been developed. 62 Such an AI analysis algorithm supports doctors to access the ability of rapid iterative AI model training. In addition, a prognostic prediction model established by ML and a web-based prognostic result calculator have been developed, which can accurately predict the risk of postoperative recurrence and death in cervical cancer patients, and thereby better guide decision-making in postoperative adjuvant treatment. 63

AI in materials science

As the cornerstone of modern industry, materials have played a crucial role in the design of revolutionary forms of matter, with targeted properties for broad applications in energy, information, biomedicine, construction, transportation, national security, spaceflight, and so forth. Traditional strategies rely on the empirical trial and error experimental approaches as well as the theoretical simulation methods, e.g., density functional theory, thermodynamics, or molecular dynamics, to discover novel materials. 64 These methods often face the challenges of long research cycles, high costs, and low success rates, and thus cannot meet the increasingly growing demands of current materials science. Accelerating the speed of discovery and deployment of advanced materials will therefore be essential in the coming era.

With the rapid development of data processing and powerful algorithms, AI-based methods, such as ML and DL, are emerging with good potentials in the search for and design of new materials prior to actually manufacturing them. 65 , 66 By integrating material property data, such as the constituent element, lattice symmetry, atomic radius, valence, binding energy, electronegativity, magnetism, polarization, energy band, structure-property relation, and functionalities, the machine can be trained to “think” about how to improve material design and even predict the properties of new materials in a cost-effective manner ( Figure 5 ).

An external file that holds a picture, illustration, etc.
Object name is gr5.jpg

AI is expected to power the development of materials science

AI in discovery and design of new materials

Recently, AI techniques have made significant advances in rational design and accelerated discovery of various materials, such as piezoelectric materials with large electrostrains, 67 organic-inorganic perovskites for photovoltaics, 68 molecular emitters for efficient light-emitting diodes, 69 inorganic solid materials for thermoelectrics, 70 and organic electronic materials for renewable-energy applications. 66 , 71 The power of data-driven computing and algorithmic optimization can promote comprehensive applications of simulation and ML (i.e., high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning, etc.), in material discovery and property prediction in various fields. 72 For instance, using a DL Bayesian framework, the attribute-driven inverse materials design has been demonstrated for efficient and accurate prediction of functional molecular materials, with desired semiconducting properties or redox stability for applications in organic thin-film transistors, organic solar cells, or lithium-ion batteries. 73 It is meaningful to adopt automation tools for quick experimental testing of potential materials and utilize high-performance computing to calculate their bulk, interface, and defect-related properties. 74 The effective convergence of automation, computing, and ML can greatly speed up the discovery of materials. In the future, with the aid of AI techniques, it will be possible to accomplish the design of superconductors, metallic glasses, solder alloys, high-entropy alloys, high-temperature superalloys, thermoelectric materials, two-dimensional materials, magnetocaloric materials, polymeric bio-inspired materials, sensitive composite materials, and topological (electronic and phonon) materials, and so on. In the past decade, topological materials have ignited the research enthusiasm of condensed matter physicists, materials scientists, and chemists, as they exhibit exotic physical properties with potential applications in electronics, thermoelectrics, optics, catalysis, and energy-related fields. From the most recent predictions, more than a quarter of all inorganic materials in nature are topologically nontrivial. The establishment of topological electronic materials databases 75 , 76 , 77 and topological phononic materials databases 78 using high-throughput methods will help to accelerate the screening and experimental discovery of new topological materials for functional applications. It is recognized that large-scale high-quality datasets are required to practice AI. Great efforts have also been expended in building high-quality materials science databases. As one of the top-ranking databases of its kind, the “atomly.net” materials data infrastructure, 79 has calculated the properties of more than 180,000 inorganic compounds, including their equilibrium structures, electron energy bands, dielectric properties, simulated diffraction patterns, elasticity tensors, etc. As such, the atomly.net database has set a solid foundation for extending AI into the area of materials science research. The X-ray diffraction (XRD)-matcher model of atomly.net uses ML to match and classify the experimental XRD to the simulated patterns. Very recently, by using the dataset from atomly.net, an accurate AI model was built to rapidly predict the formation energy of almost any given compound to yield a fairly good predictive ability. 80

AI-powered Materials Genome Initiative

The Materials Genome Initiative (MGI) is a great plan for rational realization of new materials and related functions, and it aims to discover, manufacture, and deploy advanced materials efficiently, cost-effectively, and intelligently. The initiative creates policy, resources, and infrastructure for accelerating materials development at a high level. This is a new paradigm for the discovery and design of next-generation materials, and runs from a view point of fundamental building blocks toward general materials developments, and accelerates materials development through efforts in theory, computation, and experiment, in a highly integrated high-throughput manner. MGI raises an ultimately high goal and high level for materials development and materials science for humans in the future. The spirit of MGI is to design novel materials by using data pools and powerful computation once the requirements or aspirations of functional usages appear. The theory, computation, and algorithm are the primary and substantial factors in the establishment and implementation of MGI. Advances in theories, computations, and experiments in materials science and engineering provide the footstone to not only accelerate the speed at which new materials are realized but to also shorten the time needed to push new products into the market. These AI techniques bring a great promise to the developing MGI. The applications of new technologies, such as ML and DL, directly accelerate materials research and the establishment of MGI. The model construction and application to science and engineering, as well as the data infrastructure, are of central importance. When the AI-powered MGI approaches are coupled with the ongoing autonomy of manufacturing methods, the potential impact to society and the economy in the future is profound. We are now beginning to see that the AI-aided MGI, among other things, integrates experiments, computation, and theory, and facilitates access to materials data, equips the next generation of the materials workforce, and enables a paradigm shift in materials development. Furthermore, the AI-powdered MGI could also design operational procedures and control the equipment to execute experiments, and to further realize autonomous experimentation in future material research.

Advanced functional materials for generation upgrade of AI

The realization and application of AI techniques depend on the computational capability and computer hardware, and this bases physical functionality on the performance of computers or supercomputers. For our current technology, the electric currents or electric carriers for driving electric chips and devices consist of electrons with ordinary characteristics, such as heavy mass and low mobility. All chips and devices emit relatively remarkable heat levels, consuming too much energy and lowering the efficiency of information transmission. Benefiting from the rapid development of modern physics, a series of advanced materials with exotic functional effects have been discovered or designed, including superconductors, quantum anomalous Hall insulators, and topological fermions. In particular, the superconducting state or topologically nontrivial electrons will promote the next-generation AI techniques once the (near) room temperature applications of these states are realized and implanted in integrated circuits. 81 In this case, the central processing units, signal circuits, and power channels will be driven based on the electronic carriers that show massless, energy-diffusionless, ultra-high mobility, or chiral-protection characteristics. The ordinary electrons will be removed from the physical circuits of future-generation chips and devices, leaving superconducting and topological chiral electrons running in future AI chips and supercomputers. The efficiency of transmission, for information and logic computing will be improved on a vast scale and at a very low cost.

AI for materials and materials for AI

The coming decade will continue to witness the development of advanced ML algorithms, newly emerging data-driven AI methodologies, and integrated technologies for facilitating structure design and property prediction, as well as to accelerate the discovery, design, development, and deployment of advanced materials into existing and emerging industrial sectors. At this moment, we are facing challenges in achieving accelerated materials research through the integration of experiment, computation, and theory. The great MGI, proposed for high-level materials research, helps to promote this process, especially when it is assisted by AI techniques. Still, there is a long way to go for the usage of these advanced functional materials in future-generation electric chips and devices to be realized. More materials and functional effects need to be discovered or improved by the developing AI techniques. Meanwhile, it is worth noting that materials are the core components of devices and chips that are used for construction of computers or machines for advanced AI systems. The rapid development of new materials, especially the emergence of flexible, sensitive, and smart materials, is of great importance for a broad range of attractive technologies, such as flexible circuits, stretchable tactile sensors, multifunctional actuators, transistor-based artificial synapses, integrated networks of semiconductor/quantum devices, intelligent robotics, human-machine interactions, simulated muscles, biomimetic prostheses, etc. These promising materials, devices, and integrated technologies will greatly promote the advancement of AI systems toward wide applications in human life. Once the physical circuits are upgraded by advanced functional or smart materials, AI techniques will largely promote the developments and applications of all disciplines.

AI in geoscience

Ai technologies involved in a large range of geoscience fields.

Momentous challenges threatening current society require solutions to problems that belong to geoscience, such as evaluating the effects of climate change, assessing air quality, forecasting the effects of disaster incidences on infrastructure, by calculating the incoming consumption and availability of food, water, and soil resources, and identifying factors that are indicators for potential volcanic eruptions, tsunamis, floods, and earthquakes. 82 , 83 It has become possible, with the emergence of advanced technology products (e.g., deep sea drilling vessels and remote sensing satellites), for enhancements in computational infrastructure that allow for processing large-scale, wide-range simulations of multiple models in geoscience, and internet-based data analysis that facilitates collection, processing, and storage of data in distributed and crowd-sourced environments. 84 The growing availability of massive geoscience data provides unlimited possibilities for AI—which has popularized all aspects of our daily life (e.g., entertainment, transportation, and commerce)—to significantly contribute to geoscience problems of great societal relevance. As geoscience enters the era of massive data, AI, which has been extensively successful in different fields, offers immense opportunities for settling a series of problems in Earth systems. 85 , 86 Accompanied by diversified data, AI-enabled technologies, such as smart sensors, image visualization, and intelligent inversion, are being actively examined in a large range of geoscience fields, such as marine geoscience, rock physics, geology, ecology, seismicity, environment, hydrology, remote sensing, Arc GIS, and planetary science. 87

Multiple challenges in the development of geoscience

There are some traits of geoscience development that restrict the applicability of fundamental algorithms for knowledge discovery: (1) inherent challenges of geoscience processes, (2) limitation of geoscience data collection, and (3) uncertainty in samples and ground truth. 88 , 89 , 90 Amorphous boundaries generally exist in geoscience objects between space and time that are not as well defined as objects in other fields. Geoscience phenomena are also significantly multivariate, obey nonlinear relationships, and exhibit spatiotemporal structure and non-stationary characteristics. Except for the inherent challenges of geoscience observations, the massive data at multiple dimensions of time and space, with different levels of incompleteness, noise, and uncertainties, disturb processes in geoscience. For supervised learning approaches, there are other difficulties owing to the lack of gold standard ground truth and the “small size” of samples (e.g., a small amount of historical data with sufficient observations) in geoscience applications.

Usage of AI technologies as efficient approaches to promote the geoscience processes

Geoscientists continually make every effort to develop better techniques for simulating the present status of the Earth system (e.g., how much greenhouse gases are released into the atmosphere), and the connections between and within its subsystems (e.g., how does the elevated temperature influence the ocean ecosystem). Viewed from the perspective of geoscience, newly emerging approaches, with the aid of AI, are a perfect combination for these issues in the application of geoscience: (1) characterizing objects and events 91 ; (2) estimating geoscience variables from observations 92 ; (3) forecasting geoscience variables according to long-term observations 85 ; (4) exploring geoscience data relationships 93 ; and (5) causal discovery and causal attribution. 94 While characterizing geoscience objects and events using traditional methods are primarily rooted in hand-coded features, algorithms can automatically detect the data by improving the performance with pattern-mining techniques. However, due to spatiotemporal targets with vague boundaries and the related uncertainties, it can be necessary to advance pattern-mining methods that can explain the temporal and spatial characteristics of geoscience data when characterizing different events and objects. To address the non-stationary issue of geoscience data, AI-aided algorithms have been expanded to integrate the holistic results of professional predictors and engender robust estimations of climate variables (e.g., humidity and temperature). Furthermore, forecasting long-term trends of the current situation in the Earth system using AI-enabled technologies can simulate future scenarios and formulate early resource planning and adaptation policies. Mining geoscience data relationships can help us seize vital signs of the Earth system and promote our understanding of geoscience developments. Of great interest is the advancement of AI-decision methodology with uncertain prediction probabilities, engendering vague risks with poorly resolved tails, signifying the most extreme, transient, and rare events formulated by model sets, which supports various cases to improve accuracy and effectiveness.

AI technologies for optimizing the resource management in geoscience

Currently, AI can perform better than humans in some well-defined tasks. For example, AI techniques have been used in urban water resource planning, mainly due to their remarkable capacity for modeling, flexibility, reasoning, and forecasting the water demand and capacity. Design and application of an Adaptive Intelligent Dynamic Water Resource Planning system, the subset of AI for sustainable water resource management in urban regions, largely prompted the optimization of water resource allocation, will finally minimize the operation costs and improve the sustainability of environmental management 95 ( Figure 6 ). Also, meteorology requires collecting tremendous amounts of data on many different variables, such as humidity, altitude, and temperature; however, dealing with such a huge dataset is a big challenge. 96 An AI-based technique is being utilized to analyze shallow-water reef images, recognize the coral color—to track the effects of climate change, and to collect humidity, temperature, and CO 2 data—to grasp the health of our ecological environment. 97 Beyond AI's capabilities for meteorology, it can also play a critical role in decreasing greenhouse gas emissions originating from the electric-power sector. Comprised of production, transportation, allocation, and consumption of electricity, many opportunities exist in the electric-power sector for Al applications, including speeding up the development of new clean energy, enhancing system optimization and management, improving electricity-demand forecasts and distribution, and advancing system monitoring. 98 New materials may even be found, with the auxiliary of AI, for batteries to store energy or materials and absorb CO 2 from the atmosphere. 99 Although traditional fossil fuel operations have been widely used for thousands of years, AI techniques are being used to help explore the development of more potential sustainable energy sources for the development (e.g., fusion technology). 100

An external file that holds a picture, illustration, etc.
Object name is gr6.jpg

Applications of AI in hydraulic resource management

In addition to the adjustment of energy structures due to climate change (a core part of geoscience systems), a second, less-obvious step could also be taken to reduce greenhouse gas emission: using AI to target inefficiencies. A related statistical report by the Lawrence Livermore National Laboratory pointed out that around 68% of energy produced in the US could be better used for purposeful activities, such as electricity generation or transportation, but is instead contributing to environmental burdens. 101 AI is primed to reduce these inefficiencies of current nuclear power plants and fossil fuel operations, as well as improve the efficiency of renewable grid resources. 102 For example, AI can be instrumental in the operation and optimization of solar and wind farms to make these utility-scale renewable-energy systems far more efficient in the production of electricity. 103 AI can also assist in reducing energy losses in electricity transportation and allocation. 104 A distribution system operator in Europe used AI to analyze load, voltage, and network distribution data, to help “operators assess available capacity on the system and plan for future needs.” 105 AI allowed the distribution system operator to employ existing and new resources to make the distribution of energy assets more readily available and flexible. The International Energy Agency has proposed that energy efficiency is core to the reform of energy systems and will play a key role in reducing the growth of global energy demand to one-third of the current level by 2040.

AI as a building block to promote development in geoscience

The Earth’s system is of significant scientific interest, and affects all aspects of life. 106 The challenges, problems, and promising directions provided by AI are definitely not exhaustive, but rather, serve to illustrate that there is great potential for future AI research in this important field. Prosperity, development, and popularization of AI approaches in the geosciences is commonly driven by a posed scientific question, and the best way to succeed is that AI researchers work closely with geoscientists at all stages of research. That is because the geoscientists can better understand which scientific question is important and novel, which sample collection process can reasonably exhibit the inherent strengths, which datasets and parameters can be used to answer that question, and which pre-processing operations are conducted, such as removing seasonal cycles or smoothing. Similarly, AI researchers are better suited to decide which data analysis approaches are appropriate and available for the data, the advantages and disadvantages of these approaches, and what the approaches actually acquire. Interpretability is also an important goal in geoscience because, if we can understand the basic reasoning behind the models, patterns, or relationships extracted from the data, they can be used as building blocks in scientific knowledge discovery. Hence, frequent communication between the researchers avoids long detours and ensures that analysis results are indeed beneficial to both geoscientists and AI researchers.

AI in the life sciences

The developments of AI and the life sciences are intertwined. The ultimate goal of AI is to achieve human-like intelligence, as the human brain is capable of multi-tasking, learning with minimal supervision, and generalizing learned skills, all accomplished with high efficiency and low energy cost. 107

Mutual inspiration between AI and neuroscience

In the past decades, neuroscience concepts have been introduced into ML algorithms and played critical roles in triggering several important advances in AI. For example, the origins of DL methods lie directly in neuroscience, 5 which further stimulated the emergence of the field of RL. 108 The current state-of-the-art CNNs incorporate several hallmarks of neural computation, including nonlinear transduction, divisive normalization, and maximum-based pooling of inputs, 109 which were directly inspired by the unique processing of visual input in the mammalian visual cortex. 110 By introducing the brain's attentional mechanisms, a novel network has been shown to produce enhanced accuracy and computational efficiency at difficult multi-object recognition tasks than conventional CNNs. 111 Other neuroscience findings, including the mechanisms underlying working memory, episodic memory, and neural plasticity, have inspired the development of AI algorithms that address several challenges in deep networks. 108 These algorithms can be directly implemented in the design and refinement of the brain-machine interface and neuroprostheses.

On the other hand, insights from AI research have the potential to offer new perspectives on the basics of intelligence in the brains of humans and other species. Unlike traditional neuroscientists, AI researchers can formalize the concepts of neural mechanisms in a quantitative language to extract their necessity and sufficiency for intelligent behavior. An important illustration of such exchange is the development of the temporal-difference (TD) methods in RL models and the resemblance of TD-form learning in the brain. 112 Therefore, the China Brain Project covers both basic research on cognition and translational research for brain disease and brain-inspired intelligence technology. 113

AI for omics big data analysis

Currently, AI can perform better than humans in some well-defined tasks, such as omics data analysis and smart agriculture. In the big data era, 114 there are many types of data (variety), the volume of data is big, and the generation of data (velocity) is fast. The high variety, big volume, and fast velocity of data makes having it a matter of big value, but also makes it difficult to analyze the data. Unlike traditional statistics-based methods, AI can easily handle big data and reveal hidden associations.

In genetics studies, there are many successful applications of AI. 115 One of the key questions is to determine whether a single amino acid polymorphism is deleterious. 116 There have been sequence conservation-based SIFT 117 and network-based SySAP, 118 but all these methods have met bottlenecks and cannot be further improved. Sundaram et al. developed PrimateAI, which can predict the clinical outcome of mutation based on DNN. 119 Another problem is how to call copy-number variations, which play important roles in various cancers. 120 , 121 Glessner et al. proposed a DL-based tool DeepCNV, in which the area under the receiver operating characteristic (ROC) curve was 0.909, much higher than other ML methods. 122 In epigenetic studies, m6A modification is one of the most important mechanisms. 123 Zhang et al. developed an ensemble DL predictor (EDLm6APred) for mRNA m6A site prediction. 124 The area under the ROC curve of EDLm6APred was 86.6%, higher than existing m6A methylation site prediction models. There are many other DL-based omics tools, such as DeepCpG 125 for methylation, DeepPep 126 for proteomics, AtacWorks 127 for assay for transposase-accessible chromatin with high-throughput sequencing, and deepTCR 128 for T cell receptor sequencing.

Another emerging application is DL for single-cell sequencing data. Unlike bulk data, in which the sample size is usually much smaller than the number of features, the sample size of cells in single-cell data could also be big compared with the number of genes. That makes the DL algorithm applicable for most single-cell data. Since the single-cell data are sparse and have many unmeasured missing values, DeepImpute can accurately impute these missing values in the big gene × cell matrix. 129 During the quality control of single-cell data, it is important to remove the doublet solo embedded cells, using autoencoder, and then build a feedforward neural network to identify the doublet. 130 Potential energy underlying single-cell gradients used generative modeling to learn the underlying differentiation landscape from time series single-cell RNA sequencing data. 131

In protein structure prediction, the DL-based AIphaFold2 can accurately predict the 3D structures of 98.5% of human proteins, and will predict the structures of 130 million proteins of other organisms in the next few months. 132 It is even considered to be the second-largest breakthrough in life sciences after the human genome project 133 and will facilitate drug development among other things.

AI makes modern agriculture smart

Agriculture is entering a fourth revolution, termed agriculture 4.0 or smart agriculture, benefiting from the arrival of the big data era as well as the rapid progress of lots of advanced technologies, in particular ML, modern information, and communication technologies. 134 , 135 Applications of DL, information, and sensing technologies in agriculture cover the whole stages of agricultural production, including breeding, cultivation, and harvesting.

Traditional breeding usually exploits genetic variations by searching natural variation or artificial mutagenesis. However, it is hard for either method to expose the whole mutation spectrum. Using DL models trained on the existing variants, predictions can be made on multiple unidentified gene loci. 136 For example, an ML method, multi-criteria rice reproductive gene predictor, was developed and applied to predict coding and lincRNA genes associated with reproductive processes in rice. 137 Moreover, models trained in species with well-studied genomic data (such as Arabidopsis and rice) can also be applied to other species with limited genome information (such as wild strawberry and soybean). 138 In most cases, the links between genotypes and phenotypes are more complicated than we expected. One gene can usually respond to multiple phenotypes, and one trait is generally the product of the synergism between multi-genes and multi-development. For this reason, multi-traits DL models were developed and enabled genomic editing in plant breeding. 139 , 140

It is well known that dynamic and accurate monitoring of crops during the whole growth period is vitally important to precision agriculture. In the new stage of agriculture, both remote sensing and DL play indispensable roles. Specifically, remote sensing (including proximal sensing) could produce agricultural big data from ground, air-borne, to space-borne platforms, which have a unique potential to offer an economical approach for non-destructive, timely, objective, synoptic, long-term, and multi-scale information for crop monitoring and management, thereby greatly assisting in precision decisions regarding irrigation, nutrients, disease, pests, and yield. 141 , 142 DL makes it possible to simply, efficiently, and accurately discover knowledge from massive and complicated data, especially for remote sensing big data that are characterized with multiple spatial-temporal-spectral information, owing to its strong capability for feature representation and superiority in capturing the essential relation between observation data and agronomy parameters or crop traits. 135 , 143 Integration of DL and big data for agriculture has demonstrated the most disruptive force, as big as the green revolution. As shown in Figure 7 , for possible application a scenario of smart agriculture, multi-source satellite remote sensing data with various geo- and radio-metric information, as well as abundance of spectral information from UV, visible, and shortwave infrared to microwave regions, can be collected. In addition, advanced aircraft systems, such as unmanned aerial vehicles with multi/hyper-spectral cameras on board, and smartphone-based portable devices, will be used to obtain multi/hyper-spectral data in specific fields. All types of data can be integrated by DL-based fusion techniques for different purposes, and then shared for all users for cloud computing. On the cloud computing platform, different agriculture remote sensing models developed by a combination of data-driven ML methods and physical models, will be deployed and applied to acquire a range of biophysical and biochemical parameters of crops, which will be further analyzed by a decision-making and prediction system to obtain the current water/nutrient stress, growth status, and to predict future development. As a result, an automatic or interactive user service platform can be accessible to make the correct decisions for appropriate actions through an integrated irrigation and fertilization system.

An external file that holds a picture, illustration, etc.
Object name is gr7.jpg

Integration of AI and remote sensing in smart agriculture

Furthermore, DL presents unique advantages in specific agricultural applications, such as for dense scenes, that increase the difficulty of artificial planting and harvesting. It is reported that CNNs and Autoencoder models, trained with image data, are being used increasingly for phenotyping and yield estimation, 144 such as counting fruits in orchards, grain recognition and classification, disease diagnosis, etc. 145 , 146 , 147 Consequently, this may greatly liberate the labor force.

The application of DL in agriculture is just beginning. There are still many problems and challenges for the future development of DL technology. We believe, with the continuous acquisition of massive data and the optimization of algorithms, DL will have a better prospect in agricultural production.

AI in physics

The scale of modern physics ranges from the size of a neutron to the size of the Universe ( Figure 8 ). According to the scale, physics can be divided into four categories: particle physics on the scale of neutrons, nuclear physics on the scale of atoms, condensed matter physics on the scale of molecules, and cosmic physics on the scale of the Universe. AI, also called ML, plays an important role in all physics in different scales, since the use of the AI algorithm will be the main trend in data analyses, such as the reconstruction and analysis of images.

An external file that holds a picture, illustration, etc.
Object name is gr8.jpg

Scale of the physics

Speeding up simulations and identifications of particles with AI

There are many applications or explorations of applications of AI in particle physics. We cannot cover all of them here, but only use lattice quantum chromodynamics (LQCD) and the experiments on the Beijing spectrometer (BES) and the large hadron collider (LHC) to illustrate the power of ML in both theoretical and experimental particle physics.

LQCD studies the nonperturbative properties of QCD by using Monte Carlo simulations on supercomputers to help us understand the strong interaction that binds quarks together to form nucleons. Markov chain Monte Carlo simulations commonly used in LQCD suffer from topological freezing and critical slowing down as the simulations approach the real situation of the actual world. New algorithms with the help of DL are being proposed and tested to overcome those difficulties. 148 , 149 Physical observables are extracted from LQCD data, whose signal-to-noise ratio deteriorates exponentially. For non-Abelian gauge theories, such as QCD, complicated contour deformations can be optimized by using ML to reduce the variance of LQCD data. Proof-of-principle applications in two dimensions have been studied. 150 ML can also be used to reduce the time cost of generating LQCD data. 151

On the experimental side, particle identification (PID) plays an important role. Recently, a few PID algorithms on BES-III were developed, and the ANN 152 is one of them. Also, extreme gradient boosting has been used for multi-dimensional distribution reweighting, muon identification, and cluster reconstruction, and can improve the muon identification. U-Net is a convolutional network for pixel-level semantic segmentation, which is widely used in CV. It has been applied on BES-III to solve the problem of multi-turn curling track finding for the main drift chamber. The average efficiency and purity for the first turn's hits is about 91%, at the threshold of 0.85. Current (and future) particle physics experiments are producing a huge amount of data. Machine leaning can be used to discriminate between signal and overwhelming background events. Examples of data analyses on LHC, using supervised ML, can be found in a 2018 collaboration. 153 To take the potential advantage of quantum computers forward, quantum ML methods are also being investigated, see, for example, Wu et al., 154 and references therein, for proof-of-concept studies.

AI makes nuclear physics powerful

Cosmic ray muon tomography (Muography) 155 is an imaging graphe technology using natural cosmic ray muon radiation rather than artificial radiation to reduce the dangers. As an advantage, this technology can detect high-Z materials without destruction, as muon is sensitive to high-Z materials. The Classification Model Algorithm (CMA) algorithm is based on the classification in the supervised learning and gray system theory, and generates a binary classifier designing and decision function with the input of the muon track, and the output indicates whether the material exists at the location. The AI helps the user to improve the efficiency of the scanning time with muons.

AIso, for nuclear detection, the Cs 2 LiYCl 6 :Ce (CLYC) signal can react to both electrons and neutrons to create a pulse signal, and can therefore be applied to detect both neutrons and electrons, 156 but needs identification of the two particles by analyzing the shapes of the waves, that is n-γ ID. The traditional method has been the PSD (pulse shape discrimination) method, which is used to separate the waves of two particles by analyzing the distribution of the pulse information—such as amplitude, width, raise time, fall time, and the two particles that can be separated when the distribution has two separated Gaussian distributions. The traditional PSD can only analyze single-pulse waves, rather than multipulse waves, when two particles react with CLYC closely. But it can be solved by using an ANN method for classification of the six categories (n,γ,n + n,n + γ,γ + n,γ). Also, there are several parameters that could be used by AI to improve the reconstruction algorithm with high efficiency and less error.

AI-aided condensed matter physics

AI opens up a new avenue for physical science, especially when a trove of data is available. Recent works demonstrate that ML provides useful insights to improve the density functional theory (DFT), in which the single-electron picture of the Kohn-Sham scheme has the difficulty of taking care of the exchange and correlation effects of many-body systems. Yu et al. proposed a Bayesian optimization algorithm to fit the Hubbard U parameter, and the new method can find the optimal Hubbard U through a self-consistent process with good efficiency compared with the linear response method, 157 and boost the accuracy to the near-hybrid-functional-level. Snyder et al. developed an ML density functional for a 1D non-interacting non-spin-polarized fermion system to obtain significantly improved kinetic energy. This method enabled a direct approximation of the kinetic energy of a quantum system and can be utilized in orbital-free DFT modeling, and can even bypass the solving of the Kohn-Sham equation—while maintaining the precision to the quantum chemical level when a strong correlation term is included. Recently, FermiNet showed that the many-body quantum mechanics equations can be solved via AI. AI models also show advantages of capturing the interatom force field. In 2010, the Gaussian approximation potential (GAP) 158 was introduced as a powerful interatomic force field to describe the interactions between atoms. GAP uses kernel regression and invariant many-body representations, and performs quite well. For instance, it can simulate crystallization of amorphous crystals under high pressure fairly accurately. By employing the smooth overlap of the atomic position kernel (SOAP), 159 the accuracy of the potential can be further enhanced and, therefore, the SOAP-GAP can be viewed as a field-leading method for AI molecular dynamic simulation. There are also several other well-developed AI interatomic potentials out there, e.g., crystal graph CNNs provide a widely applicable way of vectorizing crystalline materials; SchNet embeds the continuous-filter convolutional layers into its DNNs for easing molecular dynamic as the potentials are space continuous; DimeNet constructs the directional message passing neural network by adding not only the bond length between atoms but also the bond angle, the dihedral angle, and the interactions between unconnected atoms into the model to obtain good accuracy.

AI helps explore the Universe

AI is one of the newest technologies, while astronomy is one of the oldest sciences. When the two meet, new opportunities for scientific breakthroughs are often triggered. Observations and data analysis play a central role in astronomy. The amount of data collected by modern telescopes has reached unprecedented levels, even the most basic task of constructing a catalog has become challenging with traditional source-finding tools. 160 Astronomers have developed automated and intelligent source-finding tools based on DL, which not only offer significant advantages in operational speed but also facilitate a comprehensive understanding of the Universe by identifying particular forms of objects that cannot be detected by traditional software and visual inspection. 160 , 161

More than a decade ago, a citizen science project called “Galaxy Zoo” was proposed to help label one million images of galaxies collected by the Sloan Digital Sky Survey (SDSS) by posting images online and recruiting volunteers. 162 Larger optical telescopes, in operation or under construction, produce data several orders of magnitude higher than SDSS. Even with volunteers involved, there is no way to analyze the vast amount of data received. The advantages of ML are not limited to source-finding and galaxy classification. In fact, it has a much wider range of applications. For example, CNN plays an important role in detecting and decoding gravitational wave signals in real time, reconstructing all parameters within 2 ms, while traditional algorithms take several days to accomplish the same task. 163 Such DL systems have also been used to automatically generate alerts for transients and track asteroids and other fast-moving near-Earth objects, improving detection efficiency by several orders of magnitude. In addition, astrophysicists are exploring the use of neural networks to measure galaxy clusters and study the evolution of the Universe.

In addition to the amazing speed, neural networks seem to have a deeper understanding of the data than expected and can recognize more complex patterns, indicating that the “machine” is evolving rather than just learning the characteristics of the input data.

AI in chemistry

Chemistry plays an important “central” role in other sciences 164 because it is the investigation of the structure and properties of matter, and identifies the chemical reactions that convert substances into to other substances. Accordingly, chemistry is a data-rich branch of science containing complex information resulting from centuries of experiments and, more recently, decades of computational analysis. This vast treasure trove of data is most apparent within the Chemical Abstract Services, which has collected more than 183 million unique organic and inorganic substances, including alloys, coordination compounds, minerals, mixtures, polymers, and salts, and is expanding by addition of thousands of additional new substances daily. 165 The unlimited complexity in the variety of material compounds explains why chemistry research is still a labor-intensive task. The level of complexity and vast amounts of data within chemistry provides a prime opportunity to achieve significant breakthroughs with the application of AI. First, the type of molecules that can be constructed from atoms are almost unlimited, which leads to unlimited chemical space 166 ; the interconnection of these molecules with all possible combinations of factors, such as temperature, substrates, and solvents, are overwhelmingly large, giving rise to unlimited reaction space. 167 Exploration of the unlimited chemical space and reaction space, and navigating to the optimum ones with the desired properties, is thus practically impossible solely from human efforts. Secondly, in chemistry, the huge assortment of molecules and the interplay of them with the external environments brings a new level of complexity, which cannot be simply predicted using physical laws. While many concepts, rules, and theories have been generalized from centuries of experience from studying trivial (i.e., single component) systems, nontrivial complexities are more likely as we discover that “more is different” in the words of Philip Warren Anderson, American physicist and Nobel Laureate. 168 Nontrivial complexities will occur when the scale changes, and the breaking of symmetry in larger, increasingly complex systems, and the rules will shift from quantitative to qualitative. Due to lack of systematic and analytical theory toward the structures, properties, and transformations of macroscopic substances, chemistry research is thus, incorrectly, guided by heuristics and fragmental rules accumulated over the previous centuries, yielding progress that only proceeds through trial and error. ML will recognize patterns from large amounts of data; thereby offering an unprecedented way of dealing with complexity, and reshaping chemistry research by revolutionizing the way in which data are used. Every sub-field of chemistry, currently, has utilized some form of AI, including tools for chemistry research and data generation, such as analytical chemistry and computational chemistry, as well as application to organic chemistry, catalysis, and medical chemistry, which we discuss herein.

AI breaks the limitations of manual feature selection methods

In analytical chemistry, the extraction of information has traditionally relied heavily on the feature selection techniques, which are based on prior human experiences. Unfortunately, this approach is inefficient, incomplete, and often biased. Automated data analysis based on AI will break the limitations of manual variable selection methods by learning from large amounts of data. Feature selection through DL algorithms enables information extraction from the datasets in NMR, chromatography, spectroscopy, and other analytical tools, 169 thereby improving the model prediction accuracy for analysis. These ML approaches will greatly accelerate the analysis of materials, leading to the rapid discovery of new molecules or materials. Raman scattering, for instance, since its discovery in the 1920s, has been widely employed as a powerful vibrational spectroscopy technology, capable of providing vibrational fingerprints intrinsic to analytes, thus enabling identification of molecules. 170 Recently, ML methods have been trained to recognize features in Raman (or SERS) spectra for the identity of an analyte by applying DL networks, including ANN, CNN, and fully convolutional network for feature engineering. 171 For example, Leong et al. designed a machine-learning-driven “SERS taster” to simultaneously harness useful vibrational information from multiple receptors for enhanced multiplex profiling of five wine flavor molecules at ppm levels. Principal-component analysis is employed for the discrimination of alcohols with varying degrees of substitution, and supported with vector machine discriminant analysis, is used to quantitatively classify all flavors with 100% accuracy. 172 Overall, AI techniques provide the first glimmer of hope for a universal method for spectral data analysis, which is fast, accurate, objective and definitive and with attractive advantages in a wide range of applications.

AI improves the accuracy and efficiency for various levels of computational theory

Complementary to analytical tools, computational chemistry has proven a powerful approach for using simulations to understand chemical properties; however, it is faced with an accuracy-versus-efficiency dilemma. This dilemma greatly limits the application of computational chemistry to real-world chemistry problems. To overcome this dilemma, ML and other AI methods are being applied to improve the accuracy and efficiency for various levels of theory used to describe the effects arising at different time and length scales, in the multi-scaling of chemical reactions. 173 Many of the open challenges in computational chemistry can be solved by ML approaches, for example, solving Schrödinger's equation, 174 developing atomistic 175 or coarse graining 176 potentials, constructing reaction coordinates, 177 developing reaction kinetics models, 178 and identifying key descriptors for computable properties. 179 In addition to analytical chemistry and computational chemistry, several disciplines of chemistry have incorporated AI technology to chemical problems. We discuss the areas of organic chemistry, catalysis, and medical chemistry as examples of where ML has made a significant impact. Many examples exist in literature for other subfields of chemistry and AI will continue to demonstrate breakthroughs in a wide range of chemical applications.

AI enables robotics capable of automating the synthesis of molecules

Organic chemistry studies the structure, property, and reaction of carbon-based molecules. The complexity of the chemical and reaction space, for a given property, presents an unlimited number of potential molecules that can be synthesized by chemists. Further complications are added when faced with the problems of how to synthesize a particular molecule, given that the process relies much on heuristics and laborious testing. Challenges have been addressed by researchers using AI. Given enough data, any properties of interest of a molecule can be predicted by mapping the molecular structure to the corresponding property using supervised learning, without resorting to physical laws. In addition to known molecules, new molecules can be designed by sampling the chemical space 180 using methods, such as autoencoders and CNNs, with the molecules coded as sequences or graphs. Retrosynthesis, the planning of synthetic routes, which was once considered an art, has now become much simpler with the help of ML algorithms. The Chemetica system, 181 for instance, is now capable of autonomous planning of synthetic routes that are subsequently proven to work in the laboratory. Once target molecules and the route of synthesis are determined, suitable reaction conditions can be predicted or optimized using ML techniques. 182

The integration of these AI-based approaches with robotics has enabled fully AI-guided robotics capable of automating the synthesis of small organic molecules without human intervention Figure 9 . 183 , 184

An external file that holds a picture, illustration, etc.
Object name is gr9.jpg

A closed loop workflow to enable automatic and intelligent design, synthesis, and assay of molecules in organic chemistry by AI

AI helps to search through vast catalyst design spaces

Catalytic chemistry originates from catalyst technologies in the chemical industry for efficient and sustainable production of chemicals and fuels. Thus far, it is still a challenging endeavor to make novel heterogeneous catalysts with good performance (i.e., stable, active, and selective) because a catalyst's performance depends on many properties: composition, support, surface termination, particle size, particle morphology, atomic coordination environment, porous structure, and reactor during the reaction. The inherent complexity of catalysis makes discovering and developing catalysts with desired properties more dependent on intuition and experiment, which is costly and time consuming. AI technologies, such as ML, when combined with experimental and in silico high-throughput screening of combinatorial catalyst libraries, can aid catalyst discovery by helping to search through vast design spaces. With a well-defined structure and standardized data, including reaction results and in situ characterization results, the complex association between catalytic structure and catalytic performance will be revealed by AI. 185 , 186 An accurate descriptor of the effect of molecules, molecular aggregation states, and molecular transport, on catalysts, could also be predicted. With this approach, researchers can build virtual laboratories to develop new catalysts and catalytic processes.

AI enables screening of chemicals in toxicology with minimum ethical concerns

A more complicated sub-field of chemistry is medical chemistry, which is a challenging field due to the complex interactions between the exotic substances and the inherent chemistry within a living system. Toxicology, for instance, as a broad field, seeks to predict and eliminate substances (e.g., pharmaceuticals, natural products, food products, and environmental substances), which may cause harm to a living organism. Living organisms are already complex, nearly any known substance can cause toxicity at a high enough exposure because of the already inherent complexity within living organisms. Moreover, toxicity is dependent on an array of other factors, including organism size, species, age, sex, genetics, diet, combination with other chemicals, overall health, and/or environmental context. Given the scale and complexity of toxicity problems, AI is likely to be the only realistic approach to meet regulatory body requirements for screening, prioritization, and risk assessment of chemicals (including mixtures), therefore revolutionizing the landscape in toxicology. 187 In summary, AI is turning chemistry from a labor-intensive branch of science to a highly intelligent, standardized, and automated field, and much more can be achieved compared with the limitation of human labor. Underlying knowledge with new concepts, rules, and theories is expected to advance with the application of AI algorithms. A large portion of new chemistry knowledge leading to significant breakthroughs is expected to be generated from AI-based chemistry research in the decades to come.

Conclusions

This paper carries out a comprehensive survey on the development and application of AI across a broad range of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. Despite the fact that AI has been pervasively used in a wide range of applications, there still exist ML security risks on data and ML models as attack targets during both training and execution phases. Firstly, since the performance of an ML system is highly dependent on the data used to train it, these input data are crucial for the security of the ML system. For instance, adversarial example attacks 188 providing malicious input data often lead the ML system into making false judgments (predictions or categorizations) with small perturbations that are imperceptible to humans; data poisoning by intentionally manipulating raw, training, or testing data can result in a decrease in model accuracy or lead to other error-specific attack purposes. Secondly, ML model attacks include backdoor attacks on DL, CNN, and federated learning that manipulate the model's parameters directly, as well as model stealing attack, model inversion attack, and membership inference attack, which can steal the model parameters or leak the sensitive training data. While a number of defense techniques against these security threats have been proposed, new attack models that target ML systems are constantly emerging. Thus, it is necessary to address the problem of ML security and develop robust ML systems that remain effective under malicious attacks.

Due to the data-driven character of the ML method, features of the training and testing data must be drawn from the same distribution, which is difficult to guarantee in practice. This is because, in practical application, the data source might be different from that in the training dataset. In addition, the data feature distribution may drift over time, which leads to a decline of the performance of the model. Moreover, if the model is trained with only new data, it will lead to catastrophic “forgetting” of the model, which means the model only remembers the new features and forgets the previously learned features. To solve this problem, more and more scholars pay attention on how to make the model have the ability of lifelong learning, that is, a change in the computing paradigm from “offline learning + online reasoning” to “online continuous learning,” and thus give the model have the ability of lifelong learning, just like a human being.

Acknowledgments

This work was partially supported by the National Key R&D Program of China (2018YFA0404603, 2019YFA0704900, 2020YFC1807000, and 2020YFB1313700), the Youth Innovation Promotion Association CAS (2011225, 2012006, 2013002, 2015316, 2016275, 2017017, 2017086, 2017120, 2017204, 2017300, 2017399, 2018356, 2020111, 2020179, Y201664, Y201822, and Y201911), NSFC (nos. 11971466, 12075253, 52173241, and 61902376), the Foundation of State Key Laboratory of Particle Detection and Electronics (SKLPDE-ZZ-201902), the Program of Science & Technology Service Network of CAS (KFJ-STS-QYZX-050), the Fundamental Science Center of the National Nature Science Foundation of China (nos. 52088101 and 11971466), the Scientific Instrument Developing Project of CAS (ZDKYYQ20210003), the Strategic Priority Research Program (B) of CAS (XDB33000000), the National Science Foundation of Fujian Province for Distinguished Young Scholars (2019J06023), the Key Research Program of Frontier Sciences, CAS (nos. ZDBS-LY-7022 and ZDBS-LY-DQC012), the CAS Project for Young Scientists in Basic Research (no. YSBR-005). The study is dedicated to the 10th anniversary of the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Author contributions

Y.X., Q.W., Z.A., Fei W., C.L., Z.C., J.M.T., and J.Z. conceived and designed the research. Z.A., Q.W., Fei W., Libo.Z., Y.W., F.D., and C.W.-Q. wrote the “ AI in information science ” section. Xin.L. wrote the “ AI in mathematics ” section. J.Q., K.H., W.S., J.W., H.X., Y.H., and X.C. wrote the “ AI in medical science ” section. E.L., C.F., Z.Y., and M.L. wrote the “ AI in materials science ” section. Fang W., R.R., S.D., M.V., and F.K. wrote the “ AI in geoscience ” section. C.H., Z.Z., L.Z., T.Z., J.D., J.Y., L.L., M.L., and T.H. wrote the “ AI in life sciences ” section. Z.L., S.Q., and T.A. wrote the “ AI in physics ” section. X.L., B.Z., X.H., S.C., X.L., W.Z., and J.P.L. wrote the “ AI in chemistry ” section. Y.X., Q.W., and Z.A. wrote the “Abstract,” “ introduction ,” “ history of AI ,” and “ conclusions ” sections.

Declaration of interests

The authors declare no competing interests.

Published Online: October 28, 2021

  • A new lab and a new paper reignite an old AI debate

Two duelling visions of the technological future 

Ilya Sutskever

Your browser does not support the <audio> element.

A FTER SAM ALTMAN was sacked from Open AI in November of 2023, a meme went viral among artificial-intelligence ( AI ) types on social media. “What did Ilya see?” it asked, referring to Ilya Sutskever, a co-founder of the startup who triggered the coup. Some believed a rumoured new breakthrough at the company that gave the world Chat GPT had spooked Mr Sutskever.

Although Mr Altman was back in charge within days, and Mr Sutskever said he regretted his move, whatever Ilya saw appears to have stuck in his craw. In May he left Open AI . And on June 19th he launched Safe Superintelligence ( SSI ), a new startup dedicated to building a superhuman AI . The outfit, whose other co-founders are Daniel Gross, a venture capitalist, and Daniel Levy, a former Open AI researcher, does not plan to offer any actual products. It has not divulged the names of its investors.

You might wonder why anyone would invest, given the project’s apparent lack of interest in making money. Perhaps backers hope SSI will in time create a for-profit arm, as happened at Open AI , which began as a non-profit before realising that training its models required lots of expensive computing power. Maybe they think Mr Sutskever will eventually convert SSI into a regular business, which is something Mr Altman recently hinted at to investors in Open AI . Or they may have concluded that Mr Sutskever’s team and the intellectual property it creates are likely to be valuable even if SSI ’s goal is never reached.

A more intriguing hypothesis is that SSI ’s financial supporters believe in what is known in AI circles as the “fast take-off” scenario. In it, there comes a point at which AI s become clever enough to themselves devise new and better AI s. Those new and better AI s then rapidly improve upon themselves—and so on, in an “intelligence explosion”. Even if such a superintelligence is the only product SSI ever sells, the rewards would be so enormous as to be worth a flutter.

The idea of a fast take-off has lurked in Silicon Valley for over a decade. It resurfaced in a widely shared 165-page paper published in June by a former Open AI employee. Entitled “Situational Awareness” and dedicated to Mr Sutskever, it predicts that an AI as good as humans at all intellectual tasks will arrive by 2027. One such human intellectual task is designing AI models. And presto, fast take-off.

The paper’s author argues that before long America’s government will need to “lock down” AI labs and move the research to an AI -equivalent of the Manhattan project. Most AI researchers seem more circumspect. Half a dozen who work at leading AI labs tell The Economist that the prevailing view is that AI progress is more likely to continue in gradual fashion than with a sudden explosion.

Open AI , once among the most bullish about AI progress, has moved closer to the gradualist camp. Mr Altman has repeatedly said that he believes in a “slow take-off” and a more “gradual transition”. His company’s efforts are increasingly focused on commercialising its products rather than on the fundamental research needed for big breakthroughs (which may explain several recent high-profile departures). Yann LeCun of Meta and François Chollet of Google, two star AI researchers, have even said that current AI systems hardly merit being called “intelligence”.

An updated model released on June 20th by Anthropic, another AI lab, is impressive but offers only modest improvements over existing models. Open AI ’s new offering could be ready next year. Google DeepMind, the search giant’s main AI lab, is working on its own supercharged model. With luck these will be more deserving of the I in AI . Whether they are deserving enough to convert gradualists to the explosive creed is another matter. ■

To stay on top of the biggest stories in business and technology, sign up to the Bottom Line , our weekly subscriber-only newsletter.

Explore more

This article appeared in the Business section of the print edition under the headline “Thinking fast and slow”

Business June 29th 2024

  • Is the revival of Paris in peril?

European millionaires seek a safe harbour from populism

Why everyone should think like a lawyer, why big oil is wading into lithium, boom times are back for container shipping, who shaved $250bn from kweichow moutai’s market value.

  • Is artificial intelligence making big tech too big?

The centre cannot hold

From the June 29th 2024 edition

Discover stories from this section and more in the list of contents

More from Business

artificial intelligence research paper

What next for Amazon as it turns 30?

From Prime Video to AWS, the e-empire is stitching together its disparate parts

artificial intelligence research paper

Many are fleeing to the Gulf—never mind war next door

artificial intelligence research paper

The unloved profession has a lot to teach managers

What black gold and the white metal have in common

Can they last?

Hint: it wasn’t Xi Jinping’s anti-corruption drive

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 26 June 2024

How I’m using AI tools to help universities maximize research impacts

artificial intelligence research paper

  • Dashun Wang 0

Dashun Wang is a professor at the Kellogg School of Management and McCormick School of Engineering, and the founding director of the Center for Science of Science and Innovation at Northwestern University in Evanston, Illinois.

You can also search for this author in PubMed   Google Scholar

You have full access to this article via your institution.

From the Internet to CRISPR–Cas9 gene editing, many seeds of progress were planted initially in the ivory tower of academia. Could research be doing even more for society? I argue that it could — if universities used artificial intelligence (AI) tools to maximize the impact of their scientists’ outputs.

Each year, millions of grant proposals, preprints and research papers are produced, along with patents, clinical trials and drug approvals. Massive data sets storing details of these outputs can be scoured by AI algorithms to better understand how science and technology progress and to identify gaps and bottlenecks that hinder breakthroughs. Over the past few years, my colleague and close collaborator Ben Jones, my team and I have been working with large US universities to maximize their research impacts. We’ve already learnt a lot.

artificial intelligence research paper

Revealed: the ten research papers that policy documents cite most

For example, during our pilot project at Northwestern University in Evanston, Illinois, we worked with one of its researchers in biology. She has published hundreds of papers and acquired tens of millions of dollars in research funding. By tracing her papers and grants and how her research has been used, we discovered an intriguing fact.

The researcher had never engaged with the university’s technology transfer office (TTO), yet her research had been used extensively by private companies worldwide — many of their patents cited her work. My collaborator Alicia Löffler, then head of the TTO, talked to the researcher. It turned out that she was unaware of those market impacts. Within one week of that conversation, the researcher filed her first invention disclosure with the university.

This episode raised several questions. How many scientists are in similar positions? Can researchers with untapped innovation potential be identified? And can the obstacles that hinder technological progress be addressed? To find out, Ben, Alicia and I, and our team, have expanded studies to other universities. Our preliminary work suggests that people in such positions are common.

artificial intelligence research paper

Has your research influenced policy? Use this free tool to check

For one, the researcher is a woman. When we compared how often male and female faculty members patented their work, we found a disparity. Male faculty members typically patented their research two to ten times more often than did their female counterparts, although this rate varied by university and discipline. But when we measured the extent to which the two groups’ scientific publications were cited by patents, we found no statistically significant difference. In other words, female scientists’ work is just as close to the technological frontier.

Numerous factors can contribute to this gender gap , such as unequal access to education and mentorship, funding disparities, prevailing norms and stereotypes and structural barriers in patenting and commercialization processes. A better understanding of these challenges would help to broaden the pool of innovators.

Similarly, we see a large difference between tenure-track and tenured faculty members: tenured researchers patent their work at a higher rate. But one doesn’t magically become more innovative the moment tenure is granted. The causes of this gap are probably distinct from those of the gender one, and might include promotion incentives and what counts towards tenure. But both discrepancies point to untapped opportunities for innovation.

artificial intelligence research paper

Want to speed up scientific progress? First understand how science policy works

Thus, data and AI tools can help institutions to identify people and ideas that are overlooked, both in a research institution and globally. But universities must take care. They have many roles and responsibilities — from educating future leaders to advancing fundamental knowledge — that must not be eclipsed by efforts to promote practical applications. Some people might argue that scientists don’t need to commercialize their ideas themselves, because industry can pick up the ball. Or there might be unintended consequences. Emphasizing what is useful could come at the expense of curiosity-driven research or result in flocking to what seem to be the hottest and most fruitful ideas today rather than to those that will help the world most in future.

But the role of science is changing. Many of today’s issues, from pandemics to climate change, are closely linked with scientific progress. The dichotomy of basic versus applied research is becoming inadequate. For example, advances along the science–society interface, such as discoveries that aid marketable applications ( M. Ahmadpoor and B. F. Jones Science 357 , 583–587; 2017 ) or social-science insights that guide policymaking ( Y. Yin et al. Nature Hum. Behav. 6 , 1344–1350; 2022 ), are highly impactful, as evidenced by high citation rates. By engaging more with use-inspired research, scientists can produce insights that both advance basic understanding and address societal needs.

Encouraging developments are under way. In 2022, the US National Science Foundation created the Directorate for Technology, Innovation and Partnerships to support use-inspired research and translate discoveries into real-world applications. Its Assessing and Predicting Technology Outcomes programme will fund innovative projects — including our work, which we plan to expand to more than 20 universities — to understand how investments in science and technology can best accelerate progress. Other nations, university leaders and policymakers must seize this opportunity, too. I think of science as ‘the little engine that could’. If research and development could be made even 5% more efficient, the returns could be immense.

Nature 630 , 794 (2024)

doi: https://doi.org/10.1038/d41586-024-02081-6

Reprints and permissions

Competing Interests

D.W. receives consulting fees from one of the universities he works with.

Related Articles

artificial intelligence research paper

  • Research management
  • Computer science

What it means to be a successful male academic

What it means to be a successful male academic

Career Column 26 JUN 24

The strategy behind one of the most successful labs in the world

The strategy behind one of the most successful labs in the world

Comment 26 JUN 24

Is science’s dominant funding model broken?

Is science’s dominant funding model broken?

Editorial 26 JUN 24

We can make the UK a science superpower — with a radical political manifesto

We can make the UK a science superpower — with a radical political manifesto

World View 18 JUN 24

Securing your science: the researcher’s guide to financial management

Securing your science: the researcher’s guide to financial management

Career Feature 14 JUN 24

What the science of elections can reveal in this super-election year

What the science of elections can reveal in this super-election year

Career Feature 10 JUN 24

‘Fighting fire with fire’ — using LLMs to combat LLM hallucinations

‘Fighting fire with fire’ — using LLMs to combat LLM hallucinations

News & Views 19 JUN 24

Detecting hallucinations in large language models using semantic entropy

Detecting hallucinations in large language models using semantic entropy

Article 19 JUN 24

Experiment-free exoskeleton assistance via learning in simulation

Experiment-free exoskeleton assistance via learning in simulation

Article 12 JUN 24

Osaka University Immunology Frontier Research Center Postdoctoral Researcher

IFReC, Osaka University in Japan offers Advanced Postdoc Positions for Immunology, Cell Biology, Bioinformatics and Bioimaging.

Suita Campus, Osaka University in Osaka, Japan

Immunology Frontier Research Center, Osaka University

artificial intelligence research paper

PostDoc Researcher, Magnetic Recording Materials Group, National Institute for Materials Science

Starting date would be after January 2025, but it is negotiable.

Tsukuba, Japan (JP)

National Institute for Materials Science

artificial intelligence research paper

Tenure-Track/Tenured Faculty Positions

Tenure-Track/Tenured Faculty Positions in the fields of energy and resources.

Suzhou, Jiangsu, China

School of Sustainable Energy and Resources at Nanjing University

artificial intelligence research paper

Postdoctoral Associate- Statistical Genetics

Houston, Texas (US)

Baylor College of Medicine (BCM)

artificial intelligence research paper

Senior Research Associate (Single Cell/Transcriptomics Senior Bioinformatician)

Metabolic Research Laboratories at the Clinical School, University of Cambridge are recruiting 3 senior bioinformatician specialists to create a dynam

Cambridge, Cambridgeshire (GB)

University of Cambridge

artificial intelligence research paper

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

How IBM helps Wimbledon use generative AI to drive personalised fan engagement

This collaboration with Wimbledon teams extends beyond the fan-facing digital platform, into enterprise-wide transformation.

Celebrating diversity and inclusion through storytelling

4 min read - Learn about the first season of the Be Equal podcast series, where IBMers share their unique experiences and personal stories.

Fine-tune your data lineage tracking with descriptive lineage

4 min read - Data lineage is the discipline of understanding how data flows through your organization, and what happens to it along the way.

Authentication vs. authorization: What’s the difference?

6 min read - Authentication verifies a user’s identity, while authorization gives the user the right level of access to system resources.

Applying generative AI to revolutionize telco network operations 

5 min read - Learn the many potential applications that operators and suppliers are capitalizing on to enhance network operations for telco.

July 1, 2024

IBM acquires StreamSets, a leading real-time data integration company

June 27, 2024

IBM announces new AI assistant and feature innovations at Think 2024

June 26, 2024

A major upgrade to Db2® Warehouse on IBM Cloud®

June 25, 2024

Increase efficiency in asset lifecycle management with Maximo Application Suite’s new AI-power...

Achieving operational efficiency through Instana’s Intelligent Remediation

Best practices for augmenting human intelligence with AI

2 min read - Enabling participation in the AI-driven economy to be underpinned by fairness, transparency, explainability, robustness and privacy. 

Microcontrollers vs. microprocessors: What’s the difference?

6 min read - Microcontroller units (MCUs) and microprocessor units (MPUs) are two kinds of integrated circuits that, while similar in certain ways, are very different in many others.

Mastering budget control in the age of AI: Leveraging on-premises and cloud XaaS for success 

2 min read - As organizations harness the power of AI while controlling costs, leveraging anything as a service (XaaS) models emerges as strategic.

Highlights by topic

Use IBM Watsonx’s AI or build your own machine learning models

Automate IT infrastructure management

Cloud-native software to secure resources and simplify compliance

Run code on real quantum systems using a full-stack SDK

Aggregate and analyze large datasets

Store, query and analyze structured data

Manage infrastructure, environments and deployments

Run workloads on hybrid cloud infrastructure

Responsible AI can revolutionize tax agencies to improve citizen services

Generative AI can revolutionize tax administration and drive toward a more personalized and ethical future.

Re-evaluating data management in the generative AI age

4 min read - A good place to start is refreshing the way organizations govern data, particularly as it pertains to its usage in generative AI solutions.

Top 7 risks to your identity security posture

5 min read - Identity misconfigurations and blind spots stand out as critical concerns that undermine an organization’s identity security posture.

Intesa Sanpaolo and IBM secure digital transactions with fully homomorphic encryption

6 min read - Explore how European bank Intesa Sanpaolo and IBM partnered to deliver secure digital transactions using fully homomorphic encryption.

What is AI risk management?

8 min read - AI risk management is the process of identifying, mitigating and addressing the potential risks associated with AI technologies.

How IBM and AWS are partnering to deliver the promise of responsible AI

4 min read - This partnership between IBM and Amazon SageMaker is poised to play a pivotal role in shaping responsible AI practices across industries

Speed, scale and trustworthy AI on IBM Z with Machine Learning for IBM z/OS v3.2 

4 min read - Machine Learning for IBM® z/OS® is an AI platform made for IBM z/OS environments, combining data and transaction gravity with AI infusion.

IBM Newsletters

IMAGES

  1. Research paper For Artificial intelligence

    artificial intelligence research paper

  2. Top 3 Artificial Intelligence Research Papers

    artificial intelligence research paper

  3. (PDF) Research Paper on Artificial Intelligence

    artificial intelligence research paper

  4. (PDF) Review of Artificial Intelligence

    artificial intelligence research paper

  5. (PDF) Artificial intelligence

    artificial intelligence research paper

  6. ⇉Artificial Intelligence Research Paper Artificial

    artificial intelligence research paper

VIDEO

  1. Solution of Artificial Intelligence Question Paper || AI || 843 Class 12 || CBSE Board 2023-24

  2. AI (Artificial intelligence questions paper 2023) ptu #ptu @ladakhi @computer #comedy #song #ggi

  3. Artificial intelligence April may 2023 question paper

  4. Artificial Intelligence ( A I ) Sample Paper class 10 2023 -24

  5. KÉSZ Projects: Artificial Intelligence Research Institute, foundation stone laying ceremony

  6. AI learns to type on a phone like humans

COMMENTS

  1. Scientific discovery in the age of artificial intelligence

    Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment and accelerate research, helping scientists to generate hypotheses, design experiments, collect ...

  2. AIJ

    AIJ publishes papers on broad aspects of AI, including methods, applications, challenges and competitions. It also accepts Research Notes, Reviews and Position Papers on AI topics.

  3. (PDF) The Impact of Artificial Intelligence on Academics: A Concise

    The paper focuses specifically on the incorporation of artificial intelligence (AI), which includes a wide range of technologies and methods, such as machine learning, adaptive learning, natural ...

  4. Artificial intelligence in information systems research: A systematic

    identify the opportunities for future AI research in IS. The structure of the paper is as follows. First, an introduction to related work on AI in the IS field is presented. ... Russel & Norvig's book Artificial Intelligence: A Modern Approach was the most frequently cited source for defining AI, though the actual edition of the book varied, ...

  5. Journal of Artificial Intelligence Research

    The journal publishes important research results in all areas of AI, such as machine learning, natural language, planning and vision. The current issue features papers on block domain knowledge, subgoal structure, anomaly discovery, question-answering systems and agent skill estimation.

  6. Artificial intelligence and machine learning research: towards digital

    This special issue of the journal publishes papers on artificial intelligence and machine learning research and their applications for various domains and sectors. It also highlights the vision and initiatives of Saudi Arabia to become a leader in AI and digital economy.

  7. Artificial Intelligence

    A Guided Tour of Artificial Intelligence Research, 1 / 3, Springer International Publishing, pp.487-518, 2020, Knowledge Representation, Reasoning and Learning, 978-3-030-06163-. Subjects: Artificial Intelligence (cs.AI); Discrete Mathematics (cs.DM); Logic in Computer Science (cs.LO); Symbolic Computation (cs.SC)

  8. Artificial intelligence research: A review on dominant themes, methods

    Artificial intelligence research: A review on dominant themes, methods, frameworks and future research directions ... Concisely, this paper provides a review and analysis of artificial computing from 2020 to 2023. The emphasis is on dominant theories and themes, methodologies, frameworks, trends and research direction for understanding AI in ...

  9. Artificial Intelligence

    Artificial Intelligence. The AI industry could top $1 trillion in 2018 and almost $4 trillion by 2022. As well as being a feat of engineering and computing there are a significant amount of social and moral implications that need to be considered. This microsite brings together cutting edge research across many of these disciplines to help ...

  10. Artificial intelligence

    Artificial intelligence As investments and revenues soar year-on-year and nations vie for leadership in the field of artificial intelligence, research output continues its steep, upward trajectory.

  11. Forecasting the future of artificial intelligence with machine learning

    The corpus of scientific literature grows at an ever-increasing speed. Specifically, in the field of artificial intelligence (AI) and machine learning (ML), the number of papers every month is ...

  12. PDF The Impact of Artificial Intelligence on Innovation

    This paper explores how artificial intelligence may reshape the innovation process and the organization of R&D. It distinguishes between automation-oriented applications and deep learning as a general-purpose method of invention, and suggests policies to stimulate research productivity and competition.

  13. [2303.12712] Sparks of Artificial General Intelligence: Early

    A paper that explores the capabilities and limitations of GPT-4, a large language model developed by OpenAI. The authors argue that GPT-4 is a sparks of artificial general intelligence, and discuss the challenges and implications of advancing towards deeper and more comprehensive versions of AGI.

  14. Exploring the Impact of Artificial Intelligence in Teaching and

    The year 2023, with twenty-seven (27) papers, led the way, demonstrating researchers' strong interest in the most recent research on the application of artificial intelligence in science education. This was followed by ten (10) studies in 2022, eight (08) studies in 2021, and nine (09) studies in year 2020.

  15. 578339 PDFs

    Artificial Intelligence | Explore the latest full-text research PDFs, articles, conference papers, preprints and more on ARTIFICIAL INTELLIGENCE. Find methods information, sources, references or ...

  16. The present and future of AI

    The 2021 report is the second in a series that will be released every five years until 2116. Titled "Gathering Strength, Gathering Storms," the report explores the various ways AI is increasingly touching people's lives in settings that range from movie recommendations and voice assistants to autonomous driving and automated medical ...

  17. AI-Based Modeling: Techniques, Applications and Research ...

    Artificial intelligence (AI) is a leading technology of the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR), with the capability of incorporating human behavior and intelligence into machines or systems. Thus, AI-based modeling is the key to build automated, intelligent, and smart systems according to today's needs. To solve real-world issues, various types of AI such ...

  18. AI in learning: Preparing grounds for future learning

    In education and learning, applying AI to education is not new. The history of AI in learning research and educational applications goes back over 50 years (Minsky & Papert, 1968).In 2016, the researchers' panel report summarized (Stone et al., 2016) that there have been several common AI-related themes worldwide over the past several years, such as teaching robots, intelligent tutoring ...

  19. Artificial intelligence: A powerful paradigm for scientific research

    Artificial intelligence (AI) is a rapidly evolving field that has transformed various domains of scientific research. This article provides an overview of the history, applications, challenges, and opportunities of AI in science. It also discusses how AI can enhance scientific creativity, collaboration, and communication. Learn more about the potential and impact of AI in science by reading ...

  20. The impact of artificial intelligence on human society and bioethics

    Bioethics is not a matter of calculation but a process of conscientization. Although AI designers can up-load all information, data, and programmed to AI to function as a human being, it is still a machine and a tool. AI will always remain as AI without having authentic human feelings and the capacity to commiserate.

  21. AI's profound impact on the world

    These days, artificial intelligence (AI) is a common topic of conversation with strong—but not always recognized—connections to psychology. These connections to psychology often fall into two broad categories, both of which require our field to be proactive and strategic. First, AI will have a profound impact on every aspect of our field.

  22. AI in health and medicine

    Artificial intelligence (AI) is poised to broadly reshape medicine, potentially improving the experiences of both clinicians and patients. We discuss key findings from a 2-year weekly effort to ...

  23. Proselytizing the potential of influencer marketing via artificial

    2.1. Artificial intelligence. Artificial intelligence is designed to mimic the human brain and make decisions similar to those made by humans in a variety of settings (Bar-Ilan, Citation 2004).Artificial intelligence is a technique that gives businesses the chance to obtain a competitive edge by utilising large data to specifically address the needs of their clients through individualised ...

  24. Machine Learning: Algorithms, Real-World Applications and Research

    In the current age of the Fourth Industrial Revolution (4IR or Industry 4.0), the digital world has a wealth of data, such as Internet of Things (IoT) data, cybersecurity data, mobile data, business data, social media data, health data, etc. To intelligently analyze these data and develop the corresponding smart and automated applications, the knowledge of artificial intelligence (AI ...

  25. Artificial intelligence in innovation research: A systematic review

    Artificial Intelligence (AI) is increasingly adopted by organizations to innovate, and this is ever more reflected in scholarly work. To illustrate, assess and map research at the intersection of AI and innovation, we performed a Systematic Literature Review (SLR) of published work indexed in the Clarivate Web of Science (WOS) and Elsevier Scopus databases (the final sample includes 1448 ...

  26. This AI Paper by UC Berkeley Explores the Potential of Self-play

    Artificial intelligence (AI) has seen significant advancements through game-playing agents like AlphaGo, which achieved superhuman performance via self-play techniques. Self-play allows models to improve by training on data generated from games played against themselves, proving effective in competitive environments like Go and chess. This technique, which pits identical copies of a model ...

  27. Artificial intelligence: A powerful paradigm for scientific research

    Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. ... The aim of this paper is to provide a broad research guideline on fundamental sciences with ...

  28. A new lab and a new paper reignite an old AI debate

    A FTER SAM ALTMAN was sacked from OpenAI in November of 2023, a meme went viral among artificial-intelligence (AI) types on social media."What did Ilya see?" it asked, referring to Ilya ...

  29. How I'm using AI tools to help universities maximize research impacts

    Artificial-intelligence algorithms could identify scientists who need support with translating their work into real-world applications and more. ... the ten research papers that policy documents ...

  30. IBM Blog

    Artificial intelligence June 13, 2024 Best practices for augmenting human intelligence with AI. 2 min read - Enabling participation in the AI-driven economy to be underpinned by fairness, transparency, explainability, robustness and privacy.