15 Types of Research Methods
Chris Drew (PhD)
Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]
Learn about our Editorial Process
Research methods refer to the strategies, tools, and techniques used to gather and analyze data in a structured way in order to answer a research question or investigate a hypothesis (Hammond & Wellington, 2020).
Generally, we place research methods into two categories: quantitative and qualitative. Each has its own strengths and weaknesses, which we can summarize as:
- Quantitative research can achieve generalizability through scrupulous statistical analysis applied to large sample sizes.
- Qualitative research achieves deep, detailed, and nuance accounts of specific case studies, which are not generalizable.
Some researchers, with the aim of making the most of both quantitative and qualitative research, employ mixed methods, whereby they will apply both types of research methods in the one study, such as by conducting a statistical survey alongside in-depth interviews to add context to the quantitative findings.
Below, I’ll outline 15 common research methods, and include pros, cons, and examples of each .
Types of Research Methods
Research methods can be broadly categorized into two types: quantitative and qualitative.
- Quantitative methods involve systematic empirical investigation of observable phenomena via statistical, mathematical, or computational techniques, providing an in-depth understanding of a specific concept or phenomenon (Schweigert, 2021). The strengths of this approach include its ability to produce reliable results that can be generalized to a larger population, although it can lack depth and detail.
- Qualitative methods encompass techniques that are designed to provide a deep understanding of a complex issue, often in a specific context, through collection of non-numerical data (Tracy, 2019). This approach often provides rich, detailed insights but can be time-consuming and its findings may not be generalizable.
These can be further broken down into a range of specific research methods and designs:
Primarily Quantitative Methods | Primarily Qualitative methods |
---|---|
Experimental Research | Case Study |
Surveys and Questionnaires | Ethnography |
Longitudinal Studies | Phenomenology |
Cross-Sectional Studies | Historical research |
Correlational Research | Content analysis |
Causal-Comparative Research | Grounded theory |
Meta-Analysis | Action research |
Quasi-Experimental Design | Observational research |
Combining the two methods above, mixed methods research mixes elements of both qualitative and quantitative research methods, providing a comprehensive understanding of the research problem . We can further break these down into:
- Sequential Explanatory Design (QUAN→QUAL): This methodology involves conducting quantitative analysis first, then supplementing it with a qualitative study.
- Sequential Exploratory Design (QUAL→QUAN): This methodology goes in the other direction, starting with qualitative analysis and ending with quantitative analysis.
Let’s explore some methods and designs from both quantitative and qualitative traditions, starting with qualitative research methods.
Qualitative Research Methods
Qualitative research methods allow for the exploration of phenomena in their natural settings, providing detailed, descriptive responses and insights into individuals’ experiences and perceptions (Howitt, 2019).
These methods are useful when a detailed understanding of a phenomenon is sought.
1. Ethnographic Research
Ethnographic research emerged out of anthropological research, where anthropologists would enter into a setting for a sustained period of time, getting to know a cultural group and taking detailed observations.
Ethnographers would sometimes even act as participants in the group or culture, which many scholars argue is a weakness because it is a step away from achieving objectivity (Stokes & Wall, 2017).
In fact, at its most extreme version, ethnographers even conduct research on themselves, in a fascinating methodology call autoethnography .
The purpose is to understand the culture, social structure, and the behaviors of the group under study. It is often useful when researchers seek to understand shared cultural meanings and practices in their natural settings.
However, it can be time-consuming and may reflect researcher biases due to the immersion approach.
Pros of Ethnographic Research | Cons of Ethnographic Research |
---|---|
1. Provides deep cultural insights | 1. Time-consuming |
2. Contextually relevant findings | 2. Potential researcher bias |
3. Explores dynamic social processes | 3. May |
Example of Ethnography
Liquidated: An Ethnography of Wall Street by Karen Ho involves an anthropologist who embeds herself with Wall Street firms to study the culture of Wall Street bankers and how this culture affects the broader economy and world.
2. Phenomenological Research
Phenomenological research is a qualitative method focused on the study of individual experiences from the participant’s perspective (Tracy, 2019).
It focuses specifically on people’s experiences in relation to a specific social phenomenon ( see here for examples of social phenomena ).
This method is valuable when the goal is to understand how individuals perceive, experience, and make meaning of particular phenomena. However, because it is subjective and dependent on participants’ self-reports, findings may not be generalizable, and are highly reliant on self-reported ‘thoughts and feelings’.
Pros of Phenomenological Research | Cons of Phenomenological Research |
---|---|
1. Provides rich, detailed data | 1. Limited generalizability |
2. Highlights personal experience and perceptions | 2. Data collection can be time-consuming |
3. Allows exploration of complex phenomena | 3. Requires highly skilled researchers |
Example of Phenomenological Research
A phenomenological approach to experiences with technology by Sebnem Cilesiz represents a good starting-point for formulating a phenomenological study. With its focus on the ‘essence of experience’, this piece presents methodological, reliability, validity, and data analysis techniques that phenomenologists use to explain how people experience technology in their everyday lives.
3. Historical Research
Historical research is a qualitative method involving the examination of past events to draw conclusions about the present or make predictions about the future (Stokes & Wall, 2017).
As you might expect, it’s common in the research branches of history departments in universities.
This approach is useful in studies that seek to understand the past to interpret present events or trends. However, it relies heavily on the availability and reliability of source materials, which may be limited.
Common data sources include cultural artifacts from both material and non-material culture , which are then examined, compared, contrasted, and contextualized to test hypotheses and generate theories.
Pros of Historical Research | Cons of Historical Research |
---|---|
1. | 1. Dependent on available sources |
2. Can help understand current events or trends | 2. Potential bias in source materials |
3. Allows the study of change over time | 3. Difficult to replicate |
Example of Historical Research
A historical research example might be a study examining the evolution of gender roles over the last century. This research might involve the analysis of historical newspapers, advertisements, letters, and company documents, as well as sociocultural contexts.
4. Content Analysis
Content analysis is a research method that involves systematic and objective coding and interpreting of text or media to identify patterns, themes, ideologies, or biases (Schweigert, 2021).
A content analysis is useful in analyzing communication patterns, helping to reveal how texts such as newspapers, movies, films, political speeches, and other types of ‘content’ contain narratives and biases.
However, interpretations can be very subjective, which often requires scholars to engage in practices such as cross-comparing their coding with peers or external researchers.
Content analysis can be further broken down in to other specific methodologies such as semiotic analysis, multimodal analysis , and discourse analysis .
Pros of Content Analysis | Cons of Content Analysis |
---|---|
1. Unobtrusive data collection | 1. Lacks contextual information |
2. Allows for large sample analysis | 2. Potential coder bias |
3. Replicable and reliable if done properly | 3. May overlook nuances |
Example of Content Analysis
How is Islam Portrayed in Western Media? by Poorebrahim and Zarei (2013) employs a type of content analysis called critical discourse analysis (common in poststructuralist and critical theory research ). This study by Poorebrahum and Zarei combs through a corpus of western media texts to explore the language forms that are used in relation to Islam and Muslims, finding that they are overly stereotyped, which may represent anti-Islam bias or failure to understand the Islamic world.
5. Grounded Theory Research
Grounded theory involves developing a theory during and after data collection rather than beforehand.
This is in contrast to most academic research studies, which start with a hypothesis or theory and then testing of it through a study, where we might have a null hypothesis (disproving the theory) and an alternative hypothesis (supporting the theory).
Grounded Theory is useful because it keeps an open mind to what the data might reveal out of the research. It can be time-consuming and requires rigorous data analysis (Tracy, 2019).
Pros of Grounded Theory Research | Cons of Grounded Theory Research |
---|---|
1. Helps with theory development | 1. Time-consuming |
2. Rigorous data analysis | 2. Requires iterative data collection and analysis |
3. Can fill gaps in existing theories | 3. Requires skilled researchers |
Grounded Theory Example
Developing a Leadership Identity by Komives et al (2005) employs a grounded theory approach to develop a thesis based on the data rather than testing a hypothesis. The researchers studied the leadership identity of 13 college students taking on leadership roles. Based on their interviews, the researchers theorized that the students’ leadership identities shifted from a hierarchical view of leadership to one that embraced leadership as a collaborative concept.
6. Action Research
Action research is an approach which aims to solve real-world problems and bring about change within a setting. The study is designed to solve a specific problem – or in other words, to take action (Patten, 2017).
This approach can involve mixed methods, but is generally qualitative because it usually involves the study of a specific case study wherein the researcher works, e.g. a teacher studying their own classroom practice to seek ways they can improve.
Action research is very common in fields like education and nursing where practitioners identify areas for improvement then implement a study in order to find paths forward.
Pros of Action Research | Cons of Action Research |
---|---|
1. Addresses real-world problems and seeks to find solutions. | 1. It is time-consuming and often hard to implement into a practitioner’s already busy schedule |
2. Integrates research and action in an action-research cycle. | 2. Requires collaboration between researcher, practitioner, and research participants. |
3. Can bring about positive change in isolated instances, such as in a school or nursery setting. | 3. Complexity of managing dual roles (where the researcher is also often the practitioner) |
Action Research Example
Using Digital Sandbox Gaming to Improve Creativity Within Boys’ Writing by Ellison and Drew was a research study one of my research students completed in his own classroom under my supervision. He implemented a digital game-based approach to literacy teaching with boys and interviewed his students to see if the use of games as stimuli for storytelling helped draw them into the learning experience.
7. Natural Observational Research
Observational research can also be quantitative (see: experimental research), but in naturalistic settings for the social sciences, researchers tend to employ qualitative data collection methods like interviews and field notes to observe people in their day-to-day environments.
This approach involves the observation and detailed recording of behaviors in their natural settings (Howitt, 2019). It can provide rich, in-depth information, but the researcher’s presence might influence behavior.
While observational research has some overlaps with ethnography (especially in regard to data collection techniques), it tends not to be as sustained as ethnography, e.g. a researcher might do 5 observations, every second Monday, as opposed to being embedded in an environment.
Pros of Qualitative Observational Research | Cons of Qualitative Observational Research |
---|---|
1. Captures behavior in natural settings, allowing for interesting insights into authentic behaviors. | 1. Researcher’s presence may influence behavior |
2. Can provide rich, detailed data through the researcher’s vignettes. | 2. Can be time-consuming |
3. Non-invasive because researchers want to observe natural activities rather than interfering with research participants. | 3. Requires skilled and trained observers |
Observational Research Example
A researcher might use qualitative observational research to study the behaviors and interactions of children at a playground. The researcher would document the behaviors observed, such as the types of games played, levels of cooperation , and instances of conflict.
8. Case Study Research
Case study research is a qualitative method that involves a deep and thorough investigation of a single individual, group, or event in order to explore facets of that phenomenon that cannot be captured using other methods (Stokes & Wall, 2017).
Case study research is especially valuable in providing contextualized insights into specific issues, facilitating the application of abstract theories to real-world situations (Patten, 2017).
However, findings from a case study may not be generalizable due to the specific context and the limited number of cases studied (Walliman, 2021).
Pros of Case Study Research | Cons of Case Study Research |
---|---|
1. Provides detailed insights | 1. Limited generalizability |
2. Facilitates the study of complex phenomena | 2. Can be time-consuming |
3. Can test or generate theories | 3. Subject to observer bias |
See More: Case Study Advantages and Disadvantages
Example of a Case Study
Scholars conduct a detailed exploration of the implementation of a new teaching method within a classroom setting. The study focuses on how the teacher and students adapt to the new method, the challenges encountered, and the outcomes on student performance and engagement. While the study provides specific and detailed insights of the teaching method in that classroom, it cannot be generalized to other classrooms, as statistical significance has not been established through this qualitative approach.
Quantitative Research Methods
Quantitative research methods involve the systematic empirical investigation of observable phenomena via statistical, mathematical, or computational techniques (Pajo, 2022). The focus is on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.
9. Experimental Research
Experimental research is a quantitative method where researchers manipulate one variable to determine its effect on another (Walliman, 2021).
This is common, for example, in high-school science labs, where students are asked to introduce a variable into a setting in order to examine its effect.
This type of research is useful in situations where researchers want to determine causal relationships between variables. However, experimental conditions may not reflect real-world conditions.
Pros of Experimental Research | Cons of Experimental Research |
---|---|
1. Allows for determination of causality | 1. Might not reflect real-world conditions |
2. Allows for the study of phenomena in highly controlled environments to minimize research contamination. | 2. Can be costly and time-consuming to create a controlled environment. |
3. Can be replicated so other researchers can test and verify the results. | 3. Ethical concerns need to be addressed as the research is directly manipulating variables. |
Example of Experimental Research
A researcher may conduct an experiment to determine the effects of a new educational approach on student learning outcomes. Students would be randomly assigned to either the control group (traditional teaching method) or the experimental group (new educational approach).
10. Surveys and Questionnaires
Surveys and questionnaires are quantitative methods that involve asking research participants structured and predefined questions to collect data about their attitudes, beliefs, behaviors, or characteristics (Patten, 2017).
Surveys are beneficial for collecting data from large samples, but they depend heavily on the honesty and accuracy of respondents.
They tend to be seen as more authoritative than their qualitative counterparts, semi-structured interviews, because the data is quantifiable (e.g. a questionnaire where information is presented on a scale from 1 to 10 can allow researchers to determine and compare statistical means, averages, and variations across sub-populations in the study).
Pros of Surveys and Questionnaires | Cons of Surveys and Questionnaires |
---|---|
1. Data can be gathered from larger samples than is possible in qualitative research. | 1. There is heavy dependence on respondent honesty |
2. The data is quantifiable, allowing for comparison across subpopulations | 2. There is limited depth of response as opposed to qualitative approaches. |
3. Can be cost-effective and time-efficient | 3. Static with no flexibility to explore responses (unlike semi- or unstrcutured interviewing) |
Example of a Survey Study
A company might use a survey to gather data about employee job satisfaction across its offices worldwide. Employees would be asked to rate various aspects of their job satisfaction on a Likert scale. While this method provides a broad overview, it may lack the depth of understanding possible with other methods (Stokes & Wall, 2017).
11. Longitudinal Studies
Longitudinal studies involve repeated observations of the same variables over extended periods (Howitt, 2019). These studies are valuable for tracking development and change but can be costly and time-consuming.
With multiple data points collected over extended periods, it’s possible to examine continuous changes within things like population dynamics or consumer behavior. This makes a detailed analysis of change possible.
Perhaps the most relatable example of a longitudinal study is a national census, which is taken on the same day every few years, to gather comparative demographic data that can show how a nation is changing over time.
While longitudinal studies are commonly quantitative, there are also instances of qualitative ones as well, such as the famous 7 Up study from the UK, which studies 14 individuals every 7 years to explore their development over their lives.
Pros of Longitudinal Studies | Cons of Longitudinal Studies |
---|---|
1. Tracks changes over time allowing for comparison of past to present events. | 1. Is almost by definition time-consuming because time needs to pass between each data collection session. |
2. Can identify sequences of events, but causality is often harder to determine. | 2. There is high risk of participant dropout over time as participants move on with their lives. |
Example of a Longitudinal Study
A national census, taken every few years, uses surveys to develop longitudinal data, which is then compared and analyzed to present accurate trends over time. Trends a census can reveal include changes in religiosity, values and attitudes on social issues, and much more.
12. Cross-Sectional Studies
Cross-sectional studies are a quantitative research method that involves analyzing data from a population at a specific point in time (Patten, 2017). They provide a snapshot of a situation but cannot determine causality.
This design is used to measure and compare the prevalence of certain characteristics or outcomes in different groups within the sampled population.
The major advantage of cross-sectional design is its ability to measure a wide range of variables simultaneously without needing to follow up with participants over time.
However, cross-sectional studies do have limitations . This design can only show if there are associations or correlations between different variables, but cannot prove cause and effect relationships, temporal sequence, changes, and trends over time.
Pros of Cross-Sectional Studies | Cons of Cross-Sectional Studies |
---|---|
1. Quick and inexpensive, with no long-term commitment required. | 1. Cannot determine causality because it is a simple snapshot, with no time delay between data collection points. |
2. Good for descriptive analyses. | 2. Does not allow researchers to follow up with research participants. |
Example of a Cross-Sectional Study
Our longitudinal study example of a national census also happens to contain cross-sectional design. One census is cross-sectional, displaying only data from one point in time. But when a census is taken once every few years, it becomes longitudinal, and so long as the data collection technique remains unchanged, identification of changes will be achievable, adding another time dimension on top of a basic cross-sectional study.
13. Correlational Research
Correlational research is a quantitative method that seeks to determine if and to what degree a relationship exists between two or more quantifiable variables (Schweigert, 2021).
This approach provides a fast and easy way to make initial hypotheses based on either positive or negative correlation trends that can be observed within dataset.
While correlational research can reveal relationships between variables, it cannot establish causality.
Methods used for data analysis may include statistical correlations such as Pearson’s or Spearman’s.
Pros of Correlational Research | Cons of Correlational Research |
---|---|
1. Reveals relationships between variables | 1. Cannot determine causality |
2. Can use existing data | 2. May be |
3. Can guide further experimental research | 3. Correlation may be coincidental |
Example of Correlational Research
A team of researchers is interested in studying the relationship between the amount of time students spend studying and their academic performance. They gather data from a high school, measuring the number of hours each student studies per week and their grade point averages (GPAs) at the end of the semester. Upon analyzing the data, they find a positive correlation, suggesting that students who spend more time studying tend to have higher GPAs.
14. Quasi-Experimental Design Research
Quasi-experimental design research is a quantitative research method that is similar to experimental design but lacks the element of random assignment to treatment or control.
Instead, quasi-experimental designs typically rely on certain other methods to control for extraneous variables.
The term ‘quasi-experimental’ implies that the experiment resembles a true experiment, but it is not exactly the same because it doesn’t meet all the criteria for a ‘true’ experiment, specifically in terms of control and random assignment.
Quasi-experimental design is useful when researchers want to study a causal hypothesis or relationship, but practical or ethical considerations prevent them from manipulating variables and randomly assigning participants to conditions.
Pros | Cons |
---|---|
1. It’s more feasible to implement than true experiments. | 1. Without random assignment, it’s harder to rule out confounding variables. |
2. It can be conducted in real-world settings, making the findings more applicable to the real world. | 2. The lack of random assignment may of the study. |
3. Useful when it’s unethical or impossible to manipulate the independent variable or randomly assign participants. | 3. It’s more difficult to establish a cause-effect relationship due to the potential for confounding variables. |
Example of Quasi-Experimental Design
A researcher wants to study the impact of a new math tutoring program on student performance. However, ethical and practical constraints prevent random assignment to the “tutoring” and “no tutoring” groups. Instead, the researcher compares students who chose to receive tutoring (experimental group) to similar students who did not choose to receive tutoring (control group), controlling for other variables like grade level and previous math performance.
Related: Examples and Types of Random Assignment in Research
15. Meta-Analysis Research
Meta-analysis statistically combines the results of multiple studies on a specific topic to yield a more precise estimate of the effect size. It’s the gold standard of secondary research .
Meta-analysis is particularly useful when there are numerous studies on a topic, and there is a need to integrate the findings to draw more reliable conclusions.
Some meta-analyses can identify flaws or gaps in a corpus of research, when can be highly influential in academic research, despite lack of primary data collection.
However, they tend only to be feasible when there is a sizable corpus of high-quality and reliable studies into a phenomenon.
Pros | Cons |
---|---|
Increased Statistical Power: By combining data from multiple studies, meta-analysis increases the statistical power to detect effects. | Publication Bias: Studies with null or negative findings are less likely to be published, leading to an overestimation of effect sizes. |
Greater Precision: It provides more precise estimates of effect sizes by reducing the influence of random error. | Quality of Studies: of a meta-analysis depends on the quality of the studies included. |
Resolving Discrepancies: Meta-analysis can help resolve disagreements between different studies on a topic. | Heterogeneity: Differences in study design, sample, or procedures can introduce heterogeneity, complicating interpretation of results. |
Example of a Meta-Analysis
The power of feedback revisited (Wisniewski, Zierer & Hattie, 2020) is a meta-analysis that examines 435 empirical studies research on the effects of feedback on student learning. They use a random-effects model to ascertain whether there is a clear effect size across the literature. The authors find that feedback tends to impact cognitive and motor skill outcomes but has less of an effect on motivational and behavioral outcomes.
Choosing a research method requires a lot of consideration regarding what you want to achieve, your research paradigm, and the methodology that is most valuable for what you are studying. There are multiple types of research methods, many of which I haven’t been able to present here. Generally, it’s recommended that you work with an experienced researcher or research supervisor to identify a suitable research method for your study at hand.
Hammond, M., & Wellington, J. (2020). Research methods: The key concepts . New York: Routledge.
Howitt, D. (2019). Introduction to qualitative research methods in psychology . London: Pearson UK.
Pajo, B. (2022). Introduction to research methods: A hands-on approach . New York: Sage Publications.
Patten, M. L. (2017). Understanding research methods: An overview of the essentials . New York: Sage
Schweigert, W. A. (2021). Research methods in psychology: A handbook . Los Angeles: Waveland Press.
Stokes, P., & Wall, T. (2017). Research methods . New York: Bloomsbury Publishing.
Tracy, S. J. (2019). Qualitative research methods: Collecting evidence, crafting analysis, communicating impact . London: John Wiley & Sons.
Walliman, N. (2021). Research methods: The basics. London: Routledge.
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples
Leave a Comment Cancel Reply
Your email address will not be published. Required fields are marked *
Community Blog
Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.
Types of Research – Explained with Examples
- By DiscoverPhDs
- October 2, 2020
Types of Research
Research is about using established methods to investigate a problem or question in detail with the aim of generating new knowledge about it.
It is a vital tool for scientific advancement because it allows researchers to prove or refute hypotheses based on clearly defined parameters, environments and assumptions. Due to this, it enables us to confidently contribute to knowledge as it allows research to be verified and replicated.
Knowing the types of research and what each of them focuses on will allow you to better plan your project, utilises the most appropriate methodologies and techniques and better communicate your findings to other researchers and supervisors.
Classification of Types of Research
There are various types of research that are classified according to their objective, depth of study, analysed data, time required to study the phenomenon and other factors. It’s important to note that a research project will not be limited to one type of research, but will likely use several.
According to its Purpose
Theoretical research.
Theoretical research, also referred to as pure or basic research, focuses on generating knowledge , regardless of its practical application. Here, data collection is used to generate new general concepts for a better understanding of a particular field or to answer a theoretical research question.
Results of this kind are usually oriented towards the formulation of theories and are usually based on documentary analysis, the development of mathematical formulas and the reflection of high-level researchers.
Applied Research
Here, the goal is to find strategies that can be used to address a specific research problem. Applied research draws on theory to generate practical scientific knowledge, and its use is very common in STEM fields such as engineering, computer science and medicine.
This type of research is subdivided into two types:
- Technological applied research : looks towards improving efficiency in a particular productive sector through the improvement of processes or machinery related to said productive processes.
- Scientific applied research : has predictive purposes. Through this type of research design, we can measure certain variables to predict behaviours useful to the goods and services sector, such as consumption patterns and viability of commercial projects.
According to your Depth of Scope
Exploratory research.
Exploratory research is used for the preliminary investigation of a subject that is not yet well understood or sufficiently researched. It serves to establish a frame of reference and a hypothesis from which an in-depth study can be developed that will enable conclusive results to be generated.
Because exploratory research is based on the study of little-studied phenomena, it relies less on theory and more on the collection of data to identify patterns that explain these phenomena.
Descriptive Research
The primary objective of descriptive research is to define the characteristics of a particular phenomenon without necessarily investigating the causes that produce it.
In this type of research, the researcher must take particular care not to intervene in the observed object or phenomenon, as its behaviour may change if an external factor is involved.
Explanatory Research
Explanatory research is the most common type of research method and is responsible for establishing cause-and-effect relationships that allow generalisations to be extended to similar realities. It is closely related to descriptive research, although it provides additional information about the observed object and its interactions with the environment.
Correlational Research
The purpose of this type of scientific research is to identify the relationship between two or more variables. A correlational study aims to determine whether a variable changes, how much the other elements of the observed system change.
According to the Type of Data Used
Qualitative research.
Qualitative methods are often used in the social sciences to collect, compare and interpret information, has a linguistic-semiotic basis and is used in techniques such as discourse analysis, interviews, surveys, records and participant observations.
In order to use statistical methods to validate their results, the observations collected must be evaluated numerically. Qualitative research, however, tends to be subjective, since not all data can be fully controlled. Therefore, this type of research design is better suited to extracting meaning from an event or phenomenon (the ‘why’) than its cause (the ‘how’).
Quantitative Research
Quantitative research study delves into a phenomena through quantitative data collection and using mathematical, statistical and computer-aided tools to measure them . This allows generalised conclusions to be projected over time.
According to the Degree of Manipulation of Variables
Experimental research.
It is about designing or replicating a phenomenon whose variables are manipulated under strictly controlled conditions in order to identify or discover its effect on another independent variable or object. The phenomenon to be studied is measured through study and control groups, and according to the guidelines of the scientific method.
Non-Experimental Research
Also known as an observational study, it focuses on the analysis of a phenomenon in its natural context. As such, the researcher does not intervene directly, but limits their involvement to measuring the variables required for the study. Due to its observational nature, it is often used in descriptive research.
Quasi-Experimental Research
It controls only some variables of the phenomenon under investigation and is therefore not entirely experimental. In this case, the study and the focus group cannot be randomly selected, but are chosen from existing groups or populations . This is to ensure the collected data is relevant and that the knowledge, perspectives and opinions of the population can be incorporated into the study.
According to the Type of Inference
Deductive investigation.
In this type of research, reality is explained by general laws that point to certain conclusions; conclusions are expected to be part of the premise of the research problem and considered correct if the premise is valid and the inductive method is applied correctly.
Inductive Research
In this type of research, knowledge is generated from an observation to achieve a generalisation. It is based on the collection of specific data to develop new theories.
Hypothetical-Deductive Investigation
It is based on observing reality to make a hypothesis, then use deduction to obtain a conclusion and finally verify or reject it through experience.
According to the Time in Which it is Carried Out
Longitudinal study (also referred to as diachronic research).
It is the monitoring of the same event, individual or group over a defined period of time. It aims to track changes in a number of variables and see how they evolve over time. It is often used in medical, psychological and social areas .
Cross-Sectional Study (also referred to as Synchronous Research)
Cross-sectional research design is used to observe phenomena, an individual or a group of research subjects at a given time.
According to The Sources of Information
Primary research.
This fundamental research type is defined by the fact that the data is collected directly from the source, that is, it consists of primary, first-hand information.
Secondary research
Unlike primary research, secondary research is developed with information from secondary sources, which are generally based on scientific literature and other documents compiled by another researcher.
According to How the Data is Obtained
Documentary (cabinet).
Documentary research, or secondary sources, is based on a systematic review of existing sources of information on a particular subject. This type of scientific research is commonly used when undertaking literature reviews or producing a case study.
Field research study involves the direct collection of information at the location where the observed phenomenon occurs.
From Laboratory
Laboratory research is carried out in a controlled environment in order to isolate a dependent variable and establish its relationship with other variables through scientific methods.
Mixed-Method: Documentary, Field and/or Laboratory
Mixed research methodologies combine results from both secondary (documentary) sources and primary sources through field or laboratory research.
The term monotonic relationship is a statistical definition that is used to describe the link between two variables.
Academic conferences are expensive and it can be tough finding the funds to go; this naturally leads to the question of are academic conferences worth it?
Find out the different dissertation and thesis binding options, which is best, advantages and disadvantages, typical costs, popular services and more.
Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.
Browse PhDs Now
Is it really possible to do a PhD while working? The answer is ‘yes’, but it comes with several ‘buts’. Read our post to find out if it’s for you.
You’ll come across many academics with PhD, some using the title of Doctor and others using Professor. This blog post helps you understand the differences.
Nick is a first year PhD student at Queen Mary University of London. The long-term goal of his research is to help game designers make games that support healthy engagement and well-being.
Dr Manning gained his PhD in Chemical Engineering from the University of Sheffield in 2019. He is now a postdoc researcher studying molecular simulations on nanomaterials at the University of Bath.
Join Thousands of Students
Home > Blog > Tips for Online Students > A Comprehensive Guide to Different Types of Research
Higher Education News , Tips for Online Students , Tips for Students
A Comprehensive Guide to Different Types of Research
Updated: June 19, 2024
Published: June 15, 2024
When embarking on a research project, selecting the right methodology can be the difference between success and failure. With various methods available, each suited to different types of research, it’s essential you make an informed choice. This blog post will provide tips on how to choose a research methodology that best fits your research goals .
We’ll start with definitions: Research is the systematic process of exploring, investigating, and discovering new information or validating existing knowledge. It involves defining questions, collecting data, analyzing results, and drawing conclusions.
Meanwhile, a research methodology is a structured plan that outlines how your research is to be conducted. A complete methodology should detail the strategies, processes, and techniques you plan to use for your data collection and analysis.
Research Methods
The first step of a research methodology is to identify a focused research topic, which is the question you seek to answer. By setting clear boundaries on the scope of your research, you can concentrate on specific aspects of a problem without being overwhelmed by information. This will produce more accurate findings.
Along with clarifying your research topic, your methodology should also address your research methods. Let’s look at the four main types of research: descriptive, correlational, experimental, and diagnostic.
Descriptive Research
Descriptive research is an approach designed to describe the characteristics of a population systematically and accurately. This method focuses on answering “what” questions by providing detailed observations about the subject. Descriptive research employs surveys, observational studies , and case studies to gather qualitative or quantitative data.
A real-world example of descriptive research is a survey investigating consumer behavior toward a competitor’s product. By analyzing the survey results, the company can gather detailed insights into how consumers perceive a competitor’s product, which can inform their marketing strategies and product development.
Correlational Research
Correlational research examines the statistical relationship between two or more variables to determine whether a relationship exists. Correlational research is particularly useful when ethical or practical constraints prevent experimental manipulation. It is often employed in fields such as psychology, education, and health sciences to provide insights into complex real-world interactions, helping to develop theories and inform further experimental research.
An example of correlational research is the study of the relationship between smoking and lung cancer. Researchers observe and collect data on individuals’ smoking habits and the incidence of lung cancer to determine if there is a correlation between the two variables. This type of research helps identify patterns and relationships, indicating whether increased smoking is associated with higher rates of lung cancer.
Experimental Research
Experimental research is a scientific approach where researchers manipulate one or more independent variables to observe their effect on a dependent variable. This method is designed to establish cause-and-effect relationships. Fields like psychology , medicine, and social sciences frequently employ experimental research to test hypotheses and theories under controlled conditions.
A real-world example of experimental research is Pavlov’s Dog experiment. In this experiment, Ivan Pavlov demonstrated classical conditioning by ringing a bell each time he fed his dogs. After repeating this process multiple times, the dogs began to salivate just by hearing the bell, even when no food was presented. This experiment helped to illustrate how certain stimuli can elicit specific responses through associative learning.
Diagnostic Research
Diagnostic research tries to accurately diagnose a problem by identifying its underlying causes. This type of research is crucial for understanding complex situations where a precise diagnosis is necessary for formulating effective solutions. It involves methods such as case studies and data analysis and often integrates both qualitative and quantitative data to provide a comprehensive view of the issue at hand.
An example of diagnostic research is studying the causes of a specific illness outbreak. During an outbreak of a respiratory virus, researchers might conduct diagnostic research to determine the factors contributing to the spread of the virus. This could involve analyzing patient data, testing environmental samples, and evaluating potential sources of infection. The goal is to identify the root causes and contributing factors to develop effective containment and prevention strategies.
Using an established research method is imperative, no matter if you are researching for marketing , technology , healthcare , engineering, or social science. A methodology lends legitimacy to your research by ensuring your data is both consistent and credible. A well-defined methodology also enhances the reliability and validity of the research findings, which is crucial for drawing accurate and meaningful conclusions.
Additionally, methodologies help researchers stay focused and on track, limiting the scope of the study to relevant questions and objectives. This not only improves the quality of the research but also ensures that the study can be replicated and verified by other researchers, further solidifying its scientific value.
How to Choose a Research Methodology
Choosing the best research methodology for your project involves several key steps to ensure that your approach aligns with your research goals and questions. Here’s a simplified guide to help you make the best choice.
Understand Your Goals
Clearly define the objectives of your research. What do you aim to discover, prove, or understand? Understanding your goals helps in selecting a methodology that aligns with your research purpose.
Consider the Nature of Your Data
Determine whether your research will involve numerical data, textual data, or both. Quantitative methods are best for numerical data, while qualitative methods are suitable for textual or thematic data.
Understand the Purpose of Each Methodology
Becoming familiar with the four types of research – descriptive, correlational, experimental, and diagnostic – will enable you to select the most appropriate method for your research. Many times, you will want to use a combination of methods to gather meaningful data.
Evaluate Resources and Constraints
Consider the resources available to you, including time, budget, and access to data. Some methodologies may require more resources or longer timeframes to implement effectively.
Review Similar Studies
Look at previous research in your field to see which methodologies were successful. This can provide insights and help you choose a proven approach.
By following these steps, you can select a research methodology that best fits your project’s requirements and ensures robust, credible results.
Completing Your Research Project
Upon completing your research, the next critical step is to analyze and interpret the data you’ve collected. This involves summarizing the key findings, identifying patterns, and determining how these results address your initial research questions. By thoroughly examining the data, you can draw meaningful conclusions that contribute to the body of knowledge in your field.
It’s essential that you present these findings clearly and concisely, using charts, graphs, and tables to enhance comprehension. Furthermore, discuss the implications of your results, any limitations encountered during the study, and how your findings align with or challenge existing theories.
Your research project should conclude with a strong statement that encapsulates the essence of your research and its broader impact. This final section should leave readers with a clear understanding of the value of your work and inspire continued exploration and discussion in the field.
Now that you know how to perform quality research , it’s time to get started! Applying the right research methodologies can make a significant difference in the accuracy and reliability of your findings. Remember, the key to successful research is not just in collecting data, but in analyzing it thoughtfully and systematically to draw meaningful conclusions. So, dive in, explore, and contribute to the ever-growing body of knowledge with confidence. Happy researching!
In this article
At UoPeople, our blog writers are thinkers, researchers, and experts dedicated to curating articles relevant to our mission: making higher education accessible to everyone. Read More
Service update: Some parts of the Library’s website will be down for maintenance on August 11.
Secondary menu
- Log in to your Library account
- Hours and Maps
- Connect from Off Campus
- UC Berkeley Home
Search form
Research methods--quantitative, qualitative, and more: overview.
- Quantitative Research
- Qualitative Research
- Data Science Methods (Machine Learning, AI, Big Data)
- Text Mining and Computational Text Analysis
- Evidence Synthesis/Systematic Reviews
- Get Data, Get Help!
About Research Methods
This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley.
As Patten and Newhart note in the book Understanding Research Methods , "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge. The accumulation of knowledge through research is by its nature a collective endeavor. Each well-designed study provides evidence that may support, amend, refute, or deepen the understanding of existing knowledge...Decisions are important throughout the practice of research and are designed to help researchers collect evidence that includes the full spectrum of the phenomenon under study, to maintain logical rules, and to mitigate or account for possible sources of bias. In many ways, learning research methods is learning how to see and make these decisions."
The choice of methods varies by discipline, by the kind of phenomenon being studied and the data being used to study it, by the technology available, and more. This guide is an introduction, but if you don't see what you need here, always contact your subject librarian, and/or take a look to see if there's a library research guide that will answer your question.
Suggestions for changes and additions to this guide are welcome!
START HERE: SAGE Research Methods
Without question, the most comprehensive resource available from the library is SAGE Research Methods. HERE IS THE ONLINE GUIDE to this one-stop shopping collection, and some helpful links are below:
- SAGE Research Methods
- Little Green Books (Quantitative Methods)
- Little Blue Books (Qualitative Methods)
- Dictionaries and Encyclopedias
- Case studies of real research projects
- Sample datasets for hands-on practice
- Streaming video--see methods come to life
- Methodspace- -a community for researchers
- SAGE Research Methods Course Mapping
Library Data Services at UC Berkeley
Library Data Services Program and Digital Scholarship Services
The LDSP offers a variety of services and tools ! From this link, check out pages for each of the following topics: discovering data, managing data, collecting data, GIS data, text data mining, publishing data, digital scholarship, open science, and the Research Data Management Program.
Be sure also to check out the visual guide to where to seek assistance on campus with any research question you may have!
Library GIS Services
Other Data Services at Berkeley
D-Lab Supports Berkeley faculty, staff, and graduate students with research in data intensive social science, including a wide range of training and workshop offerings Dryad Dryad is a simple self-service tool for researchers to use in publishing their datasets. It provides tools for the effective publication of and access to research data. Geospatial Innovation Facility (GIF) Provides leadership and training across a broad array of integrated mapping technologies on campu Research Data Management A UC Berkeley guide and consulting service for research data management issues
General Research Methods Resources
Here are some general resources for assistance:
- Assistance from ICPSR (must create an account to access): Getting Help with Data , and Resources for Students
- Wiley Stats Ref for background information on statistics topics
- Survey Documentation and Analysis (SDA) . Program for easy web-based analysis of survey data.
Consultants
- D-Lab/Data Science Discovery Consultants Request help with your research project from peer consultants.
- Research data (RDM) consulting Meet with RDM consultants before designing the data security, storage, and sharing aspects of your qualitative project.
- Statistics Department Consulting Services A service in which advanced graduate students, under faculty supervision, are available to consult during specified hours in the Fall and Spring semesters.
Related Resourcex
- IRB / CPHS Qualitative research projects with human subjects often require that you go through an ethics review.
- OURS (Office of Undergraduate Research and Scholarships) OURS supports undergraduates who want to embark on research projects and assistantships. In particular, check out their "Getting Started in Research" workshops
- Sponsored Projects Sponsored projects works with researchers applying for major external grants.
- Next: Quantitative Research >>
- Last Updated: Sep 6, 2024 8:59 PM
- URL: https://guides.lib.berkeley.edu/researchmethods
Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, automatically generate references for free.
- Knowledge Base
- Methodology
Research Methods | Definition, Types, Examples
Research methods are specific procedures for collecting and analysing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.
First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :
- Qualitative vs quantitative : Will your data take the form of words or numbers?
- Primary vs secondary : Will you collect original data yourself, or will you use data that have already been collected by someone else?
- Descriptive vs experimental : Will you take measurements of something as it is, or will you perform an experiment?
Second, decide how you will analyse the data .
- For quantitative data, you can use statistical analysis methods to test relationships between variables.
- For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.
Table of contents
Methods for collecting data, examples of data collection methods, methods for analysing data, examples of data analysis methods, frequently asked questions about methodology.
Data are the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.
Qualitative vs quantitative data
Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.
For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .
If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .
Qualitative | ||
---|---|---|
Quantitative | . |
You can also take a mixed methods approach, where you use both qualitative and quantitative research methods.
Primary vs secondary data
Primary data are any original information that you collect for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary data are information that has already been collected by other researchers (e.g. in a government census or previous scientific studies).
If you are exploring a novel research question, you’ll probably need to collect primary data. But if you want to synthesise existing knowledge, analyse historical trends, or identify patterns on a large scale, secondary data might be a better choice.
Primary | ||
---|---|---|
Secondary |
Descriptive vs experimental data
In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .
In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .
To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.
Descriptive | ||
---|---|---|
Experimental |
Prevent plagiarism, run a free check.
Research method | Primary or secondary? | Qualitative or quantitative? | When to use |
---|---|---|---|
Primary | Quantitative | To test cause-and-effect relationships. | |
Primary | Quantitative | To understand general characteristics of a population. | |
Interview/focus group | Primary | Qualitative | To gain more in-depth understanding of a topic. |
Observation | Primary | Either | To understand how something occurs in its natural setting. |
Secondary | Either | To situate your research in an existing body of work, or to evaluate trends within a research topic. | |
Either | Either | To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study. |
Your data analysis methods will depend on the type of data you collect and how you prepare them for analysis.
Data can often be analysed both quantitatively and qualitatively. For example, survey responses could be analysed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.
Qualitative analysis methods
Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that were collected:
- From open-ended survey and interview questions, literature reviews, case studies, and other sources that use text rather than numbers.
- Using non-probability sampling methods .
Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions.
Quantitative analysis methods
Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).
You can use quantitative analysis to interpret data that were collected either:
- During an experiment.
- Using probability sampling methods .
Because the data are collected and analysed in a statistically valid way, the results of quantitative analysis can be easily standardised and shared among researchers.
Research method | Qualitative or quantitative? | When to use |
---|---|---|
Quantitative | To analyse data collected in a statistically valid manner (e.g. from experiments, surveys, and observations). | |
Meta-analysis | Quantitative | To statistically analyse the results of a large collection of studies. Can only be applied to studies that collected data in a statistically valid manner. |
Qualitative | To analyse data collected from interviews, focus groups or textual sources. To understand general themes in the data and how they are communicated. | |
Either | To analyse large volumes of textual or visual data collected from surveys, literature reviews, or other sources. Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words). |
Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.
Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.
In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .
A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.
For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.
Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.
The research methods you use depend on the type of data you need to answer your research question .
- If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
- If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
- If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.
Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.
Methods are the specific tools and procedures you use to collect and analyse data (e.g. experiments, surveys , and statistical tests ).
In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .
In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.
Is this article helpful?
More interesting articles.
- A Quick Guide to Experimental Design | 5 Steps & Examples
- Between-Subjects Design | Examples, Pros & Cons
- Case Study | Definition, Examples & Methods
- Cluster Sampling | A Simple Step-by-Step Guide with Examples
- Confounding Variables | Definition, Examples & Controls
- Construct Validity | Definition, Types, & Examples
- Content Analysis | A Step-by-Step Guide with Examples
- Control Groups and Treatment Groups | Uses & Examples
- Controlled Experiments | Methods & Examples of Control
- Correlation vs Causation | Differences, Designs & Examples
- Correlational Research | Guide, Design & Examples
- Critical Discourse Analysis | Definition, Guide & Examples
- Cross-Sectional Study | Definitions, Uses & Examples
- Data Cleaning | A Guide with Examples & Steps
- Data Collection Methods | Step-by-Step Guide & Examples
- Descriptive Research Design | Definition, Methods & Examples
- Doing Survey Research | A Step-by-Step Guide & Examples
- Ethical Considerations in Research | Types & Examples
- Explanatory Research | Definition, Guide, & Examples
- Explanatory vs Response Variables | Definitions & Examples
- Exploratory Research | Definition, Guide, & Examples
- External Validity | Types, Threats & Examples
- Extraneous Variables | Examples, Types, Controls
- Face Validity | Guide with Definition & Examples
- How to Do Thematic Analysis | Guide & Examples
- How to Write a Strong Hypothesis | Guide & Examples
- Inclusion and Exclusion Criteria | Examples & Definition
- Independent vs Dependent Variables | Definition & Examples
- Inductive Reasoning | Types, Examples, Explanation
- Inductive vs Deductive Research Approach (with Examples)
- Internal Validity | Definition, Threats & Examples
- Internal vs External Validity | Understanding Differences & Examples
- Longitudinal Study | Definition, Approaches & Examples
- Mediator vs Moderator Variables | Differences & Examples
- Mixed Methods Research | Definition, Guide, & Examples
- Multistage Sampling | An Introductory Guide with Examples
- Naturalistic Observation | Definition, Guide & Examples
- Operationalisation | A Guide with Examples, Pros & Cons
- Population vs Sample | Definitions, Differences & Examples
- Primary Research | Definition, Types, & Examples
- Qualitative vs Quantitative Research | Examples & Methods
- Quasi-Experimental Design | Definition, Types & Examples
- Questionnaire Design | Methods, Question Types & Examples
- Random Assignment in Experiments | Introduction & Examples
- Reliability vs Validity in Research | Differences, Types & Examples
- Reproducibility vs Replicability | Difference & Examples
- Research Design | Step-by-Step Guide with Examples
- Sampling Methods | Types, Techniques, & Examples
- Semi-Structured Interview | Definition, Guide & Examples
- Simple Random Sampling | Definition, Steps & Examples
- Stratified Sampling | A Step-by-Step Guide with Examples
- Structured Interview | Definition, Guide & Examples
- Systematic Review | Definition, Examples & Guide
- Systematic Sampling | A Step-by-Step Guide with Examples
- Textual Analysis | Guide, 3 Approaches & Examples
- The 4 Types of Reliability in Research | Definitions & Examples
- The 4 Types of Validity | Types, Definitions & Examples
- Transcribing an Interview | 5 Steps & Transcription Software
- Triangulation in Research | Guide, Types, Examples
- Types of Interviews in Research | Guide & Examples
- Types of Research Designs Compared | Examples
- Types of Variables in Research | Definitions & Examples
- Unstructured Interview | Definition, Guide & Examples
- What Are Control Variables | Definition & Examples
- What Is a Case-Control Study? | Definition & Examples
- What Is a Cohort Study? | Definition & Examples
- What Is a Conceptual Framework? | Tips & Examples
- What Is a Double-Barrelled Question?
- What Is a Double-Blind Study? | Introduction & Examples
- What Is a Focus Group? | Step-by-Step Guide & Examples
- What Is a Likert Scale? | Guide & Examples
- What is a Literature Review? | Guide, Template, & Examples
- What Is a Prospective Cohort Study? | Definition & Examples
- What Is a Retrospective Cohort Study? | Definition & Examples
- What Is Action Research? | Definition & Examples
- What Is an Observational Study? | Guide & Examples
- What Is Concurrent Validity? | Definition & Examples
- What Is Content Validity? | Definition & Examples
- What Is Convenience Sampling? | Definition & Examples
- What Is Convergent Validity? | Definition & Examples
- What Is Criterion Validity? | Definition & Examples
- What Is Deductive Reasoning? | Explanation & Examples
- What Is Discriminant Validity? | Definition & Example
- What Is Ecological Validity? | Definition & Examples
- What Is Ethnography? | Meaning, Guide & Examples
- What Is Non-Probability Sampling? | Types & Examples
- What Is Participant Observation? | Definition & Examples
- What Is Peer Review? | Types & Examples
- What Is Predictive Validity? | Examples & Definition
- What Is Probability Sampling? | Types & Examples
- What Is Purposive Sampling? | Definition & Examples
- What Is Qualitative Observation? | Definition & Examples
- What Is Qualitative Research? | Methods & Examples
- What Is Quantitative Observation? | Definition & Examples
- What Is Quantitative Research? | Definition & Methods
- What Is Quota Sampling? | Definition & Examples
- What is Secondary Research? | Definition, Types, & Examples
- What Is Snowball Sampling? | Definition & Examples
- Within-Subjects Design | Explanation, Approaches, Examples
Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, generate accurate citations for free.
- Knowledge Base
Methodology
- What Is a Research Design | Types, Guide & Examples
What Is a Research Design | Types, Guide & Examples
Published on June 7, 2021 by Shona McCombes . Revised on September 5, 2024 by Pritha Bhandari.
A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about:
- Your overall research objectives and approach
- Whether you’ll rely on primary research or secondary research
- Your sampling methods or criteria for selecting subjects
- Your data collection methods
- The procedures you’ll follow to collect data
- Your data analysis methods
A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.
You might have to write up a research design as a standalone assignment, or it might be part of a larger research proposal or other project. In either case, you should carefully consider which methods are most appropriate and feasible for answering your question.
Table of contents
Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.
- Introduction
Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.
There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.
The first choice you need to make is whether you’ll take a qualitative or quantitative approach.
Qualitative approach | Quantitative approach |
---|---|
and describe frequencies, averages, and correlations about relationships between variables |
Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.
Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.
It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.
Practical and ethical considerations when designing research
As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .
- How much time do you have to collect data and write up the research?
- Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
- Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
- Will you need ethical approval ?
At each stage of the research design process, make sure that your choices are practically feasible.
Receive feedback on language, structure, and formatting
Professional editors proofread and edit your paper by focusing on:
- Academic style
- Vague sentences
- Style consistency
See an example
Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.
Types of quantitative research designs
Quantitative designs can be split into four main types.
- Experimental and quasi-experimental designs allow you to test cause-and-effect relationships
- Descriptive and correlational designs allow you to measure variables and describe relationships between them.
Type of design | Purpose and characteristics |
---|---|
Experimental | relationships effect on a |
Quasi-experimental | ) |
Correlational | |
Descriptive |
With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).
Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.
Types of qualitative research designs
Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.
The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.
Type of design | Purpose and characteristics |
---|---|
Grounded theory | |
Phenomenology |
Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.
In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.
Defining the population
A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.
For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?
The more precisely you define your population, the easier it will be to gather a representative sample.
- Sampling methods
Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.
To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.
Probability sampling | Non-probability sampling |
---|---|
Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.
For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.
Case selection in qualitative research
In some types of qualitative designs, sampling may not be relevant.
For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.
In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .
For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.
Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.
You can choose just one data collection method, or use several methods in the same study.
Survey methods
Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .
Questionnaires | Interviews |
---|---|
) |
Observation methods
Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.
Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.
Quantitative observation | |
---|---|
Other methods of data collection
There are many other ways you might collect data depending on your field and topic.
Field | Examples of data collection methods |
---|---|
Media & communication | Collecting a sample of texts (e.g., speeches, articles, or social media posts) for data on cultural norms and narratives |
Psychology | Using technologies like neuroimaging, eye-tracking, or computer-based tasks to collect data on things like attention, emotional response, or reaction time |
Education | Using tests or assignments to collect data on knowledge and skills |
Physical sciences | Using scientific instruments to collect data on things like weight, blood pressure, or chemical composition |
If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.
Secondary data
If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.
With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.
Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.
However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.
Here's why students love Scribbr's proofreading services
Discover proofreading & editing
As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.
Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.
Operationalization
Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.
If you’re using observations , which events or actions will you count?
If you’re using surveys , which questions will you ask and what range of responses will be offered?
You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.
Reliability and validity
Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.
Reliability | Validity |
---|---|
) ) |
For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.
If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.
Sampling procedures
As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.
That means making decisions about things like:
- How many participants do you need for an adequate sample size?
- What inclusion and exclusion criteria will you use to identify eligible participants?
- How will you contact your sample—by mail, online, by phone, or in person?
If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?
If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?
Data management
It’s also important to create a data management plan for organizing and storing your data.
Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.
Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).
On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.
Quantitative data analysis
In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.
Using descriptive statistics , you can summarize your sample data in terms of:
- The distribution of the data (e.g., the frequency of each score on a test)
- The central tendency of the data (e.g., the mean to describe the average score)
- The variability of the data (e.g., the standard deviation to describe how spread out the scores are)
The specific calculations you can do depend on the level of measurement of your variables.
Using inferential statistics , you can:
- Make estimates about the population based on your sample data.
- Test hypotheses about a relationship between variables.
Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.
Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.
Qualitative data analysis
In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.
Two of the most common approaches to doing this are thematic analysis and discourse analysis .
Approach | Characteristics |
---|---|
Thematic analysis | |
Discourse analysis |
There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.
If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.
- Simple random sampling
- Stratified sampling
- Cluster sampling
- Likert scales
- Reproducibility
Statistics
- Null hypothesis
- Statistical power
- Probability distribution
- Effect size
- Poisson distribution
Research bias
- Optimism bias
- Cognitive bias
- Implicit bias
- Hawthorne effect
- Anchoring bias
- Explicit bias
A research design is a strategy for answering your research question . It defines your overall approach and determines how you will collect and analyze data.
A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.
Quantitative research designs can be divided into two main categories:
- Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
- Experimental and quasi-experimental designs are used to test causal relationships .
Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.
The priorities of a research design can vary depending on the field, but you usually have to specify:
- Your research questions and/or hypotheses
- Your overall approach (e.g., qualitative or quantitative )
- The type of design you’re using (e.g., a survey , experiment , or case study )
- Your data collection methods (e.g., questionnaires , observations)
- Your data collection procedures (e.g., operationalization , timing and data management)
- Your data analysis methods (e.g., statistical tests or thematic analysis )
A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.
In statistics, sampling allows you to test a hypothesis about the characteristics of a population.
Operationalization means turning abstract conceptual ideas into measurable observations.
For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.
Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.
A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.
McCombes, S. (2024, September 05). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved October 9, 2024, from https://www.scribbr.com/methodology/research-design/
Is this article helpful?
Shona McCombes
Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, get unlimited documents corrected.
✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts
IMAGES
VIDEO
COMMENTS
Research methods refer to the strategies, tools, and techniques used to gather and analyze data in a structured way in order to answer a research question or investigate a hypothesis (Hammond & Wellington, 2020). Generally, we place research methods into two categories: quantitative and qualitative.
The research methods you use depend on the type of data you need to answer your research question. If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
Research Methods refer to the techniques, procedures, and processes used by researchers to collect, analyze, and interpret data in order to answer research questions or test hypotheses. The methods used in research can vary depending on the research questions, the type of data that is being collected, and the research design.
Definition: Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect, analyze, and interpret data to answer research questions or solve research problems.
Knowing the types of research and what each of them focuses on will allow you to better plan your project, utilises the most appropriate methodologies and techniques and better communicate your findings to other researchers and supervisors. Classification of Types of Research
Let’s look at the four main types of research: descriptive, correlational, experimental, and diagnostic. Descriptive Research. Descriptive research is an approach designed to describe the characteristics of a population systematically and accurately.
This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. As Patten and Newhart note in the book Understanding Research Methods, "Research methods are the building blocks of the scientific enterprise.
Research methods are ways of collecting and analysing data. Common methods include surveys, experiments, interviews, and observations.
Definition: Research refers to the process of investigating a particular topic or question in order to discover new information, develop new insights, or confirm or refute existing knowledge. It involves a systematic and rigorous approach to collecting, analyzing, and interpreting data, and requires careful planning and attention to detail.
A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources.